Regular representations of completely bounded maps

Nirupama Mallick

(Joint work with B.V.Rajarama Bhat and K.Sumesh)

OTOA December 21, 2016

Nirupama (ISIBC)

Basic definitions

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへの

Nirupama (ISIBC)

Basic definitions

• A linear map $\varphi: \mathcal{A} \to \mathcal{B}$ between C^* -algebras is said to be

- positive if $\varphi(a^*a) \ge 0$ for all $a \in \mathcal{A}$;
- completely positive (CP) if $\varphi^{(k)} : M_k(\mathcal{A}) \to M_k(\mathcal{B})$ is positive for all $k \in \mathbb{N}$.

$$\varphi^{(k)}\left(\left[a_{ij}\right]\right) = \left[\varphi^{(a_{ij})}\right]$$

• completely bounded (CB) if $\|\varphi\|_{cb} := \sup_k \left\|\varphi^{(k)}\right\| < \infty$.

イロト 不得下 イヨト イヨト 二日

Basic definitions

• A linear map $\varphi: \mathcal{A} \to \mathcal{B}$ between C^* -algebras is said to be

- positive if $\varphi(a^*a) \ge 0$ for all $a \in \mathcal{A}$;
- completely positive (CP) if $\varphi^{(k)} : M_k(\mathcal{A}) \to M_k(\mathcal{B})$ is positive for all $k \in \mathbb{N}$.

$$\varphi^{(k)}\left(\left[\begin{array}{c}a_{ij}\end{array}\right]\right) = \left[\begin{array}{c}\varphi(a_{ij})\end{array}\right]$$

• completely bounded (CB) if $\|\varphi\|_{cb} := \sup_k \left\|\varphi^{(k)}\right\| < \infty$.

- Suppose E is a complex vector space which is also a right A-module. E is said to be a Hilbert A-module if there exists A-valued inner-product ⟨·, ·⟩ such that E is complete with respect to the norm ||x|| := ||⟨x, x⟩||^{1/2}, x ∈ E.
- $\mathcal{B}^{a}(E)$ denotes the space of bounded adjointable linear maps on E.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のぬの

• Stinespring's representation theorem for CP-maps (1955):

$$\varphi: \mathcal{A} \to \mathcal{B}(\mathcal{H}) \rightsquigarrow \begin{cases} \pi: \mathcal{A} \to \mathcal{B}(\mathcal{K}) & \text{unital }*\text{-homomorphism} \\ V \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \\ \text{such that } \varphi(a) = V^* \pi(a) V. \end{cases}$$

E

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶

• Stinespring's representation theorem for CP-maps (1955):

$$\varphi: \mathcal{A} \to \mathcal{B}(\mathcal{H}) \rightsquigarrow \begin{cases} \pi: \mathcal{A} \to \mathcal{B}(\mathcal{K}) & \text{unital }*\text{-homomorphism} \\ V \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \\ \text{such that } \varphi(a) = V^* \pi(a) V. \end{cases}$$

• We search for a similar representation theorem for CB-maps.

3

・ロト ・ 一下・ ・ ヨト・

• Stinespring's representation theorem for CP-maps (1955):

$$\varphi: \mathcal{A} \to \mathcal{B}(\mathcal{H}) \rightsquigarrow \begin{cases} \pi: \mathcal{A} \to \mathcal{B}(\mathcal{K}) & \text{unital }*\text{-homomorphism} \\ V \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \\ \text{such that } \varphi(a) = V^* \pi(a) V. \end{cases}$$

We search for a similar representation theorem for CB-maps.
Idea:

3

・ロト ・ 一下・ ・ ヨト・

• Stinespring's representation theorem for CP-maps (1955):

$$\varphi: \mathcal{A} \to \mathcal{B}(\mathcal{H}) \rightsquigarrow \begin{cases} \pi: \mathcal{A} \to \mathcal{B}(\mathcal{K}) & \text{unital }*\text{-homomorphism} \\ V \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \\ \text{such that } \varphi(a) = V^* \pi(a) V. \end{cases}$$

- We search for a similar representation theorem for CB-maps.
- Idea:
 - In Stinespring's representation theorem one requires *-homomorphisms to represent CP-maps.

