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Remember from Orr’s talk:



I S a monoid (with neutral element 0, but not necessarily
abelian).

I B a unital C∗–algebra (vN-algebra =⇒ maps normal).

(Contractive) CP-semigroup T =
(
Tt

)
t∈S

op

;

I a subproduct system E5 (roughly, Es � Et “⊃” Est ) and
I a unit ξ� (roughly, ξs � ξt “=” ξst ).

Dilation (A, θ, p) of T ;
I a superproduct system E4 (roughly, Es � Et “⊂” Est )
I containing E5 3 ξ� (meaning Et ⊃ Et 3 ξt ).

Product system E�+unital unit ξ� ;
I a module dilation (E, ϑ, ξ) (meaningA = Ba(E) and p = ξξ∗).

=⇒ several implication for (non-)existence of dilations in terms of
(non-)embeddability of subproduct systems into (super)product
systems.

CAREFUL! Monoids of semigroups and (sub)(super)PS are
opposite!
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I Implications
I Sub not into super⇒ no dilation. (Example!)
I Ba(E) = A has to do with one of the (stronger and not

necessarily achievable) minimality conditions: E = Ap ;
Ba(E) = spans

ApA. (ξ = p ∈ pA = E.)
I We will try to embed subPS into PS. ([BS00] in the

one-parameter case
I We choose Sop for the semigroups because:

I convenient as we work more in PS;
I Ore S−1S = G, necessary for certain constructive results. To

make p increasing, the semigroup indexing T should be
anti-Ore.

I In the end, no problems in the abelian case, like Rd
+,N

d
0 .

I Also: Arveson-Stinespring (Daniel’s talk) are contravariant with
the subPS and, thus, anti-Ore.

I In the sequel:
I Explain (repetition) the preceding slide.
I Go into the construction of product systems (for

CP-semigroups and not) in the multi-parameter cases.
I Use this to solve discrete 2-parameter and procude a 1000

c.-ex.s.



CP-semigroup ; GNS-(E5, ξ�)

Paschke [Pas73]: CP-map Tt : B → B; Et 3 ξt such that

Tt = 〈ξt , •ξt〉, Et = spanBξtB.

We compute Tt ◦ Ts = 〈ξt , 〈ξs , •ξs〉ξt〉 = 〈ξs � ξt , •ξs � ξt〉.
If (Tt ) semigroup over Sop(!), then Tt ◦ Ts = Tst , so

ξst 7−→ ξs � ξt

defines B–B–linear isometry ws,t : Est → Es � Et .
So,
I E5 =

(
Et

)
t∈S

is a subproduct system (over S = (Sop)op) and

I ξ� =
(
ξt

)
t∈S

is a unit for E5, generating it as subPS.

Example (Shalit-ms)

The exist B and a semigroup (cn) in B over N0 such that the
GNS-subPS of Tt = c∗t • ct does have non-adjointable ws,t .
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What type of dilation?
We look at triples (A, θ, p) consisting of

I a unital C∗–algebra A,
I an endomorphism semigroup θ =

(
θt

)
t∈Sop over Sop ,

I a projection p ∈ A.
Typical (Ba(E), ϑ, ξξ∗), denoted as (E, ϑ, ξ).

(A, θ, p) is a weak dilation if pap 7→ pθt (pap)p form a semigroup
(over Sop) of maps on pAp.
(A, θ, p) is strong (or regular) if pθt (pap)p = pθt (a)p.
Dilation of T on B = pAp:

B
Tt //

i
��

B B
Tt // B

A
θt

// A

p•p

OO

A
θt

//

p•p

OO

A

p•p

OO

I There are weak dilations that are not strong.
I We don’t know if there is a CP-semigroup that admits a weak

dilation but no strong.
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Markov semigroups and unitalization

A CP-semigroup T is Markov if Tt (1) = 1, that is, iff 〈ξt , ξt〉 = 1.
(A, θ, p) is a dilation of a Markov semigroup iff p is increasing
(θt (p) ≥ p), and therefore strong.
Many construction are performed for Markov semigroups/unital
units and, then, generalized via the following unitalization.

