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Problem

A weighted shifts on a directed trees

@ Let .7 = (V, E) be a directed tree.
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A weighted shifts on a directed trees

@ Let .7 = (V, E) be a directed tree.

@ Let /2(V) be the space of all square summable function on
V with a scalar products

=Y f(u)g(u), f,geP(V).

ueV
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Problem

A weighted shifts on a directed trees

@ Let .7 = (V, E) be a directed tree.

@ Let /2(V) be the space of all square summable function on
V with a scalar products

=Y f(u)g(u), f,geP(V).

ueV

@ For uc V, let us define e, € /2(V) by

eu(v) = 1 ifu=v,
R ) if uv.
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Problem

A weighted shifts on a directed trees

@ Let .7 = (V, E) be a directed tree.

@ Let /2(V) be the space of all square summable function on
V with a scalar products

=Y f(u)g(u), f,geP(V).

ueV

@ For uc V, let us define e, € /2(V) by

eu(v) = 1 ifu=v,
R ) if uv.

@ {ey}uecv is an orthonormal basis in /2( V).
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Problem

A weighted shifts on a directed trees

@ For afamily A = {\/},cve C C let us define an operator Sy
in (V) by

D(Sy) = {f € (V): Azf e 3(V)},
S)\f:/lyf, fGD(S)\),
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Problem

A weighted shifts on a directed trees

@ For afamily A = {\/},cve C C let us define an operator Sy
in (V) by

D(Sy) = {f € (V): Azf e 3(V)},
S)\f:/lyf, fGD(S)\),

@ where A4 is define on functions f: V — C by

Av - f(par(v)) ifve Ve,
0 if v =root.

(A7f)(v) = {
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Problem

A weighted shifts on a directed trees

@ For afamily A = {\/},cve C C let us define an operator Sy
in (V) by

D(Sy) = {f € (V): Azf e 3(V)},
S)\f:/lyf, fGD(S)\),

@ where A4 is define on functions f: V — C by

Av - f(par(v)) ifve Ve,
0 if v =root.

(A7f)(v) = {

@ An operator S, is called a weighted shift on a directed tree
7 with weights {\, }ycve.
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Problem

Problems

@ Is it true that for every integer n > 1, there exists a
subnormal weighted shift on a directed tree whose nth
power is densely defined and the domain of its (n+ 1)th
power is trivial?
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Problem

Problems

@ Is it true that for every integer n > 1, there exists a
subnormal weighted shift on a directed tree whose nth
power is densely defined and the domain of its (n+ 1)th
power is trivial?

@ A similar problem can be stated for composition operators
in [2-spaces.
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Problem

Characterization

Theorem

Let Sy be a w.s. on a countably infinite directed tree
T = (V, E) with weights X\ = {\,}ycv-. Suppose 3 {jy}ycy Of
Borel probability measures on R, and {¢,},cv C R such that

1
h @)= Y NP [ gdinls) +eufo(2), A€ BR4), ue .
veChi(u) 4

(1)

Then the following two assertions hold:
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Let Sy be a w.s. on a countably infinite directed tree
T = (V, E) with weights X\ = {\,}ycv-. Suppose 3 {jy}ycy Of
Borel probability measures on R, and {¢,},cv C R such that

1
h @)= Y NP [ gdinls) +eufo(2), A€ BR4), ue .
veChi(u) 4

(1)
Then the following two assertions hold':
() if Sy is densely defined, then Sy is subnormal,
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Problem

Characterization

Theorem

Let Sy be a w.s. on a countably infinite directed tree
T = (V, E) with weights X\ = {\,}ycv-. Suppose 3 {jy}ycy Of
Borel probability measures on R, and {¢,},cv C R such that

1
h @)= Y NP [ gdinls) +eufo(2), A€ BR4), ue .
veChi(u) 4

(1)

Then the following two assertions hold':
() if Sy is densely defined, then Sy is subnormal,

(i) ifne N, then SY is densely defined if and only if

Jo~ 8" duu(s) < oo for every u € V such that Chi(u) has at
least two vertices.
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Problem