ヘロト 人間 ト 人 ヨト 人 ヨトー

• Stinespring's representation theorem for CP-maps (1955):

$$\varphi: \mathcal{A} \to \mathcal{B}(\mathcal{H}) \rightsquigarrow \begin{cases} \pi: \mathcal{A} \to \mathcal{B}(\mathcal{K}) \text{ unital }*\text{-homomorphism} \\ V \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \\ \text{such that } \varphi(a) = V^* \pi(a) V. \end{cases}$$

- We search for a similar representation theorem for CB-maps.
- Idea:
 - In Stinespring's representation theorem one requires *-homomorphisms to represent CP-maps.
 - For similar representation of CB-maps we need to consider homomorphisms which are not necessarily *-preserving.

ヘロト 人間ト 人注ト 人注ト

We consider homomorphisms which preserves * up to a "symmetry".

3

・ロト ・ 一下・ ・ ヨト・

We consider homomorphisms which preserves * up to a "symmetry".

<u>Definition</u>: An element J in a unital C^* -algebra \mathcal{B} satisfying $J = J^* = J^{-1}$ is called a symmetry.

イロト 不得下 イヨト イヨト 二日

We consider homomorphisms which preserves * up to a "symmetry".

Definition: An element J in a unital C^* -algebra \mathcal{B} satisfying $J = J^* = J^{-1}$ is called a symmetry. A homomorphism $\tau : \mathcal{A} \to \mathcal{B}$ is said to be a

• J-homomorphism if $J\tau(a)^*J = \tau(a^*)$ for all $a \in \mathcal{A}$.

イロト 不得下 イヨト イヨト 二日

We consider homomorphisms which preserves * up to a "symmetry".

Definition: An element J in a unital C^* -algebra \mathcal{B} satisfying $J = J^* = J^{-1}$ is called a symmetry. A homomorphism $\tau : \mathcal{A} \to \mathcal{B}$ is said to be a

- J-homomorphism if $J\tau(a)^*J = \tau(a^*)$ for all $a \in \mathcal{A}$.
- Symmetric homomorphism if τ is a *J*-homomorphism for some symmetry $J \in \mathcal{B}$.

We consider homomorphisms which preserves * up to a "symmetry".

Definition: An element J in a unital C^* -algebra \mathcal{B} satisfying $J = J^* = J^{-1}$ is called a symmetry. A homomorphism $\tau : \mathcal{A} \to \mathcal{B}$ is said to be a

- J-homomorphism if $J\tau(a)^*J = \tau(a^*)$ for all $a \in \mathcal{A}$.
- Symmetric homomorphism if τ is a *J*-homomorphism for some symmetry $J \in \mathcal{B}$.
 - *-homomorphisms \Rightarrow symmetric homomorphisms.

We consider homomorphisms which preserves * up to a "symmetry".

Definition: An element J in a unital C^* -algebra \mathcal{B} satisfying $J = J^* = J^{-1}$ is called a symmetry. A homomorphism $\tau : \mathcal{A} \to \mathcal{B}$ is said to be a

- J-homomorphism if $J\tau(a)^*J = \tau(a^*)$ for all $a \in \mathcal{A}$.
- Symmetric homomorphism if τ is a *J*-homomorphism for some symmetry $J \in \mathcal{B}$.
 - *-homomorphisms \Rightarrow symmetric homomorphisms.
 - Converse is not true.

We consider homomorphisms which preserves * up to a "symmetry".

Definition: An element J in a unital C^* -algebra \mathcal{B} satisfying $J = J^* = J^{-1}$ is called a symmetry. A homomorphism $\tau : \mathcal{A} \to \mathcal{B}$ is said to be a

- J-homomorphism if $J\tau(a)^*J = \tau(a^*)$ for all $a \in \mathcal{A}$.
- Symmetric homomorphism if τ is a *J*-homomorphism for some symmetry $J \in \mathcal{B}$.
 - *-homomorphisms \Rightarrow symmetric homomorphisms.

• Converse is not true.

$$\tau : \mathbb{C} \to \mathcal{B}(\mathbb{C}^2)$$
 given by $a \mapsto \begin{bmatrix} \frac{a}{2} & \frac{a}{4} \\ a & \frac{a}{2} \end{bmatrix}$ is a *J*-homomorphism where
 $J = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

• The following proposition answers the uniquness of symmetry J in a symmetric homomorphism.

