Optimal domains for operators on function spaces

Guillermo P. Curbera

Universidad de Sevilla, Spain

December 21, 2016

Recent Advances in Operator Theory and Operator Algebras

> Indian Statistical Institute Bangalore, India

Guillermo P. Curbera (Univ. Sevilla)

Optimal domains for operators

- * To present an overview of the concept of optimal domain for an operator on a function space.
- To discuss some of its applications: to classical inequalities (Sobolev, Hausdorff-Young), and to the extension of operators (Cesàro operator on Hardy spaces).
- Representation versus extension

2 Three examples

Riesz theorem

Theorem (F. Riesz, 1909)

Let:

- (a) K be a compact Hausdorff space.
- (b) C(K) be the space of continuous functions over K.
- (c) $\Lambda: C(K) \to \mathbb{C}$ be a positive linear functional.

Then, there exists a regular, Borel measure μ on K such that

$$\Lambda(f) = \int_{\mathcal{K}} f \, d\mu, \qquad f \in \mathcal{C}(\mathcal{K}).$$

Riesz theorem revisited

Theorem (Extension version)

Let:

- (a) K be a compact Hausdorff space.
- (b) C(K) be the space of continuous functions over K.
- (c) $\Lambda: C(K) \to \mathbb{C}$ be a positive linear functional.

Then, there exists a unique, regular, Borel measure μ on K such that

where $\mathcal{C}(K) \subseteq L^1(\mu)$ and I_{μ} is the integration operator on $L^1(\mu)$.

Vector analog

Theorem (Bartle, Dunford & Schwartz, 1955)

Let:

- (a) *K* be a compact Hausdorff space and C(K) be the space of continuous functions over *K*.
- (b) X be a Banach space.
- (c) $T: C(K) \rightarrow X$ a weakly compact operator.

Then, there exists

 $\nu \colon \mathcal{B}_o(K) \to X$

a countably additive, X-valued measure on the Borel sets of K such that

$$Tf = \int_{K} f \, d\nu, \quad f \in \mathcal{C}(K).$$

Note: a vector integration theory is needed.

BDS theorem revisited

Theorem (Extension version)

Let:

- (a) *K* be a compact Hausdorff space and C(K) be the space of continuous functions over *K*.
- (b) X be a Banach space.
- (c) $T: C(K) \rightarrow X$ a weakly compact operator.

Then, there exists $\nu \colon \mathcal{B}_o(K) \to X$ such that

where $C(K) \subseteq L^1(\nu)$ and I_{ν} is the BDS–integration operator on $L^1(\nu)$.

A general extension result

Theorem (C. & Ricker)

Let E be a Banach function space over finite measure space. If $T : E \to X$ a linear operator satisfying

 $f_n \uparrow f \text{ in } E \quad \Rightarrow \quad T(f_n) \to T(f) \text{ weakly in } X,$

then, there exists an extension of T:

where $L^1(\nu)$ is the largest domain where order bounded increasing sequences are norm convergent.

The L^1 -space

- $L^{1}(\nu)$ is a Banach space of scalar measurable functions.
- Examples:
 - $L^1([0,1], L^1(\mathbb{R}^n))$, weighted L^1 -spaces.
 - All L^p -spaces for $1 \le p < \infty$, including L^2 !
 - Lorentz L^{p,q}-spaces, Orlicz spaces L^φ, Marcinkiewicz spaces M(φ), Lorentz Λ-spaces, spaces Exp L^p of exponential integrability, ...

Theorem (C.)

Any Banach space of measurable functions where

order bounded increasing sequences are norm convergent

is L¹ of some vector measure.

Optimal extension

Extension diagram:

Problem: to find the largest space Z within a certain class of spaces.

Three examples

We present 3 examples of application of optimal domains:

- * The Sobolev embedding
- * The Hausdorff-Young inequality
- * The Cesàro operator on Hardy spaces

1. Optimal Sobolev embeddings

Sobolev embedding

Theorem (Sobolev, 1938)

Let $\Omega \subseteq \mathbb{R}^n$ be a bounded domain and $1 \le p < n$. There exist C > 0 such that

$$\|u\|_{L^q(\Omega)} \leq C \, \| \, |
abla u| \, \|_{L^p(\Omega)}, \quad u \in \mathcal{C}^1_0(\Omega),$$

where $q := \frac{np}{n-p}$. Note that: $q > p \Rightarrow L^q(\Omega) \subsetneq L^p(\Omega)$.

