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Abstract for Lecture 5

Abstract: We discuss noncommutative peak sets for operator algebras, and
end with recent joint work with Weaver on quantum cardinals and quantum
measure theory.

The latter half of the talk contains some background for my conference
lecture next week.



FIRST, FINISH UP LECTURE 4:

(This material is joint work with L. Labuschagne; Lecture 5 mostly with
Nik Weaver, some with Labuschagne)



One formulation (without mentioning peak sets) of our generalization of
Ueda’s peak set theorem to subalgebras of σ-finite von Neumann algebras:

Generalized Ueda peak set theorem SupposeA is a subdiagonal subalgebra
of a σ-finite von Neumann algebra M . For any singular state ϕ on M , there
is a sequence (pn) of projections in Ker (ϕ) with sup in M∗∗ in A⊥⊥, and
sup in M being 1.



One formulation (without mentioning peak sets) of our generalization of
Ueda’s peak set theorem to subalgebras of σ-finite von Neumann algebras:

Generalized Ueda peak set theorem SupposeA is a subdiagonal subalgebra
of a σ-finite von Neumann algebra M . For any singular state ϕ on M , there
is a sequence (pn) of projections in Ker (ϕ) with sup in M∗∗ in A⊥⊥, and
sup in M being 1.

The proof is far too technical to describe here. It uses the tools described
above, together with the same basic strategy as Ueda’ proof of his case,
but becomes enormously more complicated technically. We will describe
Ueda’ original proof below, emphasizing where real positivity comes in. I
will also explain why this is a theorem about noncommutative peak sets and
reformulate it as such, explaining what noncommutative peak sets are



• All the other consequences found by Ueda of his peak set theorem,
now go through in our more general case. It is convenient to phrase this as
follows:



If A is a weak* closed subalgebra of a von Neumann algebra M then we
say that A is an Ueda algebra if Ueda’s peak set theorem ‘holds’ for A.

Ueda’s ideas then immediately give the following three generalizations of
his beautiful results:



If A is a weak* closed subalgebra of a von Neumann algebra M then we
say that A is an Ueda algebra if Ueda’s peak set theorem ‘holds’ for A.

Ueda’s ideas then immediately give the following three generalizations of
his beautiful results:

Theorem Suppose that A is an Ueda algebra in a von Neumann algebra
M . Write A∗s and A∗n for the set of restrictions to A of singular and normal
functionals on M . Each ϕ ∈ A∗ has a unique Lebesgue decomposition
relative to M : ϕ = ϕn + ϕs with ϕn ∈ A∗n and ϕs ∈ A∗s. Moreover,
‖ϕ‖ = ‖ϕn‖ + ‖ϕs‖.

Corollary Suppose that A is an Ueda algebra in a von Neumann algebra
M . Then the predual A∗ of A is unique



Theorem (F. & M. Riesz type theorem) Suppose that A is an Ueda
algebra in a von Neumann algebra M . If ϕ ∈ M∗ annihilates A (that is,
ϕ ∈ A⊥) then the normal and singular parts, ϕn and ϕs, also annihilate A.

One may define an F & M Riesz algebra to be a weak* closed subalgebra
A of a von Neumann algebra M , such that if ϕ ∈ A⊥ then the normal
and singular parts, ϕn and ϕs, also annihilate A. The F & M type theorem
above says that any Ueda algebra is an F & M Riesz algebra.



Theorem (F. & M. Riesz type theorem) Suppose that A is an Ueda
algebra in a von Neumann algebra M . If ϕ ∈ M∗ annihilates A (that is,
ϕ ∈ A⊥) then the normal and singular parts, ϕn and ϕs, also annihilate A.

One may define an F & M Riesz algebra to be a weak* closed subalgebra
A of a von Neumann algebra M , such that if ϕ ∈ A⊥ then the normal
and singular parts, ϕn and ϕs, also annihilate A. The F & M type theorem
above says that any Ueda algebra is an F & M Riesz algebra.