イロト イポト イヨト イヨト

• The following proposition answers the uniquness of symmetry J in a symmetric homomorphism.

Proposition: Suppose $\tau : \mathcal{A} \to \mathcal{B}$ is a symmetric homomorphism. If there exist symmetries $J, J' \in \mathcal{B}$ such that τ is both J- and J'-homomorphism, then there exists a unitary $U \in \tau(\mathcal{A})' \subseteq \mathcal{B}$ such that J = UJU and J' = JU.

・日本 本語を 本語を 本語を

• The following proposition answers the uniquness of symmetry J in a symmetric homomorphism.

Proposition: Suppose $\tau : \mathcal{A} \to \mathcal{B}$ is a symmetric homomorphism. If there exist symmetries $J, J' \in \mathcal{B}$ such that τ is both J- and J'-homomorphism, then there exists a unitary $U \in \tau(\mathcal{A})' \subseteq \mathcal{B}$ such that J = UJU and J' = JU.

• Not all homomorphisms are symmetric. $\tau: M_2(\mathbb{C}) \to M_2(\mathbb{C})$ given by $\tau(a) = sas^{-1}$, where $s = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• The following proposition answers the uniquness of symmetry J in a symmetric homomorphism.

Proposition: Suppose $\tau : \mathcal{A} \to \mathcal{B}$ is a symmetric homomorphism. If there exist symmetries $J, J' \in \mathcal{B}$ such that τ is both J- and J'-homomorphism, then there exists a unitary $U \in \tau(\mathcal{A})' \subseteq \mathcal{B}$ such that J = UJU and J' = JU.

- Not all homomorphisms are symmetric. $\tau: M_2(\mathbb{C}) \to M_2(\mathbb{C})$ given by $\tau(a) = sas^{-1}$, where $s = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
- But we can always associate a symmetry to a homomorphism.

ヘロン 人間 とくほど 人見とし 見

• The following proposition answers the uniquness of symmetry J in a symmetric homomorphism.

Proposition: Suppose $\tau : \mathcal{A} \to \mathcal{B}$ is a symmetric homomorphism. If there exist symmetries $J, J' \in \mathcal{B}$ such that τ is both J- and J'-homomorphism, then there exists a unitary $U \in \tau(\mathcal{A})' \subseteq \mathcal{B}$ such that J = UJU and J' = JU.

- Not all homomorphisms are symmetric. $\tau: M_2(\mathbb{C}) \to M_2(\mathbb{C})$ given by $\tau(a) = sas^{-1}$, where $s = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
- But we can always associate a symmetry to a homomorphism.

Proposition: Suppose $\tau : \mathcal{A} \to \mathcal{B}$ is a homomorphism. Then there exists a symmetry $J \in \mathcal{B}$ such that $\tau(a)^* = J\tau(a)J$ for all $a \in \mathcal{A}$ satisfying $\tau(a)^*\tau(1) = \tau(1)^*\tau(a)$ and $\tau(a)\tau(1)^* = \tau(1)\tau(a)^*$.

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ● ●

Nirupama (ISIBC)

<u>Definition</u>: A map $\tau : \mathcal{A} \to \mathcal{B}$ is said to be regular if $\tau(u)^* \tau(u) = \tau(1)^* \tau(1)$ and $\tau(u) \tau(u)^* = \tau(1) \tau(1)^*$ for all unitary $u \in \mathcal{A}$.

ヘロト 人間ト 人注ト 人注ト

<u>Definition</u>: A map $\tau : \mathcal{A} \to \mathcal{B}$ is said to be regular if $\tau(u)^* \tau(u) = \tau(1)^* \tau(1)$ and $\tau(u) \tau(u)^* = \tau(1) \tau(1)^*$ for all unitary $u \in \mathcal{A}$.

• *-homomorphism \Rightarrow regular. Converse is not true. $\tau : \mathcal{A} \to M_2(\mathcal{A})$ given by $\tau(a) = \begin{bmatrix} a & 0 \\ a & 0 \end{bmatrix}$.