• Problem: Is there a norm $\|\cdot\|_{Y(\Omega)}$, smaller than $\|\cdot\|_{L^p(\Omega)}$, such that $\|u\|_{L^q(\Omega)} \leq C \||\nabla u|\|_{Y(\Omega)}, \quad u \in C_0^1(\Omega)$?

Refining the inequality \equiv Extending the embedding

• We write the inequality as the Sobolev's embedding

$$W_0^{1,p}(\Omega) \hookrightarrow L^q(\Omega).$$

• Problem I: Find a space $Y(\Omega)$, larger than $L^{p}(\Omega)$, such that

• Problem II: Find the largest of such spaces.

Optimal embeddings

• Within the class of L^p-spaces

 $W_0^1 L^{\frac{nq}{n+q}}(\Omega) \hookrightarrow L^q(\Omega)$ is optimal.

• Within the class of Lorentz L^{p,q}-spaces

 $W_0^1 L^{\frac{nq}{n+q},q}(\Omega) \hookrightarrow L^q(\Omega)$ is optimal.

• Within the class of Marzinkiewicz spaces

 $W_0^1 L^{\frac{nq}{n+q},\infty}(\Omega) \hookrightarrow L^{q,\infty}(\Omega)$ is optimal.

A larger class of spaces

 Rearrangement invariant (r.i.) spaces: spaces of measurable functions where membership (of a function) is determined by size, not by shape

- Examples: L^p-spaces, Lorentz L^{p,q}-spaces, Orlicz spaces L^φ, Marcinkiewicz spaces M(φ), Lorentz Λ-spaces, spaces, Exp L^p of exponential integrability, ...
- Is there a Sobolev type inequality

 $\|u\|_{X(\Omega)} \leq C \| |\nabla u| \|_{Y(\Omega)}, \quad u \in \mathcal{C}_0^1(\Omega)$

obtained by substituting the spaces $L^{p}(\Omega)$ and $L^{q}(\Omega)$ by other **r.i. spaces** $X(\Omega), Y(\Omega)$?

Reduction to a one dimensional problem

Theorem (Edmunds, Kerman & Pick) Let X, Y be r.i. spaces. (for example $X = L^q, Y = L^p$) Then: $\|u\|_{X(\Omega)} \leq C \| |\nabla u| \|_{Y(\Omega)}$ for all $u \in C_0^1(\Omega)$ \iff $\begin{cases} \|Tf\|_X \leq K \|f\|_Y \\ for all f \in Y \end{cases}$

where T is the kernel operator associated with Sobolev's inequality

$$t\in [0,1]\longmapsto Tf(t):=\int_t^1 f(s)s^{rac{1}{n}-1}\,ds,\qquad f\colon [0,1] o\mathbb{R}.$$

Optimal Sobolev embedding

• We apply the optimal extension procedure to $T: Y \rightarrow X$:

 $[T, X]^{ri}$ is the optimal rearrangement invariant domain for T with values in X.

• Via the result of Edmunds, Kerman & Pick we obtain the optimal rearrangement invariant Sobolev inequality

 $\|u\|_{X(\Omega)} \leq C \| |\nabla u| \|_{[T,X]^{ri}(\Omega)}, \quad u \in C_0^1(\Omega).$

A compactness theorem

Theorem (Rellich 1930; Kondrachov 1945) Let $1 \le p < n$. The embedding

$$W_0^{1,p}(\Omega) \longrightarrow L^q(\Omega)$$

is compact whenever $q < \frac{np}{n-p}$

• Q: Under what conditions on the r.i. spaces *X*, *Y* we have compactness of the embedding

 $W_0^1 Y(\Omega) \hookrightarrow X(\Omega)$?

