

Subnormal weighted shifts on directed trees whose *n*th powers have trivial domain

Zenon Jabłoński

Instytut Matematyki Uniwersytet Jagielloński joint work with P. Budzyński, I. B. Jung and J. Stochel

OTOA 2016 19.12.2016 - Bangalore

Zenon Jabłoński Subnormal operators whose nth powers have trivial domain

イロト イ理ト イヨト イヨト

• Let $\mathscr{T} = (V, E)$ be a directed tree.

Let l²(V) be the space of all square summable function on V with a scalar products

$$\langle f,g
angle = \sum_{u\in V} f(u)\overline{g(u)}, \quad f,g\in \ell^2(V).$$

• For $u \in V$, let us define $e_u \in \ell^2(V)$ by

$$e_u(v) = \begin{cases} 1 & \text{if } u = v, \\ 0 & \text{if } u \neq v. \end{cases}$$

• $\{e_u\}_{u \in V}$ is an orthonormal basis in $\ell^2(V)$.

ヘロト ヘワト ヘビト ヘビト

- Let $\mathscr{T} = (V, E)$ be a directed tree.
- Let l²(V) be the space of all square summable function on V with a scalar products

$$\langle f, g \rangle = \sum_{u \in V} f(u) \overline{g(u)}, \quad f, g \in \ell^2(V).$$

• For $u \in V$, let us define $e_u \in \ell^2(V)$ by

$$e_u(v) = \begin{cases} 1 & \text{if } u = v, \\ 0 & \text{if } u \neq v. \end{cases}$$

• $\{e_u\}_{u \in V}$ is an orthonormal basis in $\ell^2(V)$.

ヘロト 人間 ト ヘヨト ヘヨト

- Let $\mathscr{T} = (V, E)$ be a directed tree.
- Let l²(V) be the space of all square summable function on V with a scalar products

$$\langle f,g
angle = \sum_{u \in V} f(u)\overline{g(u)}, \quad f,g \in \ell^2(V).$$

• For $u \in V$, let us define $e_u \in \ell^2(V)$ by

$$e_u(v) = \begin{cases} 1 & \text{if } u = v, \\ 0 & \text{if } u \neq v. \end{cases}$$

• $\{e_u\}_{u \in V}$ is an orthonormal basis in $\ell^2(V)$.

ヘロン 人間 とくほ とくほ とう

- Let $\mathscr{T} = (V, E)$ be a directed tree.
- Let l²(V) be the space of all square summable function on V with a scalar products

$$\langle f,g
angle = \sum_{u \in V} f(u)\overline{g(u)}, \quad f,g \in \ell^2(V).$$

• For $u \in V$, let us define $e_u \in \ell^2(V)$ by

$$e_u(v) = \begin{cases} 1 & \text{if } u = v, \\ 0 & \text{if } u \neq v. \end{cases}$$

• $\{e_u\}_{u \in V}$ is an orthonormal basis in $\ell^2(V)$.

通 とくほ とくほ とう

A weighted shifts on a directed trees

For a family λ = {λ_ν}_{ν∈V°} ⊆ C let us define an operator S_λ in ℓ²(V) by

$$\begin{aligned} \mathcal{D}(\boldsymbol{S}_{\boldsymbol{\lambda}}) &= \{ f \in \ell^2(\boldsymbol{V}) \colon \Lambda_{\mathscr{T}} f \in \ell^2(\boldsymbol{V}) \}, \\ \boldsymbol{S}_{\boldsymbol{\lambda}} f &= \Lambda_{\mathscr{T}} f, \quad f \in \mathcal{D}(\boldsymbol{S}_{\boldsymbol{\lambda}}), \end{aligned}$$

• where $\Lambda_{\mathscr{T}}$ is define on functions $f: V \to \mathbb{C}$ by

$$(\Lambda_{\mathscr{T}}f)(v) = \begin{cases} \lambda_v \cdot f(\operatorname{par}(v)) & \text{if } v \in V^\circ, \\ 0 & \text{if } v = \operatorname{root}. \end{cases}$$

An operator S_λ is called a *weighted shift on a directed tree T* with weights {λ_ν}_{ν∈V°}.