<ロト <部ト <注ト <注ト = 注

<u>Definition</u>: A map $\tau : \mathcal{A} \to \mathcal{B}$ is said to be regular if $\tau(u)^* \tau(u) = \tau(1)^* \tau(1)$ and $\tau(u) \tau(u)^* = \tau(1) \tau(1)^*$ for all unitary $u \in \mathcal{A}$.

- *-homomorphism \Rightarrow regular. Converse is not true. $\tau : \mathcal{A} \to M_2(\mathcal{A})$ given by $\tau(a) = \begin{bmatrix} a & 0 \\ a & 0 \end{bmatrix}$.
- Unital regular homomorphism \Rightarrow *-homomorphism.

<u>Definition</u>: A map $\tau : \mathcal{A} \to \mathcal{B}$ is said to be regular if $\tau(u)^* \tau(u) = \tau(1)^* \tau(1)$ and $\tau(u) \tau(u)^* = \tau(1) \tau(1)^*$ for all unitary $u \in \mathcal{A}$.

- *-homomorphism \Rightarrow regular. Converse is not true. $\tau : \mathcal{A} \to M_2(\mathcal{A})$ given by $\tau(a) = \begin{bmatrix} a & 0 \\ a & 0 \end{bmatrix}$.
- Unital regular homomorphism \Rightarrow *-homomorphism.

<u>Theorem</u>: Every regular homomorphism $\tau : \mathcal{A} \to \mathcal{B}$ is a symmetric homomorphism.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣

 $\underline{ \text{Definition:}}_{\tau(u)^*\tau(u) = \tau(1)^*\tau(1) \text{ and } \tau(u)\tau(u)^* = \tau(1)\tau(1)^* \text{ for all unitary } u \in \mathcal{A}.$

• *-homomorphism \Rightarrow regular. Converse is not true. $\tau : \mathcal{A} \to M_2(\mathcal{A})$ given by $\tau(a) = \begin{bmatrix} a & 0 \\ a & 0 \end{bmatrix}$.

• Unital regular homomorphism \Rightarrow *-homomorphism.

<u>Theorem</u>: Every regular homomorphism $\tau : \mathcal{A} \to \mathcal{B}$ is a symmetric homomorphism.

• Let $v \in \mathcal{B}(\mathcal{H})$ be a non-scalar unitary. Define $\tau : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$ by $\tau(a) = \begin{bmatrix} a & \sqrt{3}(va - av) \\ 0 & a \end{bmatrix}$. Then τ is a *J*-homomorphism with symmetry $J = \frac{1}{2} \begin{bmatrix} -1 & \sqrt{3}v \\ \sqrt{3}v^* & 1 \end{bmatrix} \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$. But not τ is not regular.

<u>Definition</u>: A map $\tau : \mathcal{A} \to \mathcal{B}$ is said to be regular if $\tau(u)^* \tau(u) = \tau(1)^* \tau(1)$ and $\tau(u) \tau(u)^* = \tau(1) \tau(1)^*$ for all unitary $u \in \mathcal{A}$.

• *-homomorphism \Rightarrow regular. Converse is not true. $\tau : \mathcal{A} \to M_2(\mathcal{A})$ given by $\tau(a) = \begin{bmatrix} a & 0 \\ a & 0 \end{bmatrix}$.

• Unital regular homomorphism \Rightarrow *-homomorphism.

<u>Theorem</u>: Every regular homomorphism $\tau : \mathcal{A} \to \mathcal{B}$ is a symmetric homomorphism.

• Let $v \in \mathfrak{B}(\mathcal{H})$ be a non-scalar unitary. Define $\tau : \mathfrak{B}(\mathcal{H}) \to \mathfrak{B}(\mathcal{H} \oplus \mathcal{H})$ by $\tau(a) = \begin{bmatrix} a & \sqrt{3}(va - av) \\ 0 & a \end{bmatrix}$. Then τ is a *J*-homomorphism with symmetry $J = \frac{1}{2} \begin{bmatrix} -1 & \sqrt{3}v \\ \sqrt{3}v^* & 1 \end{bmatrix} \in \mathfrak{B}(\mathcal{H} \oplus \mathcal{H})$. But not τ is not regular. • *-homo \subsetneq regular homo \subsetneq symmetric homo.

