Introduction	Background	Proof of Theorem	References
0000000000	000000000000	0000000	0000

Compact double difference of composition operators

Hyungwoon Koo (koohw@korea.ac.kr)

Korea University

December 19, 2016 ISI, Bangalore Recent Advances in OTOA 2016

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction	Background	Proof of Theorem	References
0000000000	000000000000	0000000	0000

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Contents

Introduction

- Notation
- Question
- Results for $A^p_{\alpha}(\mathbf{D})$
- Hardy space case

Background

- Boundedness
- Carleson Measure
- Compactness
- Compact Difference

Proof of Theorem

- Consequences of Theorem 3
- Proof

References

References

Introduction	Background	Proof of Theorem	References
• 0 00000000			
Notation			
Notation			

- D: unit disc in C.
- $\mathbf{T} = \partial \mathbf{D}$: unit circle in \mathbf{C} .
- $H(\mathbf{D})$: class of all holomorphic functions on \mathbf{D} .
- $H^{p}(\mathbf{D})$: Hardy spaces on **D**. Freely identified with $H^{p}(\mathbf{T})$.

$$f \in H^p(\mathbf{D}) \iff \|f\|_{H^p}^p = \sup_{0 < r < 1} \int_{\mathbf{T}} |f(r\zeta)|^p \, d\sigma(\zeta) < \infty$$

• $A^p_{\alpha}(\mathbf{D})$: Bergman space on **D**.

$$f \in A^p_{\alpha}(\mathbf{D}) \iff \|f\|^p_{A^p_{\alpha}(\mathbf{D})} = \int_{\mathbf{D}} |f(z)|^p \, dA_{\alpha}(z) < \infty$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Notation			
Notation			
• 0 000000000	0000000000000	0000000	0000
Introduction	Background	Proof of Theorem	References

- D: unit disc in C.
- $\mathbf{T} = \partial \mathbf{D}$: unit circle in \mathbf{C} .
- $H(\mathbf{D})$: class of all holomorphic functions on \mathbf{D} .
- $H^{p}(\mathbf{D})$: Hardy spaces on **D**. Freely identified with $H^{p}(\mathbf{T})$.

$$f \in H^p(\mathsf{D}) \iff \|f\|_{H^p}^p = \sup_{0 < r < 1} \int_{\mathsf{T}} |f(r\zeta)|^p \, d\sigma(\zeta) < \infty$$

• $A^p_{\alpha}(\mathbf{D})$: Bergman space on **D**.

$$f \in A^p_{\alpha}(\mathbf{D}) \iff \|f\|^p_{A^p_{\alpha}(\mathbf{D})} = \int_{\mathbf{D}} |f(z)|^p \, dA_{\alpha}(z) < \infty$$

Notation			
Notation			
• 0 000000000			
Introduction	Background	Proof of Theorem	References

- D: unit disc in C.
- $\mathbf{T} = \partial \mathbf{D}$: unit circle in \mathbf{C} .
- $H(\mathbf{D})$: class of all holomorphic functions on \mathbf{D} .
- $H^{p}(\mathbf{D})$: Hardy spaces on **D**. Freely identified with $H^{p}(\mathbf{T})$.

$$f \in H^p(\mathbf{D}) \iff \|f\|_{H^p}^p = \sup_{0 < r < 1} \int_{\mathbf{T}} |f(r\zeta)|^p \, d\sigma(\zeta) < \infty$$

• $A^p_{\alpha}(\mathbf{D})$: Bergman space on **D**.

$$f \in A^p_{lpha}(\mathbf{D}) \iff \|f\|^p_{A^p_{lpha}(\mathbf{D})} = \int_{\mathbf{D}} |f(z)|^p \, dA_{lpha}(z) < \infty$$

(日) (日) (日) (日) (日) (日) (日) (日)

Notation			
Notation			
• 0 000000000			
Introduction	Background	Proof of Theorem	References

- D: unit disc in C.
- $\mathbf{T} = \partial \mathbf{D}$: unit circle in \mathbf{C} .
- $H(\mathbf{D})$: class of all holomorphic functions on \mathbf{D} .
- $H^{p}(\mathbf{D})$: Hardy spaces on **D**. Freely identified with $H^{p}(\mathbf{T})$.

$$f \in H^p(\mathbf{D}) \iff \|f\|_{H^p}^p = \sup_{0 < r < 1} \int_{\mathbf{T}} |f(r\zeta)|^p \, d\sigma(\zeta) < \infty$$

A^p_α(**D**): Bergman space on **D**.

$$f \in \mathcal{A}^p_{\alpha}(\mathbf{D}) \iff \|f\|^p_{\mathcal{A}^p_{\alpha}(\mathbf{D})} = \int_{\mathbf{D}} |f(z)|^p \, d\mathcal{A}_{\alpha}(z) < \infty$$

Introduction	Background	Proof of Theorem	References
0000000000			
Notation			
Composition (Operator		

Composition Operator

For $\varphi:\Omega\to\Omega$ holomorphic self-map, composition operator is defined by

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$C_{\varphi}f=f\circ\varphi.$$

Examples of Ω : **D**, **B**_n, **D**ⁿ, **C**ⁿ, strongly pseudoconvex domain.

Introduction	Background	Proof of Theorem	References
000000000			
Question			
Question			

For a smooth function g, we have

Let

 $T_{ij} = C_{\varphi_i} - C_{\varphi_j}$ so that $T_{ij}f(z) := f(\varphi_i(z)) - f(\varphi_j(z)),$

and

$$Tf(z) := T_{12}f(z) - T_{23}f(z) = f(\varphi_1(z)) - 2f(\varphi_2(z)) + f(\varphi_3(z)).$$

In view of this, can T behavior better than T_{12} ?

Double Difference Cancelation?

Can $(C_{\varphi_1} - C_{\varphi_2}) - (C_{\varphi_2} - C_{\varphi_3})$ be compact while both $(C_{\varphi_1} - C_{\varphi_2})$ and $(C_{\varphi_2} - C_{\varphi_3})$ are not compact?

Introduction	Background	Proof of Theorem	References
000000000			
Question			
Question			

For a smooth function g, we have

Let

$$\mathcal{T}_{ij} = \mathcal{C}_{arphi_i} - \mathcal{C}_{arphi_j} ext{ so that } \mathcal{T}_{ij}f(z) := f(arphi_i(z)) - f(arphi_j(z)),$$

and

$$Tf(z) := T_{12}f(z) - T_{23}f(z) = f(\varphi_1(z)) - 2f(\varphi_2(z)) + f(\varphi_3(z)).$$

In view of this, can T behavior better than T_{12} ?

Double Difference Cancelation?

Can $(C_{\varphi_1} - C_{\varphi_2}) - (C_{\varphi_2} - C_{\varphi_3})$ be compact while both $(C_{\varphi_1} - C_{\varphi_2})$ and $(C_{\varphi_2} - C_{\varphi_3})$ are not compact?

Introduction	Background	Proof of Theorem	References
000000000			
Question			
Question			

For a smooth function g, we have

Let

$$T_{ij}=C_{arphi_i}-C_{arphi_j} \hspace{0.1 in} ext{ so that } \hspace{0.1 in} T_{ij}f(z):=f(arphi_i(z))-f(arphi_j(z)),$$

and

$$Tf(z) := T_{12}f(z) - T_{23}f(z) = f(\varphi_1(z)) - 2f(\varphi_2(z)) + f(\varphi_3(z)).$$

In view of this, can T behavior better than T_{12} ?

Double Difference Cancelation?

Can $(C_{\varphi_1} - C_{\varphi_2}) - (C_{\varphi_2} - C_{\varphi_3})$ be compact while both $(C_{\varphi_1} - C_{\varphi_2})$ and $(C_{\varphi_2} - C_{\varphi_3})$ are not compact?

Introduction	Background	Proof of Theorem	References
000000000			
Question			
Question			

More generally,

Double Difference Cancelation?

Suppose $(C_{\varphi_1} - C_{\varphi_2}), (C_{\varphi_3} - C_{\varphi_4}), (C_{\varphi_1} - C_{\varphi_3})$ and $(C_{\varphi_2} - C_{\varphi_4})$ are all not compact.

Can $T := (C_{\varphi_1} - C_{\varphi_2}) - (C_{\varphi_3} - C_{\varphi_4}) = (C_{\varphi_1} - C_{\varphi_3}) - (C_{\varphi_2} - C_{\varphi_4})$ be compact?

Introduction	Background	Proof of Theorem	References
0000000000			
Results for $A^{p}_{\alpha}(\mathbf{D})$			
Theorem 1			

K-Wang (2015) Let $0 and <math>\alpha > -1$. Let $a_i \in \mathbf{C} \setminus \{0\}$ and assume C_{φ_i} is not compact on $A^p_{\alpha}(\mathbf{D})$ for each i = 1, 2, 3. Let $T := \sum_{i=1}^{3} a_i C_{\varphi_i}$.

If T compact on $A^p_{\alpha}(\mathbf{D})$, then one of the following holds:

• $T = a_i(C_{\varphi_i} - C_{\varphi_j} - C_{\varphi_k})$, where (i, j, k) is some permutation of (1, 2, 3)

•
$$T = a_1(C_{\varphi_1} - C_{\varphi_2}) + a_3(C_{\varphi_3} - C_{\varphi_2}).$$

Introduction	Background	Proof of Theorem	References
0000000000			
Results for $A^{p}_{\alpha}(\mathbf{D})$			
Theorem 1			

K-Wang (2015) Let $0 and <math>\alpha > -1$. Let $a_i \in \mathbf{C} \setminus \{0\}$ and assume C_{φ_i} is not compact on $A^p_{\alpha}(\mathbf{D})$ for each i = 1, 2, 3. Let $T := \sum_{i=1}^{3} a_i C_{\varphi_i}$.

