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joint work with P. Budzyński, I. B. Jung and J. Stochel

OTOA 2016
19.12.2016 - Bangalore
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A weighted shifts on a directed trees

Let T = (V ,E) be a directed tree.
Let `2(V ) be the space of all square summable function on
V with a scalar products

〈f ,g〉 =
∑
u∈V

f (u)g(u), f ,g ∈ `2(V ).

For u ∈ V , let us define eu ∈ `2(V ) by

eu(v) =

{
1 if u = v ,
0 if u 6= v .

{eu}u∈V is an orthonormal basis in `2(V ).
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A weighted shifts on a directed trees

For a family λ = {λv}v∈V◦ ⊆ C let us define an operator Sλ

in `2(V ) by

D(Sλ) = {f ∈ `2(V ) : ΛT f ∈ `2(V )},
Sλf = ΛT f , f ∈ D(Sλ),

where ΛT is define on functions f : V → C by

(ΛT f )(v) =

{
λv · f

(
par(v)

)
if v ∈ V ◦,

0 if v = root .

An operator Sλ is called a weighted shift on a directed tree
T with weights {λv}v∈V◦ .
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Problems

Is it true that for every integer n > 1, there exists a
subnormal weighted shift on a directed tree whose nth
power is densely defined and the domain of its (n + 1)th
power is trivial?
A similar problem can be stated for composition operators
in L2-spaces.
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Characterization

Theorem

Let Sλ be a w.s. on a countably infinite directed tree
T = (V ,E) with weights λ = {λv}v∈V◦ . Suppose ∃ {µv}v∈V of
Borel probability measures on R+ and {εv}v∈V ⊆ R+ such that

µu(∆) =
∑

v∈Chi(u)

|λv |2
∫
∆

1
s

dµv (s) + εuδ0(∆), ∆ ∈ B(R+), u ∈ V .

(1)

Then the following two assertions hold :
(i) if Sλ is densely defined, then Sλ is subnormal,
(ii) if n ∈ N, then Sn

λ is densely defined if and only if∫∞
0 sn dµu(s) <∞ for every u ∈ V such that Chi(u) has at

least two vertices.
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Lemma

Lemma

Suppose µ is a finite Borel measure on R+ such that∫∞
0 sndµ(s) <∞ for some n ∈ N. Then

∫∞
0 sk dµ(s) <∞ for

every k ∈ N such that k 6 n.
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Characterization

Lemma

Let Sλ be a weighted shift on a directed tree T = (V ,E) with
weights λ = {λv}v∈V◦ and let n ∈ N. Then the following two
conditions are equivalent:

(i) D(Sn
λ) = {0},

(ii) eu /∈ D(Sn
λ) for every u ∈ V.

Moreover, if there exist a family {µv}v∈V of Borel probability
measures on R+ and a family {εv}v∈V ⊆ R+ which satisfy (1),
then (i) is equivalent to
(iii)

∫∞
0 sndµu(s) =∞ for every u ∈ V.
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Observation

If there exists a weighted shift Sλ on a directed tree T with
nonzero weights such that

Sλ is densely defined and D(S2
λ) = {0},

then the directed tree T is extremal.
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Main theorem

Theorem

Suppose T = (V ,E) is an extremal directed tree and n ∈ N.
Then there exists a subnormal weighted shift Sλ on T with
nonzero weights such that Sn

λ is densely defined and
D(Sn+1

λ ) = {0}.

Lemma

If A is an operator such that D(An) = {0} for some positive
integer n, then A is injective.
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Main corollary

Corollary

For every n ∈ N, there exists an unbounded subnormal
composition operator C in an L2-space over σ-finite measure
space such that Cn is densely defined and D(Cn+1) = {0}.
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Lemma

Lemma
If m ∈ N and ∆ is a countable subset of R+ such that
sup∆ =∞, then there exists a finite discrete Borel measure µ
on R+ such that At(µ) = ∆,

∫∞
0 smdµ(s) <∞ and∫∞

0 sm+1dµ(s) =∞.
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Corollary

Corollary

If m ∈ N, ϑ ∈ R+ and E is a countably infinite subset of R+,
then there exists a finite discrete Borel measure µ on R+ such
that At(µ) is a countably infinite subset of [ϑ,∞),
E ∩ At(µ) = ∅,

∫∞
0 smdµ(s) <∞ and

∫∞
0 sm+1dµ(s) =∞.
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Lemma

Set X =
⋃∞

k=0 Xk , where Xk =
⊔k

j=0 Nj with N0 = {0}.