 \mathcal{A}, \mathcal{B} - unital C^* -algebras E - Hilbert \mathcal{B} -module

E

・ロト ・ 一下・ ・ ヨト・

 \mathcal{A}, \mathcal{B} - unital C^* -algebras E - Hilbert \mathcal{B} -module

Definition: A linear map $\tau : \mathcal{A} \to \mathcal{B}^a(E)$ is said to be *-nondegenerate if

 $E = \overline{\text{span}} \{ \tau(a_1) x_1, \tau(a_2)^* x_2 : x_i \in E, \ a_i \in \mathcal{A}, i = 1, 2 \}.$

ヘロト 人間ト 人間ト 人間トー

 \mathcal{A}, \mathcal{B} - unital C^* -algebras E - Hilbert \mathcal{B} -module

Definition: A linear map $\tau : \mathcal{A} \to \mathcal{B}^a(E)$ is said to be *-nondegenerate if

 $E = \overline{\operatorname{span}}\{\tau(a_1)x_1, \tau(a_2)^*x_2 : x_i \in E, \ a_i \in \mathcal{A}, i = 1, 2\}.$

A *-homomorphism $\tau : \mathcal{A} \to \mathcal{B}^a(E)$ is *-nondegenerate iff it is unital.

ヘロト 人間ト 人注ト 人注ト

 \mathcal{A}, \mathcal{B} - unital C^* -algebras E - Hilbert \mathcal{B} -module

Definition: A linear map $\tau : \mathcal{A} \to \mathcal{B}^a(E)$ is said to be *-nondegenerate if

 $E = \overline{\operatorname{span}}\{\tau(a_1)x_1, \tau(a_2)^*x_2 : x_i \in E, \ a_i \in \mathcal{A}, i = 1, 2\}.$

A *-homomorphism $\tau : \mathcal{A} \to \mathcal{B}^a(E)$ is *-nondegenerate iff it is unital.

<u>**Theorem:**</u> Suppose $\tau : \mathcal{A} \to \mathcal{B}^a(E)$ is a *-nondegenerate, regular homomorphism. Then there exists a unique unital *-homomorphism $\vartheta : \mathcal{A} \to \mathcal{B}^a(E)$ such that

$$\tau(a) = \vartheta(a)\tau(1) = \tau(1)\vartheta(a)$$

for all $a \in \mathcal{A}$. Consequently τ is completely bounded with $\|\tau\|_{cb} = \|\tau(1)\|$.

Normal regular homomorphism

Theorem:

$$\tau: \mathcal{B}(\mathcal{H}) \xrightarrow{normal}_{regular \ homo.} \mathcal{B}(\mathcal{K}) \rightsquigarrow \begin{cases} \mathcal{K}_{\tau} & \text{Hilbert space}, \\ T \in \mathcal{B}(\mathcal{K}_{\tau}) & \text{idempotent operator}, \\ V: \mathcal{H} \otimes \mathcal{K}_{\tau} \to \mathcal{K} & \text{isometry} \\ \text{such that } \tau(a) = V(a \otimes T)V^*. \end{cases}$$

E

ヘロト 人間 ト 人 ヨト 人 ヨトー

Normal regular homomorphism

Theorem:

$$\tau: \mathfrak{B}(\mathcal{H}) \xrightarrow{normal}_{regular \ homo.} \mathfrak{B}(\mathcal{K}) \rightsquigarrow \begin{cases} \mathcal{K}_{\tau} & \text{Hilbert space}, \\ T \in \mathfrak{B}(\mathcal{K}_{\tau}) & \text{idempotent operator}, \\ V: \mathcal{H} \otimes \mathcal{K}_{\tau} \to \mathcal{K} & \text{isometry} \\ \text{such that } \tau(a) = V(a \otimes T)V^*. \end{cases}$$

If τ is *-nondegenerate, then V is a unitary and (K_{τ}, T, V) is unique up to unitary equivalence.

<<p>・日本

Normal regular homomorphism

Theorem:

$$\tau: \mathfrak{B}(\mathcal{H}) \xrightarrow{normal}_{regular \ homo.} \mathfrak{B}(\mathcal{K}) \rightsquigarrow \begin{cases} \mathcal{K}_{\tau} & \text{Hilbert space}, \\ T \in \mathfrak{B}(\mathcal{K}_{\tau}) & \text{idempotent operator}, \\ V: \mathcal{H} \otimes \mathcal{K}_{\tau} \to \mathcal{K} & \text{isometry} \\ \text{such that } \tau(a) = V(a \otimes T)V^*. \end{cases}$$

If τ is *-nondegenerate, then V is a unitary and (K_{τ}, T, V) is unique up to unitary equivalence.