• Q: When is it compact the optimal embedding $W_0^1[T, X]^{ri}(\Omega) \hookrightarrow X(\Omega)?$

An optimal compactness theorem

Theorem (Pustylnik / C. & Ricker / Kerman & Pick)

$$egin{array}{c} W^1_0 \, Y(\Omega) \hookrightarrow X(\Omega) \ is \ compact \end{array} \Big\} \quad \Longleftrightarrow \quad \left\{ egin{array}{c} T \colon Y o X \ is \ compact \end{array}
ight\}$$

Corollary

The compactness of optimal rearrangement invariant Sobolev embedding

$$W_0^1[T,X]^{ri}(\Omega) \hookrightarrow X(\Omega)$$

depends on the relation between the fundamental function of the spaces X and $L^{n'}$

$$\varphi_X(t) := \|\chi_{[0,t]}\|_X, \quad \varphi_{L^{n'}} = t^{1/n'}.$$

Guillermo P. Curbera (Univ. Sevilla)

2. Optimal Hausdorff-Young inequality

Hausdorff-Young inequality

Theorem (Young, 1913; Hausdorff, 1923) Let $1 \le p \le 2$ and 1/p + 1/p' = 1. The Fourier transform maps $\mathcal{F} \colon L^p(\mathbb{T}) \to \ell^{p'}(\mathbb{Z}),$

and satisfies

$$\|\mathcal{F}(f)\|_{p'} \leq \|f\|_{p}, \qquad f \in L^{p}(\mathbb{T}).$$

• Can we extend \mathcal{F} to a **larger** space of measurable functions $\mathbf{F}^{\rho}(\mathbb{T})$ such that

$$\mathcal{F}\colon \mathbf{F}^{p}(\mathbb{T}) o \ell^{p'}(\mathbb{Z})$$

still is bounded?

Optimal Hausdorff-Young inequality

Theorem (Mockenhaupt & Ricker)

Let $1 and <math>\mathcal{F}$ be the Fourier transform.

(a) The vector measure m_p

$${oldsymbol A}\in {\mathcal B}_o({\mathbb T})\longmapsto m_{\!
ho}({oldsymbol A}):={\mathcal F}(\chi_{{oldsymbol A}})\in \ell^{
ho'}({\mathbb Z}),$$

is countably additive. Set $\mathbf{F}^{p}(\mathbb{T}) := L^{1}(m_{p})$.

(b) The Hausdorff-Young inequality can be extended to functions in F^p(T):

$$\|\mathcal{F}(f)\|_{p'} \leq 4\|f\|_{\mathsf{F}^p(\mathbb{T})}, \quad f \in \mathsf{F}^p(\mathbb{T}).$$

(c) F^p(T) is the largest Banach function space on T with the above properties (& order bounded increasing seq. are convergent).

Problem

The space $\mathbf{F}^{p}(\mathbb{T})$ can be alternatively described as:

$$\mathbf{F}^{p}(\mathbb{T}) = \bigg\{ f \in L^{1}(\mathbb{T}) : \mathcal{F}(f\chi_{\mathcal{A}}) \in \ell^{p'}(\mathbb{Z}), \text{ for all } \mathcal{A} \in \mathcal{B}_{o}(\mathbb{T}) \bigg\}.$$

This solves a question by R. E. Edwards in 1967 in his book "Fourier Series":

"What can be said about the family $\Phi^{p}(\mathbb{T})$ of functions $f \in L^{1}(\mathbb{T})$ having the property that $\mathcal{F}(f_{\chi_{A}})$ lies in $\ell^{p'}(\mathbb{Z})$ for all $A \in \mathcal{B}_{o}(\mathbb{T})$?"

The solution is

$$\Phi^{\rho}(\mathbb{T}) = \mathbf{F}^{\rho}(\mathbb{T}) = L^{1}(m_{\rho}).$$

Optimal Hausdorff-Young inequality

Relation between $L^{p}(\mathbb{T})$ and the extended space $\mathbf{F}^{p}(\mathbb{T})$:

- In general, $L^{p}(\mathbb{T}) \subseteq \mathbf{F}^{p}(\mathbb{T})$, for 1 .
- For p = 2 we have $L^2(\mathbb{T}) = \mathbf{F}^2(\mathbb{T})$.
- For 1 < *p* < 2 we have

$$L^{p}(\mathbb{T}) \subsetneq \mathbf{F}^{p}(\mathbb{T}) \subsetneq L^{1}(\mathbb{T}).$$

The proof that $L^{p}(\mathbb{T}) \subsetneq \mathbf{F}^{p}(\mathbb{T})$ is highly technical (it is based on Fourier restriction theory and Salem measures).

