Determinacy for the complex moment problem via positive definite extensions

Dariusz Cichoń

December 2016, OTOA, Bangalore

Joint work with J. Stochel and F.H. Szafraniec

Notations:

 $\mathfrak{N} = \{ (m, n) : m, n - \text{integers such that } m \ge 0, n \ge 0 \}, \\ \mathfrak{N}_+ = \{ (m, n) : m, n - \text{integers such that } m + n \ge 0 \}.$

Question: when a sequence $\gamma = \{\gamma_{m,n}\}_{m,n \ge 0} \subset \mathbb{C}$ is a complex moment sequence? I.e. there exists a Borel measure μ on \mathbb{C} such that

$$c_{m,n} = \int_{\mathbb{C}} z^m \overline{z}^n \mathrm{d}\mu(z), \quad m,n \geqslant 0.$$

An 'iff' criterion: $\mathsf{PDE}(\gamma)$ is nonempty, where

 $\mathsf{PDE}(\gamma) = \{ \tilde{\gamma} : \tilde{\gamma} \text{ is a positive definite extension of } \gamma \text{ on } \mathfrak{N}_+ \}$ i.e. $\tilde{\gamma} = \{ \tilde{\gamma}_{m,n} \}_{m+n \ge 0} \subset \mathbb{C}$ satisfies $\tilde{\gamma}|_{\mathfrak{N}} = \gamma$ and

$$\sum_{n+n\geq 0, p+q\geq 0} \lambda_{m,n} \bar{\lambda}_{p,q} \tilde{\gamma}_{m+q,n+p} \geq 0$$

for every finitely supported $\{\lambda_{m,n}\}_{m+n\geq 0}^{\infty} \subset \mathbb{C}$

Notations:

 $\mathfrak{N} = \{ (m, n) : m, n - \text{ integers such that } m \ge 0, n \ge 0 \}, \\ \mathfrak{N}_+ = \{ (m, n) : m, n - \text{ integers such that } m + n \ge 0 \}.$

Question: when a sequence $\gamma = \{\gamma_{m,n}\}_{m,n \ge 0} \subset \mathbb{C}$ is a complex moment sequence? I.e. there exists a Borel measure μ on \mathbb{C} such that

$$c_{m,n} = \int_{\mathbb{C}} z^m \overline{z}^n \mathrm{d}\mu(z), \quad m,n \ge 0.$$

An 'iff' criterion: $\mathsf{PDE}(\gamma)$ is nonempty, where

 $\mathsf{PDE}(\gamma) = \{ \tilde{\gamma} : \tilde{\gamma} \text{ is a positive definite extension of } \gamma \text{ on } \mathfrak{N}_+ \}$ i.e. $\tilde{\gamma} = \{ \tilde{\gamma}_{m,n} \}_{m+n \ge 0} \subset \mathbb{C}$ satisfies $\tilde{\gamma}|_{\mathfrak{N}} = \gamma$ and

$$\sum_{n+n\geq 0, p+q\geq 0} \lambda_{m,n} \bar{\lambda}_{p,q} \tilde{\gamma}_{m+q,n+p} \geq 0$$

for every finitely supported $\{\lambda_{m,n}\}_{m+n\geq 0}^{\infty} \subset \mathbb{C}$.

Notations:

 $\mathfrak{N} = \{ (m, n) : m, n - \text{ integers such that } m \ge 0, n \ge 0 \}, \\ \mathfrak{N}_+ = \{ (m, n) : m, n - \text{ integers such that } m + n \ge 0 \}.$

Question: when a sequence $\gamma = \{\gamma_{m,n}\}_{m,n \ge 0} \subset \mathbb{C}$ is a complex moment sequence? I.e. there exists a Borel measure μ on \mathbb{C} such that

$$c_{m,n} = \int_{\mathbb{C}} z^m \overline{z}^n \mathrm{d}\mu(z), \quad m,n \ge 0.$$

An 'iff' criterion: $\mathsf{PDE}(\gamma)$ is nonempty, where

 $\mathsf{PDE}(\gamma) = \{ \tilde{\gamma} : \tilde{\gamma} \text{ is a positive definite extension of } \gamma \text{ on } \mathfrak{N}_+ \}$ i.e. $\tilde{\gamma} = \{ \tilde{\gamma}_{m,n} \}_{m+n \ge 0} \subset \mathbb{C}$ satisfies $\tilde{\gamma}|_{\mathfrak{N}} = \gamma$ and

$$\sum_{n+n\geq 0, p+q\geq 0} \lambda_{m,n} \bar{\lambda}_{p,q} \tilde{\gamma}_{m+q,n+p} \geq 0$$

for every finitely supported $\{\lambda_{m,n}\}_{m+n\geq 0}^{\infty} \subset \mathbb{C}$

Notations:

 $\mathfrak{N} = \{ (m, n) : m, n - \text{ integers such that } m \ge 0, n \ge 0 \}, \\ \mathfrak{N}_+ = \{ (m, n) : m, n - \text{ integers such that } m + n \ge 0 \}.$

Question: when a sequence $\gamma = \{\gamma_{m,n}\}_{m,n \ge 0} \subset \mathbb{C}$ is a complex moment sequence? I.e. there exists a Borel measure μ on \mathbb{C} such that

$$c_{m,n} = \int_{\mathbb{C}} z^m \overline{z}^n \mathrm{d}\mu(z), \quad m,n \geqslant 0.$$

An 'iff' criterion: $\mathsf{PDE}(\gamma)$ is nonempty, where

$$\begin{split} \mathsf{PDE}(\gamma) &= \{ \tilde{\gamma} \colon \tilde{\gamma} \text{ is a positive definite extension of } \gamma \text{ on } \mathfrak{N}_+ \} \\ \mathsf{i.e.} \ \tilde{\gamma} &= \{ \tilde{\gamma}_{m,n} \}_{m+n \geqslant 0} \subset \mathbb{C} \text{ satisfies } \tilde{\gamma}|_{\mathfrak{N}} = \gamma \text{ and} \\ &\sum_{m+n \geqslant 0, p+q \geqslant 0} \lambda_{m,n} \bar{\lambda}_{p,q} \tilde{\gamma}_{m+q,n+p} \geqslant 0 \end{split}$$

for every finitely supported $\{\lambda_{m,n}\}_{m+n\geq 0}^{\infty} \subset \mathbb{C}$.