By proofs in [B-Labuschagne] (but using the F & M type theorem above
instead of our original one) we have the following several results:

Corollary Suppose that A is an F & M Riesz or Ueda algebra in a von
Neumann algebra M such that A + A∗ is weak* dense in M . Any Hahn-
Banach extension to M of a weak* continuous functional on A, is normal.

The last Corollary is related to the Gleason-Whitney theorem:



Lemma Suppose A is a weak* closed subalgebra of a von Neumann
algebra M . Then A + A∗ is weak* dense in M iff there is at most one
normal Hahn-Banach extension to M of any weak* continuous functional
on A.

Corollary (Gleason-Whitney type theorem) Suppose that A is an F &
M Riesz or Ueda algebra in a von Neumann algebra M . Then A + A∗ is
weak* dense in M if and only if every normal functional on A has a unique
Hahn-Banach extension to M . This extension is normal.

Of course by our main theorem all of these hold when A is a maximal
subdiagonal subalgebra of a σ-finite von Neumann algebra M . Conversely
these properties characterize maximal subdiagonal subalgebras (in terms of if
and only if every normal functional on A has a unique normal Hahn-Banach
extension to M).



Summary of the last 3 pages: Any algebra satisfying the conclusions of
Ueda’s peak set theorem also has the F & M Riesz, Gleason-Whitney, unique
predual, Lebesgue decomposition, etc. It also satisfies the earlier Kaplansky
density theorem

The Lebesgue decomposition result generalizes the Lebesgue decomposi-
tion theorem for functionals on a von Neumann algebra, the unique predual
result simultaneously generalizes the Ando-Wojtaszczyk result that H∞(D)
has a unique predual, and the Dixmier-Sakai result that von Neumann alge-
bras have unique predual



Section 4. Noncommutative peak sets and Ueda’s theorem

(Classical) peak set for a uniform algebra A ⊂ C(K):

Peak set: E = f−1({1}) for a norm 1 function f in A. One may rechoose
f such that |f | < 1 on Ec (replace with 1

2(1+f )), in which case fn→ χE.

Figura 1: A peak set E



Recall that a peak set for a uniform algebra A ⊂ C(K) is a closed set
E = f−1({1}) for a norm 1 function f in A. One may rechoose f such
that |f | < 1 on Ec, in which case fn→ χE.

C∗-algebraic variant:

u(x) = χ{1}(x) = w∗limn x
n, x ∈ Ball(B)+.

Here B is a C∗-algebra.

These are the peak projections : x peaks on u(x)



Recall that a peak set for a uniform algebra A ⊂ C(K) is a closed set
E = f−1({1}) for a norm 1 function f in A. One may rechoose f such
that |f | < 1 on Ec, in which case fn→ χE.

C∗-algebraic variant:

u(x) = χ{1}(x) = w∗limn x
n, x ∈ Ball(B)+.

Here B is a C∗-algebra.

These are the peak projections : x peaks on u(x)

• There is a calculus (collection of nice algebraic formulae) for these that
plays a big role in C∗-algebra theory. Indeed u(x) = s(1−x)⊥ if 0 ≤ x ≤ 1.
Here s(·) is the support projection



For us, as in the function algebra case, we have a fixed subalgebra A of
a C∗-algebra B, and are interested in peaks u(x) for real positive elements
of A
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if x is a real positive contraction
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Peak projections relative to the subalgebraAmay defined to be w∗limn x
n,

for x ∈ Ball(A) such that this weak* limit exists (B-Read?), which it does
if x is a real positive contraction

• One can show u(x) = s(1−x)⊥ for x in a unital nonselfadjoint operator
algebra, with ‖1− 2x‖ ≤ 1

• Their study was initiated in the thesis of Damon Hay, and we have
studied it in several papers (eg. with Read or Neal)



For us, as in the function algebra case, we have a fixed subalgebra A of
a C∗-algebra B, and are interested in peaks u(x) for real positive elements
of A

Peak projections relative to the subalgebraAmay defined to be w∗limn x
n,

for x ∈ Ball(A) such that this weak* limit exists (B-Read?), which it does
if x is a real positive contraction

• One can show u(x) = s(1−x)⊥ for x in a unital nonselfadjoint operator
algebra, with ‖1− 2x‖ ≤ 1

• Their study was initiated in the thesis of Damon Hay, and we have
studied it in several papers (eg. with Read or Neal)

Theorem If A is a closed subalgebra of a C∗-algebra B then q is a peak
projection for A if and only if q ∈ A⊥⊥ and q is a peak projection for B.



