# CP-Semigroups and Subproduct Systems, Dilations and Superproduct Systems

Michael Skeide

Dipartimento di Economia Università degli Studi del Molise

Bengaluru, December 21, 2016

#### Joint work with Orr Shalit (since 2009 © ©)

Remember from Orr's talk:

(ロト (個) (E) (E) (E) (9)

- S a monoid (with neutral element 0, but not necessarily abelian).
- ▶  $\mathcal{B}$  a unital  $C^*$ -algebra (vN-algebra  $\implies$  maps normal).

・ロト・日本・モト・モト・ ヨー のへぐ

- S a monoid (with neutral element 0, but not necessarily abelian).
- ▶  $\mathcal{B}$  a unital  $C^*$ -algebra (vN-algebra  $\implies$  maps normal).

- コン・1日・1日・1日・1日・1日・

(Contractive) CP-semigroup  $T = (T_t)_{t \in \mathbb{S}} \sim$ 

- S a monoid (with neutral element 0, but not necessarily abelian).
- ▶  $\mathcal{B}$  a unital  $C^*$ -algebra (vN-algebra  $\implies$  maps normal).

▶ a subproduct system  $\mathcal{E}^{\otimes}$  (roughly,  $\mathcal{E}_s \odot \mathcal{E}_t \cong \mathcal{E}_{st}$ ) and

- S a monoid (with neutral element 0, but not necessarily abelian).
- ▶  $\mathcal{B}$  a unital  $C^*$ -algebra (vN-algebra  $\implies$  maps normal).

▶ a subproduct system  $\mathcal{E}^{\otimes}$  (roughly,  $\mathcal{E}_s \odot \mathcal{E}_t$  "⊃"  $\mathcal{E}_{st}$ ) and

- コン・1日・1日・1日・1日・1日・

• a unit  $\xi^{\odot}$  (roughly,  $\xi_s \odot \xi_t$  "="  $\xi_{st}$ ).

- S a monoid (with neutral element 0, but not necessarily abelian).
- ▶  $\mathcal{B}$  a unital  $C^*$ -algebra (vN-algebra  $\implies$  maps normal).

▶ a subproduct system  $\mathcal{E}^{\otimes}$  (roughly,  $\mathcal{E}_s \odot \mathcal{E}_t$  "⊃"  $\mathcal{E}_{st}$ ) and

ション 小田 マイビット ビー シックション

• a unit  $\xi^{\odot}$  (roughly,  $\xi_s \odot \xi_t$  "="  $\xi_{st}$ ).

Dilation  $(\mathcal{A}, \theta, p)$  of  $T \rightsquigarrow$ 

- S a monoid (with neutral element 0, but not necessarily abelian).
- ▶  $\mathcal{B}$  a unital  $C^*$ -algebra (vN-algebra  $\implies$  maps normal).

- ▶ a subproduct system  $\mathcal{E}^{\otimes}$  (roughly,  $\mathcal{E}_s \odot \mathcal{E}_t$  "⊃"  $\mathcal{E}_{st}$ ) and
- a unit  $\xi^{\odot}$  (roughly,  $\xi_s \odot \xi_t$  "="  $\xi_{st}$ ).

Dilation  $(\mathcal{A}, \theta, p)$  of  $T \rightsquigarrow$ 

▶ a superproduct system  $E^{\bigotimes}$  (roughly,  $E_s \odot E_t$  "⊂"  $E_{st}$ )

ション 小田 マイビット ビー シックション

- S a monoid (with neutral element 0, but not necessarily abelian).
- ▶  $\mathcal{B}$  a unital  $C^*$ -algebra (vN-algebra  $\implies$  maps normal).

- ▶ a subproduct system  $\mathcal{E}^{\otimes}$  (roughly,  $\mathcal{E}_s \odot \mathcal{E}_t$  "⊃"  $\mathcal{E}_{st}$ ) and
- a unit  $\xi^{\odot}$  (roughly,  $\xi_s \odot \xi_t$  "="  $\xi_{st}$ ).

Dilation  $(\mathcal{A}, \theta, p)$  of  $T \sim$ 

▶ a superproduct system  $E^{\bigotimes}$  (roughly,  $E_s \odot E_t$  "⊂"  $E_{st}$ )

ション 小田 マイビット ビー シックション

• containing  $\mathcal{E}^{\otimes} \ni \xi^{\odot}$  (meaning  $E_t \supset \mathcal{E}_t \ni \xi_t$ ).

- S a monoid (with neutral element 0, but not necessarily abelian).
- ▶  $\mathcal{B}$  a unital  $C^*$ -algebra (vN-algebra  $\implies$  maps normal).

- ▶ a subproduct system  $\mathcal{E}^{\otimes}$  (roughly,  $\mathcal{E}_s \odot \mathcal{E}_t$  "⊃"  $\mathcal{E}_{st}$ ) and
- a unit  $\xi^{\odot}$  (roughly,  $\xi_s \odot \xi_t$  "="  $\xi_{st}$ ).

Dilation  $(\mathcal{A}, \theta, p)$  of  $T \sim$ 

▶ a superproduct system  $E^{\otimes}$  (roughly,  $E_s \odot E_t \ (\subset E_{st})$ 

ション 小田 マイビット ビー シックション

• containing  $\mathcal{E}^{\otimes} \ni \xi^{\odot}$  (meaning  $E_t \supset \mathcal{E}_t \ni \xi_t$ ).

Product system  $E^{\odot}$ +unital unit  $\xi^{\odot} \rightarrow$ 

- S a monoid (with neutral element 0, but not necessarily abelian).
- ▶  $\mathcal{B}$  a unital  $C^*$ -algebra (vN-algebra  $\implies$  maps normal).

- ▶ a subproduct system  $\mathcal{E}^{\otimes}$  (roughly,  $\mathcal{E}_s \odot \mathcal{E}_t$  "⊃"  $\mathcal{E}_{st}$ ) and
- a unit  $\xi^{\odot}$  (roughly,  $\xi_s \odot \xi_t$  "="  $\xi_{st}$ ).

Dilation  $(\mathcal{A}, \theta, p)$  of  $T \sim$ 

- ▶ a superproduct system  $E^{\otimes}$  (roughly,  $E_s \odot E_t$  "⊂"  $E_{st}$ )
- containing  $\mathcal{E}^{\otimes} \ni \mathcal{E}^{\circ}$  (meaning  $E_t \supset \mathcal{E}_t \ni \mathcal{E}_t$ ).

Product system  $E^{\odot}$ +unital unit  $\xi^{\odot} \rightsquigarrow$ 

• a module dilation  $(E, \vartheta, \xi)$  (meaning  $\mathcal{A} = \mathcal{B}^{a}(E)$  and  $p = \xi \xi^{*}$ ).

ション 小田 マイビット ビー シックション

- S a monoid (with neutral element 0, but not necessarily abelian).
- ▶  $\mathcal{B}$  a unital  $C^*$ -algebra (vN-algebra  $\implies$  maps normal).

- ▶ a subproduct system  $\mathcal{E}^{\otimes}$  (roughly,  $\mathcal{E}_s \odot \mathcal{E}_t$  "⊃"  $\mathcal{E}_{st}$ ) and
- a unit  $\xi^{\odot}$  (roughly,  $\xi_s \odot \xi_t$  "="  $\xi_{st}$ ).

Dilation  $(\mathcal{A}, \theta, p)$  of  $T \rightarrow$ 

- ▶ a superproduct system  $E^{\otimes}$  (roughly,  $E_s \odot E_t$  "⊂"  $E_{st}$ )
- containing  $\mathcal{E}^{\otimes} \ni \xi^{\odot}$  (meaning  $E_t \supset \mathcal{E}_t \ni \xi_t$ ).

Product system  $E^{\odot}$ +unital unit  $\xi^{\odot} \rightsquigarrow$ 

• a module dilation  $(E, \vartheta, \xi)$  (meaning  $\mathcal{A} = \mathcal{B}^{a}(E)$  and  $p = \xi\xi^{*}$ ).  $\implies$  several implication for (non-)existence of dilations in terms of (non-)embeddability of subproduct systems into (super)product systems.

- S a monoid (with neutral element 0, but not necessarily abelian).
- ▶  $\mathcal{B}$  a unital  $C^*$ -algebra (vN-algebra  $\implies$  maps normal).

- ▶ a subproduct system  $\mathcal{E}^{\otimes}$  (roughly,  $\mathcal{E}_s \odot \mathcal{E}_t$  "⊃"  $\mathcal{E}_{st}$ ) and
- a unit  $\xi^{\odot}$  (roughly,  $\xi_s \odot \xi_t$  "="  $\xi_{st}$ ).

Dilation  $(\mathcal{A}, \theta, p)$  of  $T \sim$ 

- ▶ a superproduct system  $E^{\otimes}$  (roughly,  $E_s \odot E_t \ (\subset E_{st})$
- containing  $\mathcal{E}^{\otimes} \ni \xi^{\odot}$  (meaning  $E_t \supset \mathcal{E}_t \ni \xi_t$ ).

Product system  $E^{\odot}$ +unital unit  $\xi^{\odot} \rightarrow$ 

• a module dilation  $(E, \vartheta, \xi)$  (meaning  $\mathcal{A} = \mathcal{B}^a(E)$  and  $p = \xi \xi^*$ ).

⇒ several implication for (non-)existence of dilations in terms of (non-)embeddability of subproduct systems into (super)product systems.

CAREFUL! Monoids of semigroups and (sub)(super)PS are opposite!

