
Lecture 3: Modules over operator algebras

David Blecher
University of Houston

December 2016



Abstract

Lecture 3: Modules over operator algebras

We discuss the theory of operator modules over operator algebras, the
generalization to operator algebras of Hilbert C∗-modules, the module Haa-
gerup tensor product, and how some of these ideas are being used in the
noncommutative geometry of spectral triples.



Why operator spaces?

Let A be your favourite unital subalgebra of a C∗-algebra, let Cn(A) be
the first column of Mn(A), and consider the basic result from ring theory

Mn(A) ∼= HomA(Cn(A))

This relation breaks down when norms are placed on the spaces. That is,
there is no sensible norm to put on Cn(A) so that

Mn(A) ∼= BA(Cn(A)) isometrically

(and even bicontinuous isomorphism breaks down when n =∞).



Why operator spaces?

Let A be your favourite unital subalgebra of a C∗-algebra, let Cn(A) be
the first column of Mn(A), and consider the basic result from ring theory

Mn(A) ∼= HomA(Cn(A))

This relation breaks down when norms are placed on the spaces. That is,
there is no sensible norm to put on Cn(A) so that

Mn(A) ∼= BA(Cn(A)) isometrically

(and even bicontinuous isomorphism breaks down when n =∞).
However, operator spaces save the day:

Mn(A) ∼= CBA(Cn(A)) completely isometrically

• For C∗-algebras themselves this is OK, and the usefulness of operator
spaces is less obvious, but will see later (must use ‘completely bounded
morphisms’ in many later results, etc).



Section 1. Operator modules

A concrete left operator A-module is a linear subspace X ⊂ B(K,H),
which we take to be norm closed as always, together with a completely
contractive homomorphism θ:A→ B(H) for which θ(A)X ⊂ X . Such an
X is a left A-module via θ.

There is also an abstract definition of operator modules.



Theorem [Christensen-Effros-Sinclair, B] Operator modules are just the
operator spaces X which are modules over an operator algebra A, such that

‖ay‖ ≤ ‖a‖ ‖y‖,
for all matrices a ∈Mn(A), y ∈Mn(X), n ∈ N (that is, the module action
is completely contractive as a map on the Haagerup tensor product)



Theorem [Christensen-Effros-Sinclair, B] Operator modules are just the
operator spaces X which are modules over an operator algebra A, such that

‖ay‖ ≤ ‖a‖ ‖y‖,
for all matrices a ∈Mn(A), y ∈Mn(X), n ∈ N (that is, the module action
is completely contractive as a map on the Haagerup tensor product)

• My favorite proof of the last theorem uses the operator space left mul-
tipliers mentioned in earlier talks

Recall: the maps T : X → X such that for all x, y ∈ X :∣∣∣∣∣∣∣∣[ Txy
]∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣[ xy

]∣∣∣∣∣∣∣∣
(And similarly for matrices [xij], [yij] ∈Mn(X))

These maps form the unit ball of LM(X)

LM(X) is defined only in vector space and matrix norm terms.



Theorem If T : X → X TFAE:

(i) T ∈ LM(X).

(ii) There exists c.i. embedding X ↪→ B(H) and a ∈ B(H) with Tx = ax
for all x ∈ X .

(iii) ... in terms of ‘noncommutative Shilov boundary’ ...

(iv) ...

• LM(X) is always a unital operator algebra, indeed a dual operator
algebra if X is a dual operator space

• LM(X) is often what you would expect in operator algebraic situations.
Thus we are getting algebra ‘for free’ from the matrix norms



Suppose that A,B are operator algebras

(1) If H,K are Hilbert spaces, and if θ:A→ B(H) and π:B → B(K)
are completely contractive homomorphisms, then B(K,H) is an operator
A-B-bimodule (with the canonical module actions).

(2) Submodules of operator modules are clearly operator modules.

(3) Any operator space X is an operator C-C-bimodule.

(4) Any operator algebra A is an operator A-A-bimodule of course.

(5) Hilbert A-module: a Hilbert space H which is a left A-module who-
se associated homomorphism θ:A → B(H) is completely contractive (or
sometimes, completely bounded). Then Hc is an operator A-module.



• We define AHMOD to be the category of Hilbert A-modules, with
bounded A-module maps as the morphisms (they are automatically comple-
tely bounded on the associated column Hilbert spaces).