• If I had time I would show how peak projections do what peak sets do
in classical function theory, and discuss peak interpolation. (Survey paper
Noncommutative peak interpolation revisited, Bull. London
Math. Soc. (2013))
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in classical function theory, and discuss peak interpolation. (Survey paper
Noncommutative peak interpolation revisited, Bull. London
Math. Soc. (2013))

• One could also talk about their role in ‘noncommutative topology’:
they are compact projections, and the converse is true if A is separable; in
general compact projections are the same as infs of peak projections (the
noncommutative Glicksberg theorem).



• If I had time I would show how peak projections do what peak sets do
in classical function theory, and discuss peak interpolation. (Survey paper
Noncommutative peak interpolation revisited, Bull. London
Math. Soc. (2013))

• One could also talk about their role in ‘noncommutative topology’:
they are compact projections, and the converse is true if A is separable; in
general compact projections are the same as infs of peak projections (the
noncommutative Glicksberg theorem).

• But there is no time, so instead we discuss what we need for Lecture 4,
peak projections in von Neumann’s algebra, and Ueda’s peak set theorem



• Recall that several famous theorems about H∞ of the disk, such as
theuniqueness of predual (Ando-Wojtaszczyk), Lebesgue decomposition, F
& M Riesz theorem, Gleason-Whitney, etc, can be shown to all follow from
a peak set theorem.

• In the classical case of H∞(D) this peak set theorem is due to Amar
and Lederer: ‘Any closed set of measure zero is contained in a peak set of
measure zero’. (I am simplifying, namely where the sets live.)



• Recall that several famous theorems about H∞ of the disk, such as
theuniqueness of predual (Ando-Wojtaszczyk), Lebesgue decomposition, F
& M Riesz theorem, Gleason-Whitney, etc, can be shown to all follow from
a peak set theorem.

• In the classical case of H∞(D) this peak set theorem is due to Amar
and Lederer: ‘Any closed set of measure zero is contained in a peak set of
measure zero’. (I am simplifying, namely where the sets live.)

Ueda’s (nc Amar-Lederer) peak set theorem may be phrased as saying
that any singular support projection (i.e. the support of any singular state
on M), is dominated by a peak projection p for A with p in the ‘singular
part’ of M∗∗ (that is, p annihilates all normal functionals on M).



Lemma (Characterization of peak projections for subalgebras A of a von
Neumann algebra M , B+Labuschagne) A projection q in M∗∗ is a peak
projection for A if and only if q ∈ A⊥⊥ and q = ∧n qn, the infimum in
M∗∗ of a (decreasing if you wish) sequence (qn) of projections in M .



Lemma (Characterization of peak projections for subalgebras A of a von
Neumann algebra M , B+Labuschagne) A projection q in M∗∗ is a peak
projection for A if and only if q ∈ A⊥⊥ and q = ∧n qn, the infimum in
M∗∗ of a (decreasing if you wish) sequence (qn) of projections in M .

• We can reformulate Ueda’s peak set theorem using this lemma: the
peak projection p in Ueda’s theorem in is in A⊥⊥ and is the inf in M∗∗ of a
sequence (qn) of projections in M . If p dominates the support of ϕ then this
forces ϕ(qn) = 1 for all n. To say p annihilates all normal functionals on M
is easily seen to imply that the inf of (qn) in M is 0. And vice versa. This
gives the formulation of Ueda’s peak set theorem from the end of lecture 4.



We now sketch Ueda’ proof, emphasizing where real positivity comes in.



We now sketch Ueda’ proof, emphasizing where real positivity comes in.