Recall Ã := A+ C1̃ � C ⊕A =
(
C
A

)
with the central projection

q := 1̃ − 1.
For R : A → A define R̃ on Ã by R̃(a + λ1̃) = R(a) + λ1̃.
For p ∈ A put p̃ := p + q. Note that p̃Ãp̃ = p̃Ap.

Theorem (Shalit-ms)

(A, θ, p) is a strong dilation (of T) iff
(Ã, θ̃, p̃) is a (strong) dilation (of T̃ ).

Henceforth, we restrict our attention to strong dilation and mainly
to the unital case. (Exception: Next slide.)
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For R : A → A define R̃ on Ã by R̃(a + λ1̃) = R(a) + λ1̃.
For p ∈ A put p̃ := p + q. Note that p̃Ãp̃ = p̃Ap.
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Recall Ã := A+ C1̃ � C ⊕A =
(
C
A

)
with the central projection

q := 1̃ − 1.
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For R : A → A define R̃ on Ã by R̃(a + λ1̃) = R(a) + λ1̃.
For p ∈ A put p̃ := p + q. Note that p̃Ãp̃ = p̃Ap.
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The superPS of (A, θ, p)

Let B := pAp.
I E := Ap is Hilbert B–module with 〈x, y〉 = x∗y and with unit

vector ξ := p.
I Put Et := θt (p)E = θt (p)Ap.
I Turn it into B–correspondence by defining b .xt := θt (b)xt .
I vs,t : xs � yt 7→ θt (xs)yt defines superproduct system structure.

Note: ξt := θt (p)p ∈ Et fulfills 〈ξt , bξt〉 = pθt (b)p =: Tt (b), so
(Et , ξt ) ⊃ (Et , ξt ) = GNS-Tt .
But it is unclear if the ξt form a unit nor if vs,t (Es � Et ) ⊃ Est .
However:

Theorem (Shalit-ms)

If (A, θ, p) is a strong dilation, the ξt form a unit (so that the
superPS E4 contains E5 as a subPsubS).

Poof: Exercise: Strong iff θt (p)p = θt (1)p.
So, vs,t (θs(p)p � θt (p)p) = θt (θs(p))θt (p)p
= θt (θs(p))p = θst (p)p. �
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I Suppose S is Ore=cancellative+∀r , s∃r ′, s′ : r ′r = s′s.
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I ; indlim E and vt : E � Et → E

such that ϑt := vt (• � idt )v∗t
defines an E0–semigroup.

I ξ := ξt ∈ Et ⊂ E is unit vector and p := ξξ∗ a projection.
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If E� is a subPS with unit ξ�, then the Et = lim indt∈Jt Etn � . . . � Et1
form a product system containing E5 as a subPsubS (and the unit).
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PS over Nd
0 and over Rd

+

Suppose we have PS E i� =
(
E i

t i

)
over Si , i = 1, . . . , d.

Can we turn
(
E(t1,...,td) := E1

t1 � . . . � Ed
td

)
into a PS over

S := S1 × . . . × Sd by defining a product

(E1
s1 � . . . � Ed

sd ) � (E1
t1 � . . . � Ed

td )

−→ (E1
s1 � E1

t1) � . . . � (Ed
sd � Ed

td )

−→ E1
s1t1 � . . . � Ed

sd td ?

For Hilbert spaces: Yes, with the flip.
For modules? In general, no. (E � F and F � E need not even be
isomorphic.)
However, if we have E� over S, then:
I For each i, the E i

t i := E(0,...,0,t i ,0,...,0) form a PS over Si , the
marginal PSs, and, indeed, E(t1,...,td) � E1

t1 � . . . � Ed
td .