• We can have a similar structure theorem for regular homomorphisms $\tau: \mathcal{B}^a(E) \to \mathcal{B}^a(F)$ if E is a "full" Hilbert C^* -module and τ is continuous w.r.t the "strict" topology.

イロト イポト イヨト イヨト

Regular representation of CB-maps

Theorem:

$$\psi: \mathcal{A} \xrightarrow{cb} \mathcal{B}(\mathcal{H}) \rightsquigarrow \begin{cases} \tau: \mathcal{A} \to \mathcal{B}(\mathcal{K}) & \text{*-nondegenerate regular homomorphism} \\ W \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \\ \text{such that } \psi(a) = W^* \tau(a) W. \end{cases}$$

3

・ロト ・聞 ト ・ヨト ・ヨトー

Regular representation of CB-maps

Theorem:

$$\psi: \mathcal{A} \xrightarrow{cb} \mathcal{B}(\mathcal{H}) \rightsquigarrow \begin{cases} \tau: \mathcal{A} \to \mathcal{B}(\mathcal{K}) & \text{*-nondegenerate regular homomorphism} \\ W \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \\ \text{such that } \psi(a) = W^* \tau(a) W. \end{cases}$$

• If ψ is completely contractive (i.e., $\|\psi\|_{cb} \leq 1$), then we can choose W to be an isometry. But τ need not be *-nondegenerate.

(4 回 ト 4 ヨ ト 4 ヨ ト

Regular representation of CB-maps

Theorem:

$$\psi: \mathcal{A} \xrightarrow{cb} \mathcal{B}(\mathcal{H}) \rightsquigarrow \begin{cases} \tau: \mathcal{A} \to \mathcal{B}(\mathcal{K}) & \text{*-nondegenerate regular homomorphism} \\ W \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \\ \text{such that } \psi(a) = W^* \tau(a) W. \end{cases}$$

- If ψ is completely contractive (i.e., $\|\psi\|_{cb} \leq 1$), then we can choose W to be an isometry. But τ need not be *-nondegenerate.
- \bullet In previous theorem, given any $t\in(1,\infty)$ we can choose τ and W such that τ satisfies

$$\tau(a)\tau(b)^*\tau(c) = t\tau(ab^*c) \quad \forall \ a, b, c \in \mathcal{A}$$
^(†)

and $\|\psi\|_{cb} \leq \sqrt{t} \, \|W\|^2$.

回 と く ヨ と く ヨ と

<u>Definition</u>: Let $t \in \mathbb{R}$. A homomorphism $\tau : \mathcal{A} \to \mathcal{B}$ satisfying (†) is called *t*-ternary homomorphism.

イロト イポト イヨト イヨト

<u>Definition</u>: Let $t \in \mathbb{R}$. A homomorphism $\tau : \mathcal{A} \to \mathcal{B}$ satisfying (†) is called *t*-ternary homomorphism.

• If τ is a *t*-ternary homomorphism, then $t \ge 1$. If t = 1, then τ is a *-homomorphism.

イロン 不同と 不同と 不同と

<u>Definition</u>: Let $t \in \mathbb{R}$. A homomorphism $\tau : \mathcal{A} \to \mathcal{B}$ satisfying (†) is called *t*-ternary homomorphism.

- If τ is a *t*-ternary homomorphism, then $t \ge 1$. If t = 1, then τ is a *-homomorphism.
- *t*-ternary homomorphisms are regular. But converse is not true.

・ロト ・四ト ・ヨト ・ヨト

<u>Definition</u>: Let $t \in \mathbb{R}$. A homomorphism $\tau : \mathcal{A} \to \mathcal{B}$ satisfying (†) is called *t*-ternary homomorphism.

- If τ is a *t*-ternary homomorphism, then $t \ge 1$. If t = 1, then τ is a *-homomorphism.
- *t*-ternary homomorphisms are regular. But converse is not true.