The algebra of a bimodule: If X is an (operator) A-B-bimodule over
algebras A and B, set D to be the algebra[

a x
0 b

]
for a ∈ A, b ∈ B, x ∈ X . The product here is the formal product of 2× 2
matrices, implemented using the module actions and algebra multiplications.
This is an (operator) algebra.



• Any C∗−module Z is an operator module (just look at the linking
C∗-algebra L(Z)) [

k z
w̄ a

]
for a ∈ A, z, w ∈ Z, and k in the ‘algebra of compacts’ on Z. The

product here is the formal product of 2×2 matrices, implemented using the
module actions and algebra multiplications.

‖[yij]‖n = ‖[
n∑
k=1

〈 yki | ykj 〉]‖
1
2



• A right C∗-module Z which is also a left module over a different C∗-
algebra A via a nondegenerate *-homomorphism θ : A → B(Z), is also a
left operator module. [Indeed by looking at M(L(Z)) one can see Z is a
left operator module over B(Z), the adjointable maps, = the 1-1-corner of
M(L(Z)).]

• Indeed most of the important modules in C∗−theory are operator mo-
dules



• Any bounded module map between C∗-modules is completely bounded,
with ‖T‖cb = ‖T‖. Thus we find ourselves in a situation where we do
not have to insist on working only with completely bounded maps, rather
we can exploit the fact that our maps already are completely bounded.
[One proof: WLOG Y = Z, then look in LM(L(Z)) where T becomes
‘left multiplication by an operator’. Recall also that BA(Z) ∼= LM(K(Z))
(Lin).]



• Indeed one can give a complete operator space view of C∗-modules,
and this is often a useful and powerful perspective.



• Indeed one can give a complete operator space view of C∗-modules,
and this is often a useful and powerful perspective.

For example, the basic tensor product Y ⊗θ Z of C∗-modules, sometimes
called the interior tensor product, turns out to coincide with the module
Haagerup tensor product Y ⊗hAZ. Here θ : A→ B(Z) is an nondegenerate
∗-homomorphism.

• This is wonderful, because the module Haagerup tensor product has very
strong algebraic properties. It is functorial, associative, ‘injective’, ‘projecti-
ve’, can be expressed in terms of nice norm formulae, etc.



Key point: Often the operator space/module Haagerup tensor product
allows one to treat theories involving C∗-modules much more like pure al-
gebra. It ‘facilitates ‘continuity’ for algebraic (ring-theoretic) structures. In
particular, there is a ‘calculus’ of algebraic formulae (involving tensor pro-
ducts) that is very useful.

• For example, it gives the



Hom-Tensor relations: Let A and B be C∗-algebras. We have

(1) KA(Y,KB(Z,N)) ∼= KB((Y ⊗θZ), N) completely isometrically, if Y, Z
are right C∗-modules over A and B respectively, and Z,N are left and
right operator modules over A and B respectively.

(2) KA(X,KB(W,M)) ∼= KB((W ⊗θ X),M) completely isometrically, if
X,W are left C∗-modules over A and B respectively, and W,M are
right and left operator modules over A and B respectively.

(3) KA(Y, (N ⊗hB M)) ∼= N ⊗hB KA(Y,M) completely isometrically, if
Y is a right module over A, if M is a B − A operator bimodule and if
N is a right A-operator module.

(4) KA(X,N ⊗hBM) ∼= KA(X,N)⊗hBM completely isometrically, if X
is a left C∗-module over A, if N is an A− B operator bimodule and if
M is a left B-operator module.

(5) KB(KA(Y,W ),M) ∼= Y ⊗hAKB(W,M) completely isometrically, if Y
is a right C∗-module over A, M is a left B-operator module, and W is
a right A operator module which is a left B C∗-module.



(6) KB(KA(X,Z), N) ∼= KB(Z,N)⊗hAX completely isometrically, if X
is a left C∗-module over A, N is a right B operator module, and Z is a
left A operator module which is a right B C∗-module.

(7) KA(X,KB(Z,W )) ∼= KB(Z,KA(X,W )) completely isometrically, if
X,Z are left and right C∗-modules over A and B respectively, and if W
is an A−B operator bimodule.

