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Notation

Notation

D: unit disc in C.

T = ∂D: unit circle in C.

H(D): class of all holomorphic functions on D.

Hp(D): Hardy spaces on D. Freely identified with Hp(T).

f ∈ Hp(D)
def⇐⇒ ‖f ‖pHp = sup

0<r<1

∫
T

|f (rζ)|p dσ(ζ) <∞

Ap
α(D): Bergman space on D.

f ∈ Ap
α(D)

def⇐⇒ ‖f ‖p
Ap
α(D)

=

∫
D

|f (z)|p dAα(z) <∞

where α > −1 and dAα(z) = c(1− |z |2)αdA(z).
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Notation

Composition Operator

Composition Operator

For ϕ : Ω→ Ω holomorphic self-map, composition operator is defined by

Cϕf = f ◦ ϕ.

Examples of Ω: D,Bn,Dn,Cn, strongly pseudoconvex domain.
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Question

Question

For a smooth function g , we have

g(a + h)− g(a) = O(h).

g(a + h)− 2g(a)− g(a− h) = O(h2).

Let

Tij = Cϕi − Cϕj so that Tij f (z) := f (ϕi (z))− f (ϕj(z)),

and

Tf (z) := T12f (z)− T23f (z) = f (ϕ1(z))− 2f (ϕ2(z)) + f (ϕ3(z)).

In view of this, can T behavior better than T12 ?

Double Difference Cancelation?

Can (Cϕ1 − Cϕ2 )− (Cϕ2 − Cϕ3 ) be compact while both (Cϕ1 − Cϕ2 ) and
(Cϕ2 − Cϕ3 ) are not compact?
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Question

Question

More generally,

Double Difference Cancelation?

Suppose (Cϕ1 − Cϕ2 ) , (Cϕ3 − Cϕ4 ) , (Cϕ1 − Cϕ3 ) and (Cϕ2 − Cϕ4 )
are all not compact.

Can T := (Cϕ1 − Cϕ2 )− (Cϕ3 − Cϕ4 ) = (Cϕ1 − Cϕ3 )− (Cϕ2 − Cϕ4 )
be compact?
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Results for A
p
α(D)

Theorem 1

• Three sum

K-Wang (2015)
Let 0 < p <∞ and α > −1. Let ai ∈ C \ {0} and assume Cϕi is not

compact on Ap
α(D) for each i = 1, 2, 3. Let T :=

∑3
i=1 aiCϕi .

If T compact on Ap
α(D), then one of the following holds:

T = ai (Cϕi − Cϕj − Cϕk
),

where (i , j , k) is some permutation of (1, 2, 3).

T = a1(Cϕ1 − Cϕ2 ) + a3(Cϕ3 − Cϕ2 ).
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Results for A
p
α(D)

Theorem 2

• Double difference

K-Wang (2015)
Let 0 < p <∞, α > −1. Let a, b ∈ C \ {0} and a + b 6= 0.
Assume Cϕi is not compact on Ap

α(D) for each i = 1, 2, 3.

T := a(Cϕ1 − Cϕ2 ) + b(Cϕ3 − Cϕ2 ) is compact on Ap
α(D)

⇐⇒
both Cϕ1 − Cϕ2 and Cϕ3 − Cϕ2 are compact on Ap

α(D).
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Results for A
p
α(D)

Notation

Let
T := T12 − T34 = T13 − T24, Tij = Cϕi − Cϕj .

We also put

ρij(z) = ρϕi ,ϕj (z) := ρ
(
ϕi (z), ϕj(z)

)
, ρ(a, b) =

∣∣∣∣ a− b

1− ab

∣∣∣∣
and

Mij(z) = Mϕi ,ϕj (z) :=

[
1− |z |

1− |ϕi (z)|
+

1− |z |
1− |ϕj(z)|

]
ρij(z).

Finally, we put

M = M12 + M34 and M̃ := M13 + M24.
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Results for A
p
α(D)

Theorem 3

• General double difference

Choe-K-Wang (2017)
T := T12 − T34 is compact on Ap

α(D) if and only if

lim
|z|→1

M(z)M̃(z) = 0.
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Hardy space case

Questions for Hp(D)

• Component problems

Shapiro-Sundberg (1990)

If Cϕ−Cψ is compact, then do they belong to the same component?