 \mathfrak{N}_+ is semiperfect,

i.e. every positive definite complex function on this semigroup can be represented via Borel measures. More specifically: if $\{\tilde{\gamma}_{m,n}\}_{m+n\geq 0}$ is positive definite on \mathfrak{N}_+ , then there are Borel measures μ_1 on \mathbb{C}^* (without 0) and μ_2 on \mathbb{T} (the unit circle) such that

$$\tilde{\gamma}_{m,n} = \int_{\mathbb{C}^*} z^m \bar{z}^n \mathrm{d}\mu_1(z) + \underbrace{\delta_{m+n,0}}_{\text{the Dirac delta}} \int_{\mathbb{T}} z^m \bar{z}^n \mathrm{d}\mu_2(z).$$

\mathfrak{N}_+ is semiperfect,

i.e. every positive definite complex function on this semigroup can be represented via Borel measures. More specifically: if $\{\tilde{\gamma}_{m,n}\}_{m+n\geq 0}$ is positive definite on \mathfrak{N}_+ , then there are Borel measures μ_1 on \mathbb{C}^* (without 0) and μ_2 on \mathbb{T} (the unit circle) such that

$$\tilde{\gamma}_{m,n} = \int_{\mathbb{C}^*} z^m \bar{z}^n \mathrm{d}\mu_1(z) + \underbrace{\delta_{m+n,0}}_{\text{the Dirac delta}} \int_{\mathbb{T}} z^m \bar{z}^n \mathrm{d}\mu_2(z).$$

 \mathfrak{N}_+ is semiperfect,

i.e. every positive definite complex function on this semigroup can be represented via Borel measures. More specifically: if $\{\tilde{\gamma}_{m,n}\}_{m+n\geq 0}$ is positive definite on \mathfrak{N}_+ , then there are Borel measures μ_1 on \mathbb{C}^* (without 0) and μ_2 on \mathbb{T} (the unit circle) such that

$$\tilde{\gamma}_{m,n} = \int_{\mathbb{C}^*} z^m \bar{z}^n \mathrm{d}\mu_1(z) + \underbrace{\delta_{m+n,0}}_{\text{the Dirac delta}} \int_{\mathbb{T}} z^m \bar{z}^n \mathrm{d}\mu_2(z).$$

 \mathfrak{N}_+ is semiperfect,

i.e. every positive definite complex function on this semigroup can be represented via Borel measures. More specifically: if $\{\tilde{\gamma}_{m,n}\}_{m+n\geq 0}$ is positive definite on \mathfrak{N}_+ , then there are Borel measures μ_1 on \mathbb{C}^* (without 0) and μ_2 on \mathbb{T} (the unit circle) such that

$$\tilde{\gamma}_{m,n} = \int_{\mathbb{C}^*} z^m \bar{z}^n \mathrm{d}\mu_1(z) + \underbrace{\delta_{m+n,0}}_{\text{the Dirac delta}} \int_{\mathbb{T}} z^m \bar{z}^n \mathrm{d}\mu_2(z).$$

 \mathfrak{N}_+ is semiperfect,

i.e. every positive definite complex function on this semigroup can be represented via Borel measures. More specifically: if $\{\tilde{\gamma}_{m,n}\}_{m+n\geq 0}$ is positive definite on \mathfrak{N}_+ , then there are Borel measures μ_1 on \mathbb{C}^* (without 0) and μ_2 on \mathbb{T} (the unit circle) such that

$$\tilde{\gamma}_{m,n} = \int_{\mathbb{C}^*} z^m \bar{z}^n \mathrm{d}\mu_1(z) + \underbrace{\delta_{m+n,0}}_{\text{the Dirac delta}} \int_{\mathbb{T}} z^m \bar{z}^n \mathrm{d}\mu_2(z).$$

- γ is a determinate complex moment sequence on \mathfrak{N} , i.e. the representing measure for γ is unique,
- **2** $\mathsf{PDE}(\gamma)$ is a singleton, i.e. $\mathsf{PDE}(\gamma) = \{\tilde{\gamma}\}.$

Remark: if (μ_1, μ_2) is representing for $\tilde{\gamma} \in \text{PDE}(\gamma)$, then the measure $\mu_1 + \mu_2(\mathbb{T})\delta_0$ is representing for γ .

The natural condition appearing when dealing with determinacy of γ : p.d. extension $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$ is called *semideterminate* if for any two representing pairs of measures (μ_1, μ_2) and (μ'_1, μ'_2) for $\tilde{\gamma}$ we have

$$\mu_1=\mu_1'$$
 and $\mu_2\circ arphi^{-1}=\mu_2'\circ arphi^{-1}$,

where $\varphi : \mathbb{T} \ni z \mapsto z^2 \in \mathbb{T}$. This happens if γ is determinate.

- γ is a determinate complex moment sequence on \mathfrak{N} , i.e. the representing measure for γ is unique,
- **2** PDE(γ) is a singleton, i.e. PDE(γ) = { $\tilde{\gamma}$ }.

Remark: if (μ_1, μ_2) is representing for $\tilde{\gamma} \in \text{PDE}(\gamma)$, then the measure $\mu_1 + \mu_2(\mathbb{T})\delta_0$ is representing for γ .

The natural condition appearing when dealing with determinacy of γ : p.d. extension $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$ is called *semideterminate* if for any two representing pairs of measures (μ_1, μ_2) and (μ'_1, μ'_2) for $\tilde{\gamma}$ we have

$$\mu_1=\mu_1'$$
 and $\mu_2\circ arphi^{-1}=\mu_2'\circ arphi^{-1}$,

where $\varphi : \mathbb{T} \ni z \mapsto z^2 \in \mathbb{T}$. This happens if γ is determinate.

- γ is a determinate complex moment sequence on \mathfrak{N} , i.e. the representing measure for γ is unique,
- **2** PDE(γ) is a singleton, i.e. PDE(γ) = { $\tilde{\gamma}$ }.

Remark: if (μ_1, μ_2) is representing for $\tilde{\gamma} \in \text{PDE}(\gamma)$, then the measure $\mu_1 + \mu_2(\mathbb{T})\delta_0$ is representing for γ .

The natural condition appearing when dealing with determinacy of γ : p.d. extension $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$ is called *semideterminate* if for any two representing pairs of measures (μ_1, μ_2) and (μ'_1, μ'_2) for $\tilde{\gamma}$ we have

$$\mu_1=\mu_1'$$
 and $\mu_2\circ arphi^{-1}=\mu_2'\circ arphi^{-1}$,

where $\varphi : \mathbb{T}
i z \mapsto z^2 \in \mathbb{T}$. This happens if γ is determinate.

- γ is a determinate complex moment sequence on \mathfrak{N} , i.e. the representing measure for γ is unique,
- **2** PDE(γ) is a singleton, i.e. PDE(γ) = { $\tilde{\gamma}$ }.

Remark: if (μ_1, μ_2) is representing for $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$, then the measure $\mu_1 + \mu_2(\mathbb{T})\delta_0$ is representing for γ .