- Implications
  - Sub not into super ⇒ no dilation. (Example!)
  - ►  $\mathcal{B}^{a}(E) = \mathcal{A}$  has to do with one of the (stronger and not necessarily achievable) minimality conditions:  $E = \mathcal{A}p \rightarrow \mathcal{B}^{a}(E) = \overline{\text{span}}^{s} \mathcal{A}p\mathcal{A}$ . ( $\xi = p \in pA = E$ .)
  - We will try to embed subPS into PS. ([BS00] in the one-parameter case
- ▶ We choose S<sup>op</sup> for the semigroups because:
  - convenient as we work more in PS;
  - Ore S<sup>-1</sup>S = G, necessary for certain constructive results. To make p increasing, the semigroup indexing T should be anti-Ore.
  - In the end, no problems in the abelian case, like  $\mathbb{R}^d_+, \mathbb{N}^d_0$ .
  - Also: Arveson-Stinespring (Daniel's talk) are contravariant with the subPS and, thus, anti-Ore.
- In the sequel:
  - Explain (repetition) the preceding slide.
  - Go into the construction of product systems (for CP-semigroups and not) in the multi-parameter cases.
  - Use this to solve discrete 2-parameter and procude a 1000 c.-ex.s.

 $\mathsf{CP}\text{-semigroup} \rightsquigarrow \mathsf{GNS}\text{-}(\mathcal{E}^{\otimes}, \mathcal{E}^{\odot})$ 

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

**Paschke [Pas73]:** CP-map  $T_t: \mathcal{B} \to \mathcal{B} \rightsquigarrow \mathcal{E}_t \ni \xi_t$  such that

$$T_t = \langle \xi_t, \bullet \xi_t \rangle, \qquad \qquad \mathcal{E}_t = \overline{\operatorname{span}} \mathcal{B} \xi_t \mathcal{B}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

**Paschke [Pas73]:** CP-map  $T_t: \mathcal{B} \to \mathcal{B} \rightsquigarrow \mathcal{E}_t \ni \xi_t$  such that

$$T_t = \langle \xi_t, \bullet \xi_t \rangle, \qquad \qquad \mathcal{E}_t = \overline{\operatorname{span}} \mathcal{B} \xi_t \mathcal{B}.$$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

We compute  $T_t \circ T_s = \langle \xi_t, \langle \xi_s, \bullet \xi_s \rangle \xi_t \rangle = \langle \xi_s \odot \xi_t, \bullet \xi_s \odot \xi_t \rangle$ .

**Paschke [Pas73]:** CP-map  $T_t: \mathcal{B} \to \mathcal{B} \rightsquigarrow \mathcal{E}_t \ni \xi_t$  such that

$$T_t = \langle \xi_t, \bullet \xi_t \rangle, \qquad \qquad \mathcal{E}_t = \overline{\operatorname{span}} \mathcal{B} \xi_t \mathcal{B}.$$

We compute  $T_t \circ T_s = \langle \xi_t, \langle \xi_s, \bullet \xi_s \rangle \xi_t \rangle = \langle \xi_s \odot \xi_t, \bullet \xi_s \odot \xi_t \rangle$ . If  $(T_t)$  semigroup over  $\mathbb{S}^{op}(!)$ , then  $T_t \circ T_s = T_{st}$ , so

$$\xi_{st} \mapsto \xi_s \odot \xi_t$$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

defines  $\mathcal{B}$ - $\mathcal{B}$ -linear isometry  $w_{s,t} \colon \mathcal{E}_{st} \to \mathcal{E}_s \odot \mathcal{E}_t$ .

**Paschke [Pas73]:** CP-map  $T_t: \mathcal{B} \to \mathcal{B} \rightsquigarrow \mathcal{E}_t \ni \xi_t$  such that

$$T_t = \langle \xi_t, \bullet \xi_t \rangle, \qquad \qquad \mathcal{E}_t = \overline{\operatorname{span}} \mathcal{B} \xi_t \mathcal{B}.$$

We compute  $T_t \circ T_s = \langle \xi_t, \langle \xi_s, \bullet \xi_s \rangle \xi_t \rangle = \langle \xi_s \odot \xi_t, \bullet \xi_s \odot \xi_t \rangle$ . If  $(T_t)$  semigroup over  $\mathbb{S}^{op}(!)$ , then  $T_t \circ T_s = T_{st}$ , so

$$\xi_{\mathsf{st}} \longmapsto \xi_{\mathsf{s}} \odot \xi_{\mathsf{t}}$$

defines  $\mathcal{B}$ - $\mathcal{B}$ -linear isometry  $w_{s,t} \colon \mathcal{E}_{st} \to \mathcal{E}_s \odot \mathcal{E}_t$ . So,

►  $\mathcal{E}^{\bigotimes} = (\mathcal{E}_t)_{t \in \mathbb{S}}$  is a subproduct system (over  $\mathbb{S} = (\mathbb{S}^{op})^{op}$ ) and

ション 小田 マイビット ビー シックション

**Paschke [Pas73]:** CP-map  $T_t: \mathcal{B} \to \mathcal{B} \rightsquigarrow \mathcal{E}_t \ni \xi_t$  such that

$$T_t = \langle \xi_t, \bullet \xi_t \rangle, \qquad \qquad \mathcal{E}_t = \overline{\operatorname{span}} \mathcal{B} \xi_t \mathcal{B}.$$

We compute  $T_t \circ T_s = \langle \xi_t, \langle \xi_s, \bullet \xi_s \rangle \xi_t \rangle = \langle \xi_s \odot \xi_t, \bullet \xi_s \odot \xi_t \rangle$ . If  $(T_t)$  semigroup over  $\mathbb{S}^{op}(!)$ , then  $T_t \circ T_s = T_{st}$ , so

$$\xi_{\mathsf{st}} \longmapsto \xi_{\mathsf{s}} \odot \xi_{\mathsf{t}}$$

defines  $\mathcal{B}$ - $\mathcal{B}$ -linear isometry  $w_{s,t} \colon \mathcal{E}_{st} \to \mathcal{E}_s \odot \mathcal{E}_t$ . So,

ε<sup>⊗</sup> = (ε<sub>t</sub>)<sub>t∈S</sub> is a subproduct system (over S = (S<sup>op</sup>)<sup>op</sup>) and
ξ<sup>⊙</sup> = (ξ<sub>t</sub>)<sub>t∈S</sub> is a unit for ε<sup>⊗</sup>, generating it as subPS.

**Paschke [Pas73]:** CP-map  $T_t: \mathcal{B} \to \mathcal{B} \rightsquigarrow \mathcal{E}_t \ni \xi_t$  such that

$$T_t = \langle \xi_t, \bullet \xi_t \rangle, \qquad \qquad \mathcal{E}_t = \overline{\operatorname{span}} \mathcal{B} \xi_t \mathcal{B}.$$

We compute  $T_t \circ T_s = \langle \xi_t, \langle \xi_s, \bullet \xi_s \rangle \xi_t \rangle = \langle \xi_s \odot \xi_t, \bullet \xi_s \odot \xi_t \rangle$ . If  $(T_t)$  semigroup over  $\mathbb{S}^{op}(!)$ , then  $T_t \circ T_s = T_{st}$ , so

$$\xi_{\mathsf{st}} \longmapsto \xi_{\mathsf{s}} \odot \xi_{\mathsf{t}}$$

defines  $\mathcal{B}$ - $\mathcal{B}$ -linear isometry  $w_{s,t} \colon \mathcal{E}_{st} \to \mathcal{E}_s \odot \mathcal{E}_t$ . So,

ε<sup>⊗</sup> = (ε<sub>t</sub>)<sub>t∈S</sub> is a subproduct system (over S = (S<sup>op</sup>)<sup>op</sup>) and
ξ<sup>⊙</sup> = (ξ<sub>t</sub>)<sub>t∈S</sub> is a unit for ε<sup>⊗</sup>, generating it as subPS.

#### Example (Shalit-ms)

The exist  $\mathcal{B}$  and a semigroup  $(c_n)$  in  $\mathcal{B}$  over  $\mathbb{N}_0$  such that the GNS-subPS of  $T_t = c_t^* \bullet c_t$  does have non-adjointable  $w_{s,t}$ .

We look at triples  $(\mathcal{A}, \theta, p)$  consisting of

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

We look at triples  $(\mathcal{A}, \theta, p)$  consisting of

• a unital  $C^*$ -algebra  $\mathcal{A}$ ,

We look at triples  $(\mathcal{A}, \theta, p)$  consisting of

- a unital  $C^*$ -algebra  $\mathcal{A}$ ,
- ▶ an endomorphism semigroup  $\theta = (\theta_t)_{t \in S^{op}}$  over  $S^{op}$ ,

ション 小田 マイビット ビー シックション

We look at triples  $(\mathcal{A}, \theta, p)$  consisting of

- a unital  $C^*$ -algebra  $\mathcal{A}$ ,
- an endomorphism semigroup  $\theta = (\theta_t)_{t \in S^{op}}$  over  $S^{op}$ ,

ション 小田 マイビット ビー シックション

• a projection  $p \in \mathcal{A}$ .

We look at triples  $(\mathcal{A}, \theta, p)$  consisting of

- a unital  $C^*$ -algebra  $\mathcal{A}$ ,
- an endomorphism semigroup  $\theta = (\theta_t)_{t \in \mathbb{S}^{op}}$  over  $\mathbb{S}^{op}$ ,

ション 小田 マイビット ビー シックション

• a projection  $p \in \mathcal{A}$ .

Typical  $(\mathcal{B}^{a}(E), \vartheta, \xi\xi^{*})$ , denoted as  $(E, \vartheta, \xi)$ .

We look at triples  $(\mathcal{A}, \theta, p)$  consisting of

- a unital  $C^*$ -algebra  $\mathcal{A}$ ,
- ▶ an endomorphism semigroup  $\theta = (\theta_t)_{t \in S^{op}}$  over  $S^{op}$ ,
- a projection  $p \in \mathcal{A}$ .