• It is important to note here that some of these spaces of ‘compacts’
dont make sense without operator space theory, and on these you have to
use the completely bounded norm



• There is also a famous and powerful variant of C∗-modules and their
theory appropriate to modules over von Neumann algebras

A W ∗-module is a Hilbert C∗-module over a von Neumann algebra which
is ‘selfdual’ (i.e. the appropriate ‘Riesz representation theorem’ for ‘functio-
nals’ works), or equivalently which has a Banach space predual (a result of
Zettl, see Effros-Ozawa-Ruan,B for proofs).

Analogues of the results earlier in this section hold for these



Theorem Suppose Y is a Banach space (resp. operator space) and a right
module over a C∗-algebra A. Then Y is a C∗-module, and the norm on
Y (resp. the matrix norms on Y ) coincides with the C∗-module’s norm
(resp. canonical operator space structure) if and only if there exists a net
of positive integers n(α), and contractive (resp. completely contractive)
A-module maps φα : Y → Cn(α)(A) and ψα : Cn(α)(A) → Y with

ψα ◦ φα → IdY strongly (that is, point-norm) on Y . In this case, for
y, z ∈ Y , the norm limit limαφα(y)∗φα(z) exists in A and equals the C∗-
module inner-product.



Theorem Suppose Y is a Banach space (resp. operator space) and a right
module over a C∗-algebra A. Then Y is a C∗-module, and the norm on
Y (resp. the matrix norms on Y ) coincides with the C∗-module’s norm
(resp. canonical operator space structure) if and only if there exists a net
of positive integers n(α), and contractive (resp. completely contractive)
A-module maps φα : Y → Cn(α)(A) and ψα : Cn(α)(A) → Y with

ψα ◦ φα → IdY strongly (that is, point-norm) on Y . In this case, for
y, z ∈ Y , the norm limit limαφα(y)∗φα(z) exists in A and equals the C∗-
module inner-product.

• This suggests the following generalization of C∗-modules: for an operator
algebra A and a right A-module Y which is also an operator space, such that
there exists a net of positive integers n(α), and contractive (resp. completely
contractive) A-module maps φα : Y → Cn(α)(A) and ψα : Cn(α)(A)→ Y
with ψα ◦ φα → IdY strongly on Y .

This works! These are called A-rigged modules, and their theory genera-
lizes the theory of C∗-modules, as we see in the next section.



Section 2. Why generalize C∗-modules to nonselfadjoint algebras?

Here is a great example from noncommutative geometry for why you might
want to, due to Bram Mesland



In noncommutative geometry, and in particular in KK-theory, a key role is
played by Connes’ spectral triples, which he developed to extend the Atiyah-
Singer index theorem to ‘noncommutative’ spaces.

A spectral triple or unbounded K-cycle includes a Hilbert space H, an
algebra of operators on it, and an unbounded self-adjoint operator with
compact resolvent.



In noncommutative geometry, and in particular in KK-theory, a key role is
played by Connes’ spectral triples, which he developed to extend the Atiyah-
Singer index theorem to ‘noncommutative’ spaces.

A spectral triple or unbounded K-cycle includes a Hilbert space H, an
algebra of operators on it, and an unbounded self-adjoint operator with
compact resolvent.

One should think of the algebra A of smooth functions on a manifold ac-
ting on the Hilbert space of L2-spinors, together with the associated Dirac
operator. If e.g. one has a group acting on the manifold, or a foliation struc-
ture on the manifold, the ∗-algebra A involved is no longer commutative,
but in examples there is still a ‘Dirac operator’: an unbounded densely defi-
ned self-adjoint operator D on H such that [a,D] = aD−Da is bounded,
etc.



A hugely important generalization of the spectral triples/unbounded K-
cycles are the unbounded KK-cycles of Baaj and Julg. For appropriate C∗-
algebras (A,B), and dense ∗-subalgebra A of A, one of their formulations
of these involve:

H, now a (countably generated graded Hilbert) C∗-module over B with an
appropriate left action of A, and an unbounded self-adjoint regular operator
F on H with a(1 +F 2)−1 compact for a ∈ A, and [a, F ] bounded for a in
a dense ∗-subalgebra A of A.

There is also an unbounded Kasparov product, a notoriously difficult way to
pair (homotopy classes) of KK-cycles for (A,B) with KK-cycles for (B,C)
to give a KK-cycles for (A,C).