Lemma

If n ∈ N and ϑ ∈ R+, then there exists a family {νx}x∈X of finite
discrete Borel measures on R+ such that

(i) {At(νx)}x∈X are pairwise disjoint countably infinite
subsets of [ϑ,∞),

(ii)
∑

x∈Nk

∫∞
0 sk+ndνx(s) 6 2−k for all k ∈ Z+,

(iii)
∫∞

0 sk+n+1dνx(s) =∞ for all x ∈ Nk and all k ∈ Z+.
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Lemma

Lemma

If n ∈ N and ϑ ∈ [1,∞), then there exist a family {Ωx}x∈X of
countably infinite subsets of [ϑ,∞) and a discrete measure
ν ∈ Pϑ(R+) such that

(i) At(ν) = Ω0,
(ii) Ω0 =

⊔∞
j1=1Ωj1 and Ωj1,...,jk =

⊔∞
jk+1=1Ωj1,...,jk ,jk+1 for all

(j1, . . . , jk ) ∈ Nk and k ∈ N,
(iii)

∫
Ωx

sk+ndν(s) <∞ and
∫
Ωx

sk+n+1dν(s) =∞ for all x ∈ Nk

and k ∈ Z+.
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Zenon Jabłoński Subnormal operators whose nth powers have trivial domain



Problem
Solution

Proof

Proof of Lemma

Ω0 =
⊔

x∈X

∆x =
∞⊔

k=0

⊔
x∈Nk

∆x with ∆x = At(νx) for every x ∈X

and

ν =
∞∑

k=0

∑
x∈Nk

νx .
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Proof of Lemma

Ω0 =
∞⊔

j ′1=1

Ωj ′1
,

if l > 2, then Ωj1,...,jl−1 =
∞⊔

j ′l =1

Ωj1,...,jl−1,j ′l
,

{tj ′1}
∞
j ′1=1 is an injective sequence in ∆0 such that ∆0 = {tj ′1 : j ′1 ∈ N},

if l > 2, then {tj1,...,jl−1,j ′l
}∞j ′l =1 is an injective sequence in

⊔
x∈Xl−1

∆x

such that {tj1,...,jl−1} t∆j1,...,jl−1 = {tj1,...,jl−1,j ′l
: j ′l ∈ N},


Ωj1,...,jl = {tj1,...,jl} t∆j1,...,jl t

∞⊔
p=1

∞⊔
(j ′l+1,...,j

′
l+p)∈Np

∆j1,...,jl ,j ′l+1,...,j
′
l+p
.
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Lemma

Lemma

Let T = (V ,E) be an extremal directed tree. Suppose n ∈ N,
ϑ ∈ [1,∞) and w ∈ V. Then there exist systems
{λv}v∈Des(w)◦ ⊆ (0,∞) and {µv}v∈Des(w) ⊆ Pϑ(R+) such that
for every u ∈ Des(w),

µu(∆) =
∑

v∈Chi(u)

λ2
v

∫
∆

1
s

dµv (s) for every ∆ ∈ B(R+), (2)

∫ ∞
0

sndµu(s) <∞ and
∫ ∞

0
sn+1dµu(s) =∞. (3)
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Proof of Lemma

Set µ0 = ν. Then µ0 ∈ Pϑ(R+). For a given k ∈ N and
(j1, . . . , jk ) ∈ Nk , we define the Borel measure µj1,...,jk on R+ and
λj1,...,jk ∈ (0,∞) by

µj1,...,jk (∆) =

∫
∆∩Ωj1,...,jk

sk dν(s)∫
Ωj1,...,jk

sk dν(s)
, ∆ ∈ B(R+),

λj1,...,jk =


√∫

Ωj1,...,jk
sk dν(s) if k = 1,√ ∫

Ωj1,...,jk
sk dν(s)∫

Ωj1,...,jk−1
sk−1dν(s) if k > 2.
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Lemma

Lemma

Let T = (V ,E) be an extremal directed tree, w ∈ V ◦,
x = par(w) and n ∈ N. Suppose that {λv}v∈Des(w)◦ ⊆ (0,∞)
and {µv}v∈Des(w) ⊆ P1(R+) satisfy (2) and (3) for every
u ∈ Des(w). Then there exist {λv}v∈Des(x)◦\Des(w)◦ ⊆ (0,∞)
and {µv}v∈Des(x)\Des(w) ⊆ P1(R+) such that {λv}v∈Des(x)◦ and
{µv}v∈Des(x) satisfy (2) and (3) for all u ∈ Des(x).
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