If T compact on $A^p_{\alpha}(\mathbf{D})$, then one of the following holds:

• $T = a_i(C_{\varphi_i} - C_{\varphi_j} - C_{\varphi_k})$, where (i, j, k) is some permutation of (1, 2, 3)

•
$$T = a_1(C_{\varphi_1} - C_{\varphi_2}) + a_3(C_{\varphi_3} - C_{\varphi_2}).$$

Introduction	Background	Proof of Theorem	References
00000000000			
Results for $A^p_{\alpha}(\mathbf{D})$			

I heorem 1

K-Wang (2015) Let $0 and <math>\alpha > -1$. Let $a_i \in \mathbf{C} \setminus \{0\}$ and assume C_{φ_i} is not compact on $A^p_{\alpha}(\mathbf{D})$ for each i = 1, 2, 3. Let $T := \sum_{i=1}^{3} a_i C_{\varphi_i}$.

If T compact on $A^{p}_{\alpha}(\mathbf{D})$, then one of the following holds:

• $T = a_i(C_{\varphi_i} - C_{\varphi_j} - C_{\varphi_k})$, where (i, j, k) is some permutation of (1, 2, 3).

•
$$T = a_1(C_{\varphi_1} - C_{\varphi_2}) + a_3(C_{\varphi_3} - C_{\varphi_2}).$$

Introduction	Background	Proof of Theorem	References
00000000000			
Results for $A^p_{\alpha}(\mathbf{D})$			

I heorem 1

K-Wang (2015) Let $0 and <math>\alpha > -1$. Let $a_i \in \mathbf{C} \setminus \{0\}$ and assume C_{φ_i} is not compact on $A^p_{\alpha}(\mathbf{D})$ for each i = 1, 2, 3. Let $T := \sum_{i=1}^{3} a_i C_{\varphi_i}$.

If T compact on $A^p_{\alpha}(\mathbf{D})$, then one of the following holds:

• $T = a_i(C_{\varphi_i} - C_{\varphi_j} - C_{\varphi_k})$, where (i, j, k) is some permutation of (1, 2, 3).

•
$$T = a_1(C_{\varphi_1} - C_{\varphi_2}) + a_3(C_{\varphi_3} - C_{\varphi_2}).$$

Introduction	Background	Proof of Theorem	References
0000000000			
Results for $A^{p}_{\alpha}(\mathbf{D})$			
Theorem 2			

• Double difference

K-Wang (2015) Let $0 , <math>\alpha > -1$. Let $a, b \in \mathbf{C} \setminus \{0\}$ and $a + b \neq 0$. Assume C_{φ_i} is not compact on $A^p_{\alpha}(\mathbf{D})$ for each i = 1, 2, 3.

 $egin{aligned} T &:= a(C_{arphi_1}-C_{arphi_2})+b(C_{arphi_3}-C_{arphi_2}) ext{ is compact on } A^p_lpha(\mathbf{D}) \ &\Leftrightarrow \ both \ C_{arphi_1}-C_{arphi_2} ext{ and } C_{arphi_3}-C_{arphi_2} ext{ are compact on } A^p_lpha(\mathbf{D}). \end{aligned}$

Introduction	Background	Proof of Theorem	References
0000000000			
Results for $A^{p}_{\alpha}(\mathbf{D})$			
Theorem 2			

• Double difference

K-Wang (2015) Let $0 , <math>\alpha > -1$. Let $a, b \in \mathbb{C} \setminus \{0\}$ and $a + b \neq 0$. Assume C_{φ_i} is not compact on $A^p_{\alpha}(\mathbb{D})$ for each i = 1, 2, 3. $T := a(C_{\varphi_1} - C_{\varphi_2}) + b(C_{\varphi_3} - C_{\varphi_2})$ is compact on $A^p_{\alpha}(\mathbb{D})$ \Leftrightarrow both $C_{\varphi_1} - C_{\varphi_2}$ and $C_{\varphi_2} - C_{\varphi_2}$ are compact on $A^p_{\alpha}(\mathbb{D})$.

・ロ・・西・・田・・田・ 日・ シュウ

Introduction	Background	Proof of Theorem	References
0000000000			
Results for $A^{p}_{\alpha}(\mathbf{D})$			
Theorem 2			

• Double difference

K-Wang (2015) Let $0 , <math>\alpha > -1$. Let $a, b \in \mathbf{C} \setminus \{0\}$ and $a + b \neq 0$. Assume C_{φ_i} is not compact on $A^p_{\alpha}(\mathbf{D})$ for each i = 1, 2, 3. $T := a(C_{\varphi_1} - C_{\varphi_2}) + b(C_{\varphi_3} - C_{\varphi_2})$ is compact on $A^p_{\alpha}(\mathbf{D})$ \Leftrightarrow both $C_{\varphi_1} - C_{\varphi_2}$ and $C_{\varphi_3} - C_{\varphi_2}$ are compact on $A^p_{\alpha}(\mathbf{D})$.

Introduction	Background	Proof of Theorem	References
0000000000			
Results for $A^{p}_{\alpha}(\mathbf{D})$			
Notation			

Let

$$T := T_{12} - T_{34} = T_{13} - T_{24}, \quad T_{ij} = C_{\varphi_i} - C_{\varphi_j}.$$

We also put

$$ho_{ij}(z) =
ho_{arphi_i,arphi_j}(z) :=
ho ig(arphi_i(z), arphi_j(z) ig), \quad
ho(a,b) = igg| rac{a-b}{1-a\overline{b}}$$

and

$$M_{ij}(z)=M_{arphi_i,arphi_j}(z):=\left[rac{1-|z|}{1-|arphi_i(z)|}+rac{1-|z|}{1-|arphi_j(z)|}
ight]
ho_{ij}(z).$$

Finally, we put

$$M = M_{12} + M_{34}$$
 and $\widetilde{M} := M_{13} + M_{24}$.

(ロ)、(型)、(E)、(E)、 E) の(の)

Introduction	Background	Proof of Theorem	References
00000000000			
Results for $A^{p}_{\alpha}(\mathbf{D})$			
Theorem 3			

• General double difference

Choe-K-Wang (2017) $T := T_{12} - T_{34}$ is compact on $A^p_{\alpha}(\mathbf{D})$ if and only if

 $\lim_{|z|\to 1} M(z)\widetilde{M}(z) = 0.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Introduction	Background	Proof of Theorem	References
00000000000			
Results for $A^{p}_{\alpha}(\mathbf{D})$			
Theorem 3			

• General double difference

Choe-K-Wang (2017) $T := T_{12} - T_{34}$ is compact on $A^p_{\alpha}(\mathbf{D})$ if and only if

$$\lim_{|z|\to 1} M(z)\widetilde{M}(z) = 0.$$

Introduction	Background	Proof of Theorem	References
000000000000			
Hardy space case			
Questions for	$H^p(\mathbf{D})$		

• Component problems

Shapiro-Sundberg (1990)

• If $C_{\varphi} - C_{\psi}$ is compact, then do they belong to the same component?

 Is there non-compact C_φ which belongs to the component containing compact operators?

Introduction	Background	Proof of Theorem	References
00000000000			
Hardy space case			
Known results for	$H^p(\mathbf{D})$		

• Component

Moorhouse-Toews (2001), Bourdon(2003) There are C_{φ} and C_{ψ} which belong to the same component, but $C_{\varphi} - C_{\psi}$ is compact

Component

Gallardo-Gutierrez, Gonzalez, Nieminen-Saksman (2008)

- *H^p*(**D**): There is a non-compact C_φ which belongs to the component containing compact operators.
- $A^{p}_{\alpha}(\mathbf{D})$: The set of compact operators is a component.
- A^p_α(D): If the difference is compact, then they belong to the same component.

Component

Nieminen-Saksman (2004) $C_{\varphi} - C_{\psi}$ is compact on $H^{p}(\mathbf{D})$ for some $p \ge 1$, then for all $p \ge 1$.

Introduction	Background	Proof of Theorem	References
00000000000			
Hardy space case			
Known results for	r $H^p(\mathbf{D})$		

• Component

Moorhouse-Toews (2001), Bourdon(2003) There are C_{φ} and C_{ψ} which belong to the same component, but $C_{\varphi} - C_{\psi}$ is compact

Component

Gallardo-Gutierrez, Gonzalez, Nieminen-Saksman (2008)

- *H^p*(**D**): There is a non-compact C_φ which belongs to the component containing compact operators.
- $A^p_{\alpha}(\mathbf{D})$: The set of compact operators is a component.
- A^p_α(D): If the difference is compact, then they belong to the same component.

Component

Nieminen-Saksman (2004) $C_{\varphi} - C_{\psi}$ is compact on $H^{p}(\mathbf{D})$ for some $p \ge 1$, then for all $p \ge 1$.

Introduction	Background	Proof of Theorem	References
00000000000			
Hardy space case			
Known results for	r $H^p(\mathbf{D})$		

• Component

Moorhouse-Toews (2001), Bourdon(2003) There are C_{φ} and C_{ψ} which belong to the same component, but $C_{\varphi} - C_{\psi}$ is compact

Component

Gallardo-Gutierrez, Gonzalez, Nieminen-Saksman (2008)

- *H^p*(**D**): There is a non-compact C_φ which belongs to the component containing compact operators.
- $A^p_{\alpha}(\mathbf{D})$: The set of compact operators is a component.
- A^p_α(D): If the difference is compact, then they belong to the same component.

Component

Nieminen-Saksman (2004)

$$C_{\varphi} - C_{\psi}$$
 is compact on $H^p(\mathbf{D})$ for some $p \ge 1$, then for all $p \ge 1$.

Introduction	Background	Proof of Theorem	References
0000000000			
Hardy space case			
Questions for H^p	(D)		

• Component problems for $H^p(D)$

• Characterize components.

- Characterize the component containing compact operators.
- Characterize the compact difference, the joint Carleson measure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Characterize the double difference compact operators.

Introduction	Background	Proof of Theorem	References
0000000000			
Hardy space case			
Questions for H^p	(D)		

• Component problems for $H^p(\mathbf{D})$

- Characterize components.
- Characterize the component containing compact operators.
- Characterize the compact difference, the joint Carleson measure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Characterize the double difference compact operators.