イロト イポト イヨト イヨト

A weighted shifts on a directed trees

For a family λ = {λ_ν}_{ν∈V°} ⊆ C let us define an operator S_λ in ℓ²(V) by

$$\mathcal{D}(\mathcal{S}_{\boldsymbol{\lambda}}) = \{ f \in \ell^2(V) \colon \Lambda_{\mathscr{T}} f \in \ell^2(V) \}, \ \mathcal{S}_{\boldsymbol{\lambda}} f = \Lambda_{\mathscr{T}} f, \quad f \in \mathcal{D}(\mathcal{S}_{\boldsymbol{\lambda}}),$$

• where $\Lambda_{\mathscr{T}}$ is define on functions $f: V \to \mathbb{C}$ by

$$(\Lambda_{\mathscr{T}}f)(v) = \begin{cases} \lambda_v \cdot f(\operatorname{par}(v)) & \text{if } v \in V^\circ, \\ 0 & \text{if } v = \operatorname{root}. \end{cases}$$

An operator S_λ is called a *weighted shift on a directed tree T* with weights {λ_ν}_{ν∈V°}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

A weighted shifts on a directed trees

For a family λ = {λ_ν}_{ν∈V°} ⊆ C let us define an operator S_λ in ℓ²(V) by

$$\mathcal{D}(\mathcal{S}_{\boldsymbol{\lambda}}) = \{ f \in \ell^2(V) \colon \Lambda_{\mathscr{T}} f \in \ell^2(V) \}, \ \mathcal{S}_{\boldsymbol{\lambda}} f = \Lambda_{\mathscr{T}} f, \quad f \in \mathcal{D}(\mathcal{S}_{\boldsymbol{\lambda}}),$$

• where $\Lambda_{\mathscr{T}}$ is define on functions $f: V \to \mathbb{C}$ by

$$(\Lambda_{\mathscr{T}}f)(v) = \begin{cases} \lambda_v \cdot f(\operatorname{par}(v)) & \text{if } v \in V^\circ, \\ 0 & \text{if } v = \operatorname{root}. \end{cases}$$

An operator S_λ is called a *weighted shift on a directed tree T* with weights {λ_ν}_{ν∈V°}.

イロト イポト イヨト イヨト

- Is it true that for every integer n ≥ 1, there exists a subnormal weighted shift on a directed tree whose nth power is densely defined and the domain of its (n + 1)th power is trivial?
- A similar problem can be stated for composition operators in L²-spaces.

イロト イポト イヨト イヨト

Problems

- Is it true that for every integer n ≥ 1, there exists a subnormal weighted shift on a directed tree whose nth power is densely defined and the domain of its (n + 1)th power is trivial?
- A similar problem can be stated for composition operators in *L*²-spaces.

米間を そほと そほと

Characterization

Theorem

Let S_{λ} be a w.s. on a countably infinite directed tree $\mathscr{T} = (V, E)$ with weights $\lambda = \{\lambda_v\}_{v \in V^\circ}$. Suppose $\exists \{\mu_v\}_{v \in V}$ of Borel probability measures on \mathbb{R}_+ and $\{\varepsilon_v\}_{v \in V} \subseteq \mathbb{R}_+$ such that

$$\mu_{u}(\Delta) = \sum_{\mathbf{v}\in\mathsf{Chi}(u)} |\lambda_{\mathbf{v}}|^{2} \int_{\Delta} \frac{1}{s} \mathrm{d}\mu_{\mathbf{v}}(s) + \varepsilon_{u} \delta_{0}(\Delta), \quad \Delta \in \mathfrak{B}(\mathbb{R}_{+}), \ u \in \mathbf{V}.$$
(1)

Then the following two assertions hold:

(i) if S_λ is densely defined, then S_λ is subnormal,
(ii) if n ∈ N, then Sⁿ_λ is densely defined if and only if ∫₀[∞] sⁿ dµ_u(s) < ∞ for every u ∈ V such that Chi(u) has at least two vertices.