The natural condition appearing when dealing with determinacy of γ : p.d. extension $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$ is called *semideterminate* if for any two representing pairs of measures (μ_1, μ_2) and (μ'_1, μ'_2) for $\tilde{\gamma}$ we have

$$\mu_1=\mu_1'$$
 and $\mu_2\circ arphi^{-1}=\mu_2'\circ arphi^{-1}$,

where $\varphi : \mathbb{T} \ni z \mapsto z^2 \in \mathbb{T}$. This happens if γ is determinate.

伺 ト イ ヨ ト イ ヨ ト

- γ is a determinate complex moment sequence on \mathfrak{N} , i.e. the representing measure for γ is unique,
- **2** PDE(γ) is a singleton, i.e. PDE(γ) = { $\tilde{\gamma}$ }.

Remark: if (μ_1, μ_2) is representing for $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$, then the measure $\mu_1 + \mu_2(\mathbb{T})\delta_0$ is representing for γ .

The natural condition appearing when dealing with determinacy of γ : p.d. extension $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$ is called *semideterminate* if for any two representing pairs of measures (μ_1, μ_2) and (μ'_1, μ'_2) for $\tilde{\gamma}$ we have

$$\mu_1=\mu_1'$$
 and $\mu_2\circ arphi^{-1}=\mu_2'\circ arphi^{-1}$,

where $\varphi : \mathbb{T} \ni z \mapsto z^2 \in \mathbb{T}$. This happens if γ is determinate.

くほし くほし くほし

The following are equivalent:

- $\textbf{ 0 } \gamma \text{ is determinate on } \mathfrak{N},$
- ② there exists a unique $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$ of Lebesgue type (i.e. μ_2 is a multiple of the Lebesgue measure on \mathbb{T}),
- Solution the exists a unique γ̃ ∈ PDE(γ) of δ₁ type (i.e. μ₂ is a multiple of the Dirac measure δ₁ on T)

If γ is determinate with the representing measure μ such that $\mu(\{0\}) \neq 0$, then it follows that $PDE(\gamma)$ is of cardinality continuum.

Reason: if (μ_1, μ_2) and (μ_1, μ'_2) are representing for $\tilde{\gamma}$ and $\tilde{\gamma}' \in \text{PDE}(\gamma)$, then (μ_1, ν) with ν – a convex combination of μ_2 and μ'_2 is also representing for some new extension in $\text{PDE}(\gamma)$.

The following are equivalent:

- **1** γ is determinate on \mathfrak{N} ,
- 2 there exists a unique $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$ of Lebesgue type (i.e. μ_2 is a multiple of the Lebesgue measure on \mathbb{T}),

there exists a unique γ̃ ∈ PDE(γ) of δ₁ type (i.e. μ₂ is a multiple of the Dirac measure δ₁ on T)

If γ is determinate with the representing measure μ such that $\mu(\{0\}) \neq 0$, then it follows that $PDE(\gamma)$ is of cardinality continuum.

Reason: if (μ_1, μ_2) and (μ_1, μ'_2) are representing for $\tilde{\gamma}$ and $\tilde{\gamma}' \in \text{PDE}(\gamma)$, then (μ_1, ν) with ν – a convex combination of μ_2 and μ'_2 is also representing for some new extension in $\text{PDE}(\gamma)$.

The following are equivalent:

- **1** γ is determinate on \mathfrak{N} ,
- 2 there exists a unique $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$ of Lebesgue type (i.e. μ_2 is a multiple of the Lebesgue measure on \mathbb{T}),
- there exists a unique γ̃ ∈ PDE(γ) of δ₁ type (i.e. μ₂ is a multiple of the Dirac measure δ₁ on T)

If γ is determinate with the representing measure μ such that $\mu(\{0\}) \neq 0$, then it follows that $PDE(\gamma)$ is of cardinality continuum.

Reason: if (μ_1, μ_2) and (μ_1, μ'_2) are representing for $\tilde{\gamma}$ and $\tilde{\gamma}' \in \mathsf{PDE}(\gamma)$, then (μ_1, ν) with ν – a convex combination of μ_2 and μ'_2 is also representing for some new extension in $\mathsf{PDE}(\gamma)$.

The following are equivalent:

- **1** γ is determinate on \mathfrak{N} ,
- 2 there exists a unique $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$ of Lebesgue type (i.e. μ_2 is a multiple of the Lebesgue measure on \mathbb{T}),
- there exists a unique γ̃ ∈ PDE(γ) of δ₁ type (i.e. μ₂ is a multiple of the Dirac measure δ₁ on T)

If γ is determinate with the representing measure μ such that $\mu(\{0\}) \neq 0$, then it follows that PDE(γ) is of cardinality continuum.

Reason: if (μ_1, μ_2) and (μ_1, μ'_2) are representing for $\tilde{\gamma}$ and $\tilde{\gamma}' \in \mathsf{PDE}(\gamma)$, then (μ_1, ν) with ν – a convex combination of μ_2 and μ'_2 is also representing for some new extension in $\mathsf{PDE}(\gamma)$.

The following are equivalent:

- **1** γ is determinate on \mathfrak{N} ,
- 2 there exists a unique $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$ of Lebesgue type (i.e. μ_2 is a multiple of the Lebesgue measure on \mathbb{T}),
- there exists a unique γ̃ ∈ PDE(γ) of δ₁ type (i.e. μ₂ is a multiple of the Dirac measure δ₁ on T)

If γ is determinate with the representing measure μ such that $\mu(\{0\}) \neq 0$, then it follows that PDE(γ) is of cardinality continuum.

Reason: if (μ_1, μ_2) and (μ_1, μ'_2) are representing for $\tilde{\gamma}$ and $\tilde{\gamma}' \in \mathsf{PDE}(\gamma)$, then (μ_1, ν) with ν – a convex combination of μ_2 and μ'_2 is also representing for some new extension in $\mathsf{PDE}(\gamma)$.

Theorem

If γ is determinate on \mathfrak{N} , μ is representing for γ and $\mu(\{0\}) = 0$, then $\mathsf{PDE}(\gamma) = \{\tilde{\gamma}\}.$

A more refined version:

Theorem

Let γ be a sequence defined on \mathfrak{N} . Then the following are equivalent:

- γ is a determinate moment sequence with a representing measure μ satisfying μ({0}) = 0,
- **2** $\mathsf{PDE}(\gamma) = \{\tilde{\gamma}\}$ and $\tilde{\gamma}$ is determinate.