I All these can be reconstructed from the “flips”

(j < i, only)

vt j ,s i v∗s i ,t j : E i
s i � E j

t j → E j
t j � E i

s i
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The case Nd
0

(PS E� over N0) �
(
E�n

)
n∈N0

; try to define PS on

E(n1,...,nd) := E�n1
1 � . . . � E�nd

d

by self-inverse isomorphisms Fj,i : Ei � Ej → Ej � Ei (j < i).

Theorem (Shalit-ms)

The following conditions are equivalent:

1. The above family admits a PS structure fulfilling
vej ,ei v

∗
ei ,ej

= Fj,i for j < i.

2. The Fj,i fulfill

(idk �Fj,i)(Fk ,i � idj)(idi �Fk ,j) = (Fk ,j � idi)(idj �Fk ,i)(Fj,i � idk )

for k < j < i.

Unique; every PS over Nd
0 arises that way.

What is remarkable? Conditions empty for d = 2!
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About the proof
To show:

I Well-definedness of

(E�m1
1 � . . . � E�md

d ) � (E�n1
1 � . . . � E�nd

d )

−→ E�(m1+n1)
1 � . . . � E�(md+nd)

d

by means of next-neighbour-transpositions.
I Associativity of

(E�`1
1 � . . .�E�`d

d )� (E�m1
1 � . . .�E�md

d )� (E�n1
1 � . . .�E�nd

d )

−→ E�(`1+m1+n1)
1 � . . . � E�(`d+md+nd)

d .

Both is established by using the Fj,i to define a representation of
Sn on (E1 ⊕ . . . ⊕ Ed)�n containing all the preceding tensor
products with n factors Ei as subspaces and by the observation
that the permutation doing the right thing to these subspaces is
unique and it it does not matter in which order we obtain it from
transpositions.
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Dilations of CP-semigroups over N2
0

Corollary

Suppose we have ξi ∈ Ei fulfilling Fj,i(ξi � ξj) = ξj � ξi . Then the the
elements ξ(n1,...,nd) := ξ�n1

1 � . . . � ξ�nd
d form a unit.

Theorem (Schalit-ms)

Every CP-semigroup over N2
0 in a vN-algbra allows a strong

dilation. If it is Markov then it can be chosen E0.

Proof: If non-Markov, first unitalize.
We manage to define E 3 ξ1, ξ2 and F : E � E → E � E such that
F(ξ2 � ξ1) = ξ1 � ξ2. �

An THIS leads to a whole bunch of ....
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Counter examples

I The superPS Ĕ4 generated by the GNS-subPS E5 is not a
product system.

I The dilation is not spatially minimal in that B and shifts ϑt (B)
do not generate E out of ξ.

I If B is a factor, then the PS generated by E5 is E�: There is
no proper PsubS of E� containing E5.

I The dilation is incompressible.
I This puts an end to our hope we might for all Ĕ4 ⊃ E5 3 ξ�

(that’s what we get if there exits any strong dilation) a PS in
between.

(We may however hope to make Ĕ4 bigger.)

I The dilation is not algebraically minimal:
Ba(E) , W∗(

⋃
ϑN2

0
(B)) =: A∞.

I The minimalized version on A∞ is not of the form (E′, ϑ′, ξ′).
That is, it is not Arveson minimal.
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(that’s what we get if there exits any strong dilation) a PS in
between.

(We may however hope to make Ĕ4 bigger.)
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About the case Rd
+: Exponentiating PS over Nd

0

(Apart from our general results about products of d.)
I The basic example of a PS over R+ is the time ordered

system:

ΓΓt (F) := ωB ⊕
⊕
n∈N

∆nL2([0, t)n,F�n)

where ∆n is the indicator function of {tn > . . . > t1 > 0}.

Theorem (Shalit-ms)

Let F� be PS Nd
0 with marginals

(
F�n

i

)
n∈N0

. Then

E(t1,...,td) := ΓΓt1(F1) � . . . � ΓΓtd (Fd)

inherits the structure of a PS over Rd
+. Moreover, units lift to

(exponential) units.



Thank you!
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