Introduction	Background	Proof of Theorem	References
0000000000			
Hardy space case			
Questions for H^p	(D)		

• Component problems for $H^p(\mathbf{D})$

- Characterize components.
- Characterize the component containing compact operators.
- Characterize the compact difference, the joint Carleson measure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Characterize the double difference compact operators.

Introduction	Background	Proof of Theorem	References
0000000000			
Hardy space case			
Questions for H^p	(D)		

• Component problems for $H^p(\mathbf{D})$

- Characterize components.
- Characterize the component containing compact operators.
- Characterize the compact difference, the joint Carleson measure.

• Characterize the double difference compact operators.

		Background	Proof of Theorem	References
00000000		• 00 0000000000000		
Boundedness				

Boundedness On Unit Disk

Weighted Bergman spaces

For p>0 and $\alpha\geq -1$, the weighted Bergman space $A^p_\alpha({\bf D})$ is the set of analytic functions f with

$$\|f\|^p := \int_{\mathbf{D}} |f(z)|^p dA_{\alpha}(z), \qquad dA_{\alpha}(z) := (1 - |z|^2)^{\alpha} dA(z).$$

Boundedness on weighted Bergman spaces

By Littlewood's Subordination Principle.

$$C_{\varphi}: A^p_{\alpha} \to A^p_{\alpha}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

	Background	Proof of Theorem	References
	• 00 0000000000		
Boundedness			

Boundedness On Unit Disk

Weighted Bergman spaces

For p>0 and $\alpha\geq -1$, the weighted Bergman space $A^p_\alpha({\bf D})$ is the set of analytic functions f with

$$\|f\|^{p} := \int_{\mathbf{D}} |f(z)|^{p} dA_{\alpha}(z), \qquad dA_{\alpha}(z) := (1 - |z|^{2})^{\alpha} dA(z).$$

• Boundedness on weighted Bergman spaces

By Littlewood's Subordination Principle.

$$C_{\varphi}: A^p_{\alpha} \to A^p_{\alpha}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

	Background	Proof of Theorem	References
	000000000000000000000000000000000000000		
Boundedness			
Subordination	Principle		

If g subharmonic and φ analytic with $\varphi(0) = 0$, then

$$\int_{0}^{2\pi} g \circ arphi(re^{i heta}) d heta \leq \int_{0}^{2\pi} g(re^{i heta}) d heta.$$

Proof) Let G = P(g), the Poisson integral of g.

$$\int_{0}^{2\pi} g \circ \varphi(re^{i\theta}) \frac{d\theta}{2\pi} \leq \int_{0}^{2\pi} G \circ \varphi(re^{i\theta}) \frac{d\theta}{2\pi}$$

$$= G \circ \varphi(0)$$

$$= \int_{0}^{2\pi} g(re^{i\theta}) \frac{d\theta}{2\pi}. \square$$

	Background	Proof of Theorem	References
	000000000000000000000000000000000000000		
Boundedness			
Subordination	Principle		

If g subharmonic and φ analytic with $\varphi(0) = 0$, then

$$\int_{0}^{2\pi} g \circ arphi(\mathsf{re}^{i heta}) d heta \leq \int_{0}^{2\pi} g(\mathsf{re}^{i heta}) d heta.$$

Proof) Let G = P(g), the Poisson integral of g.

$$\begin{split} \int_{0}^{2\pi} g \circ \varphi(re^{i\theta}) \frac{d\theta}{2\pi} &\leq \int_{0}^{2\pi} G \circ \varphi(re^{i\theta}) \frac{d\theta}{2\pi} \\ &= G \circ \varphi(0) \\ &= \int_{0}^{2\pi} g(re^{i\theta}) \frac{d\theta}{2\pi}. \end{split}$$

	Background	Proof of Theorem	References
	000000000000000000000000000000000000000		
Boundedness			
Subordination Pr	inciple		

If g subharmonic and φ analytic with $\varphi(0) = 0$, then

$$\int_{0}^{2\pi} g \circ arphi(extsf{re}^{ extsf{i} heta}) d heta \leq \int_{0}^{2\pi} g(extsf{re}^{ extsf{i} heta}) d heta.$$

Proof) Let G = P(g), the Poisson integral of g.

$$\int_{0}^{2\pi} g \circ \varphi(re^{i\theta}) \frac{d\theta}{2\pi} \leq \int_{0}^{2\pi} G \circ \varphi(re^{i\theta}) \frac{d\theta}{2\pi}$$
$$= G \circ \varphi(0)$$
$$= \int_{0}^{2\pi} g(re^{i\theta}) \frac{d\theta}{2\pi}.$$

	Background	Proof of Theorem	References
	000000000000000000000000000000000000000		
Boundedness			
Subordination	Principle		

If g subharmonic and φ analytic with $\varphi(0) = 0$, then

$$\int_{0}^{2\pi} g \circ arphi(extsf{re}^{ extsf{i} heta}) d heta \leq \int_{0}^{2\pi} g(extsf{re}^{ extsf{i} heta}) d heta.$$

Proof) Let G = P(g), the Poisson integral of g.

$$\int_{0}^{2\pi} g \circ \varphi(re^{i\theta}) \frac{d\theta}{2\pi} \leq \int_{0}^{2\pi} G \circ \varphi(re^{i\theta}) \frac{d\theta}{2\pi}$$
$$= G \circ \varphi(0)$$
$$= \int_{0}^{2\pi} g(re^{i\theta}) \frac{d\theta}{2\pi}.$$

	Background	Proof of Theorem	References
	000000000000000000000000000000000000000		
Boundedness			
Subordination	Principle		

If g subharmonic and φ analytic with $\varphi(0) = 0$, then

$$\int_{0}^{2\pi} g \circ arphi(\mathsf{re}^{i heta}) d heta \leq \int_{0}^{2\pi} g(\mathsf{re}^{i heta}) d heta.$$

Proof) Let G = P(g), the Poisson integral of g.

$$\int_{0}^{2\pi} g \circ \varphi(re^{i\theta}) \frac{d\theta}{2\pi} \leq \int_{0}^{2\pi} G \circ \varphi(re^{i\theta}) \frac{d\theta}{2\pi}$$

$$= G \circ \varphi(0)$$

$$= \int_{0}^{2\pi} g(re^{i\theta}) \frac{d\theta}{2\pi}. \square$$
	Background	Proof of Theorem	References
	000000000000000000000000000000000000000		
Boundedness			
Subordination	Principle		

• Littlewood's Subordination Principle

If g subharmonic and φ analytic with $\varphi(0) = 0$, then

$$\int_{0}^{2\pi} g \circ arphi(\mathsf{re}^{i heta}) d heta \leq \int_{0}^{2\pi} g(\mathsf{re}^{i heta}) d heta.$$

Proof) Let G = P(g), the Poisson integral of g.

$$\int_{0}^{2\pi} g \circ \varphi(re^{i\theta}) \frac{d\theta}{2\pi} \leq \int_{0}^{2\pi} G \circ \varphi(re^{i\theta}) \frac{d\theta}{2\pi}$$
$$= G \circ \varphi(0)$$
$$= \int_{0}^{2\pi} g(re^{i\theta}) \frac{d\theta}{2\pi}. \square$$

Let $g = |f|^{p}$ to get the boundedness on $A^{p}_{\alpha}(\mathbf{D})$.

	Background	Proof of Theorem	References
	0000000000000		
Boundedness			
Carleson Mea	sure		

For
$$0<\delta<1$$
, let $D(a):=D_{\delta}(a):=D(a,\delta(1-|a|)).$ Then $\mu(D_{\delta}(a))\lesssim (1-|a|)^{2+lpha}$

$$\int_{\mathbf{D}} |f|^p d\mu \lesssim \int_{\mathbf{D}} |f|^p dA_{\alpha}.$$

 \Leftarrow) Let $f_a(z) = \frac{1}{(1-z\overline{a})^n}$, then

$$\begin{array}{ll} \displaystyle \frac{A_{\alpha} \circ \varphi^{-1}(D(a))}{A_{\alpha}(D(a))} &\approx & \displaystyle \frac{(1-|a|)^{np}}{(1-|a|)^{2+\alpha}} \int_{\varphi^{-1}(D(a))} \frac{1}{|1-\varphi(z)\overline{a}|^{np}} dA_{\alpha}(z) \\ &\lesssim & \displaystyle \frac{\|f_{a} \circ \varphi\|^{p}}{\|f_{a}\|^{p}} \to 0 \text{ as } |a| \to 1. \end{array}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

	Background	Proof of Theorem	References
	0000000000000		
Boundedness			
Carleson Mea	sure		

For
$$0<\delta<1$$
, let $D(a):=D_{\delta}(a):=D(a,\delta(1-|a|)).$ Then $\mu(D_{\delta}(a))\lesssim (1-|a|)^{2+lpha}$

iff

$$\int_{\mathbf{D}} |f|^p d\mu \lesssim \int_{\mathbf{D}} |f|^p dA_{\alpha}.$$

 \Leftarrow) Let $f_a(z) = \frac{1}{(1-z\overline{a})^n}$, then

$$egin{aligned} rac{A_lpha \circ arphi^{-1}(D(a))}{A_lpha(D(a))} &pprox & rac{(1-|a|)^{np}}{(1-|a|)^{2+lpha}} \int_{arphi^{-1}(D(a))} rac{1}{|1-arphi(z)\overline{a}|^{np}} dA_lpha(z) \ &\lesssim & rac{\|f_a \circ arphi\|^p}{\|f_a\|^p} o 0 ext{ as } |a| o 1. \end{aligned}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

	Background	Proof of Theorem	References
	0000000000000		
Boundedness			
Carleson Mea	sure		