Typical  $(\mathcal{B}^{a}(E), \vartheta, \xi\xi^{*})$ , denoted as  $(E, \vartheta, \xi)$ .

 $(\mathcal{A}, \theta, p)$  is a weak dilation if  $pap \mapsto p\theta_t(pap)p$  form a semigroup (over  $\mathbb{S}^{op}$ ) of maps on  $p\mathcal{A}p$ .

ション 小田 マイビット ビー シックション

We look at triples  $(\mathcal{A}, \theta, p)$  consisting of

- ▶ a unital C<sup>\*</sup>-algebra A,
- ▶ an endomorphism semigroup  $\theta = (\theta_t)_{t \in S^{op}}$  over  $S^{op}$ ,
- a projection  $p \in \mathcal{A}$ .

Typical  $(\mathcal{B}^{a}(E), \vartheta, \xi\xi^{*})$ , denoted as  $(E, \vartheta, \xi)$ .

 $(\mathcal{A}, \theta, p)$  is a weak dilation if  $pap \mapsto p\theta_t(pap)p$  form a semigroup (over  $\mathbb{S}^{op}$ ) of maps on  $p\mathcal{A}p$ .

ション 小田 マイビット ビー シックション

 $(\mathcal{A}, \theta, p)$  is strong (or regular) if  $p\theta_t(pap)p = p\theta_t(a)p$ .

We look at triples  $(\mathcal{A}, \theta, p)$  consisting of

- a unital  $C^*$ -algebra  $\mathcal{A}$ ,
- ▶ an endomorphism semigroup  $\theta = (\theta_t)_{t \in S^{op}}$  over  $S^{op}$ ,
- a projection  $p \in \mathcal{A}$ .

Typical  $(\mathcal{B}^{a}(E), \vartheta, \xi\xi^{*})$ , denoted as  $(E, \vartheta, \xi)$ .

 $(\mathcal{A}, \theta, p)$  is a weak dilation if  $pap \mapsto p\theta_t(pap)p$  form a semigroup (over  $\mathbb{S}^{op}$ ) of maps on  $p\mathcal{A}p$ .

 $(\mathcal{A}, \theta, p)$  is strong (or regular) if  $p\theta_t(pap)p = p\theta_t(a)p$ . Dilation of T on  $\mathcal{B} = p\mathcal{A}p$ :



・ロト・西ト・ヨト・日 うらつ

We look at triples  $(\mathcal{A}, \theta, p)$  consisting of

- a unital  $C^*$ -algebra  $\mathcal{A}$ ,
- an endomorphism semigroup  $\theta = (\theta_t)_{t \in \mathbb{S}^{op}}$  over  $\mathbb{S}^{op}$ ,
- a projection  $p \in \mathcal{A}$ .

Typical  $(\mathcal{B}^{a}(E), \vartheta, \xi\xi^{*})$ , denoted as  $(E, \vartheta, \xi)$ .

 $(\mathcal{A}, \theta, p)$  is a weak dilation if  $pap \mapsto p\theta_t(pap)p$  form a semigroup (over  $\mathbb{S}^{op}$ ) of maps on  $p\mathcal{A}p$ .

 $(\mathcal{A}, \theta, p)$  is strong (or regular) if  $p\theta_t(pap)p = p\theta_t(a)p$ . Dilation of T on  $\mathcal{B} = p\mathcal{A}p$ :



◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

There are weak dilations that are not strong.

We look at triples  $(\mathcal{A}, \theta, p)$  consisting of

- a unital  $C^*$ -algebra  $\mathcal{A}$ ,
- an endomorphism semigroup  $\theta = (\theta_t)_{t \in \mathbb{S}^{op}}$  over  $\mathbb{S}^{op}$ ,
- a projection  $p \in \mathcal{A}$ .

Typical  $(\mathcal{B}^{a}(E), \vartheta, \xi\xi^{*})$ , denoted as  $(E, \vartheta, \xi)$ .

 $(\mathcal{A}, \theta, p)$  is a weak dilation if  $pap \mapsto p\theta_t(pap)p$  form a semigroup (over  $\mathbb{S}^{op}$ ) of maps on  $p\mathcal{A}p$ .

 $(\mathcal{A}, \theta, p)$  is strong (or regular) if  $p\theta_t(pap)p = p\theta_t(a)p$ . Dilation of T on  $\mathcal{B} = p\mathcal{A}p$ :



- There are weak dilations that are not strong.
- We don't know if there is a CP-semigroup that admits a weak dilation but no strong.

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

A CP-semigroup *T* is Markov if  $T_t(1) = 1$ , that is, iff  $\langle \xi_t, \xi_t \rangle = 1$ .

・ロト・4回ト・4回ト・目・990

A CP-semigroup *T* is Markov if  $T_t(1) = 1$ , that is, iff  $\langle \xi_t, \xi_t \rangle = 1$ .  $(\mathcal{A}, \theta, p)$  is a dilation of a Markov semigroup iff *p* is increasing  $(\theta_t(p) \ge p)$ , and therefore strong.

A CP-semigroup *T* is Markov if  $T_t(1) = 1$ , that is, iff  $\langle \xi_t, \xi_t \rangle = 1$ .  $(\mathcal{A}, \theta, p)$  is a dilation of a Markov semigroup iff *p* is increasing  $(\theta_t(p) \ge p)$ , and therefore strong.

Many construction are performed for Markov semigroups/unital units and, then, generalized via the following unitalization.

A CP-semigroup *T* is Markov if  $T_t(1) = 1$ , that is, iff  $\langle \xi_t, \xi_t \rangle = 1$ . ( $\mathcal{A}, \theta, p$ ) is a dilation of a Markov semigroup iff *p* is increasing  $(\theta_t(p) \ge p)$ , and therefore strong.

Many construction are performed for Markov semigroups/unital units and, then, generalized via the following unitalization.

Recall  $\widetilde{\mathcal{A}} := \mathcal{A} + \mathbb{C}\widetilde{\mathbf{1}} \cong \mathbb{C} \oplus \mathcal{A} = \begin{pmatrix} \mathbb{C} \\ \mathcal{A} \end{pmatrix}$  with the central projection  $q := \widetilde{\mathbf{1}} - \mathbf{1}$ .
A CP-semigroup *T* is Markov if  $T_t(1) = 1$ , that is, iff  $\langle \xi_t, \xi_t \rangle = 1$ . ( $\mathcal{A}, \theta, p$ ) is a dilation of a Markov semigroup iff *p* is increasing  $(\theta_t(p) \ge p)$ , and therefore strong.

Many construction are performed for Markov semigroups/unital units and, then, generalized via the following unitalization.

Recall 
$$\widetilde{\mathcal{A}} := \mathcal{A} + \mathbb{C}\widetilde{\mathbf{1}} \cong \mathbb{C} \oplus \mathcal{A} = \begin{pmatrix} \mathbb{C} \\ \mathcal{A} \end{pmatrix}$$
 with the central projection  $q := \widetilde{\mathbf{1}} - \mathbf{1}$ .  
For  $R : \mathcal{A} \to \mathcal{A}$  define  $\widetilde{R}$  on  $\widetilde{\mathcal{A}}$  by  $\widetilde{R}(a + \lambda \widetilde{\mathbf{1}}) = R(a) + \lambda \widetilde{\mathbf{1}}$ .

A CP-semigroup *T* is Markov if  $T_t(1) = 1$ , that is, iff  $\langle \xi_t, \xi_t \rangle = 1$ .  $(\mathcal{A}, \theta, p)$  is a dilation of a Markov semigroup iff *p* is increasing  $(\theta_t(p) \ge p)$ , and therefore strong.

Many construction are performed for Markov semigroups/unital units and, then, generalized via the following unitalization.

Recall 
$$\widetilde{\mathcal{A}} := \mathcal{A} + \mathbb{C}\widetilde{\mathbf{1}} \cong \mathbb{C} \oplus \mathcal{A} = \begin{pmatrix} \mathbb{C} \\ \mathcal{A} \end{pmatrix}$$
 with the central projection  $q := \widetilde{\mathbf{1}} - \mathbf{1}$ .  
For  $R : \mathcal{A} \to \mathcal{A}$  define  $\widetilde{R}$  on  $\widetilde{\mathcal{A}}$  by  $\widetilde{R}(a + \lambda \widetilde{\mathbf{1}}) = R(a) + \lambda \widetilde{\mathbf{1}}$ .  
For  $\rho \in \mathcal{A}$  put  $\widetilde{\rho} := \rho + q$ .

A CP-semigroup *T* is Markov if  $T_t(1) = 1$ , that is, iff  $\langle \xi_t, \xi_t \rangle = 1$ .  $(\mathcal{A}, \theta, p)$  is a dilation of a Markov semigroup iff *p* is increasing  $(\theta_t(p) \ge p)$ , and therefore strong.

Many construction are performed for Markov semigroups/unital units and, then, generalized via the following unitalization.

Recall  $\widetilde{\mathcal{A}} := \mathcal{A} + \mathbb{C}\widetilde{\mathbf{1}} \cong \mathbb{C} \oplus \mathcal{A} = \begin{pmatrix} \mathbb{C} \\ \mathcal{A} \end{pmatrix}$  with the central projection  $q := \widetilde{\mathbf{1}} - \mathbf{1}$ . For  $R : \mathcal{A} \to \mathcal{A}$  define  $\widetilde{R}$  on  $\widetilde{\mathcal{A}}$  by  $\widetilde{R}(a + \lambda \widetilde{\mathbf{1}}) = R(a) + \lambda \widetilde{\mathbf{1}}$ . For  $p \in \mathcal{A}$  put  $\widetilde{p} := p + q$ . Note that  $\widetilde{p}\widetilde{\mathcal{A}}\widetilde{p} = \widetilde{p\mathcal{A}}p$ .

