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Aim

∗ To present an overview of the concept of optimal domain for an
operator on a function space.

∗ To discuss some of its applications: to classical inequalities
(Sobolev, Hausdorff-Young), and to the extension of operators
(Cesàro operator on Hardy spaces).

1 Representation versus extension

2 Three examples
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Representation versus extension

Riesz theorem

Theorem (F. Riesz, 1909)
Let:
(a) K be a compact Hausdorff space.
(b) C(K ) be the space of continuous functions over K .
(c) Λ: C(K )→ C be a positive linear functional.

Then, there exists a regular, Borel measure µ on K such that

Λ(f ) =

∫
K

f dµ, f ∈ C(K ).
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Representation versus extension

Riesz theorem revisited

Theorem (Extension version)
Let:
(a) K be a compact Hausdorff space.
(b) C(K ) be the space of continuous functions over K .
(c) Λ: C(K )→ C be a positive linear functional.

Then, there exists a unique, regular, Borel measure µ on K such that

C(K )
Λ

- C

?

L1(µ)

Iµ
��

�
��

��*

where C(K ) ⊆ L1(µ) and Iµ is the integration operator on L1(µ).
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Representation versus extension

Vector analog

Theorem (Bartle, Dunford & Schwartz, 1955)

Let:

(a) K be a compact Hausdorff space and C(K ) be the space of continuous
functions over K .

(b) X be a Banach space.

(c) T : C(K )→ X a weakly compact operator.

Then, there exists
ν : Bo(K )→ X

a countably additive, X–valued measure on the Borel sets of K such that

Tf =

∫
K

f dν, f ∈ C(K ).

Note: a vector integration theory is needed.
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Representation versus extension

BDS theorem revisited

Theorem (Extension version)

Let:

(a) K be a compact Hausdorff space and C(K ) be the space of continuous
functions over K .

(b) X be a Banach space.

(c) T : C(K )→ X a weakly compact operator.

Then, there exists ν : Bo(K )→ X such that

C(K )
Λ

- X

?

L1(ν)

Iν
�
��

�
��
�*

where C(K ) ⊆ L1(ν) and Iν is the BDS–integration operator on L1(ν).
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Representation versus extension

A general extension result

Theorem (C. & Ricker)

Let E be a Banach function space over finite measure space. If T : E → X a
linear operator satisfying

fn ↑ f in E ⇒ T (fn)→ T (f ) weakly in X,

then, there exists an extension of T :

E
T

- X

j
?

L1(ν)

Iν
��

�
��

��*

where L1(ν) is the largest domain where order bounded increasing
sequences are norm convergent.
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Representation versus extension

The L1-space

L1(ν) is a Banach space of scalar measurable functions.

Examples:

L1([0,1], L1(Rn), weighted L1-spaces.
All Lp-spaces for 1 ≤ p <∞, including L2!
Lorentz Lp,q-spaces, Orlicz spaces Lφ, Marcinkiewicz spaces
M(ϕ), Lorentz Λ-spaces, spaces Exp Lp of exponential
integrability, . . .

Theorem (C.)

Any Banach space of measurable functions where

order bounded increasing sequences are norm convergent

is L1 of some vector measure.
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Representation versus extension

Optimal extension

Extension diagram:

E
T

- X

j
?

Z

T̃
��

��
�
��*

Problem: to find the largest space Z within a certain class of
spaces.
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Three examples

Three examples

We present 3 examples of application of optimal domains:

∗ The Sobolev embedding

∗ The Hausdorff-Young inequality

∗ The Cesàro operator on Hardy spaces
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Three examples

1. Optimal Sobolev embeddings
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Three examples

Sobolev embedding

Theorem (Sobolev, 1938)

Let Ω ⊆ Rn be a bounded domain and 1 ≤ p < n. There exist C > 0
such that

‖u‖Lq(Ω) ≤ C ‖ |∇u| ‖Lp(Ω), u ∈ C1
0(Ω),

where q := np
n−p . Note that: q > p ⇒ Lq(Ω) ( Lp(Ω).