Suppose . is a finite Borel measure on R such that
Jo* s"du(s) < oo for some n € N. Then [;* skdu(s) < oo for
every k € N such that k < n.
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Problem

Characterization

Lemma

Let Sy be a weighted shift on a directed tree 7 = (V, E) with
weights A = {\,},cve and let n € N. Then the following two
conditions are equivalent:

Moreover, if there exist a family {y., },cv of Borel probability
measures on R, and a family {e,},cv C R which satisfy (1),
then (i) is equivalent to
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Problem

Characterization

Lemma

Let Sy be a weighted shift on a directed tree 7 = (V, E) with
weights A = {\,},cve and let n € N. Then the following two
conditions are equivalent:

(i) D(S3) = {0},

Moreover, if there exist a family {y., },cv of Borel probability
measures on R, and a family {e,},cv C R which satisfy (1),
then (i) is equivalent to
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Problem

Characterization

Lemma

Let Sy be a weighted shift on a directed tree 7 = (V, E) with
weights A = {\,},cve and let n € N. Then the following two
conditions are equivalent:

(i) D(S3) = {0},
(i) ey ¢ D(SY) foreveryu e V.
Moreover, if there exist a family {y., },cv of Borel probability

measures on R, and a family {e,},cv C R which satisfy (1),
then (i) is equivalent to
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Problem

Characterization

Lemma

Let Sy be a weighted shift on a directed tree 7 = (V, E) with
weights A = {\,},cve and let n € N. Then the following two
conditions are equivalent:

(i) D(S3) = {0},

(i) ey ¢ D(SY) foreveryu e V.
Moreover, if there exist a family {y., },cv of Borel probability
measures on R, and a family {e,},cv C R which satisfy (1),
then (i) is equivalent to

(iii) [o° 8"dpu(s) = oo foreveryu e V.
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Solution

Observation

If there exists a weighted shift Sy on a directed tree .7 with
nonzero weights such that

S, is densely defined and D(S3) = {0},

then the directed tree .7 is extremal.
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Solution

Main theorem

Suppose 7 = (V, E) is an extremal directed tree and n € N.
Then there exists a subnormal weighted shift Sy on 7 with
nonzero weights such that S is densely defined and
D(S3H) = {0}.
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Solution

Main theorem

Suppose 7 = (V, E) is an extremal directed tree and n € N.
Then there exists a subnormal weighted shift Sy on 7 with
nonzero weights such that S is densely defined and
D(S3H) = {0}.

If A is an operator such that D(A") = {0} for some positive
integer n, then A is injective.
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Solution

Main corollary

For every n € N, there exists an unbounded subnormal
composition operator C in an L2-space over o-finite measure
space such that C" is densely defined and D(C"*') = {0}.
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Ifm e N and A is a countable subset of R such that
sup A = oo, then there exists a finite discrete Borel measure
on R, such that At(u) = A, [,° s™du(s) < oo and

Jo© s™du(s) = oco.
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Corollary

Ifme N, ¥ € Ry and E is a countably infinite subset of R,
then there exists a finite discrete Borel measure i, on R, such
that At(w) is a countably infinite subset of [0, c0),

ENAt(p) =2, [y~ sMdu(s) < oo and [;° s™du(s) = .
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Lemma

Set 2 = Uy o Zk, Where 2 = |_|j'.‘:(J N with N° = {0}.

Lemma

Ifne N and ¥ € Ry, then there exists a family {vx}xc 2 of finite
discrete Borel measures on R such that
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Lemma

Set 2 = Uy o Zk, Where 2 = |_|j'.‘:(J N with N° = {0}.

Lemma

Ifne N and ¥ € Ry, then there exists a family {vx}xc 2 of finite
discrete Borel measures on R such that
(i) {At(vx)}xe2 are pairwise disjoint countably infinite
subsets of [0, 00),
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Lemma

Set 2 = Uy o Zk, Where 2 = |_|j'.‘:(J N with N° = {0}.

Lemma

Ifne N and ¥ € Ry, then there exists a family {vx}xc 2 of finite
discrete Borel measures on R such that
(i) {At(vx)}xe2 are pairwise disjoint countably infinite
subsets of [0, 00),
(i) Y xenk Jo~ S dux(s) <2k forallk € Z..,
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Lemma

Set 2 = Uy o Zk, Where 2 = |_|j'.‘:(J N with N° = {0}.