Is there non-compact Cϕ which belongs to the component
containing compact operators?



Introduction Background Proof of Theorem References

Hardy space case

Known results for Hp(D)

• Component

Moorhouse-Toews (2001), Bourdon(2003)
There are Cϕ and Cψ which belong to the same component, but
Cϕ − Cψ is compact

• Component

Gallardo-Gutierrez, Gonzalez, Nieminen-Saksman (2008)

Hp(D): There is a non-compact Cϕ which belongs to the
component containing compact operators.

Ap
α(D): The set of compact operators is a component.

Ap
α(D): If the difference is compact, then they belong to the same

component.

• Component

Nieminen-Saksman (2004)
Cϕ − Cψ is compact on Hp(D) for some p ≥ 1, then for all p ≥ 1.
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Hardy space case

Questions for Hp(D)

• Component problems for Hp(D)

Characterize components.

Characterize the component containing compact operators.

Characterize the compact difference, the joint Carleson measure.

Characterize the double difference compact operators.
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Boundedness

Boundedness On Unit Disk

Weighted Bergman spaces

For p > 0 and α ≥ −1 , the weighted Bergman space Ap
α(D) is the set of

analytic functions f with

‖f ‖p :=

∫
D

|f (z)|pdAα(z), dAα(z) := (1− |z |2)αdA(z).

• Boundedness on weighted Bergman spaces

By Littlewood’s Subordination Principle.

Cϕ : Ap
α → Ap

α.



Introduction Background Proof of Theorem References

Boundedness

Boundedness On Unit Disk

Weighted Bergman spaces

For p > 0 and α ≥ −1 , the weighted Bergman space Ap
α(D) is the set of

analytic functions f with

‖f ‖p :=

∫
D

|f (z)|pdAα(z), dAα(z) := (1− |z |2)αdA(z).

• Boundedness on weighted Bergman spaces

By Littlewood’s Subordination Principle.

Cϕ : Ap
α → Ap

α.



Introduction Background Proof of Theorem References

Boundedness

Subordination Principle

• Littlewood’s Subordination Principle

If g subharmonic and ϕ analytic with ϕ(0) = 0, then∫ 2π

0

g ◦ ϕ(re iθ)dθ ≤
∫ 2π

0

g(re iθ)dθ.

Proof) Let G = P(g), the Poisson integral of g .∫ 2π

0

g ◦ ϕ(re iθ)
dθ

2π
≤

∫ 2π

0

G ◦ ϕ(re iθ)
dθ

2π

= G ◦ ϕ(0)

=

∫ 2π

0

g(re iθ)
dθ

2π
. �

Let g = |f |p to get the boundedness on Ap
α(D).
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Boundedness

Carleson Measure

• Carleson Measure

For 0 < δ < 1, let D(a) := Dδ(a) := D(a, δ(1− |a|)). Then

µ(Dδ(a)) . (1− |a|)2+α

iff ∫
D

|f |pdµ .
∫

D

|f |pdAα.

⇐) Let fa(z) = 1
(1−za)n , then

Aα ◦ ϕ−1(D(a))

Aα(D(a))
≈ (1− |a|)np

(1− |a|)2+α

∫
ϕ−1(D(a))

1

|1− ϕ(z)a|np
dAα(z)

.
‖fa ◦ ϕ‖p

‖fa‖p
→ 0 as |a| → 1.
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Carleson Measure

Carleson Measure

⇒) ∫
D

|f |pdµ ≤
∫

D

(
1

Aα(Dδ(z))

∫
Dδ(z)

|f (w)|pdAα(w)

)
dµ(z)

≤
∫

D

(∫
{z:w∈Dδ(z)}

dµ(z)

)
|f (w)|p

(1− |w |)2+α
dAα(w)

.
∫

D

|f |pdAα.

Compact version: lim
|a|→1

µ(D(a))

Aα(D(a))
= 0.
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Carleson Measure

Carleson Measure

Change of Variables

Cϕ compact iff Aα ◦ ϕ−1 is an α-Carleson measure.