A CP-semigroup *T* is Markov if  $T_t(1) = 1$ , that is, iff  $\langle \xi_t, \xi_t \rangle = 1$ .  $(\mathcal{A}, \theta, p)$  is a dilation of a Markov semigroup iff *p* is increasing  $(\theta_t(p) \ge p)$ , and therefore strong.

Many construction are performed for Markov semigroups/unital units and, then, generalized via the following unitalization.

Recall 
$$\widetilde{\mathcal{A}} := \mathcal{A} + \mathbb{C}\widetilde{\mathbf{1}} \cong \mathbb{C} \oplus \mathcal{A} = \begin{pmatrix} \mathbb{C} \\ \mathcal{A} \end{pmatrix}$$
 with the central projection  $q := \widetilde{\mathbf{1}} - \mathbf{1}$ .  
For  $R : \mathcal{A} \to \mathcal{A}$  define  $\widetilde{R}$  on  $\widetilde{\mathcal{A}}$  by  $\widetilde{R}(a + \lambda \widetilde{\mathbf{1}}) = R(a) + \lambda \widetilde{\mathbf{1}}$ .  
For  $\rho \in \mathcal{A}$  put  $\widetilde{\rho} := \rho + q$ . Note that  $\widetilde{\rho}\widetilde{\mathcal{A}}\widetilde{\rho} = \widetilde{\rho}\widetilde{\mathcal{A}}\rho$ .

ション ふゆ マ キャット マックタン

#### Theorem (Shalit-ms)

 $(\mathcal{A}, \theta, p)$  is a strong dilation (of T) iff  $(\widetilde{\mathcal{A}}, \widetilde{\theta}, \widetilde{p})$  is a (strong) dilation (of  $\widetilde{\mathsf{T}}$ ).

A CP-semigroup *T* is Markov if  $T_t(1) = 1$ , that is, iff  $\langle \xi_t, \xi_t \rangle = 1$ .  $(\mathcal{A}, \theta, p)$  is a dilation of a Markov semigroup iff *p* is increasing  $(\theta_t(p) \ge p)$ , and therefore strong.

Many construction are performed for Markov semigroups/unital units and, then, generalized via the following unitalization.

Recall 
$$\widetilde{\mathcal{A}} := \mathcal{A} + \mathbb{C}\widetilde{\mathbf{1}} \cong \mathbb{C} \oplus \mathcal{A} = \begin{pmatrix} \mathbb{C} \\ \mathcal{A} \end{pmatrix}$$
 with the central projection  $q := \widetilde{\mathbf{1}} - \mathbf{1}$ .  
For  $R : \mathcal{A} \to \mathcal{A}$  define  $\widetilde{R}$  on  $\widetilde{\mathcal{A}}$  by  $\widetilde{R}(a + \lambda \widetilde{\mathbf{1}}) = R(a) + \lambda \widetilde{\mathbf{1}}$ .  
For  $\rho \in \mathcal{A}$  put  $\widetilde{\rho} := \rho + q$ . Note that  $\widetilde{\rho}\widetilde{\mathcal{A}}\widetilde{\rho} = \widetilde{\rho}\widetilde{\mathcal{A}}\rho$ .

#### Theorem (Shalit-ms)

 $(\mathcal{A}, \theta, p)$  is a strong dilation (of T) iff  $(\widetilde{\mathcal{A}}, \widetilde{\theta}, \widetilde{p})$  is a (strong) dilation (of  $\widetilde{\mathsf{T}}$ ).

Henceforth, we restrict our attention to strong dilation and mainly to the unital case. (Exception: Next slide.)

ション ふゆ マ キャット マックタン

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

## The superPS of $(\mathcal{A}, \theta, p)$ Let $\mathcal{B} := p\mathcal{A}p$ .

- Let  $\mathcal{B} := p\mathcal{A}p$ .
  - E := Ap is Hilbert B-module with ⟨x, y⟩ = x\*y and with unit vector ξ := p.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let  $\mathcal{B} := p\mathcal{A}p$ .

E := Ap is Hilbert B-module with ⟨x, y⟩ = x\*y and with unit vector ξ := p.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Put 
$$E_t := \theta_t(p)E = \theta_t(p)\mathcal{A}p$$
.

Let  $\mathcal{B} := p\mathcal{A}p$ .

- E := Ap is Hilbert B-module with ⟨x, y⟩ = x\*y and with unit vector ξ := p.
- Put  $E_t := \theta_t(p)E = \theta_t(p)\mathcal{A}p$ .
- ▶ Turn it into  $\mathcal{B}$ -correspondence by defining  $b.x_t := \theta_t(b)x_t$ .

Let  $\mathcal{B} := p\mathcal{A}p$ .

- E := Ap is Hilbert B-module with ⟨x, y⟩ = x\*y and with unit vector ξ := p.
- Put  $E_t := \theta_t(p)E = \theta_t(p)\mathcal{A}p$ .
- ► Turn it into  $\mathcal{B}$ -correspondence by defining  $b.x_t := \theta_t(b)x_t$ .
- ►  $v_{s,t}$ :  $x_s \odot y_t \mapsto \theta_t(x_s)y_t$  defines superproduct system structure.

Let  $\mathcal{B} := p\mathcal{A}p$ .

- E := Ap is Hilbert B-module with ⟨x, y⟩ = x\*y and with unit vector ξ := p.
- Put  $E_t := \theta_t(p)E = \theta_t(p)\mathcal{A}p$ .
- ▶ Turn it into  $\mathcal{B}$ -correspondence by defining  $b.x_t := \theta_t(b)x_t$ .
- ►  $v_{s,t}$ :  $x_s \odot y_t \mapsto \theta_t(x_s)y_t$  defines superproduct system structure.

ション ふゆ マ キャット マックタン

Note:  $\xi_t := \theta_t(p)p \in E_t$  fulfills  $\langle \xi_t, b\xi_t \rangle = p\theta_t(b)p =: T_t(b)$ ,

Let  $\mathcal{B} := p\mathcal{A}p$ .

- E := Ap is Hilbert B-module with ⟨x, y⟩ = x\*y and with unit vector ξ := p.
- Put  $E_t := \theta_t(p)E = \theta_t(p)\mathcal{A}p$ .
- ▶ Turn it into  $\mathcal{B}$ -correspondence by defining  $b.x_t := \theta_t(b)x_t$ .

►  $v_{s,t}$ :  $x_s \odot y_t \mapsto \theta_t(x_s)y_t$  defines superproduct system structure. **Note:**  $\xi_t := \theta_t(p)p \in E_t$  fulfills  $\langle \xi_t, b\xi_t \rangle = p\theta_t(b)p =: T_t(b)$ , so  $(E_t, \xi_t) \supset (\mathcal{E}_t, \xi_t) = \text{GNS-}T_t$ .

ション ふゆ マ キャット マックタン

Let  $\mathcal{B} := p\mathcal{A}p$ .

- E := Ap is Hilbert B-module with ⟨x, y⟩ = x\*y and with unit vector ξ := p.
- Put  $E_t := \theta_t(p)E = \theta_t(p)\mathcal{A}p$ .
- ▶ Turn it into  $\mathcal{B}$ -correspondence by defining  $b.x_t := \theta_t(b)x_t$ .

►  $v_{s,t}$ :  $x_s \odot y_t \mapsto \theta_t(x_s)y_t$  defines superproduct system structure. **Note:**  $\xi_t := \theta_t(p)p \in E_t$  fulfills  $\langle \xi_t, b\xi_t \rangle = p\theta_t(b)p =: T_t(b)$ , so  $(E_t, \xi_t) \supset (\mathcal{E}_t, \xi_t) = \text{GNS-}T_t$ .

But it is unclear if the  $\xi_t$  form a unit nor if  $v_{s,t}(\mathcal{E}_s \odot \mathcal{E}_t) \supset \mathcal{E}_{st}$ .

Let  $\mathcal{B} := p\mathcal{A}p$ .

- E := Ap is Hilbert B-module with ⟨x, y⟩ = x\*y and with unit vector ξ := p.
- Put  $E_t := \theta_t(p)E = \theta_t(p)\mathcal{A}p$ .
- ► Turn it into  $\mathcal{B}$ -correspondence by defining  $b.x_t := \theta_t(b)x_t$ .

►  $v_{s,t}$ :  $x_s \odot y_t \mapsto \theta_t(x_s)y_t$  defines superproduct system structure. **Note:**  $\xi_t := \theta_t(p)p \in E_t$  fulfills  $\langle \xi_t, b\xi_t \rangle = p\theta_t(b)p =: T_t(b)$ , so  $(E_t, \xi_t) \supset (\mathcal{E}_t, \xi_t) = \text{GNS-}T_t$ .

But it is unclear if the  $\xi_t$  form a unit nor if  $v_{s,t}(\mathcal{E}_s \odot \mathcal{E}_t) \supset \mathcal{E}_{st}$ . However:

#### Theorem (Shalit-ms)

If  $(\mathcal{A}, \theta, p)$  is a strong dilation, the  $\xi_t$  form a unit (so that the superPS  $E^{\otimes}$  contains  $\mathcal{E}^{\otimes}$  as a subPsubS).

ション ふゆ マ キャット マックタン

Let  $\mathcal{B} := p\mathcal{A}p$ .

- E := Ap is Hilbert B-module with ⟨x, y⟩ = x\*y and with unit vector ξ := p.
- Put  $E_t := \theta_t(p)E = \theta_t(p)\mathcal{A}p$ .
- ► Turn it into  $\mathcal{B}$ -correspondence by defining  $b.x_t := \theta_t(b)x_t$ .