• Recall that Ueda proved his noncommutative peak set result in the
case that M has a faithful normal tracial state (‘finite’ vNA).



Restatement: Ueda’s (nc Amar-Lederer) peak set theorem If A is a sub-
diagonal subalgebra of a von Neumann algebra M with a faithful normal
tracial state. For a singular state ϕ ∈M∗, there exists a contraction a ∈ A
and a projection p ∈M∗∗ with

(1) an→ p weak* in M∗∗.

(2) an→ 0 weak* in M .

(3) ϕ(an)→ 1.



Restatement: Ueda’s (nc Amar-Lederer) peak set theorem If A is a sub-
diagonal subalgebra of a von Neumann algebra M with a faithful normal
tracial state. For a singular state ϕ ∈M∗, there exists a contraction a ∈ A
and a projection p ∈M∗∗ with

(1) an→ p weak* in M∗∗.

(2) an→ 0 weak* in M .

(3) ϕ(an)→ 1.

To see the equivalence, note the p is the peak projection u(a) by (1), and
satisfies ϕ(p) = 1 by (3), so the support of ϕ is dominated by this peak
projection. For ψ ∈ M∗ we have ψ(p) = limnψ(an) = 0. So p annihilates
all normal functionals on M . And conversely.



Ueda’s strategy for proving his original peak set theorem: A tale of two
transforms:

Let ϕ be a singular state. Zorn’s lemma gives an increasing sequence of
projections (qn) in Ker(ϕ) with supremum 1. So pn = q⊥n ↘ 0 in M , and
pn ↘ p say in M∗∗. So ϕ(p) = ϕ(pn) = 1. Replacing by a subsequence if
necessary, so that τ (pn) < n−6 say, g =

∑
n n pn ∈ L2(M)+.

Take the Hilbert transform of g to get an accretive (real positive) element
g + iH(g) in noncommutative H2 with real part g.

The Cayley transform of this gives an element b ∈ Ball(A) with an (un-
bounded) inverse, and set a = 1

2(1 + b). This is real positive, so has a peak
u(x) = w∗lim an, limit in M∗∗.



Then an → 0 WOT by operator theory; since there is no nontrivial subs-
pace on which a acts isometrically. In turn this follows easily because, as we
said, b has an (unbounded) inverse.

A bit of work shows that pa = p, so pan = p and in the weak* limit get

p ≤ u(a) = w∗lim an,

so that 1 = ϕ(p) ≤ limnϕ(an) = ϕ(u(x)) ≤ 1. �



Then an → 0 WOT by operator theory; since there is no nontrivial subs-
pace on which a acts isometrically. In turn this follows easily because, as we
said, b has an (unbounded) inverse.

A bit of work shows that pa = p, so pan = p and in the weak* limit get

p ≤ u(a) = w∗lim an,

so that 1 = ϕ(p) ≤ limnϕ(an) = ϕ(u(x)) ≤ 1. �

Again, why we wanted to describe this proof is to show the basic stra-
tegy for our proof of our very technical generalization of it to σ-finite von
Neumann algebras; and to see more of the role of real positivity



• In our conference lecture we will give characterizations of the von
Neumann algebras for which Ueda’s theorem holds (taking A = M ; i.e. the
von Neumann algebras which are Ueda algebras): e.g. iff every collection of
mutually orthogonal projections in M has cardinality < a fixed cardinal κ0

It is possible that the cardinal κ0 here is the continuum (cardinality of R)



Section 5. Uedas peak set result is not provable in ZFC for all v N algebras.



Section 5. Uedas peak set result is not provable in ZFC for all v N algebras.

Remark. If the Ueda peak set result fails then it fails for all subalgebras
A of M ; so take A = M henceforth.



Section 5. Uedas peak set result is not provable in ZFC for all v N algebras.

• Specializing our statement of Uedas peak set result from yesterdays
lecture to the case M = A = l∞(R), yields: For any singular state ϕ on
M , there is a sequence (pn) of projections in Ker (ϕ) with sup in M being
1.
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• Specializing our statement of Uedas peak set result from yesterdays
lecture to the case M = A = l∞(R), yields: For any singular state ϕ on
M , there is a sequence (pn) of projections in Ker (ϕ) with sup in M being
1.