For
$$0<\delta<1$$
, let $D(a):=D_{\delta}(a):=D(a,\delta(1-|a|)).$ Then $\mu(D_{\delta}(a))\lesssim (1-|a|)^{2+lpha}$

iff

$$\int_{\mathbf{D}} |f|^p d\mu \lesssim \int_{\mathbf{D}} |f|^p dA_{\alpha}.$$

 \Leftarrow) Let $f_a(z) = \frac{1}{(1-z\overline{a})^n}$, then

$$\begin{array}{ll} \displaystyle \frac{\mathcal{A}_{\alpha}\circ\varphi^{-1}(D(a))}{\mathcal{A}_{\alpha}(D(a))} &\approx & \displaystyle \frac{(1-|a|)^{np}}{(1-|a|)^{2+\alpha}}\int_{\varphi^{-1}(D(a))}\frac{1}{|1-\varphi(z)\overline{a}|^{np}}d\mathcal{A}_{\alpha}(z)\\ &\lesssim & \displaystyle \frac{\|f_{a}\circ\varphi\|^{p}}{\|f_{a}\|^{p}}\to 0 \,\, \text{as} \,\, |a|\to 1. \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

	Background	Proof of Theorem	References
	00000000000		
Carleson Measure			

 \Rightarrow)

$$\begin{split} \int_{\mathbf{D}} |f|^{p} d\mu &\leq \int_{\mathbf{D}} \left(\frac{1}{A_{\alpha}(D_{\delta}(z))} \int_{D_{\delta}(z)} |f(w)|^{p} dA_{\alpha}(w) \right) d\mu(z) \\ &\leq \int_{\mathbf{D}} \left(\int_{\{z: w \in D_{\delta}(z)\}} d\mu(z) \right) \frac{|f(w)|^{p}}{(1-|w|)^{2+\alpha}} dA_{\alpha}(w) \\ &\lesssim \int_{\mathbf{D}} |f|^{p} dA_{\alpha}. \end{split}$$

Compact version:
$$\lim_{|a| \to 1} \frac{\mu(D(a))}{A_{\alpha}(D(a))} = 0.$$

	Background	Proof of Theorem	References
	00000000000		
Carleson Measure			

$$\Rightarrow)$$

$$\begin{split} \int_{\mathbf{D}} |f|^{p} d\mu &\leq \int_{\mathbf{D}} \left(\frac{1}{A_{\alpha}(D_{\delta}(z))} \int_{D_{\delta}(z)} |f(w)|^{p} dA_{\alpha}(w) \right) d\mu(z) \\ &\leq \int_{\mathbf{D}} \left(\int_{\{z:w \in D_{\delta}(z)\}} d\mu(z) \right) \frac{|f(w)|^{p}}{(1-|w|)^{2+\alpha}} dA_{\alpha}(w) \\ &\lesssim \int_{\mathbf{D}} |f|^{p} dA_{\alpha}. \end{split}$$

Compact version:
$$\lim_{|a|\to 1} \frac{\mu(D(a))}{A_{\alpha}(D(a))} = 0.$$

	Background	Proof of Theorem	References
	00000000000		
Carleson Measure			

$$\Rightarrow)$$

$$\begin{split} \int_{\mathbf{D}} |f|^{p} d\mu &\leq \int_{\mathbf{D}} \left(\frac{1}{A_{\alpha}(D_{\delta}(z))} \int_{D_{\delta}(z)} |f(w)|^{p} dA_{\alpha}(w) \right) d\mu(z) \\ &\leq \int_{\mathbf{D}} \left(\int_{\{z:w \in D_{\delta}(z)\}} d\mu(z) \right) \frac{|f(w)|^{p}}{(1-|w|)^{2+\alpha}} dA_{\alpha}(w) \\ &\lesssim \int_{\mathbf{D}} |f|^{p} dA_{\alpha}. \end{split}$$

Compact version:
$$\lim_{|a| \to 1} \frac{\mu(D(a))}{A_{\alpha}(D(a))} = 0.$$

	Background	Proof of Theorem	References
	00000000000		
Carleson Measure			

$$\Rightarrow)$$

$$\begin{split} \int_{\mathbf{D}} |f|^{p} d\mu &\leq \int_{\mathbf{D}} \left(\frac{1}{A_{\alpha}(D_{\delta}(z))} \int_{D_{\delta}(z)} |f(w)|^{p} dA_{\alpha}(w) \right) d\mu(z) \\ &\leq \int_{\mathbf{D}} \left(\int_{\{z:w \in D_{\delta}(z)\}} d\mu(z) \right) \frac{|f(w)|^{p}}{(1-|w|)^{2+\alpha}} dA_{\alpha}(w) \\ &\lesssim \int_{\mathbf{D}} |f|^{p} dA_{\alpha}. \end{split}$$

Compact version:
$$\lim_{|a|\to 1} \frac{\mu(D(a))}{A_{\alpha}(D(a))} = 0.$$

Introduction	Background	Proof of Theorem	References
	000000000000000000000000000000000000000		
Carleson Measure			
Carleson Measure	2		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Change of Variables

 C_{φ} compact iff $A_{\alpha} \circ \varphi^{-1}$ is an α -Carleson measure.

Proof)

$$\int_{\mathbf{D}} |f \circ \varphi|^p dA = \int_{\mathbf{D}} |f|^p dA \circ \varphi^{-1}$$

here $A \circ \varphi^{-1}(E) := \int_{\varphi^{-1}(E)} dA$.

Introduction	Background	Proof of Theorem	References
	000000000000000000000000000000000000000		
Carleson Measure			
Carleson Measure	е		

Change of Variables

 C_{φ} compact iff $A_{\alpha} \circ \varphi^{-1}$ is an α -Carleson measure.

Proof)

$$\int_{\mathbf{D}} |f \circ \varphi|^p dA = \int_{\mathbf{D}} |f|^p dA \circ \varphi^{-1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $A \circ \varphi^{-1}(E) := \int_{\varphi^{-1}(E)} dA$.

	Background	Proof of Theorem	References
	000000000000000000000000000000000000000		
Carleson Measure			

• Compactness on Bergman spaces

Compactness

MacCluer and Shapiro (1986) For p > 0, $\alpha > -1$, C_{Φ} is compact on A^{p}_{α}

$$\iff \lim rac{1-|z|}{1-|arphi(z)|} = 0 \ {
m as} \ |z|
ightarrow 1^-.$$

Remark: Julia-Caratheodory Theorem

 φ has finite angular derivative at ζ .

$$\iff \liminf_{z \to \zeta} \frac{1 - |\varphi(z)|}{1 - |z|} < \infty.$$

	Background	Proof of Theorem	References
	00000000000		
Carleson Measure			
Compactness			

• Compactness on Bergman spaces

MacCluer and Shapiro (1986) For p > 0, $\alpha > -1$, C_{Φ} is compact on A^{p}_{α}

$$\iff \lim rac{1-|z|}{1-|arphi(z)|} = 0 \ {
m as} \ |z|
ightarrow 1^-.$$

Remark: Julia-Caratheodory Theorem

 φ has finite angular derivative at $\zeta.$

$$\iff \liminf_{z \to \zeta} \frac{1 - |\varphi(z)|}{1 - |z|} < \infty.$$

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 三回 - のへの

	Background	Proof of Theorem	References
	0000000000000		
Compactness			
Compactness			

Let arphi(0)=0. By Schwartz Lemma, $D(0,r)\subset arphi^{-1}(D(0,r))$ and

$$D_{\delta_1}(a) \subset \varphi^{-1}(D_{\delta}(b)), \qquad b = \varphi(a).$$

If not, then

$$1 \approx \left(\frac{1 - |\varphi(a)|}{1 - |a|}\right)^{2 + \alpha} \lesssim \frac{A_{\alpha}(D_{\delta_{1}}(b))}{A_{\alpha}(D_{\delta}(a))}$$
$$\leq \frac{A_{\alpha} \circ \varphi^{-1}(D_{\delta}(b))}{A_{\alpha}(D_{\delta}(a))}$$
$$\approx \frac{A_{\alpha} \circ \varphi^{-1}(D_{\delta}(b))}{A_{\alpha}(D_{\delta}(b))}$$

	Background	Proof of Theorem	References
	0000000000000		
Compactness			
Compactness			

Let arphi(0)=0. By Schwartz Lemma, $D(0,r)\subset arphi^{-1}(D(0,r))$ and

$$D_{\delta_1}(\mathsf{a})\subset arphi^{-1}(D_\delta(\mathsf{b})), \qquad \mathsf{b}=arphi(\mathsf{a}).$$

If not, then

$$1 \approx \left(\frac{1 - |\varphi(\mathbf{a})|}{1 - |\mathbf{a}|}\right)^{2 + \alpha} \qquad \lesssim \qquad \frac{A_{\alpha}(D_{\delta_1}(b))}{A_{\alpha}(D_{\delta}(a))}$$
$$\leq \qquad \frac{A_{\alpha} \circ \varphi^{-1}(D_{\delta}(b))}{A_{\alpha}(D_{\delta}(a))}$$
$$\approx \qquad \frac{A_{\alpha} \circ \varphi^{-1}(D_{\delta}(b))}{A_{\alpha}(D_{\delta}(b))}$$

	Background	Proof of Theorem	References
	0000000000000		
Compactness			
Compactness			

Let arphi(0)=0. By Schwartz Lemma, $D(0,r)\subset arphi^{-1}(D(0,r))$ and

$$D_{\delta_1}(\mathsf{a})\subset arphi^{-1}(D_\delta(\mathsf{b})), \qquad \mathsf{b}=arphi(\mathsf{a}).$$

If not, then

$$egin{aligned} &1pprox \left(rac{1-|arphi(a)|}{1-|a|}
ight)^{2+lpha} &\lesssim &rac{A_lpha(D_{\delta_1}(b))}{A_lpha(D_\delta(a))} \ &\leq &rac{A_lpha\circarphi^{-1}(D_\delta(b))}{A_lpha(D_\delta(a))} \ &pprox &rac{A_lpha\circarphi^{-1}(D_\delta(b))}{A_lpha(D_\delta(b))} \end{aligned}$$

	Background	Proof of Theorem	References
	000000000000000000000000000000000000000		
Compactness			
Compactness			

Let arphi(0)=0. By Schwartz Lemma, $D(0,r)\subset arphi^{-1}(D(0,r))$ and

$$D_{\delta_1}(\mathsf{a})\subset arphi^{-1}(D_\delta(\mathsf{b})), \qquad \mathsf{b}=arphi(\mathsf{a}).$$