Problem: Is there a norm ‖ · ‖Y (Ω), smaller than ‖ · ‖Lp(Ω), such that

‖u‖Lq(Ω) ≤ C ‖ |∇u| ‖Y (Ω), u ∈ C1
0(Ω)?
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Three examples

Refining the inequality ≡ Extending the embedding

We write the inequality as the Sobolev’s embedding

W 1,p
0 (Ω) ↪→ Lq(Ω).

Problem I: Find a space Y (Ω), larger than Lp(Ω), such that

W 1,p
0 (Ω) - Lq(Ω)

?

W 1
0 Y (Ω)

��
��

�
��*

Problem II: Find the largest of such spaces.
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Three examples

Optimal embeddings

Within the class of Lp-spaces

W 1
0 L

nq
n+q (Ω) ↪→ Lq(Ω) is optimal.

Within the class of Lorentz Lp,q-spaces

W 1
0 L

nq
n+q ,q(Ω) ↪→ Lq(Ω) is optimal.

Within the class of Marzinkiewicz spaces

W 1
0 L

nq
n+q ,∞(Ω) ↪→ Lq,∞(Ω) is optimal.
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Three examples

A larger class of spaces

Rearrangement invariant (r.i.) spaces: spaces of measurable functions
where membership (of a function) is determined by size, not by shape

Examples: Lp-spaces, Lorentz Lp,q-spaces, Orlicz spaces Lφ,
Marcinkiewicz spaces M(ϕ), Lorentz Λ-spaces, spaces, Exp Lp of
exponential integrability, . . .

Is there a Sobolev type inequality

‖u‖X(Ω) ≤ C ‖ |∇u| ‖Y (Ω), u ∈ C1
0(Ω)

obtained by substituting the spaces Lp(Ω) and Lq(Ω) by other r.i. spaces
X (Ω),Y (Ω)?
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Three examples

Reduction to a one dimensional problem

Theorem (Edmunds, Kerman & Pick)
Let X, Y be r.i. spaces. (for example X = Lq ,Y = Lp)

Then:
‖u‖X(Ω) ≤ C‖ |∇u| ‖Y (Ω)

for all u ∈ C1
0(Ω)

 ⇐⇒


‖Tf‖X ≤ K‖f‖Y

for all f ∈ Y

where T is the kernel operator associated with Sobolev’s inequality

t ∈ [0,1] 7−→ Tf (t) :=

∫ 1

t
f (s)s

1
n−1 ds, f : [0,1]→ R.
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Three examples

Optimal Sobolev embedding

We apply the optimal extension procedure to T : Y → X :

Y
T

- X

j
?

[T ,X ]ri

T
�
��

�
��
�*

[T ,X ]ri is the optimal rearrangement invariant domain for T with values
in X .

Via the result of Edmunds, Kerman & Pick we obtain the optimal
rearrangement invariant Sobolev inequality

‖u‖X(Ω) ≤ C‖ |∇u| ‖[T ,X ]ri(Ω), u ∈ C1
0 (Ω).
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Three examples

A compactness theorem

Theorem (Rellich 1930; Kondrachov 1945)
Let 1 ≤ p < n. The embedding

W 1,p
0 (Ω) −→ Lq(Ω)

is compact whenever q < np
n−p

Q: Under what conditions on the r.i. spaces X ,Y we have
compactness of the embedding

W 1
0 Y (Ω) ↪→ X (Ω)?

Q: When is it compact the optimal embedding

W 1
0 [T ,X ]ri(Ω) ↪→ X (Ω)?
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Three examples

An optimal compactness theorem

Theorem (Pustylnik / C. & Ricker / Kerman & Pick)

W 1
0 Y (Ω) ↪→ X (Ω)

is compact

}
⇐⇒

{
T : Y → X
is compact

Corollary
The compactness of optimal rearrangement invariant Sobolev
embedding

W 1
0 [T ,X ]ri(Ω) ↪→ X (Ω)

depends on the relation between the fundamental function of the
spaces X and Ln′

ϕX (t) := ‖χ[0,t]‖X , ϕLn′ = t1/n′
.
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Three examples

2. Optimal Hausdorff-Young inequality
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Three examples

Hausdorff-Young inequality

Theorem (Young, 1913; Hausdorff, 1923)

Let 1 ≤ p ≤ 2 and 1/p + 1/p′ = 1. The Fourier transform maps

F : Lp(T)→ `p
′
(Z),

and satisfies
‖F(f )‖p′ ≤ ‖f‖p, f ∈ Lp(T).