Theorem

If γ is determinate on \mathfrak{N} , μ is representing for γ and $\mu(\{0\}) = 0$, then $\mathsf{PDE}(\gamma) = \{\tilde{\gamma}\}.$

A more refined version:

Theorem

Let γ be a sequence defined on \mathfrak{N} . Then the following are equivalent:

- γ is a determinate moment sequence with a representing measure μ satisfying μ({0}) = 0,
- **2** $\mathsf{PDE}(\gamma) = \{\tilde{\gamma}\}$ and $\tilde{\gamma}$ is determinate.

Theorem

If γ is determinate on \mathfrak{N} , μ is representing for γ and $\mu(\{0\}) = 0$, then $\mathsf{PDE}(\gamma) = \{\tilde{\gamma}\}.$

A more refined version:

Theorem

Let γ be a sequence defined on \mathfrak{N} . Then the following are equivalent:

- γ is a determinate moment sequence with a representing measure μ satisfying μ({0}) = 0,
- **2** PDE $(\gamma) = \{\tilde{\gamma}\}$ and $\tilde{\gamma}$ is determinate.

Theorem

If γ is determinate on \mathfrak{N} , μ is representing for γ and $\mu(\{0\}) = 0$, then $\mathsf{PDE}(\gamma) = \{\tilde{\gamma}\}.$

A more refined version:

Theorem

Let γ be a sequence defined on \mathfrak{N} . Then the following are equivalent:

- γ is a determinate moment sequence with a representing measure μ satisfying μ({0}) = 0,
- **2** $\mathsf{PDE}(\gamma) = \{\tilde{\gamma}\}$ and $\tilde{\gamma}$ is determinate.

If $\{s_n\}_{n=0}^{\infty}$ is an indeterminate Hamburger sequence (i.e. it has non-unique representing Borel measure on \mathbb{R}) and $\gamma_{m,n} = s_{m+n}$, then PDE(γ) is of cardinality continuum. This is due to the fact, that every indeterminate Hamburger moment problem has a representing measure with atom at 0.

Example

If in turn $\{s_n\}_{n=0}^{\infty}$ is a Herglotz moment sequence (i.e. representing measure is supported on the unit circle \mathbb{T}), then $\gamma_{m,n} = s_{m-n}$ is determinate with representing measure without atom at 0. Thus $PDE(\gamma) = \{\tilde{\gamma}\}$. Reason: a representing measure supported on compact subset is always determinate, besides $0 \notin \mathbb{T}$ so there can be no atom at 0.

If $\{s_n\}_{n=0}^{\infty}$ is an indeterminate Hamburger sequence (i.e. it has non-unique representing Borel measure on \mathbb{R}) and $\gamma_{m,n} = s_{m+n}$, then PDE(γ) is of cardinality continuum. This is due to the fact, that every indeterminate Hamburger moment problem has a representing measure with atom at 0.

Example

If in turn $\{s_n\}_{n=0}^{\infty}$ is a Herglotz moment sequence (i.e. representing measure is supported on the unit circle \mathbb{T}), then $\gamma_{m,n} = s_{m-n}$ is determinate with representing measure without atom at 0. Thus $PDE(\gamma) = \{\tilde{\gamma}\}$. Reason: a representing measure supported on compact subset is always determinate, besides $0 \notin \mathbb{T}$ so there can be no atom at 0.

If $\{s_n\}_{n=0}^{\infty}$ is an indeterminate Hamburger sequence (i.e. it has non-unique representing Borel measure on \mathbb{R}) and $\gamma_{m,n} = s_{m+n}$, then PDE(γ) is of cardinality continuum. This is due to the fact, that every indeterminate Hamburger moment problem has a representing measure with atom at 0.

Example

If in turn $\{s_n\}_{n=0}^{\infty}$ is a Herglotz moment sequence (i.e. representing measure is supported on the unit circle \mathbb{T}), then $\gamma_{m,n} = s_{m-n}$ is determinate with representing measure without atom at 0. Thus $PDE(\gamma) = \{\tilde{\gamma}\}$. Reason: a representing measure supported on compact subset is always determinate, besides $0 \notin \mathbb{T}$ so there can be no atom at 0.

- 4 同 🕨 - 4 目 🕨 - 4 目

If $\{s_n\}_{n=0}^{\infty}$ is an indeterminate Hamburger sequence (i.e. it has non-unique representing Borel measure on \mathbb{R}) and $\gamma_{m,n} = s_{m+n}$, then PDE(γ) is of cardinality continuum. This is due to the fact, that every indeterminate Hamburger moment problem has a representing measure with atom at 0.

Example

If in turn $\{s_n\}_{n=0}^{\infty}$ is a Herglotz moment sequence (i.e. representing measure is supported on the unit circle \mathbb{T}), then $\gamma_{m,n} = s_{m-n}$ is determinate with representing measure without atom at 0. Thus $PDE(\gamma) = \{\tilde{\gamma}\}$. Reason: a representing measure supported on compact subset is always determinate, besides $0 \notin \mathbb{T}$ so there can be no atom at 0.

▲□ ► < □ ► </p>

None of representing measures has atom at 0 – is it possible at all? In case of Hamburger moment sequences - it is not.

It turns out that in the case of complex moment sequence the answer is in the affirmative. You may take line $\mathbb{R}+i$ and define γ on $\mathfrak N$ via

$$\gamma_m, n = \int_{\mathbb{C}} z^m \overline{z}^n \mathrm{d}\mu(z), \quad m, n \ge 0,$$

None of representing measures has atom at 0 - is it possible at all?

In case of Hamburger moment sequences - it is not.

It turns out that in the case of complex moment sequence the answer is in the affirmative. You may take line $\mathbb{R}+i$ and define γ on $\mathfrak N$ via

$$\gamma_m, n = \int_{\mathbb{C}} z^m \overline{z}^n \mathrm{d}\mu(z), \quad m, n \ge 0,$$

None of representing measures has atom at 0 - is it possible at all? In case of Hamburger moment sequences - it is not.

It turns out that in the case of complex moment sequence the answer is in the affirmative. You may take line $\mathbb{R}+i$ and define γ on $\mathfrak N$ via

$$\gamma_m, n = \int_{\mathbb{C}} z^m \overline{z}^n \mathrm{d}\mu(z), \quad m, n \ge 0,$$

None of representing measures has atom at 0 - is it possible at all?

In case of Hamburger moment sequences - it is not.

It turns out that in the case of complex moment sequence the answer is in the affirmative. You may take line $\mathbb{R}+i$ and define γ on \mathfrak{N} via

$$\gamma_m, n = \int_{\mathbb{C}} z^m \overline{z}^n \mathrm{d}\mu(z), \quad m, n \ge 0,$$

None of representing measures has atom at 0 - is it possible at all?

In case of Hamburger moment sequences - it is not.