If not, then

$$egin{aligned} &1pprox \left(rac{1-|arphi(a)|}{1-|a|}
ight)^{2+lpha} &\lesssim &rac{A_lpha(D_{\delta_1}(b))}{A_lpha(D_\delta(a))} \ &\leq &rac{A_lpha\circarphi^{-1}(D_\delta(b))}{A_lpha(D_\delta(a))} \ &pprox &rac{A_lpha\circarphi^{-1}(D_\delta(b))}{A_lpha(D_\delta(b))} \end{aligned}$$

	Background	Proof of Theorem	References
	0000000000000		
Compactness			
Compactness			

Let arphi(0)=0. By Schwartz Lemma, $D(0,r)\subset arphi^{-1}(D(0,r))$ and

$$D_{\delta_1}(\mathsf{a})\subset arphi^{-1}(D_\delta(\mathsf{b})), \qquad \mathsf{b}=arphi(\mathsf{a}).$$

If not, then

$$egin{aligned} 1pprox \left(rac{1-|arphi(a)|}{1-|a|}
ight)^{2+lpha} &\lesssim &rac{A_lpha(D_{\delta_1}(b))}{A_lpha(D_\delta(a))} \ &\leq &rac{A_lpha\circarphi^{-1}(D_\delta(b))}{A_lpha(D_\delta(a))} \ &pprox &rac{A_lpha\circarphi^{-1}(D_\delta(b))}{A_lpha(D_\delta(b))} \end{aligned}$$

	Background	Proof of Theorem	References
	0000000000000		
Compactness			
Compactness			

$$egin{aligned} & A_lpha \circ arphi^{-1}(D(a)) \ &= & \int_{arphi^{-1}(D(a))} rac{(1-|z|)^{lpha-eta}}{(1-|arphi(z)|)^{lpha-eta}} (1-|arphi(z)|)^{lpha-eta} dA_eta(z) \ &\leq & \epsilon(1-|a|)^{lpha-eta} A_eta \circ arphi^{-1}(D(a)) \ &\lesssim & \epsilon(1-|a|)^{lpha-eta} A_eta(D(a)) \ &pprox & \epsilon A_lpha(D(a)) \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

	Background	Proof of Theorem	References
	0000000000000		
Compactness			
Compactness			

$$\begin{array}{ll} & A_{\alpha} \circ \varphi^{-1}(D(a)) \\ = & \int_{\varphi^{-1}(D(a))} \frac{(1-|z|)^{\alpha-\beta}}{(1-|\varphi(z)|)^{\alpha-\beta}} (1-|\varphi(z)|)^{\alpha-\beta} dA_{\beta}(z) \\ \leq & \epsilon(1-|a|)^{\alpha-\beta} A_{\beta} \circ \varphi^{-1}(D(a)) \\ \lesssim & \epsilon(1-|a|)^{\alpha-\beta} A_{\beta}(D(a)) \\ \approx & \epsilon A_{\alpha}(D(a)) \end{array}$$

	Background	Proof of Theorem	References
	0000000000000		
Compactness			
Compactness			

$$\begin{array}{ll} & A_{\alpha} \circ \varphi^{-1}(D(a)) \\ = & \int_{\varphi^{-1}(D(a))} \frac{(1-|z|)^{\alpha-\beta}}{(1-|\varphi(z)|)^{\alpha-\beta}} (1-|\varphi(z)|)^{\alpha-\beta} dA_{\beta}(z) \\ \leq & \epsilon(1-|a|)^{\alpha-\beta} A_{\beta} \circ \varphi^{-1}(D(a)) \\ \lesssim & \epsilon(1-|a|)^{\alpha-\beta} A_{\beta}(D(a)) \\ \approx & \epsilon A_{\alpha}(D(a)) \end{array}$$

	Background	Proof of Theorem	References
	0000000000000		
Compactness			
Compactness			

$$egin{aligned} &A_lpha \circ arphi^{-1}(D(a))\ &=& \int_{arphi^{-1}(D(a))} rac{(1-|z|)^{lpha-eta}}{(1-|arphi(z)|)^{lpha-eta}}(1-|arphi(z)|)^{lpha-eta} dA_eta(z)\ &\leq& \epsilon(1-|a|)^{lpha-eta}A_eta\circarphi^{-1}(D(a))\ &\lesssim& \epsilon(1-|a|)^{lpha-eta}A_eta(D(a))\ &pprox& \epsilon A_lpha(D(a)) \end{aligned}$$

Introduction	Background	Proof of Theorem	References
	00000000000000		
Compact Difference			

• Joint Carleson Measure(Saukko(2011), K-Wang(2014))

 $\mathcal{C}_{arphi}-\mathcal{C}_{\psi}$ compact on \mathcal{A}^{p}_{lpha} iff μ is an $lpha ext{-Carleson}$ where

$$\mu(E) = \int_{\varphi^{-1}(E)} \rho(\varphi, \psi)^{p} dA_{\alpha} + \int_{\psi^{-1}(E)} \rho(\varphi, \psi)^{p} dA_{\alpha}$$

where

$$\rho(z,w) := \left| \frac{z-w}{1-z\overline{w}} \right|.$$

	Background	Proof of Theorem	References
	00000000000000		
Compact Difference			

Necessity

Suppose $\frac{\mu(D(a_k))}{A_{\alpha}(D(a_k))} > c > 0$, and let

$$f_{a}=\frac{1}{(1-z\overline{a})^{n}}.$$

Take test functions $f_k := f_{a_k}$ and $g_k = f_{b_k}$:

$$b_k := a_k(1 - N(1 - |a_k|)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Background	Proof of Theorem	References
	00000000000000		
Compact Difference			

Necessity

Suppose $\frac{\mu(D(a_k))}{A_{\alpha}(D(a_k))} > c > 0$, and let

$$f_a = rac{1}{(1-z\overline{a})^n}$$

Take test functions $f_k := f_{a_k}$ and $g_k = f_{b_k}$:

$$b_k := a_k(1 - N(1 - |a_k|)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

	Background	Proof of Theorem	References
	000000000000000000000000000000000000000		
Compact Difference			

Sufficiency

Submeanvalue property:

$$\begin{split} |f(a)-f(b)|^p &\leq |b-a|^p \sup_{[a,b]} |f'(z)|^p \\ &\lesssim \frac{\rho(a,b)^p}{(1-|a)|^{2+\alpha}} \int_{D_{\delta}(a)} |f(w)|^p dA_{\alpha}(w) \end{split}$$

For $z \notin E = \{z : \rho < \epsilon\}$ let $a = \varphi(z)$ and $b = \psi(z)$, then

$$|(C_{\varphi}-C_{\psi})f(z)|^p\lesssim rac{
ho(arphi(z),\psi(z))^p}{(1-|arphi(z)|)^{2+lpha}}\int_{D_{\delta}(arphi(z))}|f(w)|^p dA_{lpha}(w).$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わへで

	Background	Proof of Theorem	References
	000000000000000000000000000000000000000		
Compact Difference			

Sufficiency

Submeanvalue property:

$$egin{array}{rcl} |f(a)-f(b)|^p &\leq & |b-a|^p \, \sup_{[a,b]} |f'(z)|^p \ &\lesssim & rac{
ho(a,b)^p}{(1-|a)|)^{2+lpha}} \int_{D_{\delta}(a)} |f(w)|^p dA_{lpha}(w) \end{array}$$

For $z \notin E = \{z : \rho < \epsilon\}$ let $a = \varphi(z)$ and $b = \psi(z)$, then

$$|(C_{\varphi}-C_{\psi})f(z)|^p\lesssim rac{
ho(arphi(z),\psi(z))^p}{(1-|arphi(z)|)^{2+lpha}}\int_{D_{\delta}(arphi(z))}|f(w)|^p dA_{lpha}(w).$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

	Background	Proof of Theorem	References
	000000000000000000000000000000000000000		
Compact Difference			

Sufficiency

Submeanvalue property:

$$egin{array}{rcl} |f(a)-f(b)|^p &\leq & |b-a|^p \, \sup_{[a,b]} |f'(z)|^p \ &\lesssim & rac{
ho(a,b)^p}{(1-|a)|)^{2+lpha}} \int_{D_{\delta}(a)} |f(w)|^p dA_{lpha}(w) \end{array}$$

For $z \notin E = \{z : \rho < \epsilon\}$ let $a = \varphi(z)$ and $b = \psi(z)$, then

$$|(C_{arphi}-C_{\psi})f(z)|^p\lesssim rac{
ho(arphi(z),\psi(z))^p}{(1-|arphi(z)|)^{2+lpha}}\int_{D_{\delta}(arphi(z))}|f(w)|^p dA_{lpha}(w).$$

(日) (日) (日) (日) (日) (日) (日) (日)

Introduction	Background	Proof of Theorem	References
	000000000000000000000000000000000000000		
Compact Difference			
Compact	Difference: Joint Carleso	n measure	

Thus,

$$\begin{split} \| (C_{\varphi} - C_{\psi}) f \|^{p} \\ \lesssim \int_{\mathbf{D} \setminus E} \left(|C_{\varphi}(f)|^{p} + |C_{\psi}(f)|^{p} \right) dA_{\alpha} \\ + \int_{E} \left(\frac{\rho(\varphi(z), \psi(z))^{p}}{(1 - |\varphi(z)|)^{2 + \alpha}} \int_{D_{\delta}(\varphi(z))} |f(w)|^{p} dA_{\alpha}(w) \right) dA_{\alpha}(z) \end{split}$$

Compact	Difference: Joint Carleso	n measure	
Compact Difference			
	000000000000000000000000000000000000000		
Introduction	Background	Proof of Theorem	References

Thus,

$$\begin{split} &\|(C_{\varphi}-C_{\psi})f\|^{p}\\ \lesssim &\int_{\mathbf{D}\setminus E}\left(|C_{\varphi}(f)|^{p}+|C_{\psi}(f)|^{p}\right)dA_{\alpha}\\ &+ &\int_{E}\left(\frac{\rho(\varphi(z),\psi(z))^{p}}{(1-|\varphi(z)|)^{2+\alpha}}\int_{D_{\delta}(\varphi(z))}|f(w)|^{p}dA_{\alpha}(w)\right)dA_{\alpha}(z) \end{split}$$

	Background		Proof of Theorem	References
	0000000000000000000			
Compact Difference				
_	 			

Compact Difference:Characterization

• Moorhouse(2005)

$$\mathcal{C}_{arphi_1} - \mathcal{C}_{arphi_2}$$
 is compact on \mathcal{A}^{p}_{lpha} iff

$$\lim_{|\varphi_j(z)|\to 1}\rho(\varphi_1(z),\varphi_2(z))\,\,\frac{1-|z|}{1-|\varphi_j(z)|}=0.$$

Necessity

Adjoint action on kernels(Moorhouse for p = 2.) Test function f_a (Choe-K-Park(2014)).