Characterization

Theorem

Let S_{λ} be a w.s. on a countably infinite directed tree $\mathscr{T} = (V, E)$ with weights $\lambda = \{\lambda_v\}_{v \in V^\circ}$. Suppose $\exists \{\mu_v\}_{v \in V}$ of Borel probability measures on \mathbb{R}_+ and $\{\varepsilon_v\}_{v \in V} \subseteq \mathbb{R}_+$ such that

$$\mu_{u}(\Delta) = \sum_{\boldsymbol{v}\in\mathsf{Chi}(u)} |\lambda_{\boldsymbol{v}}|^{2} \int_{\Delta} \frac{1}{s} \mathrm{d}\mu_{\boldsymbol{v}}(\boldsymbol{s}) + \varepsilon_{u} \delta_{0}(\Delta), \quad \Delta \in \mathfrak{B}(\mathbb{R}_{+}), \ \boldsymbol{u} \in \boldsymbol{V}.$$
(1)

Then the following two assertions hold:

(i) if S_{λ} is densely defined, then S_{λ} is subnormal,

 (ii) if n ∈ N, then Sⁿ_λ is densely defined if and only if ∫₀[∞] sⁿ dµ_u(s) < ∞ for every u ∈ V such that Chi(u) has at least two vertices.

Characterization

Theorem

Let S_{λ} be a w.s. on a countably infinite directed tree $\mathscr{T} = (V, E)$ with weights $\lambda = \{\lambda_v\}_{v \in V^\circ}$. Suppose $\exists \{\mu_v\}_{v \in V}$ of Borel probability measures on \mathbb{R}_+ and $\{\varepsilon_v\}_{v \in V} \subseteq \mathbb{R}_+$ such that

$$\mu_{u}(\Delta) = \sum_{\mathbf{v}\in\mathsf{Chi}(u)} |\lambda_{\mathbf{v}}|^{2} \int_{\Delta} \frac{1}{s} \mathrm{d}\mu_{\mathbf{v}}(s) + \varepsilon_{u} \delta_{0}(\Delta), \quad \Delta \in \mathfrak{B}(\mathbb{R}_{+}), \ u \in \mathbf{V}.$$
(1)

Then the following two assertions hold:

(i) if S_λ is densely defined, then S_λ is subnormal,
(ii) if n ∈ N, then Sⁿ_λ is densely defined if and only if ∫₀[∞] sⁿ dµ_u(s) < ∞ for every u ∈ V such that Chi(u) has at least two vertices.

Lemma

Lemma

Suppose μ is a finite Borel measure on \mathbb{R}_+ such that $\int_0^\infty s^n d\mu(s) < \infty$ for some $n \in \mathbb{N}$. Then $\int_0^\infty s^k d\mu(s) < \infty$ for every $k \in \mathbb{N}$ such that $k \leq n$.

ヘロン 人間 とくほ とくほ とう

3

Characterization

Lemma

Let S_{λ} be a weighted shift on a directed tree $\mathscr{T} = (V, E)$ with weights $\lambda = {\lambda_v}_{v \in V^\circ}$ and let $n \in \mathbb{N}$. Then the following two conditions are equivalent:

(i) $\mathcal{D}(S_{\lambda}^{n}) = \{0\},$ (ii) $e_{u} \notin \mathcal{D}(S_{\lambda}^{n})$ for every $u \in V.$

Moreover, if there exist a family $\{\mu_v\}_{v \in V}$ of Borel probability measures on \mathbb{R}_+ and a family $\{\varepsilon_v\}_{v \in V} \subseteq \mathbb{R}_+$ which satisfy (1), then (i) is equivalent to

(iii) $\int_0^\infty s^n \mathrm{d}\mu_u(s) = \infty$ for every $u \in V$

Characterization

Lemma

Let S_{λ} be a weighted shift on a directed tree $\mathscr{T} = (V, E)$ with weights $\lambda = {\lambda_{V}}_{V \in V^{\circ}}$ and let $n \in \mathbb{N}$. Then the following two conditions are equivalent:

(i) $\mathcal{D}(S_{\lambda}^{n}) = \{0\},\$

(ii) $e_u \notin \mathcal{D}(S^n_{\lambda})$ for every $u \in V$.