It turns out that in the case of complex moment sequence the answer is in the affirmative. You may take line $\mathbb{R}+i$ and define γ on \mathfrak{N} via

$$\gamma_m, n = \int_{\mathbb{C}} z^m \overline{z}^n \mathrm{d}\mu(z), \quad m, n \ge 0,$$

Let $P \in \mathbb{C}[z, \overline{z}]$ be a polynomial such that $Z_P \stackrel{\text{def}}{=} P^{-1}(\{0\})$ is the proper nonempty subset of \mathbb{C} . Let $0 \notin Z_p$ and γ on \mathfrak{N} be a sequence with a representing measure supported in Z_P . Then

- $lacksymbol{0}$ all representing measures of γ are supported in ${\sf Z}_{\sf P},$
- ② if (μ_1,μ_2) is representing for some $\widetilde{\gamma}\in\mathsf{PDE}(\gamma)$, then $\mu_2=$ 0,
- 3 if μ and ν are representing for γ , then $\mu \circ \psi_P^{-1} = \nu \circ \psi_P^{-1}$, where $\psi_P : Z_P \ni z \mapsto z^2 |z|^{-2} \in \mathbb{T}$,
- if the every Borel subset τ of Z_P is of the form $\tau = \psi_P^{-1}(\sigma)$ with some Borel $\sigma \subset \mathbb{T}$, then
 - the mapping $\mathcal{M}(\gamma) \ni \mu \mapsto \tilde{\gamma} \in \mathsf{PDE}(\gamma)$, where $\tilde{\gamma}_{m,n} = \int_{\mathbb{C}} z^m \bar{z}^n \mathrm{d}\mu(z)$, $m + n \ge 0$, is bijective,
 - every $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$ is determinate,
 - PDE(γ) is of cardinality continuum provided γ is indeterminate.

Let $P \in \mathbb{C}[z, \overline{z}]$ be a polynomial such that $Z_P \stackrel{\text{def}}{=} P^{-1}(\{0\})$ is the proper nonempty subset of \mathbb{C} . Let $0 \notin Z_p$ and γ on \mathfrak{N} be a sequence with a representing measure supported in Z_P . Then

- **1** all representing measures of γ are supported in Z_P ,
- ② if (μ_1,μ_2) is representing for some $\widetilde{\gamma}\in\mathsf{PDE}(\gamma)$, then $\mu_2=$ 0,
- 3 if μ and ν are representing for γ , then $\mu \circ \psi_P^{-1} = \nu \circ \psi_P^{-1}$, where $\psi_P : Z_P \ni z \mapsto z^2 |z|^{-2} \in \mathbb{T}$,
- if the every Borel subset τ of Z_P is of the form $\tau = \psi_P^{-1}(\sigma)$ with some Borel $\sigma \subset \mathbb{T}$, then
 - the mapping $\mathcal{M}(\gamma) \ni \mu \mapsto \tilde{\gamma} \in \mathsf{PDE}(\gamma)$, where $\tilde{\gamma}_{m,n} = \int_{\mathbb{C}} z^m \bar{z}^n \mathrm{d}\mu(z)$, $m + n \ge 0$, is bijective,
 - every $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$ is determinate,
 - PDE(γ) is of cardinality continuum provided γ is indeterminate.

Let $P \in \mathbb{C}[z, \overline{z}]$ be a polynomial such that $Z_P \stackrel{\text{def}}{=} P^{-1}(\{0\})$ is the proper nonempty subset of \mathbb{C} . Let $0 \notin Z_p$ and γ on \mathfrak{N} be a sequence with a representing measure supported in Z_P . Then

- **1** all representing measures of γ are supported in Z_P ,
- 2) if (μ_1, μ_2) is representing for some $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$, then $\mu_2 = 0$,
- if μ and ν are representing for γ , then $\mu \circ \psi_P^{-1} = \nu \circ \psi_P^{-1}$, where $\psi_P : Z_P \ni z \mapsto z^2 |z|^{-2} \in \mathbb{T}$,
- if the every Borel subset τ of Z_P is of the form $\tau = \psi_P^{-1}(\sigma)$ with some Borel $\sigma \subset \mathbb{T}$, then
 - the mapping $\mathcal{M}(\gamma) \ni \mu \mapsto \tilde{\gamma} \in \mathsf{PDE}(\gamma)$, where $\tilde{\gamma}_{m,n} = \int_{\mathbb{C}} z^m \bar{z}^n \mathrm{d}\mu(z)$, $m + n \ge 0$, is bijective,
 - every $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$ is determinate,
 - PDE(γ) is of cardinality continuum provided γ is indeterminate.

Let $P \in \mathbb{C}[z, \overline{z}]$ be a polynomial such that $Z_P \stackrel{\text{def}}{=} P^{-1}(\{0\})$ is the proper nonempty subset of \mathbb{C} . Let $0 \notin Z_p$ and γ on \mathfrak{N} be a sequence with a representing measure supported in Z_P . Then

- **1** all representing measures of γ are supported in Z_P ,
- 2) if (μ_1, μ_2) is representing for some $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$, then $\mu_2 = 0$,
- **③** if μ and ν are representing for γ, then $\mu \circ \psi_P^{-1} = \nu \circ \psi_P^{-1}$, where $\psi_P : Z_P \ni z \mapsto z^2 |z|^{-2} \in \mathbb{T}$,
- () if the every Borel subset τ of Z_P is of the form $\tau = \psi_P^{-1}(\sigma)$ with some Borel $\sigma \subset \mathbb{T}$, then
 - the mapping $\mathcal{M}(\gamma) \ni \mu \mapsto \tilde{\gamma} \in \mathsf{PDE}(\gamma)$, where $\tilde{\gamma}_{m,n} = \int_{\mathbb{C}} z^m \bar{z}^n \mathrm{d}\mu(z)$, $m + n \ge 0$, is bijective,
 - every $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$ is determinate,
 - PDE(γ) is of cardinality continuum provided γ is indeterminate.

Let $P \in \mathbb{C}[z, \overline{z}]$ be a polynomial such that $Z_P \stackrel{\text{def}}{=} P^{-1}(\{0\})$ is the proper nonempty subset of \mathbb{C} . Let $0 \notin Z_p$ and γ on \mathfrak{N} be a sequence with a representing measure supported in Z_P . Then

- **1** all representing measures of γ are supported in Z_P ,
- 2 if (μ_1, μ_2) is representing for some $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$, then $\mu_2 = 0$,
- **③** if μ and ν are representing for γ , then $\mu \circ \psi_P^{-1} = \nu \circ \psi_P^{-1}$, where $\psi_P : Z_P \ni z \mapsto z^2 |z|^{-2} \in \mathbb{T}$,
- if the every Borel subset τ of Z_P is of the form $\tau = \psi_P^{-1}(\sigma)$ with some Borel $\sigma \subset \mathbb{T}$, then
 - the mapping $\mathcal{M}(\gamma) \ni \mu \mapsto \tilde{\gamma} \in \mathsf{PDE}(\gamma)$, where $\tilde{\gamma}_{m,n} = \int_{\mathbb{C}} z^m \bar{z}^n \mathrm{d}\mu(z)$, $m + n \ge 0$, is bijective,
 - every $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$ is determinate,
 - PDE(γ) is of cardinality continuum provided γ is indeterminate.