Proof) ∫
D

|f ◦ ϕ|pdA =

∫
D

|f |pdA ◦ ϕ−1

where A ◦ ϕ−1(E ) :=
∫
ϕ−1(E)

dA.
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|f |pdA ◦ ϕ−1

where A ◦ ϕ−1(E ) :=
∫
ϕ−1(E)

dA.
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Carleson Measure

Compactness

• Compactness on Bergman spaces

MacCluer and Shapiro (1986)
For p > 0, α > −1, CΦ is compact on Ap

α

⇐⇒ lim 1−|z|
1−|ϕ(z)| = 0 as |z | → 1−.

Remark: Julia-Caratheodory Theorem

ϕ has finite angular derivative at ζ.

⇐⇒ lim infz→ζ
1−|ϕ(z)|

1−|z| <∞.
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Necessity

Let ϕ(0) = 0. By Schwartz Lemma, D(0, r) ⊂ ϕ−1(D(0, r)) and

Dδ1 (a) ⊂ ϕ−1(Dδ(b)), b = ϕ(a).

If not, then

1 ≈
(

1− |ϕ(a)|
1− |a|

)2+α

.
Aα(Dδ1 (b))

Aα(Dδ(a))

≤ Aα ◦ ϕ−1(Dδ(b))

Aα(Dδ(a))

≈ Aα ◦ ϕ−1(Dδ(b))

Aα(Dδ(b))
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Sufficiency

Aα ◦ ϕ−1(D(a))

=

∫
ϕ−1(D(a))

(1− |z |)α−β

(1− |ϕ(z)|)α−β
(1− |ϕ(z)|)α−βdAβ(z)

≤ ε(1− |a|)α−βAβ ◦ ϕ−1(D(a))

. ε(1− |a|)α−βAβ(D(a))

≈ εAα(D(a))
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Compact Difference

Compact Difference:Joint Carleson measure

• Joint Carleson Measure(Saukko(2011), K-Wang(2014))

Cϕ − Cψ compact on Ap
α iff µ is an α-Carleson where

µ(E ) =

∫
ϕ−1(E)

ρ(ϕ,ψ)pdAα +

∫
ψ−1(E)

ρ(ϕ,ψ)pdAα

where

ρ(z ,w) :=

∣∣∣∣ z − w

1− zw

∣∣∣∣ .
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Compact Difference

Compact Difference:Joint Carleson measure

Necessity

Suppose µ(D(ak ))
Aα(D(ak )) > c > 0, and let

fa =
1

(1− za)n
.

Take test functions fk := fak and gk = fbk :

bk := ak(1− N(1− |ak |)).
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Compact Difference

Compact Difference:Joint Carleson measure

Sufficiency

Submeanvalue property:

|f (a)− f (b)|p ≤ |b − a|p sup
[a,b]

|f ′(z)|p

.
ρ(a, b)p

(1− |a)|)2+α

∫
Dδ(a)

|f (w)|pdAα(w)

For z 6∈ E = {z : ρ < ε} let a = ϕ(z) and b = ψ(z), then

|(Cϕ − Cψ)f (z)|p . ρ(ϕ(z), ψ(z))p

(1− |ϕ(z)|)2+α

∫
Dδ(ϕ(z))

|f (w)|pdAα(w).
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Compact Difference

Compact Difference:Joint Carleson measure

Sufficiency

Thus,

‖(Cϕ − Cψ)f ‖p

.
∫

D\E
(|Cϕ(f )|p + |Cψ(f )|p) dAα

+

∫
E

(
ρ(ϕ(z), ψ(z))p

(1− |ϕ(z)|)2+α

∫
Dδ(ϕ(z))

|f (w)|pdAα(w)

)
dAα(z)
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Compact Difference

Compact Difference:Characterization

• Moorhouse(2005)

Cϕ1 − Cϕ2 is compact on Ap
α iff

lim
|ϕj (z)|→1

ρ(ϕ1(z), ϕ2(z))
1− |z |

1− |ϕj(z)|
= 0.