	Background		Proof of Theorem	References
	0000000000000000000			
Compact Difference				
_	 			

Compact Difference: Characterization

• Moorhouse(2005)

$$\mathcal{C}_{arphi_1} - \mathcal{C}_{arphi_2}$$
 is compact on \mathcal{A}^{p}_{lpha} iff

$$\lim_{\varphi_j(z)|\to 1}\rho(\varphi_1(z),\varphi_2(z))\,\,\frac{1-|z|}{1-|\varphi_j(z)|}=0.$$

Necessity

Adjoint action on kernels(Moorhouse for p = 2.) Test function f_a (Choe-K-Park(2014)).

		Background		Proof of Theorem	References
		000000000000000			
Compact Difference					
-	-	<u> </u>			

Compact Difference: Characterization

Sufficiency

Joint-Carleson measure criteria. Let $\rho(z) = \rho(\varphi_1(z), \varphi_2(z))$.

$$\int_{\varphi_j^{-1}(D(a))} \rho(z)^p dA_\alpha(z)$$

$$= \int_{\varphi_j^{-1}(D(a))} \left[\rho(z)^p \left(\frac{1-|z|}{1-|\varphi_j(z)|} \right)^{\alpha-\beta} \right] (1-|\varphi_j(z)|)^{\alpha-\beta} dA_\beta(z)$$

$$\lesssim \epsilon (1-|a|)^{\alpha-\beta} A_\beta \circ \varphi_j^{-1}(D(a))$$

$$\lesssim \epsilon A_\alpha(D(a))$$

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日・

	Background	Proof of Theorem	References
	000000000000		
Compact Difference			
Compact Differen	ce:Characterization		

Joint-Carleson measure criteria. Let $\rho(z) = \rho(\varphi_1(z), \varphi_2(z))$.

$$\begin{split} & \int_{\varphi_j^{-1}(D(a))} \rho(z)^p dA_\alpha(z) \\ = & \int_{\varphi_j^{-1}(D(a))} \left[\rho(z)^p \left(\frac{1 - |z|}{1 - |\varphi_j(z)|} \right)^{\alpha - \beta} \right] (1 - |\varphi_j(z)|)^{\alpha - \beta} dA_\beta(z) \\ \lesssim & \epsilon (1 - |a|)^{\alpha - \beta} \ A_\beta \circ \varphi_j^{-1}(D(a)) \\ \lesssim & \epsilon A_\alpha(D(a)) \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	Background	Proof of Theorem	References
	000000000000		
Compact Difference			
Compact Differen	ce:Characterization		

Joint-Carleson measure criteria. Let $\rho(z) = \rho(\varphi_1(z), \varphi_2(z))$.

$$\begin{split} & \int_{\varphi_j^{-1}(D(a))} \rho(z)^p dA_\alpha(z) \\ = & \int_{\varphi_j^{-1}(D(a))} \left[\rho(z)^p \left(\frac{1 - |z|}{1 - |\varphi_j(z)|} \right)^{\alpha - \beta} \right] (1 - |\varphi_j(z)|)^{\alpha - \beta} dA_\beta(z) \\ \lesssim & \epsilon (1 - |a|)^{\alpha - \beta} \ A_\beta \circ \varphi_j^{-1}(D(a)) \\ \lesssim & \epsilon A_\alpha(D(a)) \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	Background	Proof of Theorem	References
	000000000000		
Compact Difference			
Compact Differen	ce:Characterization		

Joint-Carleson measure criteria. Let $\rho(z) = \rho(\varphi_1(z), \varphi_2(z))$.

$$\begin{split} & \int_{\varphi_j^{-1}(D(a))} \rho(z)^p dA_\alpha(z) \\ = & \int_{\varphi_j^{-1}(D(a))} \left[\rho(z)^p \left(\frac{1 - |z|}{1 - |\varphi_j(z)|} \right)^{\alpha - \beta} \right] (1 - |\varphi_j(z)|)^{\alpha - \beta} dA_\beta(z) \\ \lesssim & \epsilon (1 - |a|)^{\alpha - \beta} \ A_\beta \circ \varphi_j^{-1}(D(a)) \\ \lesssim & \epsilon A_\alpha(D(a)) \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	Background	Proof of Theorem	References
		• 000 0000	
Consequences of Theorem 3			
Recall			

Let

$$T := T_{12} - T_{34} = T_{13} - T_{24}$$

We also put

$$\rho_{ij}(z) = \rho_{\varphi_i,\varphi_j}(z) := \rho(\varphi_i(z),\varphi_j(z))$$

and

$$M_{ij}(z)=M_{arphi_i,arphi_j}(z):=\left[rac{1-|z|}{1-|arphi_i(z)|}+rac{1-|z|}{1-|arphi_j(z)|}
ight]
ho_{ij}(z).$$

Finally, we put

$$M = M_{12} + M_{34}$$
 and $\widetilde{M} := M_{13} + M_{24}$.

ヘロン 人間 とくほと くほとう

2

Theorem 3

T is compact on $A^p_{\alpha}(\mathbf{D}) \iff \lim_{|z| \to 1} M(z)M(z) = 0.$
	Background	Proof of Theorem	References
		0000000	
Consequences of Theorem 3			
Recall			

$$T := T_{12} - T_{34} = T_{13} - T_{24}$$

We also put

$$\rho_{ij}(z) = \rho_{\varphi_i,\varphi_j}(z) := \rho(\varphi_i(z),\varphi_j(z))$$

 and

$$M_{ij}(z)=M_{arphi_i,arphi_j}(z):=\left[rac{1-|z|}{1-|arphi_i(z)|}+rac{1-|z|}{1-|arphi_j(z)|}
ight]
ho_{ij}(z).$$

Finally, we put

$$M = M_{12} + M_{34}$$
 and $\widetilde{M} := M_{13} + M_{24}$.

Theorem 3

$$T$$
 is compact on $A^p_{\alpha}(\mathbf{D}) \iff \lim_{|z| \to 1} M(z)\widetilde{M}(z) = 0.$

	Background	Proof of Theorem	References
		0000000	
Consequences of Theorem 3			

If
$$\varphi_1 = \varphi_4$$
, then we get

$$T := T_{12} - T_{34} = 2C_{\varphi_1} - C_{\varphi_2} - C_{\varphi_3}.$$

 \mathcal{P} 4

$$M = M_{12} + M_{34} = \widetilde{M} := M_{13} + M_{24}.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Thus, the following are equivalent.(K-Wang(2015))

- T is compact
- $\lim_{|z| \to 1} (M_{12}(z) + M_{13}(z)) = 0$
- $\lim_{|z|\to 1} M_{12}(z) = 0 = \lim_{|z|\to 1} M_{13}(z).$
- *T*₁₂, *T*₁₃ compact.

	Background	Proof of Theorem	References
		0000000	
Consequences of Theorem 3			

If
$$\varphi_1 = \varphi_4$$
, then we get

$$T := T_{12} - T_{34} = 2C_{\varphi_1} - C_{\varphi_2} - C_{\varphi_3}.$$

 \mathcal{P} 4

$$M = M_{12} + M_{34} = \widetilde{M} := M_{13} + M_{24}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thus, the following are equivalent.(K-Wang(2015))

- T is compact
- $\lim_{|z|\to 1}(M_{12}(z) + M_{13}(z)) = 0$
- $\lim_{|z|\to 1} M_{12}(z) = 0 = \lim_{|z|\to 1} M_{13}(z).$
- *T*₁₂, *T*₁₃ compact.

	Background	Proof of Theorem	References
		0000000	
Consequences of Theorem 3			

If
$$\varphi_1=\varphi_4$$
, then we get

$$T := T_{12} - T_{34} = 2C_{\varphi_1} - C_{\varphi_2} - C_{\varphi_3}.$$

arphi4

$$M = M_{12} + M_{34} = \widetilde{M} := M_{13} + M_{24}.$$

Thus, the following are equivalent.(K-Wang(2015))

- T is compact
- $\lim_{|z|\to 1}(M_{12}(z) + M_{13}(z)) = 0$
- $\lim_{|z|\to 1} M_{12}(z) = 0 = \lim_{|z|\to 1} M_{13}(z).$

• *T*₁₂, *T*₁₃ compact.

	Background	Proof of Theorem	References
		0000000	
Consequences of Theorem 3			

If
$$\varphi_1 = \varphi_4$$
, then we get

$$T := T_{12} - T_{34} = 2C_{\varphi_1} - C_{\varphi_2} - C_{\varphi_3}.$$

arphi4

$$M = M_{12} + M_{34} = \widetilde{M} := M_{13} + M_{24}.$$

Thus, the following are equivalent.(K-Wang(2015))

- T is compact
- $\lim_{|z|\to 1}(M_{12}(z) + M_{13}(z)) = 0$
- $\lim_{|z|\to 1} M_{12}(z) = 0 = \lim_{|z|\to 1} M_{13}(z).$
- *T*₁₂, *T*₁₃ compact.