Moreover, if there exist a family $\{\mu_v\}_{v \in V}$ of Borel probability measures on \mathbb{R}_+ and a family $\{\varepsilon_v\}_{v \in V} \subseteq \mathbb{R}_+$ which satisfy (1), then (i) is equivalent to

(iii) $\int_0^\infty s^n \mathrm{d}\mu_u(s) = \infty$ for every $u \in V$

Characterization

Lemma

Let S_{λ} be a weighted shift on a directed tree $\mathscr{T} = (V, E)$ with weights $\lambda = {\lambda_v}_{v \in V^\circ}$ and let $n \in \mathbb{N}$. Then the following two conditions are equivalent:

(i) $\mathcal{D}(S_{\lambda}^{n}) = \{0\},\$

(ii) $e_u \notin \mathcal{D}(S^n_{\lambda})$ for every $u \in V$.

Moreover, if there exist a family $\{\mu_v\}_{v \in V}$ of Borel probability measures on \mathbb{R}_+ and a family $\{\varepsilon_v\}_{v \in V} \subseteq \mathbb{R}_+$ which satisfy (1), then (i) is equivalent to

(iii) $\int_0^\infty s^n \mathrm{d} \mu_u(s) = \infty$ for every $u \in V$

Characterization

Lemma

Let S_{λ} be a weighted shift on a directed tree $\mathscr{T} = (V, E)$ with weights $\lambda = {\lambda_v}_{v \in V^\circ}$ and let $n \in \mathbb{N}$. Then the following two conditions are equivalent:

(i) $\mathcal{D}(S_{\lambda}^{n}) = \{0\},\$

(ii) $e_u \notin \mathcal{D}(S^n_{\lambda})$ for every $u \in V$.

Moreover, if there exist a family $\{\mu_v\}_{v \in V}$ of Borel probability measures on \mathbb{R}_+ and a family $\{\varepsilon_v\}_{v \in V} \subseteq \mathbb{R}_+$ which satisfy (1), then (i) is equivalent to

(iii)
$$\int_0^\infty s^n d\mu_u(s) = \infty$$
 for every $u \in V$.

イロト イポト イヨト イヨト

3

If there exists a weighted shift S_{λ} on a directed tree \mathscr{T} with nonzero weights such that

 S_{λ} is densely defined and $\mathcal{D}(S_{\lambda}^2) = \{0\},$

then the directed tree \mathcal{T} is extremal.

イロト イ理ト イヨト イヨト

Main theorem

Theorem

Suppose $\mathscr{T} = (V, E)$ is an extremal directed tree and $n \in \mathbb{N}$. Then there exists a subnormal weighted shift S_{λ} on \mathscr{T} with nonzero weights such that S_{λ}^{n} is densely defined and $\mathcal{D}(S_{\lambda}^{n+1}) = \{0\}.$

۲

_emma

If A is an operator such that $\mathcal{D}(A^n) = \{0\}$ for some positive integer n, then A is injective.

イロト イポト イヨト イヨト

3

Main theorem

Theorem

Suppose $\mathscr{T} = (V, E)$ is an extremal directed tree and $n \in \mathbb{N}$. Then there exists a subnormal weighted shift S_{λ} on \mathscr{T} with nonzero weights such that S_{λ}^{n} is densely defined and $\mathcal{D}(S_{\lambda}^{n+1}) = \{0\}.$

۲

Lemma

If A is an operator such that $\mathcal{D}(A^n) = \{0\}$ for some positive integer n, then A is injective.

Zenon Jabłoński Subnormal operators whose nth powers have trivial domain

Main corollary

Corollary

For every $n \in \mathbb{N}$, there exists an unbounded subnormal composition operator C in an L^2 -space over σ -finite measure space such that C^n is densely defined and $\mathcal{D}(C^{n+1}) = \{0\}$.

Zenon Jabłoński Subnormal operators whose nth powers have trivial domain

ヘロト 人間 ト ヘヨト ヘヨト

Lemma

If $m \in \mathbb{N}$ and Δ is a countable subset of \mathbb{R}_+ such that sup $\Delta = \infty$, then there exists a finite discrete Borel measure μ on \mathbb{R}_+ such that $\operatorname{At}(\mu) = \Delta$, $\int_0^\infty s^m \mathrm{d}\mu(s) < \infty$ and $\int_0^\infty s^{m+1} \mathrm{d}\mu(s) = \infty$.