Can we extend F to a larger space of measurable functions Fp(T)
such that

F : Fp(T)→ `p
′
(Z)

still is bounded?
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Three examples

Optimal Hausdorff-Young inequality

Theorem (Mockenhaupt & Ricker)
Let 1 < p ≤ 2 and F be the Fourier transform.
(a) The vector measure mp

A ∈ Bo(T) 7−→ mp(A) := F(χA) ∈ `p′
(Z),

is countably additive. Set Fp(T) := L1(mp).
(b) The Hausdorff-Young inequality can be extended to functions in

Fp(T):
‖F(f )‖p′ ≤ 4‖f‖Fp(T), f ∈ Fp(T).

(c) Fp(T) is the largest Banach function space on T with the above
properties (& order bounded increasing seq. are convergent).
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Three examples

Problem

The space Fp(T) can be alternatively described as:

Fp(T) =

{
f ∈ L1(T) : F(fχA) ∈ `p′

(Z), for all A ∈ Bo(T)

}
.

This solves a question by R. E. Edwards in 1967 in his book “Fourier
Series”:

“What can be said about the family Φp(T) of functions
f ∈ L1(T) having the property that F(fχA) lies in `p

′
(Z) for all

A ∈ Bo(T)?”

The solution is
Φp(T) = Fp(T) = L1(mp).
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Three examples

Optimal Hausdorff-Young inequality

Relation between Lp(T) and the extended space Fp(T):

In general, Lp(T) ⊆ Fp(T), for 1 < p ≤ 2.

For p = 2 we have L2(T) = F2(T).

For 1 < p < 2 we have

Lp(T) ( Fp(T) ( L1(T).

The proof that Lp(T) ( Fp(T) is highly technical (it is based on
Fourier restriction theory and Salem measures).
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Three examples

3. Extension of the Cesàro operator
on Hardy spaces
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Three examples

Cesàro operator on Hardy spaces

∗ The Cesàro operator on analytic functions on the unit disc D:

f (z) =
∞∑

n=0

anzn 7−→ C(f )(z) :=
∞∑

n=0

( 1
n + 1

n∑
k=0

ak

)
zn.

∗ The Hardy space H2(D):

H2(D) =

{
f (z) =

∞∑
n=0

anzn :
∞∑

n=0

|an|2 <∞
}
.

∗ Hardy’s inequality (1920):

∞∑
n=1

∣∣∣1
n

n∑
k=1

ak

∣∣∣2 ≤ 22
∞∑

n=1

|an|2.
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Three examples

Problem

∗ Due to Hardy’s inequality, the Cesàro operator is bounded on
H2(D):

C : H2(D)→ H2(D).

∗ Can we extend C to a larger space of analytic functions X(D)
such that

C : X(D)→ H2(D)

still is bounded?

∗ Possible candidate:

Hp(D),1 ≤ p < 2, since H2(D) ( Hp(D) & C : Hp(D)→ Hp(D).
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Three examples

Cesàro operator on Hardy spaces: extensions

∗ Weighted Hardy space: for ψ ∈ H(D) with log |ψ| ∈ L1(T).

H2(ψ) :=
{

f ∈ H(D) : f = ψ−1/2 · g, for g ∈ H2(D)
}
.

∗ H2(D) ( H2(ψ) ⇐⇒ ψ is bounded, ψ−1 is unbounded.

Theorem (C. & Ricker)

C : H2(ψ)→ H2(D)
boundedly

}
⇐⇒

 z ∈ D 7→
∫ z

0

ψ−1/2(ξ)

1− ξ
dξ

belongs to BMOA.
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Three examples

Cesàro operator on Hardy spaces: optimal extension

∗ Non-comparable extensions of C : H2(D)→ H2(D).

∗ Does there exists the largest one?

Theorem (C. & Ricker)
The space

[ C,H2] :=

{
f ∈ H(D) :

∫ 2π

0

∫ 1

0

|f (reiθ)|2

|1− reiθ|2
(1− r) dr dθ <∞

}
.

is the optimal extension domain for the Cesàro operator on H2(D):

C : [ C,H2]→ H2(D)

boundedly and optimally.
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Three examples
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Thank you
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