3. Extension of the Cesàro operator on Hardy spaces

Cesàro operator on Hardy spaces

 $\ast\,$ The Cesàro operator on analytic functions on the unit disc $\mathbb{D}\colon$

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \longmapsto C(f)(z) := \sum_{n=0}^{\infty} \left(\frac{1}{n+1} \sum_{k=0}^n a_k \right) z^n.$$

* The Hardy space $\mathcal{H}^2(\mathbb{D})$:

$$\mathcal{H}^2(\mathbb{D}) = \bigg\{ f(z) = \sum_{n=0}^{\infty} a_n z^n : \sum_{n=0}^{\infty} |a_n|^2 < \infty \bigg\}.$$

* Hardy's inequality (1920):

$$\sum_{n=1}^{\infty} \left| \frac{1}{n} \sum_{k=1}^{n} a_k \right|^2 \le 2^2 \sum_{n=1}^{\infty} |a_n|^2.$$

Problem

* Due to Hardy's inequality, the Cesàro operator is bounded on $\mathcal{H}^2(\mathbb{D})$:

$$\mathcal{C}\colon \mathcal{H}^2(\mathbb{D}) o \mathcal{H}^2(\mathbb{D}).$$

* Can we extend ${\mathcal C}$ to a larger space of analytic functions $\mathbb{X}(\mathbb{D})$ such that

$$\mathcal{C}\colon\mathbb{X}(\mathbb{D}) o\mathcal{H}^2(\mathbb{D})$$

still is bounded?

* Possible candidate:

 $\mathcal{H}^{\rho}(\mathbb{D}), 1 \leq \rho < 2, \quad \text{since} \quad \mathcal{H}^{2}(\mathbb{D}) \subsetneq \mathcal{H}^{\rho}(\mathbb{D}) \quad \& \quad \mathcal{C} \colon \mathcal{H}^{\rho}(\mathbb{D}) \to \mathcal{H}^{\rho}(\mathbb{D}).$

Cesàro operator on Hardy spaces: extensions

* Weighted Hardy space: for $\psi \in \mathcal{H}(\mathbb{D})$ with $\log |\psi| \in L^1(\mathbb{T})$.

$$\mathcal{H}^2(\psi):=\left\{f\in\mathcal{H}(\mathbb{D}):f=\psi^{-1/2}\cdot g, ext{ for }g\in\mathcal{H}^2(\mathbb{D})
ight\}.$$

* $\mathcal{H}^2(\mathbb{D}) \subsetneq \mathcal{H}^2(\psi) \iff \psi$ is bounded, ψ^{-1} is unbounded.

Theorem (C. & Ricker)

$$\begin{array}{c} \mathcal{C} \colon \mathcal{H}^{2}(\psi) \to \mathcal{H}^{2}(\mathbb{D}) \\ \text{boundedly} \end{array} \right\} \quad \Longleftrightarrow \quad \left\{ \begin{array}{c} z \in \mathbb{D} \mapsto \int_{0}^{z} \frac{\psi^{-1/2}(\xi)}{1-\xi} \, d\xi \\ \text{belongs to BMOA.} \end{array} \right.$$

Cesàro operator on Hardy spaces: optimal extension

- * Non-comparable extensions of $\mathcal{C} \colon \mathcal{H}^2(\mathbb{D}) \to \mathcal{H}^2(\mathbb{D})$.
- * Does there exists the largest one?

Theorem (C. & Ricker)

The space

$$[\mathcal{C}, \mathcal{H}^2] := \left\{ f \in H(\mathbb{D}) : \int_0^{2\pi} \int_0^1 \frac{|f(re^{i\theta})|^2}{|1 - re^{i\theta}|^2} (1 - r) \, dr \, d\theta < \infty \right\}$$

is the optimal extension domain for the Cesàro operator on $\mathcal{H}^2(\mathbb{D})$:

$$\mathcal{C}\colon [\,\mathcal{C},\mathcal{H}^2]\to \mathcal{H}^2(\mathbb{D})$$

boundedly and optimally.

Guillermo P. Curbera (Univ. Sevilla)

References

• G. P. Curbera, W. J. Ricker,

Compactness properties of Sobolev embeddings for rearrangement invariant norms,

TAMS, 2007; Indiana Univ. Math. J., 2007.

- G. Mockenhaupt, W. J. Ricker, *Optimal extension of the Hausdorff-Young inequality*, Crelle's Journal, 2008.
- G. P. Curbera, W. J. Ricker,

Extensions of the classical Cesàro operator on Hardy spaces, Math. Scan., 2011; JMMA, 2013; IEOT, 2015.

Thank you