• Projections pn in l∞(R) correspond to subsets En of R, and ϕ restricts
to a finitely additive measure µ on R by µ(E) = ϕ(1E). Saying that ϕ is
singular is saying that µ vanishes on singletons (since recall singular means
that every nonzero projection dominates a nonzero projection in the kernel).



Section 5. Uedas peak set result is not provable in ZFC for all v N algebras.

• Specializing our statement of Uedas peak set result from yesterdays
lecture to the case M = A = l∞(R), yields: For any singular state ϕ on
M , there is a sequence (pn) of projections in Ker (ϕ) with sup in M being
1.

• Projections pn in l∞(R) correspond to subsets En of R, and ϕ restricts
to a finitely additive measure µ on R by µ(E) = ϕ(1E). Saying that ϕ is
singular is saying that µ vanishes on singletons (since recall singular means
that every nonzero projection dominates a nonzero projection in the kernel).

• So Ueda’s theorem in this case is implying that for every finitely additive
probability measure µ defined on all subsets of R vanishing on singletons,
there is a countable collection of µ-null sets in R whose union is R, which
has measure 1. Something smells fishy!



We are now partly moving into the realms of set theory, which I am not
an expert on (consult my coauthor Nik Weaver)



• So Ueda’s theorem in this case is implying that for every finitely additive
probability measure µ defined on all subsets of R vanishing on singletons,
there is a countable collection of µ-null sets in R whose union is R, which
has measure 1. Something smells fishy!



• So Ueda’s theorem in this case is implying that for every finitely additive
probability measure µ defined on all subsets of R vanishing on singletons,
there is a countable collection of µ-null sets in R whose union is R, which
has measure 1. Something smells fishy!

Indeed what you are staring at, is a statement that ‘is’ neither provable
nor disprovable in ZFC. To be more accurate it is not disprovable; and it
is not provable subject to beliefs in set theory (i.e. proving it would cause
shock waves through mathematics)



• So Ueda’s theorem in this case is implying that for every finitely additive
probability measure µ defined on all subsets of R vanishing on singletons,
there is a countable collection of µ-null sets in R whose union is R, which
has measure 1. Something smells fishy!

Indeed what you are staring at, is a statement that ‘is’ neither provable
nor disprovable in ZFC. To be more accurate it is not disprovable; and it
is not provable subject to beliefs in set theory (i.e. proving it would cause
shock waves through mathematics)

Why not disprovable? It is provable by a standard easy argument in set
theory if you add the continuum hypothesis (feel free to ask for this argument
)



Why not provable? Notice that if provable then it would give a negative
solution in ZFC to:
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subsets of [0, 1] which is zero on singletons? [It is known that if there is,
then one can find another that extends Lebesgue measure.]
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Banach’s measure problem: Is there a probability measure defined on all
subsets of [0, 1] which is zero on singletons? [It is known that if there is,
then one can find another that extends Lebesgue measure.]

• Banach showed that you cannot prove an affirmitive answer to this in
ZFC. The existence of a negative answer is equivalent to the nonexistence of
measurable cardinals in ZFC. However it is generally believed by set theorists
that the existence of measurable cardinals is consistent with ZFC.



Why not provable? Notice that if provable then it would give a negative
solution in ZFC to:

Banach’s measure problem: Is there a probability measure defined on all
subsets of [0, 1] which is zero on singletons? [It is known that if there is,
then one can find another that extends Lebesgue measure.]

• Banach showed that you cannot prove an affirmitive answer to this in
ZFC. The existence of a negative answer is equivalent to the nonexistence of
measurable cardinals in ZFC. However it is generally believed by set theorists
that the existence of measurable cardinals is consistent with ZFC.