Corollary

If $m \in \mathbb{N}$, $\vartheta \in \mathbb{R}_+$ and E is a countably infinite subset of \mathbb{R}_+ , then there exists a finite discrete Borel measure μ on \mathbb{R}_+ such that $\operatorname{At}(\mu)$ is a countably infinite subset of $[\vartheta, \infty)$, $E \cap \operatorname{At}(\mu) = \emptyset$, $\int_0^\infty s^m \mathrm{d}\mu(s) < \infty$ and $\int_0^\infty s^{m+1} \mathrm{d}\mu(s) = \infty$.

Set
$$\mathscr{X} = \bigcup_{k=0}^{\infty} \mathscr{X}_k$$
, where $\mathscr{X}_k = \bigsqcup_{j=0}^k \mathbb{N}^j$ with $\mathbb{N}^0 = \{0\}$.

Lemma

If $n \in \mathbb{N}$ and $\vartheta \in \mathbb{R}_+$, then there exists a family $\{\nu_{\mathbf{X}}\}_{\mathbf{X} \in \mathscr{X}}$ of finite discrete Borel measures on \mathbb{R}_+ such that

(i) {At(*v_x*)}_{*x∈X*} are pairwise disjoint countably infinite subsets of [∂, ∞),

(ii) $\sum_{\boldsymbol{x} \in \mathbb{N}^k} \int_0^\infty s^{k+n} d\nu_{\boldsymbol{x}}(s) \leqslant 2^{-k}$ for all $k \in \mathbb{Z}_+$,

(iii) $\int_0^\infty s^{k+n+1} d\nu_{\boldsymbol{X}}(s) = \infty$ for all $\boldsymbol{X} \in \mathbb{N}^k$ and all $k \in \mathbb{Z}_+$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Set
$$\mathscr{X} = \bigcup_{k=0}^{\infty} \mathscr{X}_k$$
, where $\mathscr{X}_k = \bigsqcup_{j=0}^k \mathbb{N}^j$ with $\mathbb{N}^0 = \{0\}$.

Lemma

If $n \in \mathbb{N}$ and $\vartheta \in \mathbb{R}_+$, then there exists a family $\{\nu_{\mathbf{x}}\}_{\mathbf{x} \in \mathscr{X}}$ of finite discrete Borel measures on \mathbb{R}_+ such that

(i) {At(ν_x)}_{x∈𝔅} are pairwise disjoint countably infinite subsets of [ϑ, ∞),

(ii) $\sum_{\boldsymbol{x}\in\mathbb{N}^k}\int_0^\infty s^{k+n}\mathrm{d}\nu_{\boldsymbol{x}}(s)\leqslant 2^{-k}$ for all $k\in\mathbb{Z}_+$,

(iii) $\int_0^\infty s^{k+n+1} \mathrm{d}\nu_{\boldsymbol{X}}(s) = \infty$ for all $\boldsymbol{X} \in \mathbb{N}^k$ and all $k \in \mathbb{Z}_+$.

Set
$$\mathscr{X} = \bigcup_{k=0}^{\infty} \mathscr{X}_k$$
, where $\mathscr{X}_k = \bigsqcup_{j=0}^k \mathbb{N}^j$ with $\mathbb{N}^0 = \{0\}$.

Lemma

If $n \in \mathbb{N}$ and $\vartheta \in \mathbb{R}_+$, then there exists a family $\{\nu_{\mathbf{X}}\}_{\mathbf{X} \in \mathscr{X}}$ of finite discrete Borel measures on \mathbb{R}_+ such that

(i) {At(ν_x)}_{x∈𝔅} are pairwise disjoint countably infinite subsets of [ϑ, ∞),

(ii)
$$\sum_{\boldsymbol{x}\in\mathbb{N}^k}\int_0^\infty s^{k+n}\mathrm{d}\nu_{\boldsymbol{x}}(s)\leqslant 2^{-k}$$
 for all $k\in\mathbb{Z}_+$,

(iii) $\int_0^\infty s^{k+n+1} d\nu_{\boldsymbol{X}}(s) = \infty$ for all $\boldsymbol{X} \in \mathbb{N}^k$ and all $k \in \mathbb{Z}_+$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Set
$$\mathscr{X} = \bigcup_{k=0}^{\infty} \mathscr{X}_k$$
, where $\mathscr{X}_k = \bigsqcup_{j=0}^k \mathbb{N}^j$ with $\mathbb{N}^0 = \{0\}$.