	Background	Proof of Theorem	References
		0000000	
Consequences of Theorem 3			

If
$$\varphi_1 = \varphi_4$$
, then we get

$$T := T_{12} - T_{34} = 2C_{\varphi_1} - C_{\varphi_2} - C_{\varphi_3}.$$

arphi4

$$M = M_{12} + M_{34} = \widetilde{M} := M_{13} + M_{24}.$$

Thus, the following are equivalent.(K-Wang(2015))

- T is compact
- $\lim_{|z|\to 1}(M_{12}(z) + M_{13}(z)) = 0$
- $\lim_{|z|\to 1} M_{12}(z) = 0 = \lim_{|z|\to 1} M_{13}(z).$
- *T*₁₂, *T*₁₃ compact.

	Background	Proof of Theorem	References
		000000	
Consequences of Theorem 3			

If
$$\varphi_1 = \varphi_2$$
, then we get

$$T := T_{12} - T_{34} = T_{43}.$$

arphi4

$$M = M_{12} + M_{34} = M_{34}, \quad \widetilde{M} := M_{13} + M_{24} = M_{13} + M_{14}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- T is compact
- $\lim_{|z|\to 1} M_{34}(z)(M_{13}(z) + M_{14}(z)) = 0$
- $\lim_{|z|\to 1} M_{34}(z) = 0$
- T₃₄ compact.

	Background	Proof of Theorem	References
		0000000	
Consequences of Theorem 3			

If
$$\varphi_1 = \varphi_2$$
, then we get

$$T := T_{12} - T_{34} = T_{43}.$$

arphi4

$$M = M_{12} + M_{34} = M_{34}, \quad \widetilde{M} := M_{13} + M_{24} = M_{13} + M_{14}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- T is compact
- $\lim_{|z|\to 1} M_{34}(z)(M_{13}(z) + M_{14}(z)) = 0$
- $\lim_{|z|\to 1} M_{34}(z) = 0$
- T₃₄ compact.

	Background	Proof of Theorem	References
		0000000	
Consequences of Theorem 3			

If
$$\varphi_1 = \varphi_2$$
, then we get

$$T := T_{12} - T_{34} = T_{43}.$$

arphi4

$$M = M_{12} + M_{34} = M_{34}, \quad \widetilde{M} := M_{13} + M_{24} = M_{13} + M_{14}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- T is compact
- $\lim_{|z|\to 1} M_{34}(z)(M_{13}(z) + M_{14}(z)) = 0$
- $\lim_{|z| \to 1} M_{34}(z) = 0$
- T₃₄ compact.

	Background	Proof of Theorem	References
		0000000	
Consequences of Theorem 3			

If
$$\varphi_1 = \varphi_2$$
, then we get

$$T := T_{12} - T_{34} = T_{43}.$$

arphi4

$$M = M_{12} + M_{34} = M_{34}, \quad \widetilde{M} := M_{13} + M_{24} = M_{13} + M_{14}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- T is compact
- $\lim_{|z|\to 1} M_{34}(z)(M_{13}(z) + M_{14}(z)) = 0$
- $\lim_{|z| \to 1} M_{34}(z) = 0$
- T₃₄ compact.

	Background	Proof of Theorem	References
		0000000	
Consequences of Theorem 3			
$\varphi_4 \equiv 0$			

$$\mathcal{T}:=\mathcal{T}_{12}-\mathcal{T}_{34}=\mathcal{C}_{arphi_1}-\mathcal{C}_{arphi_2}-\mathcal{C}_{arphi_3},
ho_{j4}=
ho(arphi_j(z),0)=|arphi_j(z)|.$$

And

$$M_{j4}(z) = \left[\frac{1-|z|}{1-|\varphi_j(z)|} + 1 - |z|\right] |\varphi_j(z)| = \frac{1-|z|}{1-|\varphi_j(z)|} - (1-|z|)[1-|\varphi_j(z)|]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

•
$$C_{\varphi_1} - C_{\varphi_2} - C_{\varphi_3}$$
 is compact on $A^p_{\alpha}(\mathbf{D})$;
• $\lim_{|z| \to 1} \left[M_{12}(z) + \frac{1 - |z|}{1 - |\varphi_3(z)|} \right] \left[M_{13}(z) + \frac{1 - |z|}{1 - |\varphi_2(z)|} \right] = 0$;
• $F_1 = F_2 \cup F_3, F_2 \cap F_3 = \emptyset$ and $\lim_{z \to \zeta} M_{1j}(z) = 0$ for $\zeta \in F_j$.

	Background	Proof of Theorem	References
		0000000	
Consequences of Theorem 3			
_ 0			

$$\mathcal{T}:=\mathcal{T}_{12}-\mathcal{T}_{34}=\mathcal{C}_{arphi_1}-\mathcal{C}_{arphi_2}-\mathcal{C}_{arphi_3},
ho_{j4}=
ho(arphi_j(z),0)=|arphi_j(z)|.$$

And

U

$$M_{j4}(z) = \left[rac{1-|z|}{1-|arphi_j(z)|} + 1 - |z|
ight]|arphi_j(z)| = rac{1-|z|}{1-|arphi_j(z)|} - (1-|z|)[1-|arphi_j(z)|]$$

Thus, the following are equivalent.(Moorhouse(2005))

•
$$C_{\varphi_1} - C_{\varphi_2} - C_{\varphi_3}$$
 is compact on $A^p_{lpha}(\mathbf{D})$;

•
$$\lim_{|z| \to 1} \left[M_{12}(z) + \frac{1 - |z|}{1 - |\varphi_3(z)|} \right] \left[M_{13}(z) + \frac{1 - |z|}{1 - |\varphi_2(z)|} \right] = 0;$$

• $F_1 = F_2 \cup F_3$, $F_2 \cap F_3 = \emptyset$ and $\lim_{z \to \zeta} M_{1j}(z) = 0$ for $\zeta \in F_j$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

	Background	Proof of Theorem	References
		0000000	
Consequences of Theorem 3			
_ 0			

$$\mathcal{T}:=\mathcal{T}_{12}-\mathcal{T}_{34}=\mathcal{C}_{arphi_1}-\mathcal{C}_{arphi_2}-\mathcal{C}_{arphi_3},
ho_{j4}=
ho(arphi_j(z),0)=|arphi_j(z)|.$$

And

= 0

 $\varphi_{\mathbf{4}}$

$$M_{j4}(z) = \left[rac{1-|z|}{1-|arphi_j(z)|} + 1 - |z|
ight]|arphi_j(z)| = rac{1-|z|}{1-|arphi_j(z)|} - (1-|z|)[1-|arphi_j(z)|]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

•
$$C_{\varphi_1} - C_{\varphi_2} - C_{\varphi_3}$$
 is compact on $A^p_{\alpha}(\mathbf{D})$;
• $\lim_{|z| \to 1} \left[M_{12}(z) + \frac{1 - |z|}{1 - |\varphi_3(z)|} \right] \left[M_{13}(z) + \frac{1 - |z|}{1 - |\varphi_2(z)|} \right] = 0$;
• $F_1 = F_2 \cup F_3, F_2 \cap F_3 = \emptyset$ and $\lim_{z \to \zeta} M_{1j}(z) = 0$ for $\zeta \in F_j$.

	Background	Proof of Theorem	References
		0000000	
Consequences of Theorem 3			
_ 0			

$$\mathcal{T}:=\mathcal{T}_{12}-\mathcal{T}_{34}=\mathcal{C}_{arphi_1}-\mathcal{C}_{arphi_2}-\mathcal{C}_{arphi_3},
ho_{j4}=
ho(arphi_j(z),0)=|arphi_j(z)|.$$

And

= 0

 φ_4

$$M_{j4}(z) = \left[rac{1-|z|}{1-|arphi_j(z)|} + 1 - |z|
ight]|arphi_j(z)| = rac{1-|z|}{1-|arphi_j(z)|} - (1-|z|)[1-|arphi_j(z)|]$$

Thus, the following are equivalent.(Moorhouse(2005))

•
$$C_{\varphi_1} - C_{\varphi_2} - C_{\varphi_3}$$
 is compact on $A^p_{\alpha}(\mathbf{D})$;
• $\lim_{|z| \to 1} \left[M_{12}(z) + \frac{1 - |z|}{1 - |\varphi_3(z)|} \right] \left[M_{13}(z) + \frac{1 - |z|}{1 - |\varphi_2(z)|} \right] = 0$;
• $F_1 = F_2 \cup F_3$, $F_2 \cap F_3 = \emptyset$ and $\lim_{z \to \zeta} M_{1j}(z) = 0$ for $\zeta \in F_j$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

	Background	Proof of Theorem	References
		00000000	
Proof			
Proposition			

Proposition

The following are equivalent.

(1)
$$\lim_{|z|\to 1} M(z)\widetilde{M}(z) = 0.$$

(2) For any $\zeta \in \mathbf{T}$ and any $z_n \to \zeta$, there is z_{n_k} such that

$$\lim_{k\to\infty}M(z_{n_k})=0\quad\text{or}\quad \lim_{k\to\infty}\widetilde{M}(z_{n_k})=0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof of $(1) \implies (2)$

Note that both M(z) and $\widetilde{M}(z)$ are non-negative.

	Background	Proof of Theorem	References
		00000000	
Proof			
Proposition			

Proposition

The following are equivalent.

(1)
$$\lim_{|z|\to 1} M(z)\widetilde{M}(z) = 0.$$

(2) For any $\zeta \in \mathbf{T}$ and any $z_n \to \zeta$, there is z_{n_k} such that

$$\lim_{k\to\infty}M(z_{n_k})=0\quad\text{or}\quad\lim_{k\to\infty}\widetilde{M}(z_{n_k})=0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof of (1) \implies (2)

Note that both M(z) and $\widetilde{M}(z)$ are non-negative.