Let $P \in \mathbb{C}[z, \overline{z}]$ be a polynomial such that $Z_P \stackrel{\text{det}}{=} P^{-1}(\{0\})$ is the proper nonempty subset of \mathbb{C} . Let $0 \notin Z_p$ and γ on \mathfrak{N} be a sequence with a representing measure supported in Z_P . Then

- **1** all representing measures of γ are supported in Z_P ,
- 2) if (μ_1, μ_2) is representing for some $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$, then $\mu_2 = 0$,
- **③** if μ and ν are representing for γ , then $\mu \circ \psi_P^{-1} = \nu \circ \psi_P^{-1}$, where $\psi_P : Z_P \ni z \mapsto z^2 |z|^{-2} \in \mathbb{T}$,
- if the every Borel subset τ of Z_P is of the form $\tau = \psi_P^{-1}(\sigma)$ with some Borel $\sigma \subset \mathbb{T}$, then
 - the mapping $\mathcal{M}(\gamma) \ni \mu \mapsto \tilde{\gamma} \in \mathsf{PDE}(\gamma)$, where $\tilde{\gamma}_{m,n} = \int_{\mathbb{C}} z^m \bar{z}^n d\mu(z)$, $m + n \ge 0$, is bijective,
 - every $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$ is determinate,
 - PDE(γ) is of cardinality continuum provided γ is indeterminate.

Let $P \in \mathbb{C}[z, \overline{z}]$ be a polynomial such that $Z_P \stackrel{\text{det}}{=} P^{-1}(\{0\})$ is the proper nonempty subset of \mathbb{C} . Let $0 \notin Z_p$ and γ on \mathfrak{N} be a sequence with a representing measure supported in Z_P . Then

- **1** all representing measures of γ are supported in Z_P ,
- 2) if (μ_1, μ_2) is representing for some $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$, then $\mu_2 = 0$,
- **③** if μ and ν are representing for γ , then $\mu \circ \psi_P^{-1} = \nu \circ \psi_P^{-1}$, where $\psi_P : Z_P \ni z \mapsto z^2 |z|^{-2} \in \mathbb{T}$,
- if the every Borel subset τ of Z_P is of the form $\tau = \psi_P^{-1}(\sigma)$ with some Borel $\sigma \subset \mathbb{T}$, then
 - the mapping $\mathcal{M}(\gamma) \ni \mu \mapsto \tilde{\gamma} \in \mathsf{PDE}(\gamma)$, where $\tilde{\gamma}_{m,n} = \int_{\mathbb{C}} z^m \bar{z}^n d\mu(z)$, $m + n \ge 0$, is bijective,
 - every $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$ is determinate,
 - PDE(γ) is of cardinality continuum provided γ is indeterminate.

Let $P \in \mathbb{C}[z, \overline{z}]$ be a polynomial such that $Z_P \stackrel{\text{det}}{=} P^{-1}(\{0\})$ is the proper nonempty subset of \mathbb{C} . Let $0 \notin Z_p$ and γ on \mathfrak{N} be a sequence with a representing measure supported in Z_P . Then

- **1** all representing measures of γ are supported in Z_P ,
- 2 if (μ_1, μ_2) is representing for some $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$, then $\mu_2 = 0$,
- **③** if μ and ν are representing for γ , then $\mu \circ \psi_P^{-1} = \nu \circ \psi_P^{-1}$, where $\psi_P : Z_P \ni z \mapsto z^2 |z|^{-2} \in \mathbb{T}$,
- if the every Borel subset τ of Z_P is of the form $\tau = \psi_P^{-1}(\sigma)$ with some Borel $\sigma \subset \mathbb{T}$, then
 - the mapping $\mathcal{M}(\gamma) \ni \mu \mapsto \tilde{\gamma} \in \mathsf{PDE}(\gamma)$, where $\tilde{\gamma}_{m,n} = \int_{\mathbb{C}} z^m \bar{z}^n d\mu(z)$, $m + n \ge 0$, is bijective,
 - every $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$ is determinate,
 - PDE(γ) is of cardinality continuum provided γ is indeterminate.

くほし くほし くほし

Proof of

③ if μ and ν are representing for γ , then $\mu \circ \psi_P^{-1} = \nu \circ \psi_P^{-1}$, where $\psi_P : Z_P \ni z \mapsto z^2 |z|^{-2} \in \mathbb{T}$,

We know that

$$\int_{\mathbb{C}} z^m \bar{z}^n \mathrm{d}\mu(z) = \int_{\mathbb{C}} z^m \bar{z}^n \mathrm{d}\nu(z), \quad m+n \ge 0.$$

Take $m \ge 0$ and n = -m, then

$$\int_{\mathbb{C}} (z^2 |z|^{-2})^m \mathrm{d}\mu(z) = \int_{\mathbb{C}} (z^2 |z|^{-2})^m \mathrm{d}\nu(z), \quad m \ge 0.$$

But $\psi_P(z) = z^2 |z|^{-2}$ so by the measure transport theorem we get

$$\int_{\mathbb{T}} w^m \mathrm{d}(\mu \circ \psi_P^{-1})(w) = \int_{\mathbb{T}} w^m \mathrm{d}(\nu \circ \psi_P^{-1})(w), \quad m \ge 0.$$

Proof of

③ if μ and ν are representing for γ , then $\mu \circ \psi_P^{-1} = \nu \circ \psi_P^{-1}$, where $\psi_P : Z_P \ni z \mapsto z^2 |z|^{-2} \in \mathbb{T}$,

We know that

$$\int_{\mathbb{C}} z^m \bar{z}^n \mathrm{d}\mu(z) = \int_{\mathbb{C}} z^m \bar{z}^n \mathrm{d}\nu(z), \quad m+n \ge 0.$$

Take $m \ge 0$ and n = -m, then

$$\int_{\mathbb{C}} (z^2 |z|^{-2})^m \mathrm{d}\mu(z) = \int_{\mathbb{C}} (z^2 |z|^{-2})^m \mathrm{d}\nu(z), \quad m \ge 0.$$