That is, they would think that it is safe to add e.g. the affirmitive answer
to Banach’s measure problem as an extra axiom of set theory, if convenient
(and if you dont add CH too)



Section 6. Quantum cardinals
In set theory there is an elaborate hierarchy of “large cardinal” properties,

e.g. an uncountable cardinal κ is said to be

Ulam real-valued measurable if there is a countably additive probability
measure on κ which vanishes on singletons.

Ulam measurable if there is a nonzero countably additive {0, 1}-valued
measure on κ which vanishes on singletons

measurable if there is a nonzero <κ-additive {0, 1}-valued measure on
κ which vanishes on singletons

real-valued measurable if there is a <κ-additive probability measure on
κ which vanishes on singletons

Here measures on κ are assumed defined on all subsets of κ, and “<κ-
additive” means “additive on any family of fewer than κ disjoint sets”.



Later, “<κ-additive” (for a state on M) means “additive on any family
of fewer than κ projections”. Eg.

• Banach’s measure problem is asking if [0, 1] = 2ℵ0 is Ulam real-valued
measurable.



FACTS: No cardinal of these types can be proven to exist in ZFC, assuming
ZFC is consistent. It is generally believed that the existence of such cardinals
is consistent with ZFC. However, this, if true, could not be proven within
ordinary set theory. They all have the same consistency strength, i.e., the
consistency of any of the theories

ZFC + “a measurable cardinal exists”

ZFC + “a real-valued measurable cardinal exists”

ZFC + “an Ulam measurable cardinal exists”

ZFC + “an Ulam real-valued measurable cardinal exists”

implies the consistency of each of the others.



The basic relations among these notions:

• Every measurable cardinal is real-valued measurable, and among cardi-
nals > 2ℵ0 the two notions coincide.

• No measurable cardinal can be ≤ 2ℵ0, whereas if it is consistent that
a measurable cardinal exists then it is consistent that there is a real-valued
measurable cardinal ≤ 2ℵ0.

• A cardinal is Ulam measurable if and only if it is greater than or equal
to some measurable cardinal, and a cardinal is Ulam real-valued measurable
if and only if it is greater than or equal to some real-valued measurable
cardinal.



• Each of these four kinds of measurability can be expressed in terms of
states on l∞(κ): E.g.

Proposition An uncountable cardinal κ is

(i) Ulam real-valued measurable if and only if there is a singular countably
additive state on l∞(κ)

(ii) Ulam measurable if and only if there is a singular countably additive pure
state on l∞(κ)

(iii) measurable iff there is a singular <κ-additive pure state on l∞(κ)

(iv) real-valued measurable iff there is a singular <κ-additive state on l∞(κ)



• Each of these four kinds of measurability can be expressed in terms of
states on l∞(κ): E.g.

Proposition An uncountable cardinal κ is

(i) Ulam real-valued measurable if and only if there is a singular countably
additive state on l∞(κ)

(ii) Ulam measurable if and only if there is a singular countably additive pure
state on l∞(κ)

(iii) measurable iff there is a singular <κ-additive pure state on l∞(κ)

(iv) real-valued measurable iff there is a singular <κ-additive state on l∞(κ)

A natural question is to replace l∞(κ) by B(l2(κ)) in each of the above,
which presumably gives quantum versions of these four classes of measurable
cardinals



Theorem The four quantum versions are the same as their classical ver-
sions. E.g. there exists a singular countably additive pure state on B(l2(κ))
if and only if κ is Ulam measurable.



Theorem The four quantum versions are the same as their classical ver-
sions. E.g. there exists a singular countably additive pure state on B(l2(κ))
if and only if κ is Ulam measurable.

We will give new proofs of most of these in our conference talk, deducing
these from a generalization from B(l2(κ)) to all von Neumann algebras.

Essentially the only implication that we will not deduce in our conference
talk from von Neumann algebra generalizations, we prove now, using a gene-
ralization of the recently solved Kadison-Singer problem (Marcus, Spielman
and Srivastava, 2013):



Theorem (Kadison-Singer extension) Let κ be an infinite cardinal. Then
any pure state on the diagonal subalgebra of B(l2(κ)) has a unique (neces-
sarily pure) state extension to B(l2(κ)).