Theorem:

$$\tau: \mathcal{A} \xrightarrow{t\text{-ternary}} \mathcal{B}^{a}(E) \rightsquigarrow \begin{cases} E_{1} \subseteq E \text{ closed, complemented, } \mathcal{B}\text{-submodule} \\ \pi: \mathcal{A} \to \mathcal{B}^{a}(E_{1}) \text{ unital } *\text{-homomorphism} \\ V_{1}, V_{2} \in \mathcal{B}(E_{1}, E) \text{ isometries with} V_{2}^{*}V_{1} = \frac{1}{\sqrt{t}}I_{E_{1}} \\ \text{such that } \tau(a) = \sqrt{t}V_{1}\pi(a)V_{2}^{*}. \end{cases}$$

・ロト ・ 理 ト ・ ヨ ト

• Fundamental theorem for CB-maps:

$$\psi: \mathcal{A} \to \mathcal{B}(\mathcal{H}) \rightsquigarrow \begin{cases} \pi: \mathcal{A} \to \mathcal{B}(\mathcal{K}) \text{ unital }*\text{-homomorphism} \\ V_1, V_2 \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \\ \text{such that } \psi(a) = V_1^* \pi(a) V_2. \end{cases}$$

3

• Fundamental theorem for CB-maps:

 $\psi: \mathcal{A} \to \mathcal{B}(\mathcal{H}) \rightsquigarrow \begin{cases} \pi: \mathcal{A} \to \mathcal{B}(\mathcal{K}) \text{ unital } *\text{-homomorphism} \\ V_1, V_2 \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \\ \text{such that } \psi(a) = V_1^* \pi(a) V_2. \end{cases}$

• Commutant representation for CB-maps:

$$\psi: \mathcal{A} \to \mathcal{B}(\mathcal{H}) \rightsquigarrow \begin{cases} \pi: \mathcal{A} \to \mathcal{B}(\mathcal{K}) \text{ unital }*\text{-homomorphism} \\ V \in \mathcal{B}(\mathcal{H}, \mathcal{K}), \ T \in \pi(\mathcal{A})' \subseteq \mathcal{B}(\mathcal{K}) \\ \text{such that } \psi(a) = V^* \pi(a) TV. \end{cases}$$

• Fundamental theorem for CB-maps:

 $\psi: \mathcal{A} \to \mathcal{B}(\mathcal{H}) \rightsquigarrow \begin{cases} \pi: \mathcal{A} \to \mathcal{B}(\mathcal{K}) \text{ unital } *\text{-homomorphism} \\ V_1, V_2 \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \\ \text{such that } \psi(a) = V_1^* \pi(a) V_2. \end{cases}$

• Commutant representation for CB-maps:

$$\psi: \mathcal{A} \to \mathcal{B}(\mathcal{H}) \rightsquigarrow \begin{cases} \pi: \mathcal{A} \to \mathcal{B}(\mathcal{K}) \text{ unital }*\text{-homomorphism} \\ V \in \mathcal{B}(\mathcal{H}, \mathcal{K}), \ T \in \pi(\mathcal{A})' \subseteq \mathcal{B}(\mathcal{K}) \\ \text{such that } \psi(a) = V^* \pi(a) TV. \end{cases}$$

Regular representation:

$$\psi(a) = W^* \tau(a) W$$

・ロット 4回ット 4回ット 4回ット 4回ット

• Fundamental theorem for CB-maps:

 $\psi: \mathcal{A} \to \mathcal{B}(\mathcal{H}) \rightsquigarrow \begin{cases} \pi: \mathcal{A} \to \mathcal{B}(\mathcal{K}) \text{ unital } *\text{-homomorphism} \\ V_1, V_2 \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \\ \text{such that } \psi(a) = V_1^* \pi(a) V_2. \end{cases}$

• Commutant representation for CB-maps:

$$\psi: \mathcal{A} \to \mathcal{B}(\mathcal{H}) \rightsquigarrow \begin{cases} \pi: \mathcal{A} \to \mathcal{B}(\mathcal{K}) \text{ unital }*\text{-homomorphism} \\ V \in \mathcal{B}(\mathcal{H}, \mathcal{K}), \ T \in \pi(\mathcal{A})' \subseteq \mathcal{B}(\mathcal{K}) \\ \text{such that } \psi(a) = V^* \pi(a) TV. \end{cases}$$

Regular representation:

$$\psi(a) = W^* \tau(a) W = W^* \vartheta(a) \tau(1) W$$

・ロット 4回ット 4回ット 4回ット 4回ット

• We saw that any regular representation also gives fundamental representation for CB-maps and commutant representation for CB-maps.