But $\psi_P(z) = z^2 |z|^{-2}$ so by the measure transport theorem we get

$$\int_{\mathbb{T}} w^m \mathrm{d}(\mu \circ \psi_P^{-1})(w) = \int_{\mathbb{T}} w^m \mathrm{d}(\nu \circ \psi_P^{-1})(w), \quad m \ge 0.$$

Proof of

③ if μ and ν are representing for γ , then $\mu \circ \psi_P^{-1} = \nu \circ \psi_P^{-1}$, where $\psi_P : Z_P \ni z \mapsto z^2 |z|^{-2} \in \mathbb{T}$,

We know that

$$\int_{\mathbb{C}} z^m \bar{z}^n \mathrm{d}\mu(z) = \int_{\mathbb{C}} z^m \bar{z}^n \mathrm{d}\nu(z), \quad m+n \ge 0.$$

Take $m \ge 0$ and n = -m, then

$$\int_{\mathbb{C}} (z^2 |z|^{-2})^m \mathrm{d}\mu(z) = \int_{\mathbb{C}} (z^2 |z|^{-2})^m \mathrm{d}\nu(z), \quad m \ge 0.$$

But $\psi_{\mathsf{P}}(z)=z^2|z|^{-2}$ so by the measure transport theorem we get

$$\int_{\mathbb{T}} w^m \mathrm{d}(\mu \circ \psi_P^{-1})(w) = \int_{\mathbb{T}} w^m \mathrm{d}(\nu \circ \psi_P^{-1})(w), \quad m \ge 0.$$

Proof of

③ if μ and ν are representing for γ , then $\mu \circ \psi_P^{-1} = \nu \circ \psi_P^{-1}$, where $\psi_P : Z_P \ni z \mapsto z^2 |z|^{-2} \in \mathbb{T}$,

We know that

$$\int_{\mathbb{C}} z^m \bar{z}^n \mathrm{d}\mu(z) = \int_{\mathbb{C}} z^m \bar{z}^n \mathrm{d}\nu(z), \quad m+n \ge 0.$$

Take $m \ge 0$ and n = -m, then

$$\int_{\mathbb{C}} (z^2 |z|^{-2})^m \mathrm{d}\mu(z) = \int_{\mathbb{C}} (z^2 |z|^{-2})^m \mathrm{d}\nu(z), \quad m \ge 0.$$

But $\psi_P(z)=z^2|z|^{-2}$ so by the measure transport theorem we get

$$\int_{\mathbb{T}} w^{m} \mathrm{d}(\mu \circ \psi_{P}^{-1})(w) = \int_{\mathbb{T}} w^{m} \mathrm{d}(\nu \circ \psi_{P}^{-1})(w), \quad m \ge 0.$$

Proof of

③ if μ and ν are representing for γ , then $\mu \circ \psi_P^{-1} = \nu \circ \psi_P^{-1}$, where $\psi_P : Z_P \ni z \mapsto z^2 |z|^{-2} \in \mathbb{T}$,

We know that

$$\int_{\mathbb{C}} z^m \bar{z}^n \mathrm{d}\mu(z) = \int_{\mathbb{C}} z^m \bar{z}^n \mathrm{d}\nu(z), \quad m+n \ge 0.$$

Take $m \ge 0$ and n = -m, then

$$\int_{\mathbb{C}} (z^2 |z|^{-2})^m \mathrm{d}\mu(z) = \int_{\mathbb{C}} (z^2 |z|^{-2})^m \mathrm{d}\nu(z), \quad m \ge 0.$$

But $\psi_P(z)=z^2|z|^{-2}$ so by the measure transport theorem we get

$$\int_{\mathbb{T}} w^m \mathrm{d}(\mu \circ \psi_P^{-1})(w) = \int_{\mathbb{T}} w^m \mathrm{d}(\nu \circ \psi_P^{-1})(w), \quad m \ge 0.$$

A result similar to (3):

Proposition If (μ_1, μ_2) and (μ'_1, μ'_2) are representing for $\tilde{\gamma} \in \text{PDE}(\gamma)$, then $\mu_1 \circ \psi^{-1} + \mu_2 \circ \varphi^{-1} = \mu'_1 \circ \psi^{-1} + \mu'_2 \circ \varphi^{-1}$, where $\psi : \mathbb{C}^* \ni z \mapsto z^2 |z|^{-2} \in \mathbb{T}, \quad \varphi : \mathbb{T} \ni z \mapsto z^2 \in \mathbb{T}.$

One may substitute a subset of \mathbb{C}^* in place of \mathbb{C}^* if we know that a representing measure is supported in this subset.

A result similar to (3):

Proposition

If (μ_1,μ_2) and (μ_1',μ_2') are representing for $ilde{\gamma}\in\mathsf{PDE}(\gamma)$,then

$$\mu_1 \circ \psi^{-1} + \mu_2 \circ \varphi^{-1} = \mu'_1 \circ \psi^{-1} + \mu'_2 \circ \varphi^{-1},$$

where

$$\psi:\mathbb{C}^*\ni z\mapsto z^2|z|^{-2}\in\mathbb{T},\quad \varphi:\mathbb{T}\ni z\mapsto z^2\in\mathbb{T}.$$

One may substitute a subset of \mathbb{C}^* in place of \mathbb{C}^* if we know that a representing measure is supported in this subset.

□ > < = > <

A result similar to (3):

Proposition

If (μ_1, μ_2) and (μ_1', μ_2') are representing for $\tilde{\gamma} \in \mathsf{PDE}(\gamma)$,then

$$\mu_1 \circ \psi^{-1} + \mu_2 \circ \varphi^{-1} = \mu'_1 \circ \psi^{-1} + \mu'_2 \circ \varphi^{-1},$$

where

$$\psi:\mathbb{C}^*\ni z\mapsto z^2|z|^{-2}\in\mathbb{T},\quad \varphi:\mathbb{T}\ni z\mapsto z^2\in\mathbb{T}.$$

One may substitute a subset of \mathbb{C}^* in place of \mathbb{C}^* if we know that a representing measure is supported in this subset.

□ > < = > <

A result similar to (3):

Proposition

If (μ_1,μ_2) and (μ_1',μ_2') are representing for $ilde{\gamma}\in\mathsf{PDE}(\gamma)$,then

$$\mu_1 \circ \psi^{-1} + \mu_2 \circ \varphi^{-1} = \mu'_1 \circ \psi^{-1} + \mu'_2 \circ \varphi^{-1},$$

where

$$\psi:\mathbb{C}^*\ni z\mapsto z^2|z|^{-2}\in\mathbb{T},\quad \varphi:\mathbb{T}\ni z\mapsto z^2\in\mathbb{T}.$$

One may substitute a subset of \mathbb{C}^* in place of \mathbb{C}^* if we know that a representing measure is supported in this subset.