►  $v_{s,t}$ :  $x_s \odot y_t \mapsto \theta_t(x_s)y_t$  defines superproduct system structure. **Note:**  $\xi_t := \theta_t(p)p \in E_t$  fulfills  $\langle \xi_t, b\xi_t \rangle = p\theta_t(b)p =: T_t(b)$ , so  $(E_t, \xi_t) \supset (\mathcal{E}_t, \xi_t) = \text{GNS-}T_t$ .

But it is unclear if the  $\xi_t$  form a unit nor if  $v_{s,t}(\mathcal{E}_s \odot \mathcal{E}_t) \supset \mathcal{E}_{st}$ . However:

#### Theorem (Shalit-ms)

If  $(\mathcal{A}, \theta, p)$  is a strong dilation, the  $\xi_t$  form a unit (so that the superPS  $E^{\otimes}$  contains  $\mathcal{E}^{\otimes}$  as a subPsubS).

**Poof:** Exercise: Strong iff  $\theta_t(p)p = \theta_t(1)p$ .

Let  $\mathcal{B} := p\mathcal{A}p$ .

- E := Ap is Hilbert B-module with ⟨x, y⟩ = x\*y and with unit vector ξ := p.
- Put  $E_t := \theta_t(p)E = \theta_t(p)\mathcal{A}p$ .
- ► Turn it into  $\mathcal{B}$ -correspondence by defining  $b.x_t := \theta_t(b)x_t$ .

►  $v_{s,t}$ :  $x_s \odot y_t \mapsto \theta_t(x_s)y_t$  defines superproduct system structure. **Note:**  $\xi_t := \theta_t(p)p \in E_t$  fulfills  $\langle \xi_t, b\xi_t \rangle = p\theta_t(b)p =: T_t(b)$ , so  $(E_t, \xi_t) \supset (\mathcal{E}_t, \xi_t) = \text{GNS-}T_t$ .

But it is unclear if the  $\xi_t$  form a unit nor if  $v_{s,t}(\mathcal{E}_s \odot \mathcal{E}_t) \supset \mathcal{E}_{st}$ . However:

#### Theorem (Shalit-ms)

If  $(\mathcal{A}, \theta, p)$  is a strong dilation, the  $\xi_t$  form a unit (so that the superPS  $E^{\otimes}$  contains  $\mathcal{E}^{\otimes}$  as a subPsubS).

**Poof:** Exercise: Strong iff  $\theta_t(p)p = \theta_t(1)p$ . So,  $v_{s,t}(\theta_s(p)p \odot \theta_t(p)p) = \theta_t(\theta_s(p))\theta_t(p)p$ 

Let  $\mathcal{B} := p\mathcal{A}p$ .

- E := Ap is Hilbert B-module with ⟨x, y⟩ = x\*y and with unit vector ξ := p.
- Put  $E_t := \theta_t(p)E = \theta_t(p)\mathcal{A}p$ .
- ► Turn it into  $\mathcal{B}$ -correspondence by defining  $b.x_t := \theta_t(b)x_t$ .

►  $v_{s,t}$ :  $x_s \odot y_t \mapsto \theta_t(x_s)y_t$  defines superproduct system structure. **Note:**  $\xi_t := \theta_t(p)p \in E_t$  fulfills  $\langle \xi_t, b\xi_t \rangle = p\theta_t(b)p =: T_t(b)$ , so  $(E_t, \xi_t) \supset (\mathcal{E}_t, \xi_t) = \text{GNS-}T_t$ .

But it is unclear if the  $\xi_t$  form a unit nor if  $v_{s,t}(\mathcal{E}_s \odot \mathcal{E}_t) \supset \mathcal{E}_{st}$ . However:

#### Theorem (Shalit-ms)

If  $(\mathcal{A}, \theta, p)$  is a strong dilation, the  $\xi_t$  form a unit (so that the superPS  $E^{\otimes}$  contains  $\mathcal{E}^{\otimes}$  as a subPsubS).

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

**Poof:** Exercise: Strong iff  $\theta_t(p)p = \theta_t(1)p$ . So,  $v_{s,t}(\theta_s(p)p \odot \theta_t(p)p) = \theta_t(\theta_s(p))\theta_t(p)p$  $= \theta_t(\theta_s(p))p = \theta_{st}(p)p$ .

For  $x_s$ ,  $y_t$  in (super)PS write  $x_s y_t := v_{s,t}(x_s \odot y_t)$ .

For  $x_s$ ,  $y_t$  in (super)PS write  $x_s y_t := v_{s,t}(x_s \odot y_t)$ .

Suppose S is Ore=cancellative+ $\forall r, s \exists r', s' : r'r = s's$ .

For  $x_s$ ,  $y_t$  in (super)PS write  $x_s y_t := v_{s,t}(x_s \odot y_t)$ .

Suppose S is Ore=cancellative+ $\forall r, s \exists r', s' : r'r = s's$ .

▶ PS  $E^{\odot}$ +unit unital  $\xi^{\odot} \rightarrow$  inductive system  $E_t \rightarrow \xi_s E_t$ .

For  $x_s$ ,  $y_t$  in (super)PS write  $x_s y_t := v_{s,t}(x_s \odot y_t)$ .

Suppose S is Ore=cancellative+ $\forall r, s \exists r', s' : r'r = s's$ .

- ▶ PS  $E^{\odot}$ +unit unital  $\xi^{\odot} \rightarrow$  inductive system  $E_t \rightarrow \xi_s E_t$ .
- $\rightarrow$  indlim *E* and  $v_t : E \odot E_t \rightarrow E$

For  $x_s$ ,  $y_t$  in (super)PS write  $x_s y_t := v_{s,t}(x_s \odot y_t)$ .

- Suppose S is Ore=cancellative+ $\forall r, s \exists r', s' : r'r = s's$ .
- ▶ PS  $E^{\odot}$ +unit unital  $\xi^{\odot} \rightarrow$  inductive system  $E_t \rightarrow \xi_s E_t$ .
- ▶  $\sim$  indlim *E* and  $v_t : E \odot E_t \rightarrow E$  such that  $\vartheta_t := v_t (\bullet \odot \operatorname{id}_t) v_t^*$  defines an  $E_0$ -semigroup.

For  $x_s$ ,  $y_t$  in (super)PS write  $x_s y_t := v_{s,t}(x_s \odot y_t)$ .

- Suppose S is Ore=cancellative+ $\forall r, s \exists r', s' : r'r = s's$ .
- ▶ PS  $E^{\odot}$ +unit unital  $\xi^{\odot} \rightarrow$  inductive system  $E_t \rightarrow \xi_s E_t$ .
- ▶  $\sim$  indlim *E* and  $v_t$ :  $E \odot E_t \rightarrow E$  such that  $\vartheta_t := v_t (\bullet \odot \operatorname{id}_t) v_t^*$  defines an  $E_0$ -semigroup.

•  $\xi := \xi_t \in E_t \subset E$  is unit vector and  $p := \xi \xi^*$  a projection.

For  $x_s$ ,  $y_t$  in (super)PS write  $x_s y_t := v_{s,t}(x_s \odot y_t)$ .

- Suppose S is Ore=cancellative+ $\forall r, s \exists r', s' : r'r = s's$ .
- ▶ PS  $E^{\odot}$ +unit unital  $\xi^{\odot} \rightarrow$  inductive system  $E_t \rightarrow \xi_s E_t$ .
- ▶  $\sim$  indlim *E* and  $v_t : E \odot E_t \rightarrow E$  such that  $\vartheta_t := v_t (\bullet \odot \operatorname{id}_t) v_t^*$  defines an  $E_0$ -semigroup.

ション ふゆ マ キャット マックタン

•  $\xi := \xi_t \in E_t \subset E$  is unit vector and  $p := \xi \xi^*$  a projection.

#### Theorem (Shalit-ms)

 $(E, \vartheta, \xi)$  dilates  $T_t = \langle \xi_t, \bullet \xi_t \rangle$ .

For  $x_s$ ,  $y_t$  in (super)PS write  $x_s y_t := v_{s,t}(x_s \odot y_t)$ .

- Suppose S is Ore=cancellative+ $\forall r, s \exists r', s' : r'r = s's$ .
- ▶ PS  $E^{\odot}$ +unit unital  $\xi^{\odot} \rightarrow$  inductive system  $E_t \rightarrow \xi_s E_t$ .
- ▶  $\sim$  indlim *E* and  $v_t : E \odot E_t \rightarrow E$  such that  $\vartheta_t := v_t (\bullet \odot \operatorname{id}_t) v_t^*$  defines an  $E_0$ -semigroup.
- $\xi := \xi_t \in E_t \subset E$  is unit vector and  $p := \xi \xi^*$  a projection.

#### Theorem (Shalit-ms)

 $(E, \vartheta, \xi)$  dilates  $T_t = \langle \xi_t, \bullet \xi_t \rangle$ .

Suppose S is such that  $J_t := \{t = (t_n, ..., t_1): n \in \mathbb{N}, t_n ... t_1 = t\}$  is directed by refinement.

For  $x_s$ ,  $y_t$  in (super)PS write  $x_s y_t := v_{s,t}(x_s \odot y_t)$ .

- Suppose S is Ore=cancellative+ $\forall r, s \exists r', s' : r'r = s's$ .
- ▶ PS  $E^{\circ}$ +unit unital  $\xi^{\circ} \rightarrow$  inductive system  $E_t \rightarrow \xi_s E_t$ .
- ▶  $\sim$  indlim *E* and  $v_t : E \odot E_t \rightarrow E$  such that  $\vartheta_t := v_t (\bullet \odot \operatorname{id}_t) v_t^*$  defines an  $E_0$ -semigroup.
- $\xi := \xi_t \in E_t \subset E$  is unit vector and  $p := \xi \xi^*$  a projection.