Lemma

Ifne N and ¥ € Ry, then there exists a family {vx}xc 2 of finite
discrete Borel measures on R such that

(i) {At(vx)}xe2 are pairwise disjoint countably infinite
subsets of [0, 00),

(i) Y xenk Jo~ S dux(s) <2k forallk € Z..,
(ill) fo° sk duy(s) = oo forall x e Nk and all k € Z...
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Lemma

Lemma

Ifne N andd € [1,00), then there exist a family {2x}xec 2 of
countably infinite subsets of [¢, c0) and a discrete measure
v € Py(Ry) such that
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Lemma

Lemma

Ifne N andd € [1,00), then there exist a family {2x}xec 2 of
countably infinite subsets of [¢, c0) and a discrete measure
v € Py(Ry) such that

(i) At(v) = (2,
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Lemma

Lemma

Ifne N andd € [1,00), then there exist a family {2x}xec 2 of
countably infinite subsets of [¢, c0) and a discrete measure
v € Py(Ry) such that

(i) At(v) = £,
(ii) $20 = I_lﬁo:1 )3 and Qoo = Ll;i1:1 “(2/17-~Jk,/k+1 for all
(i,---,jx) € NKand k € N,
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Lemma

Lemma

Ifne N andd € [1,00), then there exist a family {2x}xec 2 of
countably infinite subsets of [¢, c0) and a discrete measure
v € Py(Ry) such that
(i) At(v) = 929,
(ii) $20 = I_lﬁo:1 )3 and Qoo = Ll;i1:1 “(2/17-~Jk,/k+1 for all
(i,---,jx) € NKand k € N,
(iil) [, $¥T"dv(s) < oo and [, s*t™1du(s) = oo for all x € N
andk € Z..
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Proof of Lemma

Q0= || Ax=|] || Axwith Ax = At(vy) for every x € 2°

xeZ k=0 xcNk
and
[oe)
=3 Y
k=0 xeNk
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Proof of Lemma

(20_|_|r2,

Ji=1

If I > 27 then Qj17"'7/ |_| ]17 7!/717]‘[/’
ji=1
I

{1‘1-1/ }Ef’:1 is an injective sequence in Ap such that Ay = {tj1/ . fi € N},

if />2,then {t, ; ,x}7,isaninjective sequencein | | Ax

XEZ_4
SUCh that {01,...7j171} U Aj17"'7j/71 = {tj1r“7jl—1)j[/ jl/ € N}’
o0 o0
9117 Y/ {1]1 7]/} U Ah I_l |_| |_| Aj17---7j/7j/,+17---7j//+p'

p:1 (j[l+1 7"'7j//+p)eNp
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Lemma

Lemma

Let 7 = (V, E) be an extremal directed tree. Suppose n € N,
¥ € [1,00) and w € V. Then there exist systems

{)‘V}veDes(w)O (0 oo) and {Mv}veDes (w) - {Pﬁ(R—f—) such that
for every u € Des(w),

= Y >\2/ —duy(s) forevery A € B(Ry), (2)
veChi(u)

/ s"dpy(s) < oo and / s dpuy(s) = oo (3)
0 0
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Proof of Lemma

Set g = v. Then pg € Py(Ry). For a given k € N and
(s, ---,jx) € NX, we define the Borel measure Hj....j. On Ry and
)\j P € (0, OO) by

1)k

i (A) = =k A e B(R,),
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Lemma

Let 7 = (V, E) be an extremal directed tree, w € V°,

x = par(w) and n € N. Suppose that {\y},cpes(w)> < (0,0)
and { v }vepes(w) € P1(Ry.) satisfy (2) and (3) for every

u € Des(w). Then there exist {\}cpes(x)o\Des(w)> < (0,0)
and { v }vepes(x)\Des(w) S P1(R+) such that {\y}ycpes(x)> and
{kv}vepes(x) satisfy (2) and (3) for all u € Des(x).
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