Necessity

Adjoint action on kernels(Moorhouse for p = 2.)
Test function fa(Choe-K-Park(2014)).
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Compact Difference

Compact Difference:Characterization

Sufficiency

Joint-Carleson measure criteria. Let ρ(z) = ρ(ϕ1(z), ϕ2(z)).∫
ϕ−1

j (D(a))

ρ(z)pdAα(z)

=

∫
ϕ−1

j (D(a))

[
ρ(z)p

(
1− |z |

1− |ϕj(z)|

)α−β]
(1− |ϕj(z)|)α−βdAβ(z)

. ε(1− |a|)α−β Aβ ◦ ϕ−1
j (D(a))

. εAα(D(a))
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Consequences of Theorem 3

Recall

Let
T := T12 − T34 = T13 − T24

We also put
ρij(z) = ρϕi ,ϕj (z) := ρ

(
ϕi (z), ϕj(z)

)
and

Mij(z) = Mϕi ,ϕj (z) :=

[
1− |z |

1− |ϕi (z)|
+

1− |z |
1− |ϕj(z)|

]
ρij(z).

Finally, we put

M = M12 + M34 and M̃ := M13 + M24.

Theorem 3

T is compact on Ap
α(D) ⇐⇒ lim|z|→1 M(z)M̃(z) = 0.
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Consequences of Theorem 3

ϕ1 = ϕ4

If ϕ1 = ϕ4, then we get

T := T12 − T34 = 2Cϕ1 − Cϕ2 − Cϕ3 .

And
M = M12 + M34 = M̃ := M13 + M24.

Thus, the following are equivalent.(K-Wang(2015))

T is compact

lim|z|→1(M12(z) + M13(z)) = 0

lim|z|→1 M12(z) = 0 = lim|z|→1 M13(z).

T12,T13 compact.



Introduction Background Proof of Theorem References

Consequences of Theorem 3

ϕ1 = ϕ4

If ϕ1 = ϕ4, then we get

T := T12 − T34 = 2Cϕ1 − Cϕ2 − Cϕ3 .

And
M = M12 + M34 = M̃ := M13 + M24.

Thus, the following are equivalent.(K-Wang(2015))

T is compact

lim|z|→1(M12(z) + M13(z)) = 0

lim|z|→1 M12(z) = 0 = lim|z|→1 M13(z).

T12,T13 compact.



Introduction Background Proof of Theorem References

Consequences of Theorem 3

ϕ1 = ϕ4

If ϕ1 = ϕ4, then we get

T := T12 − T34 = 2Cϕ1 − Cϕ2 − Cϕ3 .

And
M = M12 + M34 = M̃ := M13 + M24.

Thus, the following are equivalent.(K-Wang(2015))

T is compact

lim|z|→1(M12(z) + M13(z)) = 0

lim|z|→1 M12(z) = 0 = lim|z|→1 M13(z).

T12,T13 compact.



Introduction Background Proof of Theorem References

Consequences of Theorem 3

ϕ1 = ϕ4

If ϕ1 = ϕ4, then we get

T := T12 − T34 = 2Cϕ1 − Cϕ2 − Cϕ3 .

And
M = M12 + M34 = M̃ := M13 + M24.

Thus, the following are equivalent.(K-Wang(2015))

T is compact

lim|z|→1(M12(z) + M13(z)) = 0

lim|z|→1 M12(z) = 0 = lim|z|→1 M13(z).

T12,T13 compact.



Introduction Background Proof of Theorem References

Consequences of Theorem 3

ϕ1 = ϕ4

If ϕ1 = ϕ4, then we get

T := T12 − T34 = 2Cϕ1 − Cϕ2 − Cϕ3 .

And
M = M12 + M34 = M̃ := M13 + M24.

Thus, the following are equivalent.(K-Wang(2015))

T is compact

lim|z|→1(M12(z) + M13(z)) = 0

lim|z|→1 M12(z) = 0 = lim|z|→1 M13(z).

T12,T13 compact.



Introduction Background Proof of Theorem References

Consequences of Theorem 3

ϕ1 = ϕ4

If ϕ1 = ϕ2, then we get

T := T12 − T34 = T43.

And

M = M12 + M34 = M34, M̃ := M13 + M24 = M13 + M14.