#### Theorem (Shalit-ms)

 $(E, \vartheta, \xi)$  dilates  $T_t = \langle \xi_t, \bullet \xi_t \rangle$ .

Suppose S is such that  $J_t := \{t = (t_n, ..., t_1): n \in \mathbb{N}, t_n ... t_1 = t\}$  is directed by refinement.

#### Theorem (Shalit-ms)

If  $\mathcal{E}^{\odot}$  is a subPS with unit  $\xi^{\odot}$ , then the  $E_t = \liminf_{t \in \mathbb{J}_t} E_{t_n} \odot \ldots \odot E_{t_1}$  form a product system containing  $\mathcal{E}^{\odot}$  as a subPsubS (and the unit).

# PS over $\mathbb{N}_0^d$ and over $\mathbb{R}_+^d$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

PS over  $\mathbb{N}_0^d$  and over  $\mathbb{R}_+^d$ Suppose we have PS  $E^{i^{\odot}} = (E_{t^i}^i)$  over  $\mathbb{S}^i$ , i = 1, ..., d.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

$$(E_{s^1}^1 \odot \ldots \odot E_{s^d}^d) \odot (E_{t^1}^1 \odot \ldots \odot E_{t^d}^d)$$

$$\rightarrow E^1_{s^1t^1} \odot \ldots \odot E^d_{s^dt^d}?$$

うして 山田 マイド・エート 小田 うくの

$$(E_{s^1}^1 \odot \ldots \odot E_{s^d}^d) \odot (E_{t^1}^1 \odot \ldots \odot E_{t^d}^d) \longrightarrow (E_{s^1}^1 \odot E_{t^1}^1) \odot \ldots \odot (E_{s^d}^d \odot E_{t^d}^d) \longrightarrow E_{s^1t^1}^1 \odot \ldots \odot E_{s^dt^d}^d?$$

(日) (雪) (日) (日) (日)

$$(E_{s^{1}}^{1} \odot \ldots \odot E_{s^{d}}^{d}) \odot (E_{t^{1}}^{1} \odot \ldots \odot E_{t^{d}}^{d}) \longrightarrow (E_{s^{1}}^{1} \odot E_{t^{1}}^{1}) \odot \ldots \odot (E_{s^{d}}^{d} \odot E_{t^{d}}^{d}) \longrightarrow E_{s^{1}t^{1}}^{1} \odot \ldots \odot E_{s^{d}t^{d}}^{d}?$$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

For Hilbert spaces: Yes, with the flip.

$$(E_{s^1}^1 \odot \ldots \odot E_{s^d}^d) \odot (E_{t^1}^1 \odot \ldots \odot E_{t^d}^d) \longrightarrow (E_{s^1}^1 \odot E_{t^1}^1) \odot \ldots \odot (E_{s^d}^d \odot E_{t^d}^d) \longrightarrow E_{s^1t^1}^1 \odot \ldots \odot E_{s^dt^d}^d?$$

For Hilbert spaces: Yes, with the flip.

For modules? In general, no. ( $E \odot F$  and  $F \odot E$  need not even be isomorphic.)

うして 山田 マイド・エート 小田 うくの

$$\begin{array}{ccc} (E_{s^1}^1 \odot \ldots \odot E_{s^d}^d) \odot (E_{t^1}^1 \odot \ldots \odot E_{t^d}^d) \\ & \longrightarrow \ (E_{s^1}^1 \odot E_{t^1}^1) \odot \ldots \odot (E_{s^d}^d \odot E_{t^d}^d) \\ & \longrightarrow \ E_{s^1 t^1}^1 \odot \ldots \odot E_{s^d t^d}^d \end{array}$$

For Hilbert spaces: Yes, with the flip.

For modules? In general, no. ( $E \odot F$  and  $F \odot E$  need not even be isomorphic.)

うして 山田 マイド・エート 小田 うくの

However, if we have  $E^{\odot}$  over S, then:

$$\begin{array}{ccc} (E_{s^1}^1 \odot \ldots \odot E_{s^d}^d) \odot (E_{t^1}^1 \odot \ldots \odot E_{t^d}^d) \\ & \longrightarrow \ (E_{s^1}^1 \odot E_{t^1}^1) \odot \ldots \odot (E_{s^d}^d \odot E_{t^d}^d) \\ & \longrightarrow \ E_{s^1t^1}^1 \odot \ldots \odot E_{s^dt^d}^d \end{array}$$

For Hilbert spaces: Yes, with the flip.

For modules? In general, no. ( $E \odot F$  and  $F \odot E$  need not even be isomorphic.)

However, if we have  $E^{\odot}$  over S, then:

► For each *i*, the  $E_{t^i}^i := E_{(0,\dots,0,t^i,0,\dots,0)}$  form a PS over  $\mathbb{S}^i$ , the marginal PSs, and, indeed,  $E_{(t^1,\ldots,t^d)} \cong E^1_{\star^1} \odot \ldots \odot E^d_{\star^d}$ .
PS over  $\mathbb{N}_0^d$  and over  $\mathbb{R}_+^d$ Suppose we have PS  $E^{i^{\odot}} = (E_{t^i}^i)$  over  $\mathbb{S}^i, i = 1, ..., d$ . Can we turn  $(E_{(t^1,\dots,t^d)} := E_{t^1}^1 \odot \dots \odot E_{t^d}^d)$  into a PS over  $\mathbb{S} := \mathbb{S}^1 \times \ldots \times \mathbb{S}^d$  by defining a product

$$\begin{array}{ccc} (E_{s^1}^1 \odot \ldots \odot E_{s^d}^d) \odot (E_{t^1}^1 \odot \ldots \odot E_{t^d}^d) \\ & \longrightarrow \ (E_{s^1}^1 \odot E_{t^1}^1) \odot \ldots \odot (E_{s^d}^d \odot E_{t^d}^d) \\ & \longrightarrow \ E_{s^1t^1}^1 \odot \ldots \odot E_{s^dt^d}^d \end{array}$$

For Hilbert spaces: Yes, with the flip.

For modules? In general, no. ( $E \odot F$  and  $F \odot E$  need not even be isomorphic.)

However, if we have  $E^{\odot}$  over S, then:

- For each *i*, the  $E_{ti}^i := E_{(0,\dots,0,t^i,0,\dots,0)}$  form a PS over  $\mathbb{S}^i$ , the marginal PSs, and, indeed,  $E_{(t^1,\ldots,t^d)} \cong E^1_{\star^1} \odot \ldots \odot E^d_{\star^d}$ .
- All these can be reconstructed from the "flips"  $v_{t^j,s^i}v_{s^i,t^j}^*: E_{s^i}^i \odot E_{t^j}^J \to E_{t^j}^j \odot E_{s^i}^j$

PS over  $\mathbb{N}_0^d$  and over  $\mathbb{R}_+^d$ Suppose we have PS  $E^{i^{\odot}} = (E_{t^i}^i)$  over  $\mathbb{S}^i, i = 1, ..., d$ . Can we turn  $(E_{(t^1,\dots,t^d)} := E_{t^1}^1 \odot \dots \odot E_{t^d}^d)$  into a PS over  $\mathbb{S} := \mathbb{S}^1 \times \ldots \times \mathbb{S}^d$  by defining a product

$$\begin{array}{ccc} (E_{s^1}^1 \odot \ldots \odot E_{s^d}^d) \odot (E_{t^1}^1 \odot \ldots \odot E_{t^d}^d) \\ & \longrightarrow \ (E_{s^1}^1 \odot E_{t^1}^1) \odot \ldots \odot (E_{s^d}^d \odot E_{t^d}^d) \\ & \longrightarrow \ E_{s^1t^1}^1 \odot \ldots \odot E_{s^dt^d}^d \end{array}$$

For Hilbert spaces: Yes, with the flip.

For modules? In general, no. ( $E \odot F$  and  $F \odot E$  need not even be isomorphic.)

However, if we have  $E^{\odot}$  over S, then:

- For each *i*, the  $E_{ti}^i := E_{(0,\dots,0,t^i,0,\dots,0)}$  form a PS over  $\mathbb{S}^i$ , the marginal PSs, and, indeed,  $E_{(t^1,\ldots,t^d)} \cong E^1_{\star 1} \odot \ldots \odot E^d_{\star d}$ .
- ▶ All these can be reconstructed from the "flips" (j < i, only) $v_{t^j,s^i}v_{s^i,t^j}^*: E_{s^i}^i \odot E_{t^j}^J \to E_{t^j}^j \odot E_{s^i}^j$

## The case $\mathbb{N}_0^d$

The case 
$$\mathbb{N}_0^d$$
  
(PS  $E^\circ$  over  $\mathbb{N}_0$ )  $\cong (E^{\circ n})_{n \in \mathbb{N}_0}$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

The case 
$$\mathbb{N}_0^d$$
  
(PS  $E^\circ$  over  $\mathbb{N}_0$ )  $\cong (E^{\circ n})_{n \in \mathbb{N}_0} \quad \rightsquigarrow \quad \text{try to define PS on}$ 

$$E_{(n_1,\ldots,n_d)} := E_1^{\odot n_1} \odot \ldots \odot E_d^{\odot n_d}$$

by self-inverse isomorphisms  $\mathfrak{F}_{j,i}$ :  $E_i \odot E_j \rightarrow E_j \odot E_i$  (j < i).

$$E_{(n_1,\ldots,n_d)} := E_1^{\odot n_1} \odot \ldots \odot E_d^{\odot n_d}$$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

by self-inverse isomorphisms  $\mathcal{F}_{j,i}$ :  $E_i \odot E_j \rightarrow E_j \odot E_i$  (j < i).