	Background	Proof of Theorem	References
		00000000	
Proof			
Proposition			

Proof of (2) \implies (1)

Recall

$$M_{ij}(z)=M_{arphi_i,arphi_j}(z):=\left[rac{1-|z|}{1-|arphi_i(z)|}+rac{1-|z|}{1-|arphi_j(z)|}
ight]
ho_{ij}(z)$$

 and

$$M = M_{12} + M_{34}$$
 and $\widetilde{M} := M_{13} + M_{24}$.
Thus, both $M(z)$ and $\widetilde{M}(z)$ are bounded.
If not (1), there is a sequence $\{z_n\}$ such that $M(z_n)\widetilde{M}(z_n) > \delta_0 > 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	Background	Proof of Theorem	References
		00000000	
Proof			
Proposition			

Proof of (2) \implies (1)

Recall

$$\mathcal{M}_{ij}(z)=\mathcal{M}_{arphi_i,arphi_j}(z):=\left[rac{1-|z|}{1-|arphi_i(z)|}+rac{1-|z|}{1-|arphi_j(z)|}
ight]
ho_{ij}(z)$$

and

$$M = M_{12} + M_{34}$$
 and $\widetilde{M} := M_{13} + M_{24}$.

Thus, both M(z) and $\widetilde{M}(z)$ are bounded. If not (1), there is a sequence $\{z_n\}$ such that $M(z_n)\widetilde{M}(z_n) > \delta_0 > 0$.

	Background	Proof of Theorem	References		
		00000000			
Proof					
Proof of Sufficiency					

$$U_{\epsilon} = \{z : M(z) \leq \epsilon\}, \quad \widetilde{U}_{\epsilon} = \{z : \widetilde{M}(z) \leq \epsilon\}.$$

Then, by assumption $MM \rightarrow 0$, for each $\zeta \in \mathbf{T}$

 $S(\zeta, \delta_{\zeta}) \subset U_{\epsilon} \cup \widetilde{U}_{\epsilon}$

for some $\delta_{\zeta}(\epsilon) > 0$, since otherwise $M(z_{\delta})\widetilde{M}(z_{\delta}) > \epsilon^2$, $z_{\delta} \to \zeta$. Since **T** is compact, there is ζ_j such that

$$\mathbf{D} \setminus (1-r)\mathbf{D} \subset \bigcup_{j=1}^N S(\zeta_j, \delta_j), \qquad r := \min\{\delta_j\} > 0.$$

Next, use standard argument with a sequence $\{f_n\}$ converging weakly to 0 and some weighted Carleson measure argument.

0000000000	0000000000000	00000000	0000		
Proof					
Proof of Sufficiency					

$$U_{\epsilon} = \{z : M(z) \leq \epsilon\}, \quad \widetilde{U}_{\epsilon} = \{z : \widetilde{M}(z) \leq \epsilon\}.$$

Then, by assumption $MM \rightarrow 0$, for each $\zeta \in \mathbf{T}$

 $S(\zeta, \delta_{\zeta}) \subset U_{\epsilon} \cup \widetilde{U}_{\epsilon}$

for some $\delta_{\zeta}(\epsilon) > 0$, since otherwise $M(z_{\delta})\widetilde{M}(z_{\delta}) > \epsilon^2$, $z_{\delta} \to \zeta$. Since **T** is compact, there is ζ_i such that

$$\mathbf{D}\setminus (1-r)\mathbf{D}\subset igcup_{j=1}^N S(\zeta_j,\delta_j), \qquad r:=\min\{\delta_j\}>0.$$

Next, use standard argument with a sequence {*f_n*} converging weakly to 0 and some weighted Carleson measure argument.

0000000000	0000000000000	00000000	0000		
Proof					
Proof of Sufficiency					

$$U_{\epsilon} = \{z : M(z) \leq \epsilon\}, \quad \widetilde{U}_{\epsilon} = \{z : \widetilde{M}(z) \leq \epsilon\}.$$

Then, by assumption $MM \rightarrow 0$, for each $\zeta \in \mathbf{T}$

 $S(\zeta, \delta_{\zeta}) \subset U_{\epsilon} \cup \widetilde{U}_{\epsilon}$

for some $\delta_{\zeta}(\epsilon) > 0$, since otherwise $M(z_{\delta})\widetilde{M}(z_{\delta}) > \epsilon^2$, $z_{\delta} \to \zeta$. Since **T** is compact, there is ζ_i such that

$$\mathbf{D}\setminus (1-r)\mathbf{D}\subset igcup_{j=1}^N S(\zeta_j,\delta_j), \qquad r:=\min\{\delta_j\}>0.$$

Next, use standard argument with a sequence $\{f_n\}$ converging weakly to 0 and some weighted Carleson measure argument.

	Background	Proof of Theorem	References		
		0000000			
Proof					
Proof of Nec	Proof of Necessity				

$$M(z_n) \geq c > 0 \quad ext{and} \quad \widetilde{M}(z_n) > c > 0.$$

This implies the following holds:

 $\max\{M_{12}(z_n), M_{34}(z_n)\} \ge c/2$ and $\max\{M_{13}(z_n), M_{24}(z_n)\} \ge c/2$

Then, we have the following four possibilities:

(a)
$$\min\{M_{12}(z_n), M_{13}(z_n)\} \ge c/2;$$

- (b) $\min\{M_{12}(z_n), M_{24}(z_n)\} \ge c/2;$
- (c) $\min\{M_{34}(z_n), M_{13}(z_n)\} \ge c/2;$
- (d) $\min\{M_{34}(z_n), M_{24}(z_n)\} \ge c/2.$

Divide each cases into sever cases, and then take appropriate test functions to deduce a contradiction.

	Background	Proof of Theorem	References			
		0000000				
Proof						
Proof of Nec	Proof of Necessity					

$$M(z_n) \ge c > 0$$
 and $\widetilde{M}(z_n) > c > 0.$

This implies the following holds:

 $\max\{M_{12}(z_n), M_{34}(z_n)\} \ge c/2$ and $\max\{M_{13}(z_n), M_{24}(z_n)\} \ge c/2$

Then, we have the following four possibilities:

(a)
$$\min\{M_{12}(z_n), M_{13}(z_n)\} \ge c/2;$$

(b) $\min\{M_{12}(z_n), M_{24}(z_n)\} \ge c/2;$

- (c) $\min\{M_{34}(z_n), M_{13}(z_n)\} \ge c/2;$
- (d) $\min\{M_{34}(z_n), M_{24}(z_n)\} \ge c/2.$

Divide each cases into sever cases, and then take appropriate test functions to deduce a contradiction.

	Background	Proof of Theorem	References			
		0000000				
Proof						
Proof of Nec	Proof of Necessity					

$$M(z_n) \ge c > 0$$
 and $\widetilde{M}(z_n) > c > 0.$

This implies the following holds:

 $\max\{M_{12}(z_n), M_{34}(z_n)\} \ge c/2$ and $\max\{M_{13}(z_n), M_{24}(z_n)\} \ge c/2$

Then, we have the following four possibilities:

(a)
$$\min\{M_{12}(z_n), M_{13}(z_n)\} \ge c/2;$$

- (b) $\min\{M_{12}(z_n), M_{24}(z_n)\} \ge c/2;$
- (c) $\min\{M_{34}(z_n), M_{13}(z_n)\} \ge c/2;$
- (d) $\min\{M_{34}(z_n), M_{24}(z_n)\} \ge c/2.$

Divide each cases into sever cases, and then take appropriate test functions to deduce a contradiction.

	Background	Proof of Theorem	References	
		0000000		
Proof				
Proof of Necessity				

$$M(z_n) \ge c > 0$$
 and $\widetilde{M}(z_n) > c > 0.$

This implies the following holds:

 $\max\{M_{12}(z_n), M_{34}(z_n)\} \ge c/2$ and $\max\{M_{13}(z_n), M_{24}(z_n)\} \ge c/2$

Then, we have the following four possibilities:

(a)
$$\min\{M_{12}(z_n), M_{13}(z_n)\} \ge c/2;$$

(b)
$$\min\{M_{12}(z_n), M_{24}(z_n)\} \ge c/2;$$

(c)
$$\min\{M_{34}(z_n), M_{13}(z_n)\} \ge c/2;$$

(d)
$$\min\{M_{34}(z_n), M_{24}(z_n)\} \ge c/2.$$

Divide each cases into sever cases, and then take appropriate test functions to deduce a contradiction.

	Background	Proof of Theorem	References
			0000
References			
5 (

References

B. MacCluer and J. Shapiro,

Angular derivatives and compact composition operators on the Hardy and Bergman spaces, Canad. J. Math. 38(1986) 878-906.

J. Moorhouse. Compact differences of composition operators, J. Funct. Anal. 219(2005) 70-92.

E. Saukko.

Difference of composition operators between standard weighted Bergman spaces,

J. Math. Anal. Appl. 381(2011), 7879-792.

	Background	Proof of Theorem	References
			0000
References			
References			

J.H. Shapiro and C. Sundberg

Isolationn amongst the composition operators, Pacific J. Math. 145(1990), 117-152.

B. MacCluer,

Components in the space of composition operators, Integral Equations Operator Theory 12(1989) 725738.

P. Nieminen and E. Saksman,

On compactness of the difference of composition operators, J. Math. Anal. Appl. 298(2004), 501-522.

 E. Gallardo-Gutierrez, M. Gonzalez, P. Nieminen and E. Saksman, On the connected component of compact composition operators on the Hardy space, Adv. Math. 210(2008), 086 1001

Adv. Math. 219(2008), 986-1001.

	Background	Proof of Theorem	References
			0000
References			
References			

B. Choe, H. Koo and I. Park.

Compact differences of composition operators on the Bergman spaces over the ball, Potential Anal. 40(2014) 81-102.

H. Koo and M. Wang,

Joint Carleson measure and the difference of composition operators on $A^p_{\alpha}(\mathbf{B}_n)$,

J. Math. Anal. Appl. 419(2014) 1119-1142.

H. Koo and M. Wang,

Cancellation properties of composition operators on Bergman spaces,

J. Math. Anal. Appl. 432 (2015), 1174-1182.

B. Choe, H. Koo and M. Wang, Compact double differences of composition operators on the Bergman spaces, J. Funct. Anal., to appear. < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	Background	Proof of Theorem	References
			0000
References			

THANKS A LOT !!