Lemma

If $n \in \mathbb{N}$ and $\vartheta \in \mathbb{R}_+$, then there exists a family $\{\nu_{\mathbf{X}}\}_{\mathbf{X} \in \mathscr{X}}$ of finite discrete Borel measures on \mathbb{R}_+ such that

(i) {At(ν_x)}_{x∈𝔅} are pairwise disjoint countably infinite subsets of [ϑ, ∞),

(ii)
$$\sum_{\boldsymbol{x}\in\mathbb{N}^k}\int_0^\infty s^{k+n}\mathrm{d}\nu_{\boldsymbol{x}}(s)\leqslant 2^{-k}$$
 for all $k\in\mathbb{Z}_+$,

(iii)
$$\int_0^\infty s^{k+n+1} d\nu_{\boldsymbol{x}}(s) = \infty$$
 for all $\boldsymbol{x} \in \mathbb{N}^k$ and all $k \in \mathbb{Z}_+$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Lemma

Lemma

If $n \in \mathbb{N}$ and $\vartheta \in [1, \infty)$, then there exist a family $\{\Omega_{\mathbf{x}}\}_{\mathbf{x}\in\mathscr{X}}$ of countably infinite subsets of $[\vartheta, \infty)$ and a discrete measure $\nu \in \mathcal{P}_{\vartheta}(\mathbb{R}_{+})$ such that (i) At $(\nu) = \Omega_{0}$, (ii) $\Omega_{0} = \bigsqcup_{j_{h}=1}^{\infty} \Omega_{j_{h}}$ and $\Omega_{j_{1},...,j_{k}} = \bigsqcup_{j_{k+1}=1}^{\infty} \Omega_{j_{1},...,j_{k},j_{k+1}}$ for all $(j_{1},...,j_{k}) \in \mathbb{N}^{k}$ and $k \in \mathbb{N}$, (iii) $\int_{\Omega_{\mathbf{x}}} s^{k+n} d\nu(s) < \infty$ and $\int_{\Omega_{\mathbf{x}}} s^{k+n+1} d\nu(s) = \infty$ for all $\mathbf{x} \in \mathbb{N}^{k}$ and $k \in \mathbb{Z}_{+}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Lemma

Lemma

If $n \in \mathbb{N}$ and $\vartheta \in [1, \infty)$, then there exist a family $\{\Omega_{\mathbf{x}}\}_{\mathbf{x}\in\mathscr{X}}$ of countably infinite subsets of $[\vartheta, \infty)$ and a discrete measure $\nu \in \mathcal{P}_{\vartheta}(\mathbb{R}_{+})$ such that (i) At $(\nu) = \Omega_{0}$, (ii) $\Omega_{0} = \bigsqcup_{j_{1}=1}^{\infty} \Omega_{j_{1}}$ and $\Omega_{j_{1},...,j_{k}} = \bigsqcup_{j_{k+1}=1}^{\infty} \Omega_{j_{1},...,j_{k},j_{k+1}}$ for all $(j_{1},...,j_{k}) \in \mathbb{N}^{k}$ and $k \in \mathbb{N}$, (iii) $\int_{\Omega_{\mathbf{x}}} s^{k+n} d\nu(s) < \infty$ and $\int_{\Omega_{\mathbf{x}}} s^{k+n+1} d\nu(s) = \infty$ for all $\mathbf{x} \in \mathbb{N}^{k}$ and $k \in \mathbb{Z}_{+}$.

Lemma

Lemma

If $n \in \mathbb{N}$ and $\vartheta \in [1, \infty)$, then there exist a family $\{\Omega_{\mathbf{x}}\}_{\mathbf{x}\in\mathscr{X}}$ of countably infinite subsets of $[\vartheta, \infty)$ and a discrete measure $\nu \in \mathcal{P}_{\vartheta}(\mathbb{R}_{+})$ such that (i) At $(\nu) = \Omega_{0}$, (ii) $\Omega_{0} = \bigsqcup_{j_{1}=1}^{\infty} \Omega_{j_{1}}$ and $\Omega_{j_{1},...,j_{k}} = \bigsqcup_{j_{k+1}=1}^{\infty} \Omega_{j_{1},...,j_{k},j_{k+1}}$ for all $(j_{1},...,j_{k}) \in \mathbb{N}^{k}$ and $k \in \mathbb{N}$, (iii) $\int_{\Omega_{\mathbf{x}}} s^{k+n} d\nu(s) < \infty$ and $\int_{\Omega_{\mathbf{x}}} s^{k+n+1} d\nu(s) = \infty$ for all $\mathbf{x} \in \mathbb{N}^{k}$ and $k \in \mathbb{Z}_{+}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Lemma