Theorem (Shalit-ms)

The following conditions are equivalent:

$$E_{(n_1,\ldots,n_d)} := E_1^{\odot n_1} \odot \ldots \odot E_d^{\odot n_d}$$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

by self-inverse isomorphisms  $\mathfrak{F}_{j,i} \colon E_i \odot E_j \to E_j \odot E_i \ (j < i).$ 

#### Theorem (Shalit-ms)

The following conditions are equivalent:

1. The above family admits a PS structure fulfilling  $v_{e_j,e_i}v_{e_i,e_j}^* = \mathcal{F}_{j,i}$  for j < i.

$$E_{(n_1,\ldots,n_d)} := E_1^{\odot n_1} \odot \ldots \odot E_d^{\odot n_d}$$

by self-inverse isomorphisms  $\mathfrak{F}_{j,i} \colon E_i \odot E_j \to E_j \odot E_i \ (j < i).$ 

#### Theorem (Shalit-ms)

The following conditions are equivalent:

- 1. The above family admits a PS structure fulfilling  $v_{e_j,e_i}v_{e_i,e_j}^* = \mathcal{F}_{j,i}$  for j < i.
- **2**. The  $\mathcal{F}_{j,i}$  fulfill

 $(\mathrm{id}_k \odot \mathcal{F}_{j,i})(\mathcal{F}_{k,i} \odot \mathrm{id}_j)(\mathrm{id}_i \odot \mathcal{F}_{k,j}) = (\mathcal{F}_{k,j} \odot \mathrm{id}_i)(\mathrm{id}_j \odot \mathcal{F}_{k,i})(\mathcal{F}_{j,i} \odot \mathrm{id}_k)$ for k < j < i.

$$E_{(n_1,\ldots,n_d)} := E_1^{\odot n_1} \odot \ldots \odot E_d^{\odot n_d}$$

by self-inverse isomorphisms  $\mathfrak{F}_{j,i} \colon E_i \odot E_j \to E_j \odot E_i \ (j < i).$ 

#### Theorem (Shalit-ms)

The following conditions are equivalent:

- 1. The above family admits a PS structure fulfilling  $v_{e_j,e_i}v_{e_i,e_j}^* = \mathcal{F}_{j,i}$  for j < i.
- **2**. The  $\mathcal{F}_{j,i}$  fulfill

 $(\mathrm{id}_k \odot \mathcal{F}_{j,i})(\mathcal{F}_{k,i} \odot \mathrm{id}_j)(\mathrm{id}_i \odot \mathcal{F}_{k,j}) = (\mathcal{F}_{k,j} \odot \mathrm{id}_i)(\mathrm{id}_j \odot \mathcal{F}_{k,i})(\mathcal{F}_{j,i} \odot \mathrm{id}_k)$ for k < j < i. Unique:

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

$$E_{(n_1,\ldots,n_d)} := E_1^{\odot n_1} \odot \ldots \odot E_d^{\odot n_d}$$

by self-inverse isomorphisms  $\mathfrak{F}_{j,i} \colon E_i \odot E_j \to E_j \odot E_i \ (j < i).$ 

#### Theorem (Shalit-ms)

The following conditions are equivalent:

- 1. The above family admits a PS structure fulfilling  $v_{e_j,e_i}v_{e_i,e_j}^* = \mathcal{F}_{j,i}$  for j < i.
- **2**. The  $\mathcal{F}_{j,i}$  fulfill

 $(\mathsf{id}_k \odot \mathcal{F}_{j,i})(\mathcal{F}_{k,i} \odot \mathsf{id}_j)(\mathsf{id}_i \odot \mathcal{F}_{k,j}) = (\mathcal{F}_{k,j} \odot \mathsf{id}_i)(\mathsf{id}_j \odot \mathcal{F}_{k,i})(\mathcal{F}_{j,i} \odot \mathsf{id}_k)$ 

for k < j < i.

Unique; every PS over  $\mathbb{N}_0^d$  arises that way.

$$E_{(n_1,\ldots,n_d)} := E_1^{\odot n_1} \odot \ldots \odot E_d^{\odot n_d}$$

by self-inverse isomorphisms  $\mathfrak{F}_{j,i} \colon E_i \odot E_j \to E_j \odot E_i \ (j < i).$ 

#### Theorem (Shalit-ms)

The following conditions are equivalent:

- 1. The above family admits a PS structure fulfilling  $v_{e_j,e_i}v_{e_i,e_j}^* = \mathcal{F}_{j,i}$  for j < i.
- **2**. The  $\mathcal{F}_{j,i}$  fulfill

 $(\mathsf{id}_k \odot \mathcal{F}_{j,i})(\mathcal{F}_{k,i} \odot \mathsf{id}_j)(\mathsf{id}_i \odot \mathcal{F}_{k,j}) = (\mathcal{F}_{k,j} \odot \mathsf{id}_i)(\mathsf{id}_j \odot \mathcal{F}_{k,i})(\mathcal{F}_{j,i} \odot \mathsf{id}_k)$ 

ション ふゆ マ キャット マックタン

for k < j < i.

Unique; every PS over  $\mathbb{N}_0^d$  arises that way.

What is remarkable?

$$E_{(n_1,\ldots,n_d)} := E_1^{\odot n_1} \odot \ldots \odot E_d^{\odot n_d}$$

by self-inverse isomorphisms  $\mathfrak{F}_{j,i} \colon E_i \odot E_j \to E_j \odot E_i \ (j < i).$ 

### Theorem (Shalit-ms)

The following conditions are equivalent:

- 1. The above family admits a PS structure fulfilling  $v_{e_j,e_i}v_{e_i,e_j}^* = \mathcal{F}_{j,i}$  for j < i.
- **2**. The  $\mathcal{F}_{j,i}$  fulfill

 $(\mathsf{id}_k \odot \mathcal{F}_{j,i})(\mathcal{F}_{k,i} \odot \mathsf{id}_j)(\mathsf{id}_i \odot \mathcal{F}_{k,j}) = (\mathcal{F}_{k,j} \odot \mathsf{id}_i)(\mathsf{id}_j \odot \mathcal{F}_{k,i})(\mathcal{F}_{j,i} \odot \mathsf{id}_k)$ 

for k < j < i.

Unique; every PS over  $\mathbb{N}_0^d$  arises that way.

What is remarkable?

Conditions **empty** for d = 2!



▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

### About the proof

To show:

Well-definedness of

$$(E_1^{\odot m_1} \odot \ldots \odot E_d^{\odot m_d}) \odot (E_1^{\odot n_1} \odot \ldots \odot E_d^{\odot n_d}) \longrightarrow E_1^{\odot (m_1 + n_1)} \odot \ldots \odot E_d^{\odot (m_d + n_d)}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

by means of next-neighbour-transpositions.

### About the proof

To show:

Well-definedness of

$$(E_1^{\odot m_1} \odot \ldots \odot E_d^{\odot m_d}) \odot (E_1^{\odot n_1} \odot \ldots \odot E_d^{\odot n_d}) \longrightarrow E_1^{\odot (m_1 + n_1)} \odot \ldots \odot E_d^{\odot (m_d + n_d)}$$

by means of next-neighbour-transpositions.

Associativity of

$$(E_1^{\odot \ell_1} \odot \ldots \odot E_d^{\odot \ell_d}) \odot (E_1^{\odot m_1} \odot \ldots \odot E_d^{\odot m_d}) \odot (E_1^{\odot n_1} \odot \ldots \odot E_d^{\odot n_d}) \longrightarrow E_1^{\odot (\ell_1 + m_1 + n_1)} \odot \ldots \odot E_d^{\odot (\ell_d + m_d + n_d)}.$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

### About the proof

To show:

Well-definedness of

$$(E_1^{\odot m_1} \odot \ldots \odot E_d^{\odot m_d}) \odot (E_1^{\odot n_1} \odot \ldots \odot E_d^{\odot n_d}) \longrightarrow E_1^{\odot (m_1 + n_1)} \odot \ldots \odot E_d^{\odot (m_d + n_d)}$$

by means of next-neighbour-transpositions.

Associativity of

$$(E_1^{\odot \ell_1} \odot \ldots \odot E_d^{\odot \ell_d}) \odot (E_1^{\odot m_1} \odot \ldots \odot E_d^{\odot m_d}) \odot (E_1^{\odot n_1} \odot \ldots \odot E_d^{\odot n_d}) \longrightarrow E_1^{\odot (\ell_1 + m_1 + n_1)} \odot \ldots \odot E_d^{\odot (\ell_d + m_d + n_d)}.$$

Both is established by using the  $\mathcal{F}_{j,i}$  to define a representation of  $S_n$  on  $(E_1 \oplus \ldots \oplus E_d)^{\odot n}$  containing all the preceding tensor products with *n* factors  $E_i$  as subspaces and by the observation that the permutation doing the right thing to these subspaces is **unique** and it it does not matter in which order we obtain it from transpositions.

### Corollary

Suppose we have  $\xi_i \in E_i$  fulfilling  $\mathcal{F}_{j,i}(\xi_i \odot \xi_j) = \xi_j \odot \xi_i$ . Then the the elements  $\xi_{(n_1,...,n_d)} := \xi_1^{\odot n_1} \odot \ldots \odot \xi_d^{\odot n_d}$  form a unit.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

#### Corollary

Suppose we have  $\xi_i \in E_i$  fulfilling  $\mathcal{F}_{j,i}(\xi_i \odot \xi_j) = \xi_j \odot \xi_i$ . Then the the elements  $\xi_{(n_1,...,n_d)} := \xi_1^{\odot n_1} \odot \ldots \odot \xi_d^{\odot n_d}$  form a unit.