イロン 不同と 不同と 不同と

- We saw that any regular representation also gives fundamental representation for CB-maps and commutant representation for CB-maps.
- Suppose (\mathcal{K}, π, T, V) is a commutant representation of a CB-map $\psi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$. Set $\widehat{\mathcal{K}} = \mathcal{K} \oplus \mathcal{K}$. Define $\tau : \mathcal{A} \to \mathcal{B}(\widehat{\mathcal{K}})$ by

$$\tau(a) = \begin{bmatrix} \pi(a) & (2T - I)\pi(a) \\ 0 & 0 \end{bmatrix} \text{ and set } W = \begin{bmatrix} \frac{V}{\sqrt{2}} \\ \frac{V}{\sqrt{2}} \\ \frac{V}{\sqrt{2}} \end{bmatrix} \in \mathcal{B}(\mathcal{H},\widehat{\mathcal{K}}).$$

Then τ is a regular homomorphism and W is an isometry such that $\psi(\cdot)=W^*\tau(\cdot)W$

イロト 不得下 イヨト イヨト 二日

- We saw that any regular representation also gives fundamental representation for CB-maps and commutant representation for CB-maps.
- Suppose (\mathcal{K}, π, T, V) is a commutant representation of a CB-map $\psi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$. Set $\widehat{\mathcal{K}} = \mathcal{K} \oplus \mathcal{K}$. Define $\tau : \mathcal{A} \to \mathcal{B}(\widehat{\mathcal{K}})$ by

$$\tau(a) = \begin{bmatrix} \pi(a) & (2T - I)\pi(a) \\ 0 & 0 \end{bmatrix} \text{ and set } W = \begin{bmatrix} \frac{V}{\sqrt{2}} \\ \frac{V}{\sqrt{2}} \\ \frac{V}{\sqrt{2}} \end{bmatrix} \in \mathcal{B}(\mathcal{H},\widehat{\mathcal{K}}).$$

Then τ is a regular homomorphism and W is an isometry such that $\psi(\cdot)=W^*\tau(\cdot)W$

• These relationships between various representations show the richness of the subject.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- We saw that any regular representation also gives fundamental representation for CB-maps and commutant representation for CB-maps.
- Suppose (\mathcal{K}, π, T, V) is a commutant representation of a CB-map $\psi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$. Set $\widehat{\mathcal{K}} = \mathcal{K} \oplus \mathcal{K}$. Define $\tau : \mathcal{A} \to \mathcal{B}(\widehat{\mathcal{K}})$ by

$$\tau(a) = \begin{bmatrix} \pi(a) & (2T - I)\pi(a) \\ 0 & 0 \end{bmatrix} \text{ and set } W = \begin{bmatrix} \frac{V}{\sqrt{2}} \\ \frac{V}{\sqrt{2}} \\ \frac{V}{\sqrt{2}} \end{bmatrix} \in \mathcal{B}(\mathcal{H},\widehat{\mathcal{K}}).$$

Then τ is a regular homomorphism and W is an isometry such that $\psi(\cdot)=W^*\tau(\cdot)W$

- These relationships between various representations show the richness of the subject.
- For a given CB-map we may choose the representation of our liking.

イロト 不得下 イヨト イヨト 二日

References

- B. V. Rajarama Bhat, Nirupama Mallick and K. Sumesh: Regular representations of completely bounded maps. Preprint (Submitted)
- W. F. STINESPRING: Positive functions on C^* -algebras, Proc. Amer. Math. Soc., 6:211-216, 1955.
- VERN I. PAULSEN AND CHING YUN SUEN: Commutant representations of completely bounded maps, J. Operator Theory, 13(1):87-101, 1985.
- N. PAULSEN, Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics, 2002.

E. C. LANCE, Hilbert C^{*}-modules, Cambridge Univ. Press, Cambridge, 1995.

イロト 不得下 イヨト イヨト

THANK YOU