Lemma

If $n \in \mathbb{N}$ and $\vartheta \in [1, \infty)$, then there exist a family $\{\Omega_{\mathbf{x}}\}_{\mathbf{x}\in\mathscr{X}}$ of countably infinite subsets of $[\vartheta, \infty)$ and a discrete measure $\nu \in \mathcal{P}_{\vartheta}(\mathbb{R}_{+})$ such that (i) At $(\nu) = \Omega_{0}$, (ii) $\Omega_{0} = \bigsqcup_{j_{1}=1}^{\infty} \Omega_{j_{1}}$ and $\Omega_{j_{1},...,j_{k}} = \bigsqcup_{j_{k+1}=1}^{\infty} \Omega_{j_{1},...,j_{k},j_{k+1}}$ for all $(j_{1},...,j_{k}) \in \mathbb{N}^{k}$ and $k \in \mathbb{N}$, (iii) $\int_{\Omega_{\mathbf{x}}} \mathbf{s}^{k+n} \mathrm{d}\nu(\mathbf{s}) < \infty$ and $\int_{\Omega_{\mathbf{x}}} \mathbf{s}^{k+n+1} \mathrm{d}\nu(\mathbf{s}) = \infty$ for all $\mathbf{x} \in \mathbb{N}^{k}$ and $k \in \mathbb{Z}_{+}$.

Proof of Lemma

$$\Omega_0 = \bigsqcup_{\mathbf{x} \in \mathscr{X}} \Delta_{\mathbf{x}} = \bigsqcup_{k=0}^{\infty} \bigsqcup_{\mathbf{x} \in \mathbb{N}^k} \Delta_{\mathbf{x}} \text{ with } \Delta_{\mathbf{x}} = \mathsf{At}(\nu_{\mathbf{x}}) \text{ for every } \mathbf{x} \in \mathscr{X}$$

and

$$\nu = \sum_{k=0}^{\infty} \sum_{\mathbf{x} \in \mathbb{N}^k} \nu_{\mathbf{x}}.$$

Zenon Jabłoński Subnormal operators whose nth powers have trivial domain

イロン イロン イヨン イヨン

æ

Proof of Lemma

$$\Omega_0 = \bigsqcup_{j_1'=1}^{\infty} \Omega_{j_1'},$$

if
$$l \ge 2$$
, then $\Omega_{j_1,\ldots,j_{l-1}} = \bigsqcup_{j'_l=1}^{\infty} \Omega_{j_1,\ldots,j_{l-1},j'_l}$,

 $\{t_{j'_1}\}_{j'_1=1}^{\infty} \text{ is an injective sequence in } \Delta_0 \text{ such that } \Delta_0 = \{t_{j'_1} : j'_1 \in \mathbb{N}\},$ if $l \ge 2$, then $\{t_{j_1, \dots, j_{l-1}, j'_l}\}_{j'_l=1}^{\infty}$ is an injective sequence in $\bigsqcup_{\mathbf{x} \in \mathscr{X}_{l-1}} \Delta_{\mathbf{x}}$ such that $\{t_{j_1, \dots, j_{l-1}}\} \sqcup \Delta_{j_1, \dots, j_{l-1}} = \{t_{j_1, \dots, j_{l-1}, j'_l} : j'_l \in \mathbb{N}\},$ $\Omega_{j_1, \dots, j_l} = \{t_{j_1, \dots, j_l}\} \sqcup \Delta_{j_1, \dots, j_l} \sqcup \bigsqcup_{\square} \Delta_{j_1, \dots, j_{l-1}, j'_{l+1}, \dots, j'_{l+p}}$.

 $p=1 \quad (j'_{l+1}, \dots, j'_{l+n}) \in \mathbb{N}^p \longrightarrow (p) \quad (p) \quad$

Lemma

Lemma

Let $\mathscr{T} = (V, E)$ be an extremal directed tree. Suppose $n \in \mathbb{N}$, $\vartheta \in [1, \infty)$ and $w \in V$. Then there exist systems $\{\lambda_v\}_{v \in \mathsf{Des}(w)^\circ} \subseteq (0, \infty)$ and $\{\mu_v\}_{v \in \mathsf{Des}(w)} \subseteq \mathcal{P}_{\vartheta}(\mathbb{R}_+)$ such that for every $u \in \mathsf{Des}(w)$,

$$\mu_{u}(\Delta) = \sum_{v \in Chi(u)} \lambda_{v}^{2} \int_{\Delta} \frac{1}{s} d\mu_{v}(s) \text{ for every } \Delta \in \mathfrak{B}(\mathbb{R}_{+}), \quad (2)$$
$$\int_{0}^{\infty} s^{n} d\mu_{u}(s) < \infty \text{ and } \int_{0}^{\infty} s^{n+1} d\mu_{u}(s) = \infty. \quad (3)$$

ヘロト 人間 とくほ とくほ とう

3

Proof of Lemma

Set $\mu_0 = \nu$. Then $\mu_0 \in \mathcal{P}_{\vartheta}(\mathbb{R}_+)$. For a given $k \in \mathbb{N}$ and $(j_1, \ldots, j_k) \in \mathbb{N}^k$, we define the Borel measure μ_{j_1, \ldots, j_k} on \mathbb{R}_+ and $\lambda_{j_1, \ldots, j_k} \in (0, \infty)$ by

$$\begin{split} u_{j_1,\dots,j_k}(\Delta) &= \frac{\int_{\Delta \cap \Omega_{j_1,\dots,j_k}} \boldsymbol{s}^k \mathrm{d}\nu(\boldsymbol{s})}{\int_{\Omega_{j_1,\dots,j_k}} \boldsymbol{s}^k \mathrm{d}\nu(\boldsymbol{s})}, \quad \Delta \in \mathfrak{B}(\mathbb{R}_+) \\ \lambda_{j_1,\dots,j_k} &= \begin{cases} \sqrt{\int_{\Omega_{j_1,\dots,j_k}} \boldsymbol{s}^k \mathrm{d}\nu(\boldsymbol{s})} & \text{if } k = 1, \\ \sqrt{\frac{\int_{\Omega_{j_1,\dots,j_k}} \boldsymbol{s}^k \mathrm{d}\nu(\boldsymbol{s})}{\int_{\Omega_{j_1,\dots,j_k}} \boldsymbol{s}^{k-1} \mathrm{d}\nu(\boldsymbol{s})}} & \text{if } k \geq 2. \end{cases} \end{split}$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Lemma

Lemma

Let $\mathscr{T} = (V, E)$ be an extremal directed tree, $w \in V^{\circ}$, x = par(w) and $n \in \mathbb{N}$. Suppose that $\{\lambda_v\}_{v \in Des(w)^{\circ}} \subseteq (0, \infty)$ and $\{\mu_v\}_{v \in Des(w)} \subseteq \mathcal{P}_1(\mathbb{R}_+)$ satisfy (2) and (3) for every $u \in Des(w)$. Then there exist $\{\lambda_v\}_{v \in Des(x)^{\circ} \setminus Des(w)^{\circ}} \subseteq (0, \infty)$ and $\{\mu_v\}_{v \in Des(x) \setminus Des(w)} \subseteq \mathcal{P}_1(\mathbb{R}_+)$ such that $\{\lambda_v\}_{v \in Des(x)^{\circ}}$ and $\{\mu_v\}_{v \in Des(x)}$ satisfy (2) and (3) for all $u \in Des(x)$.

Reference

1. Z. J. Jabłoński, I. B. Jung, J. Stochel, Weighted shifts on directed trees, Mem. Am. Math. Soc. (2012), 1-107.

2. Z. J. Jabłoński, I. B. Jung, J. Stochel, A non-hyponormal operator generating Stieltjes moment sequences, J. Funct. Anal. **262** (2012), 3946-3980

3. P. Budzyński, Z. J. Jabłoński, I. B. Jung, J. Stochel, *Subnormal weighted shifts on directed trees whose nth powers have trivial domain*, J. Math. Anal. Appl. **435** (2016), 302-314.

・ 同 ト ・ ヨ ト ・ ヨ ト