ション ふゆ マ キャット マックタン

#### Theorem (Schalit-ms)

Every CP-semigroup over  $\mathbb{N}_0^2$  in a **vN-algbra** allows a strong dilation. If it is Markov then it can be chosen  $E_0$ .

#### Corollary

Suppose we have  $\xi_i \in E_i$  fulfilling  $\mathcal{F}_{j,i}(\xi_i \odot \xi_j) = \xi_j \odot \xi_i$ . Then the the elements  $\xi_{(n_1,...,n_d)} := \xi_1^{\odot n_1} \odot \ldots \odot \xi_d^{\odot n_d}$  form a unit.

ション ふゆ マ キャット マックタン

#### Theorem (Schalit-ms)

Every CP-semigroup over  $\mathbb{N}_0^2$  in a **vN-algbra** allows a strong dilation. If it is Markov then it can be chosen  $E_0$ .

Proof: If non-Markov, first unitalize.

#### Corollary

Suppose we have  $\xi_i \in E_i$  fulfilling  $\mathcal{F}_{j,i}(\xi_i \odot \xi_j) = \xi_j \odot \xi_i$ . Then the the elements  $\xi_{(n_1,...,n_d)} := \xi_1^{\odot n_1} \odot \ldots \odot \xi_d^{\odot n_d}$  form a unit.

#### Theorem (Schalit-ms)

Every CP-semigroup over  $\mathbb{N}_0^2$  in a **vN-algbra** allows a strong dilation. If it is Markov then it can be chosen  $E_0$ .

**Proof:** If non-Markov, first unitalize. We manage to define  $E \ni \xi_1, \xi_2$  and  $\mathfrak{F}: E \odot E \to E \odot E$  such that  $\mathfrak{F}(\xi_2 \odot \xi_1) = \xi_1 \odot \xi_2$ .

ション ふゆ マ キャット マックタン

#### Corollary

Suppose we have  $\xi_i \in E_i$  fulfilling  $\mathcal{F}_{j,i}(\xi_i \odot \xi_j) = \xi_j \odot \xi_i$ . Then the the elements  $\xi_{(n_1,...,n_d)} := \xi_1^{\odot n_1} \odot \ldots \odot \xi_d^{\odot n_d}$  form a unit.

#### Theorem (Schalit-ms)

Every CP-semigroup over  $\mathbb{N}_0^2$  in a **vN-algbra** allows a strong dilation. If it is Markov then it can be chosen  $E_0$ .

**Proof:** If non-Markov, first unitalize. We manage to define  $E \ni \xi_1, \xi_2$  and  $\mathfrak{F}: E \odot E \to E \odot E$  such that  $\mathfrak{F}(\xi_2 \odot \xi_1) = \xi_1 \odot \xi_2$ .

ション ふゆ マ キャット マックタン

An THIS leads to a whole bunch of ....

The superPS č<sup>⊗</sup> generated by the GNS-subPS č<sup>⊗</sup> is not a product system.

- The superPS č<sup>⊗</sup> generated by the GNS-subPS č<sup>⊗</sup> is not a product system.
  - The dilation is not spatially minimal in that  $\mathcal{B}$  and shifts  $\vartheta_t(\mathcal{B})$  do not generate E out of  $\xi$ .

- The superPS č<sup>⊗</sup> generated by the GNS-subPS č<sup>⊗</sup> is not a product system.
  - The dilation is not spatially minimal in that  $\mathcal{B}$  and shifts  $\vartheta_t(\mathcal{B})$  do not generate E out of  $\xi$ .

ション ふゆ マ キャット マックタン

If 𝔅 is a factor, then the PS generated by 𝔅<sup>𝔅</sup> is 𝔅<sup>𝔅</sup>: There is no proper PsubS of 𝔅<sup>𝔅</sup> containing 𝔅<sup>𝔅</sup>.

- The superPS č<sup>⊗</sup> generated by the GNS-subPS č<sup>⊗</sup> is not a product system.
  - The dilation is not spatially minimal in that  $\mathcal{B}$  and shifts  $\vartheta_t(\mathcal{B})$  do not generate E out of  $\xi$ .

ション 小田 マイビット ビックタン

- If 𝔅 is a factor, then the PS generated by 𝔅<sup>𝔅</sup> is 𝔅<sup>𝔅</sup>: There is no proper PsubS of 𝔅<sup>𝔅</sup> containing 𝔅<sup>𝔅</sup>.
  - The dilation is incompressible.

- The superPS č<sup>⊗</sup> generated by the GNS-subPS č<sup>⊗</sup> is not a product system.
  - The dilation is not spatially minimal in that  $\mathcal{B}$  and shifts  $\vartheta_t(\mathcal{B})$  do not generate E out of  $\xi$ .
- If 𝔅 is a factor, then the PS generated by 𝔅<sup>𝔅</sup> is 𝔅<sup>𝔅</sup>: There is no proper PsubS of 𝔅<sup>𝔅</sup> containing 𝔅<sup>𝔅</sup>.
  - The dilation is incompressible.
  - This puts an end to our hope we might for all č<sup>S</sup> ⊃ ε<sup>S</sup> ∋ ξ<sup>S</sup> (that's what we get if there exits any strong dilation) a PS in between.

ション 小田 マイビット ビックタン

- The superPS č<sup>⊗</sup> generated by the GNS-subPS č<sup>⊗</sup> is not a product system.
  - The dilation is not spatially minimal in that  $\mathcal{B}$  and shifts  $\vartheta_t(\mathcal{B})$  do not generate E out of  $\xi$ .
- If 𝔅 is a factor, then the PS generated by 𝔅<sup>𝔅</sup> is 𝔅<sup>𝔅</sup>: There is no proper PsubS of 𝔅<sup>𝔅</sup> containing 𝔅<sup>𝔅</sup>.
  - The dilation is incompressible.
  - This puts an end to our hope we might for all č<sup>S</sup> ⊃ ε<sup>S</sup> ∋ ξ<sup>S</sup> (that's what we get if there exits any strong dilation) a PS in between.

ション 小田 マイビット ビックタン

(We may however hope to make  $\check{\xi}^{\otimes}$  bigger.)

- The superPS č<sup>⊗</sup> generated by the GNS-subPS č<sup>⊗</sup> is not a product system.
  - The dilation is not spatially minimal in that  $\mathcal{B}$  and shifts  $\vartheta_t(\mathcal{B})$  do not generate E out of  $\xi$ .
- If 𝔅 is a factor, then the PS generated by 𝔅<sup>𝔅</sup> is 𝔅<sup>𝔅</sup>: There is no proper PsubS of 𝔅<sup>𝔅</sup> containing 𝔅<sup>𝔅</sup>.
  - The dilation is incompressible.
  - This puts an end to our hope we might for all č<sup>S</sup> ⊃ ε<sup>S</sup> ∋ ξ<sup>S</sup> (that's what we get if there exits any strong dilation) a PS in between.

(We may however hope to make  $\check{\xi}^{\heartsuit}$  bigger.)

► The dilation is not algebraically minimal:  $\mathbb{B}^{a}(E) \neq W^{*}(\bigcup \vartheta_{\mathbb{N}^{2}_{0}}(\mathcal{B})) =: \mathcal{A}_{\infty}.$ 

- The superPS č<sup>⊗</sup> generated by the GNS-subPS č<sup>⊗</sup> is not a product system.
  - The dilation is not spatially minimal in that  $\mathcal{B}$  and shifts  $\vartheta_t(\mathcal{B})$  do not generate E out of  $\xi$ .
- If B is a factor, then the PS generated by E<sup>⊗</sup> is E<sup>⊙</sup>: There is no proper PsubS of E<sup>⊙</sup> containing E<sup>⊗</sup>.
  - The dilation is incompressible.
  - This puts an end to our hope we might for all č<sup>S</sup> ⊃ ε<sup>S</sup> ∋ ξ<sup>S</sup> (that's what we get if there exits any strong dilation) a PS in between.

(We may however hope to make  $\check{\xi}^{\bigotimes}$  bigger.)

- ► The dilation is not algebraically minimal:  $\mathcal{B}^{a}(E) \neq W^{*}(\bigcup \vartheta_{\mathbb{N}^{2}_{\alpha}}(\mathcal{B})) =: \mathcal{A}_{\infty}.$ 
  - The minimalized version on A<sub>∞</sub> is not of the form (E', ϑ', ξ'). That is, it is not Arveson minimal.

## About the case $\mathbb{R}^d_+$ : Exponentiating PS over $\mathbb{N}^d_0$

(Apart from our general results about products of *d*.)

► The basic example of a PS over R<sub>+</sub> is the time ordered system:

$$\mathbf{\Gamma}_t(F) := \omega \mathcal{B} \oplus \bigoplus_{n \in \mathbb{N}} \Delta_n L^2([0,t)^n, F^{\odot n})$$

where  $\Delta_n$  is the indicator function of  $\{t_n > \ldots > t_1 > 0\}$ .

#### Theorem (Shalit-ms)

Let 
$$F^{\odot}$$
 be PS  $\mathbb{N}_0^d$  with marginals  $\left(F_i^{\odot n}\right)_{n\in\mathbb{N}_0}$ . Then

$$E_{(t_1,\ldots,t_d)} := \mathbf{\Gamma}_{t_1}(F_1) \odot \ldots \odot \mathbf{\Gamma}_{t_d}(F_d)$$

inherits the structure of a PS over  $\mathbb{R}^d_+$ . Moreover, units lift to (exponential) units.

# Thank you!

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

### Bibliography I



W.L. Paschke, *Inner product modules over B\*–algebras*, Trans. Amer. Math. Soc. **182** (1973), 443–468.