Thus, the following are equivalent.(Moorhouse(2005))

T is compact

lim|z|→1 M34(z)(M13(z) + M14(z)) = 0

lim|z|→1 M34(z) = 0

T34 compact.
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Consequences of Theorem 3

ϕ4 ≡ 0

If ϕ4 ≡ 0, then we get

T := T12 − T34 = Cϕ1 − Cϕ2 − Cϕ3 , ρj4 = ρ(ϕj(z), 0) = |ϕj(z)|.

And

Mj4(z) =

[
1− |z |

1− |ϕj(z)|
+ 1− |z |

]
|ϕj(z)| =

1− |z |
1− |ϕj(z)|

−(1−|z |)[1−|ϕj(z)|]

Thus, the following are equivalent.(Moorhouse(2005))

Cϕ1 − Cϕ2 − Cϕ3 is compact on Ap
α(D);

lim
|z|→1

[
M12(z) +

1− |z |
1− |ϕ3(z)|

] [
M13(z) +

1− |z |
1− |ϕ2(z)|

]
= 0;

F1 = F2 ∪ F3, F2 ∩ F3 = ∅ and limz→ζ M1j(z) = 0 for ζ ∈ Fj .
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Proof

Proposition

Proposition

The following are equivalent.

(1) lim|z|→1 M(z)M̃(z) = 0.

(2) For any ζ ∈ T and any zn → ζ, there is znk such that

lim
k→∞

M(znk ) = 0 or lim
k→∞

M̃(znk ) = 0.

Proof of (1) =⇒ (2)

Note that both M(z) and M̃(z) are non-negative.
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Proof

Proposition

Proof of (2) =⇒ (1)

Recall

Mij(z) = Mϕi ,ϕj (z) :=

[
1− |z |

1− |ϕi (z)|
+

1− |z |
1− |ϕj(z)|

]
ρij(z)

and
M = M12 + M34 and M̃ := M13 + M24.

Thus, both M(z) and M̃(z) are bounded.

If not (1), there is a sequence {zn} such that M(zn)M̃(zn) > δ0 > 0.
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Proof of (2) =⇒ (1)

Recall

Mij(z) = Mϕi ,ϕj (z) :=

[
1− |z |

1− |ϕi (z)|
+

1− |z |
1− |ϕj(z)|

]
ρij(z)

and
M = M12 + M34 and M̃ := M13 + M24.

Thus, both M(z) and M̃(z) are bounded.

If not (1), there is a sequence {zn} such that M(zn)M̃(zn) > δ0 > 0.
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Proof of Sufficiency

Let
Uε = {z : M(z) ≤ ε}, Ũε = {z : M̃(z) ≤ ε}.

Then, by assumption MM̃ → 0, for each ζ ∈ T

S(ζ, δζ) ⊂ Uε ∪ Ũε

for some δζ(ε) > 0, since otherwise M(zδ)M̃(zδ) > ε2, zδ → ζ.
Since T is compact, there is ζj such that

D \ (1− r)D ⊂
N⋃
j=1

S(ζj , δj), r := min{δj} > 0.

Next, use standard argument with a sequence {fn} converging weakly to
0 and some weighted Carleson measure argument.



Introduction Background Proof of Theorem References

Proof

Proof of Sufficiency

Let
Uε = {z : M(z) ≤ ε}, Ũε = {z : M̃(z) ≤ ε}.
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Proof of Necessity

Suppose MM̃ 6→ 0. Pick a sequence zn → ζ so that

M(zn) ≥ c > 0 and M̃(zn) > c > 0.

This implies the following holds:

max{M12(zn),M34(zn)} ≥ c/2 and max{M13(zn),M24(zn)} ≥ c/2

Then, we have the following four possibilities:

(a) min{M12(zn),M13(zn)} ≥ c/2;

(b) min{M12(zn),M24(zn)} ≥ c/2;

(c) min{M34(zn),M13(zn)} ≥ c/2;

(d) min{M34(zn),M24(zn)} ≥ c/2.

Divide each cases into sever cases, and then take appropriate test
functions to deduce a contradiction.
Proof of these are long and some parts are delicate.
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