同 ト イ ヨ ト イ ヨ ト

if the every Borel subset τ of Z_P is of the form τ = ψ_P⁻¹(σ) with some Borel σ ⊂ T, then we are happy because we know all about PDE(γ).

Going back to the example of the line $\mathbb{R} + i$ we see that every Borel subset of this line is of the form $\psi_P^{-1}(\sigma)$ with some Borel $\sigma \subset \mathbb{T}$. Here $P(z, \overline{z}) = z - \overline{z} + 2$.

Some other sets satisfy this condition, e.g.

$$P(x, y) = x^{2k} - (y - 1)^{l},$$

where l > 2k is odd (this may be written in variables z and \overline{z}).

if the every Borel subset τ of Z_P is of the form τ = ψ_P⁻¹(σ) with some Borel σ ⊂ T, then we are happy because we know all about PDE(γ).

Going back to the example of the line $\mathbb{R} + i$ we see that every Borel subset of this line is of the form $\psi_P^{-1}(\sigma)$ with some Borel $\sigma \subset \mathbb{T}$. Here $P(z, \overline{z}) = z - \overline{z} + 2$.

Some other sets satisfy this condition, e.g.

$$P(x, y) = x^{2k} - (y - 1)^{l},$$

where l > 2k is odd (this may be written in variables z and \overline{z}).

if the every Borel subset τ of Z_P is of the form τ = ψ_P⁻¹(σ) with some Borel σ ⊂ T, then we are happy because we know all about PDE(γ).

Going back to the example of the line $\mathbb{R} + i$ we see that every Borel subset of this line is of the form $\psi_P^{-1}(\sigma)$ with some Borel $\sigma \subset \mathbb{T}$. Here $P(z, \overline{z}) = z - \overline{z} + 2$.

Some other sets satisfy this condition, e.g.

$$P(x, y) = x^{2k} - (y - 1)^{l},$$

where l > 2k is odd (this may be written in variables z and \overline{z}).

if the every Borel subset τ of Z_P is of the form τ = ψ_P⁻¹(σ) with some Borel σ ⊂ T, then we are happy because we know all about PDE(γ).

Going back to the example of the line $\mathbb{R} + i$ we see that every Borel subset of this line is of the form $\psi_P^{-1}(\sigma)$ with some Borel $\sigma \subset \mathbb{T}$. Here $P(z, \overline{z}) = z - \overline{z} + 2$.

Some other sets satisfy this condition, e.g.

$$P(x, y) = x^{2k} - (y - 1)^{l}$$

where l > 2k is odd (this may be written in variables z and \bar{z}).

Assume that $\mathsf{PDE}(\gamma) = \{\tilde{\gamma}\}$. Does it follow that γ is determinate?

A partial solution:

Theorem

Let $P \in \mathbb{C}[z, \overline{z}]$ be a polynomial such that $\emptyset \neq Z_P \neq \mathbb{C}$. Let γ on \mathfrak{N} admit a representing measure supported in Z_P . Suppose condition (4) holds for ψ_P , i.e. every Borel subset τ of Z_P is of the form $\tau = \psi_P^{-1}(\sigma)$ with some Borel $\sigma \subset \mathbb{T}$. If $\mathsf{PDE}(\gamma) = {\tilde{\gamma}}$, then γ is determinate.

(Recall that converse is true if there is no atom at 0.)

Theorem

Let $P \in \mathbb{C}[z, \overline{z}]$ be a polynomial such that $\emptyset \neq Z_P \neq \mathbb{C}$. Let γ on \mathfrak{N} admit a representing measure supported in Z_P . Suppose condition (4) holds for ψ_P , i.e. every Borel subset τ of Z_P is of the form $\tau = \psi_P^{-1}(\sigma)$ with some Borel $\sigma \subset \mathbb{T}$. If $PDE(\gamma) = {\tilde{\gamma}}$, then γ is determinate.

(Recall that converse is true if there is no atom at 0.)

Theorem

Let $P \in \mathbb{C}[z, \overline{z}]$ be a polynomial such that $\emptyset \neq Z_P \neq \mathbb{C}$. Let γ on \mathfrak{N} admit a representing measure supported in Z_P . Suppose condition (4) holds for ψ_P , i.e. every Borel subset τ of Z_P is of the form $\tau = \psi_P^{-1}(\sigma)$ with some Borel $\sigma \subset \mathbb{T}$. If $\mathsf{PDE}(\gamma) = \{\tilde{\gamma}\}$, then γ is determinate.

(Recall that converse is true if there is no atom at 0.)

Theorem

Let $P \in \mathbb{C}[z, \overline{z}]$ be a polynomial such that $\emptyset \neq Z_P \neq \mathbb{C}$. Let γ on \mathfrak{N} admit a representing measure supported in Z_P . Suppose condition (4) holds for ψ_P , i.e. every Borel subset τ of Z_P is of the form $\tau = \psi_P^{-1}(\sigma)$ with some Borel $\sigma \subset \mathbb{T}$. If $\mathsf{PDE}(\gamma) = {\tilde{\gamma}}$, then γ is determinate.

(Recall that converse is true if there is no atom at 0.)

Theorem

Let $P \in \mathbb{C}[z, \overline{z}]$ be a polynomial such that $\emptyset \neq Z_P \neq \mathbb{C}$. Let γ on \mathfrak{N} admit a representing measure supported in Z_P . Suppose condition (4) holds for ψ_P , i.e. every Borel subset τ of Z_P is of the form $\tau = \psi_P^{-1}(\sigma)$ with some Borel $\sigma \subset \mathbb{T}$. If $\mathsf{PDE}(\gamma) = {\tilde{\gamma}}$, then γ is determinate.

(Recall that converse is true if there is no atom at 0.)

Theorem

Let $P \in \mathbb{C}[z, \overline{z}]$ be a polynomial such that $\emptyset \neq Z_P \neq \mathbb{C}$. Let γ on \mathfrak{N} admit a representing measure supported in Z_P . Suppose condition (4) holds for ψ_P , i.e. every Borel subset τ of Z_P is of the form $\tau = \psi_P^{-1}(\sigma)$ with some Borel $\sigma \subset \mathbb{T}$. If $\mathsf{PDE}(\gamma) = {\tilde{\gamma}}$, then γ is determinate.

(Recall that converse is true if there is no atom at 0.)

PRESENTATION IS FINISHED!

THANK YOU FOR YOUR ATTENTION!

Dariusz Cichoń

Determinacy via positive definite extensions

risovach.r