Proof that there exists a singular countably additive pure state on B(l2(κ))
if κ is Ulam measurable:

If κ is measurable then by the last Proposition there is a singular <κ-
additive pure state φ on l∞(κ). Let Φ be the conditional expectation from
B(l2(κ)) onto the diagonal subalgebra which is identified with l∞(κ). Then
ψ = φ ◦ Φ is a state on B(l2(κ)). Since φ is pure, the Kadison-Singer
extension above implies that ψ is pure. It is easily seen to vanish on the
compacts, so it is singular, and is <κ-additive since E is normal.



Farah-Weaver: A quantum filter on a von Neumann algebra M is a family
of projections F in M with the properties

(i) if p ∈ F and p ≤ q then q ∈ F
(ii) if p1, . . . , pn ∈ F then ‖p1 · · · pn‖ = 1.

If φ is a state on M then

Fφ = {p ∈M : p is a projection and φ(p) = 1}
is a quantum filter

• Pure states correspond to quantum ultrafilters, that is the maximal
quantum filters, a theorem of Farah-Weaver. To prove this one needs the
following, which we really need later



Lemma (Farah-W) Suppose that φ is a pure state on a von Neumann
algebra M and that ψ is a state on M such that

φ(p) = 1 ⇒ ψ(p) = 1

for any projection p ∈M . Then φ = ψ.

Proof. The multiplicative domain of φ is the set

D = {x ∈M : φ(xy) = φ(yx) = φ(x)φ(y) for all y ∈M}.
A projection p belongs to D if and only if φ(p) = 0 or 1. Since φ(p) = 1
implies ψ(p) = 1, we have

φ(p) = 0 ⇒ φ(1− p) = 1 ⇒ ψ(1− p) = 1 ⇒ ψ(p) = 0.

So φ(p) = ψ(p) for every projection p ∈ D. Anderson showed the span of
the projections in D is norm dense in D, so φ = ψ on D. Finally, since φ is
pure it is the unique state extension to M of its restriction to D. So φ = ψ.
�



Quantum measure theory Namely: the theory of ‘measures’ and states on
projection lattices of von Neumann algebras.

These projection lattices replace the σ-algebras of ordinary measure theory
(which are of course Boolean algebras).

In part of our conference talk we will explain some basics of quantum
measure theory, and make some new contributions to this subject.



• In fact the validity of Ueda’s theorem (particularly in the case M = A)
is about existence of singular states with a certain continuity property: the
theorem fails if there is a singular state ϕ on M , so that if ϕ(pn) = 0 for
all n ∈ N then ... (we had something else here before but will improve it
next time to ϕ(∨n pn) = 0, a property known as regularity).

• Similar conditions on states were studied in the context of axiomatic
von Neumann algebra quantum mechanics by e.g. Hamhalter and others.

• This motivated us to consider the general question of the existence
of singular states or pure states on von Neumann algebras with various
continuity properties, which we discuss in the later talk



Quantum filters need not be actual filters in the usual sense of being stable
under finite meets. However:

Lemma Let φ be a regular state on a von Neumann algebra M . Then Fφ
is a σ-filter, i.e., it is stable under countable meets.

Proof. Let {pn} be a countable family in Fφ and write p⊥n = 1 − pn.
Then

φ
(∧

pn

)
= φ

(
1−

∨
p⊥n
)

= 1− φ
(∨

p⊥n
)

= 1

where φ(
∨
p⊥n ) = 0 by regularity. Thus

∧
pn ∈ Fφ. �



• Proof of Ueda’s theorem for l∞(R) if you add the continuum hypothesis:

Proof. The standard and reasonably simple proof that the first uncounta-
ble cardinal is not measurable, shows that given a finitely additive probability
measure m defined on the power set of κ for which singleton sets are null,
we can decompose κ as a countable union Nn of disjoint m-null sets. Let
An = ∪nk=1Nk. Then m(An) = 0, and ∪∞k=1Ak = κ. �


