Contractive Projections on Spaces of Vector Valued Continuous Functions

> Fernanda Botelho University of Memphis

> > December, 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Basics

Let E be a Banach space and $P: E \rightarrow E$ a projection.

(i.e. P is a bounded linear idempotent operator, $P^2 = P$)

Properties:

- Ran(P) is a closed subspace of E
- $Ran(P) \oplus Ker(P) = E$
- ▶ $||P|| \ge 1 \ (P \ne 0)$
- I − P is a projection

Definition

- P is a contractive projection if $\|P\| = 1$
- P is a bi-contractive projection if $\|P\|=1$ and $\|I-P\|=1$

Examples

- 1. Orthogonal projections on a Hilbert space are bi-contractive
- 2. $P: C([0,1]) \rightarrow C([0,1])$ such that P(f)(t) = (1-t)f(0) + tf(1) is a contractive projection. Not bi-contractive
- 3. $P: C([0,1]) \rightarrow C([0,1])$ such that $P(f)(t) = \frac{f(t)+f(1-t)}{2}$ is a bi-contractive projection.
- 4. $P: C(\Omega, E) \to C(\Omega, E)$ such that $P(f)(t) = P_E \frac{f(t) + f(\tau(t))}{2}$, with P_E a contractive projection and τ an order 2 homeomorphism of Ω , is also a contractive projection

Generalized Bi-Circular Projections

Definition Let E be a Banach space.

- ► (Stachó and Zalar, 2004) A projection $P : E \to E$ is bi-circular iff $P + \lambda P^{\perp}$ is an isometry, for every λ of modulus 1
- For (Fösner, Ilišević and Li, 2007) A projection P : E → E is a generalized bi-circular projection (GBP) iff P + λP[⊥] is an isometry, for some λ of modulus 1 (λ ≠ 1)

(with J.Jamison, JMAA 08) GBP's on $C(\Omega)$ are of the form $\frac{I+T}{2}$ with T a surjective isometric reflection, i.e. $T^2 = I$

(with J.Jamison, Acta Sci 09) Similar representation were derived for the generalized bi-circular projections on

- Spaces of Lipschitz functions $(Lip^{\alpha}(X) \text{ and } lip^{\alpha}(X))$
- ▶ Pointed spaces of Lipschitz functions (Lip^α(X; x₀) and lip^α(X; x₀)), endowed with max{L_α(f), ||f||_∞}

Projections: Bi-Circular and Contractive

Generalized bi-circular projections are bi-contractive

Bi-circular projections \subsetneq generalized bi-circular projections

Theorem (Pei-Kee Lin, JMAA 2008) Let *n* be an integer $n \ge 2$ and $\lambda = e^{i\frac{2k\pi}{n}}$ with $k \le n$. Then there is a complex Banach space X and GBP *P* on X such that $P + \lambda(I - P)$ is an isometry on X

 $X = \mathbb{C} \oplus \mathbb{C}$ with a Minkowski-type norm supports GBPs that are not bi-circular

Decomposition of Contractive Projections

Theorem (Friedman and Russo, 1982) Let P be a contractive projection on $C(\Omega)$ then there exist:

A "maximal" family of measures {μ_i} (μ_i ∈ extP*(C(Ω)^{*}₁), μ_i = |μ_i|φ_i with φ_i ∈ L₁(|μ_i|)) such that
1. ||μ_i|| = 1
2. S_{μ_i} ∩ S_{μ_j} = Ø, if i ≠ j
3. For each f ∈ C(Ω), Qf ∈ C_b(∪_iS_{μ_i}) and given by
Qf|<sub>S_{μ_i} = Pf|<sub>S_{μ_i}
</sub></sub>

- $(\mathcal{Q}f|_{\mathcal{S}_{\mu_i}} = (\int f \, d\mu_i)\overline{arphi}_i, \ |\mu_i| a.e. \ on \ \mathcal{S}_{\mu_i})$
- An isometric simultaneous extension operator $T: Q(C(\Omega)) \rightarrow C(\Omega)$, such that

P = TQ

An Example

 $P: C([0,1]) \rightarrow C([0,1])$ such that P(f)(t) = (1-t)f(0) + tf(1) is a contractive projection

P(C([0,1])) = space of all affine maps on [0,1]ext $P^*(C([0,1])_1^*) = \pm \delta_0, \pm \delta_1$ $\delta_0 \in extP^*(C([0,1])^*_1) \leftrightarrow \mu$ (a Borel measure) $\int_{[0,1]} f d\mu = f(0)$ and $P(f)(t) = f(0) \mu$ -a.e. $Q: C([0,1]) \rightarrow C(\{0,1\})$ (essential part of P) $T: C(\{0,1\}) \to C([0,1])$ isometric simultaneous extension.

Bi-contractive Projections

Theorem (Friedman and Russo, 1982) *P* is a bi-contractive projection on $C(\Omega)$ if and only if there exists an isometry *T* on $C(\Omega)$, of order 2, such that $P = \frac{l+T}{2}$ (generalized bi-circular projection or GBP)

A surjective isometry on $C(\Omega)$ is of the form $f \to \lambda f \circ \tau$, with $\lambda : \Omega \to \mathbb{S}^1$ continuous and τ a homeomorphism of Ω (Banach-Stone Theorem)

Homeomorphisms of [0, 1] of order 2 are id and 1-id

Are bi-contractive projections generalized bi-circular projections?

Contractive projections on closed subspaces of $C(\Omega)$

Proposition Let A be a closed subspace of $C(\Omega)$. Let $P : A \to A$ be a contractive projection. Then there exists a measure μ on $\mathcal{B}(\Omega)$ and $\psi : \Omega \to \mathbb{S}^1$ "in A" such that for every $f \in A$.

$$\mathsf{Pf} = \left(\int \mathsf{fd}\mu\right)\cdot\psi\;\;(|\mu|-\mathsf{a.e.})$$

Sketch of the proof:

1. Every functional $\tau \in C(\Omega)^*$ is represented by a "unique" complex measure μ on Ω of bounded variation (with decomposition $\mu = \varphi |\mu|$) s.t.

$$\tau(f) = \int_{\Omega} f d\mu$$

$$\|\tau\| = |\mu|(\Omega) = \sup_{\mathcal{P}} \sum_{i=1}^{n} |\mu(\Omega_i)|$$

2. Let μ be an extreme point of $P^*(A_1^*)$ (Krein-Milman Theorem). $Pf \cdot \varphi$ is constant ($|\mu|$ a.e.) (Atalla). Then $Pf \cdot \varphi = \int fd\mu$. Let $\psi = \overline{\varphi}$

Remarks

• A_1 is weak-* dense in A_1^{**} (Goldstine Theorem) then

$$|\varphi|P^{**}(au) = \left(\int_{\Omega} au d\mu\right) \ ar{arphi},$$

for all $\tau \in A^{**}$

• $P^*\mu = \mu$ implies

$$P^*(|\varphi|\cdot\nu) = \left(\int \bar{\varphi} \, d\nu\right)\mu,$$

for every $\nu \in A^*$

Given two extreme points µ₁ and µ₂ either they differ by a scalar or they have disjoint supports

Examples: Contractive Projections on $C^1([0,1])$

Kawamura, Koshimizu and Miura, KKM-spaces of continuously differentiable functions (2016) $\left(C^1[0,1],\|\cdot\|_{<D>}\right)$,

 $\|f\|_{<D>} = sup_{(r,s)\in D}(|f(r)| + |f'(s)|) D$ a compact connected

subset of $[0,1] \times [0,1]$ such that $p_1(D) \cup p_2(D) = [0,1]$

 $C^1([0,1],\|\cdot\|_{<D>}) \hookrightarrow C(D\times \mathbb{S}^1)$ an isometric embedding with image $\mathcal A$

If $p_1(D) = [0, 1]$, then \mathcal{A} is a closed subalgebra of $C(\Omega)$ containing the constant functions.

Projections on Vector Valued Function Spaces

Theorem (with J.Jamison, RM 10) Let *E* be a Banach space with the strong Banach Stone property. Then P is a generalized bi-circular projection on $C(\Omega, E)$ if and only it is of one the following forms:

- 1. $Pf = \frac{I+T}{2}$ with T an isometric reflection on $C(\Omega, E)$
- 2. $Pf = Q \cdot f$ with Q a generalized bi-circular projection on E

Banach spaces with the strong Banach Stone property include smooth spaces, strictly convex spaces, also reflexive spaces containing no nontrivial L_1 projections (Behrends)

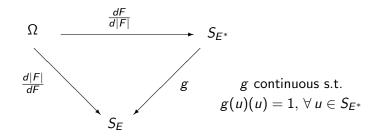
The Vector Valued Case

Characterization of contractive projections on $C(\Omega, E)$ with Ω a compact Hausdorff topological space [RM, 2010]

Main ideas:

- Dual of C(Ω, E) can be identified with the space of regular and bounded variation vector measures on the σ-algebra of the Borel subsets of Ω with values in E* (I. Singer)
- The form of the extreme points of the unit ball of the dual space C(Ω, E)*, e*δ_x, with x ∈ Ω and e* ∈ ext(E*) (Arens-Kelley and Brosowski-Deutsch Theorems)
- ► If the range space is uniformly convex then every vector measure *F* has the decomposition $F = |F| \frac{dF}{d|F|}$ with $\frac{dF}{d|F|} : \Omega \to S_{E^*}$ a Bochner integrable function with respect to |F| (Bogdanowicz-Kritt (1967) and Zimmer (2007))

The Vector Valued Case, cont.



 An extension of Atalla's Theorem for contractive projections on C(Ω, E)

Atalla's Theorem Revisited

If *P* is a contractive projection of $C(\Omega, E)$, *E* is a uniformly convex Banach space, then for every extreme point *F* of $P^*(C(\Omega, E)_1^*)$

$$\langle Pf, \frac{dF}{d|F|} \rangle = \left(\int_{\Omega} f dF \right), \quad |F| - a.e.$$

If $\int_{\Omega} fdF \neq 0$ then $Pf = (\int_{\Omega} fdF) \frac{d|F|}{dF}$ Given F an extreme point of $P^*(C(\Omega, E)_1^*)$, it can be shown that 1. If $G \in \mathcal{M}(\Sigma(\Omega), E^*)$ then

$$P^*\left(G_{\mathcal{S}(F)}\right) = \left(\int_{\Omega} \frac{d|F|}{dF} \, dG\right) \, F, \; \forall f \; s.t. \; \int_{\Omega} f dF \neq 0$$

2. Let F_1 and F_2 be two extreme points of $P^*(C(\Omega, E)_1^*)$. If $x \in S(|F_1|) \cap S(|F_2|)$ then $S(F_1) = S(F_2)$

Bi-contractive Projections

Let Ω be compact and E a uniformly convex space. Then P is a bi-contractive projection of $C(\Omega, E)$ if and only if P is of one of the following forms:

- There exists a continuous map $P_1 : \Omega \to \mathcal{BCP}(E)$ such that $(Pf)(x) = P_1(x)(f(x))$, for every $f \in C(\Omega, E)$ and $x \in \Omega$
- There exist a homeomorphism φ of Ω and map $U : \Omega \to \mathcal{U}(E)$ where $\mathcal{U}(E)$ denotes the surjective isometries of E such that $\varphi^2 = Id$, $U(w)U(\varphi(w)) = Id$ and

$$P(f)(x) = rac{f(x) + U(x)f(arphi(x))}{2}, \ \forall \ f \in C(\Omega, E) \ ext{and} \ x \in \Omega$$

Other results on bi-contractive projections

- ▶ **R.Douglas** (1965) Contractive projections on *L*₁ spaces and conditional expectations
- ► T.Ando (1966) Contractive projections on L_p are isometrically equivalent to conditional expectations (1 ≤ p < ∞)</p>
- ▶ **S.Bernau** and **H.Lacey** (1977) Bi-contractive projections on L_p spaces ($1 \le p < \infty$ and $p \ne 2$) and L_1 predual spaces are GBPs
- ► **M.Baronti** and **P.Papini** (1989) Bi-contractive projections on sequences spaces (*c*₀)
- A.Lima (1978) Bi-contractive projections on real CL-spaces are GBPs
- B.Randrianantoanina (2011) Norm 1 projections in Banach spaces

Thank You