Mesland developed a framework involving differentiable C∗-modules and
smooth connections which use nonselfadjoint operator algebras, and a ver-
sion of my ‘rigged module’ generalization of C∗-modules, and in particu-
lar the great algebraic properties of the module Haagerup tensor product
on operator modules over nonselfadjoint operator algebras generalizing C∗-
modules, with a goal to establish a more algebraic and computable formula
for the unbounded Kasparov product in certain cases.



Suppose that one is given two unbounded KK-cycles (A, X,E) and (B, Y, F ).
HereA,B are dense ∗-subalgebras of C∗-algebras A and B, and X is a right
C∗-module over B which has an A-action, and E is the usual unbounded
operator on X with [a,E] bounded for a ∈ A. Similarly for Y and F , but
the left action on Y is by B, and the right action is by a third C∗-algebra.

Mesland starts the process by completing the subalgebra B in a suitable
operator space norm. Namely, represent B in B(Y ⊕ Y ) by[

b 0
bF − Fb b

]
⊂ B(Y ⊕ Y )

Since B(Y ⊕Y ) is a C∗-algebra, this gives B a new (nonselfadjoint operator
algebra) norm, which we can complete in.

(This is probably easier to visualize by using Connes spectral triples, where
Y is a Hilbert space)



This effectively moves the computations into the realm of nonselfadjoint
operator algebras and their operator modules (generalizing C∗-modules)
and module Haagerup tensor products, which as we shall see still behave
nicely. The desired ‘connection’ maps into such a tensor product (over the
nonselfadjoint operator algebra we just constructed) of a copy of X and
B(Y ), and is completely bounded. As mentioned, the great properties of
the module Haagerup tensor product now help simplify that the resulting
cycle indeed represents the Kasparov product.



The nonselfadjoint algebra occurring in the above construction has a na-
tural completely isometric involution: it is a ∗-operator algebra in a sense
considered by Kaad and Lesch

namely an operator algebra A with an involution † making it a ∗-algebra

with ‖[a†ji]‖ = ‖[aij]‖.



The nonselfadjoint algebra occurring in the above construction has a na-
tural completely isometric involution: it is a ∗-operator algebra in a sense
considered by Kaad and Lesch

namely an operator algebra A with an involution † making it a ∗-algebra

with ‖[a†ji]‖ = ‖[aij]‖.

• Other examples of these occur in nc differential geometry, and in fact
when one looks one sees them all over the place. Studying these with Kaad
and Mesland:



Theorem For an operator algebra (not necessarily approximately unital).
The following are equivalent:

(1) A is an operator ∗-algebra.

(2) There exists a C∗-algebra B containing a completely isometric homo-
morphic copy of A and a period 2 ∗-automorphism π : B → B with
π(A) = A∗.

(3) Same as (2) but with B = C∗e (A).

(4) A can be represented on a Hilbert space H such that there is a (even
selfadjoint) unitary u on a Hilbert space u∗A∗u = A.

Similar ‘completely isomorphic characterization.



Theorem For an operator algebra (not necessarily approximately unital).
The following are equivalent:

(1) A is an operator ∗-algebra.

(2) There exists a C∗-algebra B containing a completely isometric homo-
morphic copy of A and a period 2 ∗-automorphism π : B → B with
π(A) = A∗.

(3) Same as (2) but with B = C∗e (A).

(4) A can be represented on a Hilbert space H such that there is a (even
selfadjoint) unitary u on a Hilbert space u∗A∗u = A.

Similar ‘completely isomorphic characterization.

• There are natural operator ∗-modules occurring in the work of Kaad et
al, Mesland, etc, which we are studying



Summary: There are good reasons for generalizing C∗-modules and their
theory to nonselfadjoint algebras. So lets do it:



Section 3. Rigged modules over operator algebras

• Recall: a rigged module: right A-module Y which is also an operator
space, such that there exists a net of positive integers n(α), and completely
contractive A-module maps φα : Y → Cn(α)(A) and ψα : Cn(α)(A)→ Y
with ψα ◦ φα → IdY strongly on Y .



Section 3. Rigged modules over operator algebras

• Recall: a rigged module: right A-module Y which is also an operator
space, such that there exists a net of positive integers n(α), and completely
contractive A-module maps φα : Y → Cn(α)(A) and ψα : Cn(α)(A)→ Y
with ψα ◦ φα → IdY strongly on Y .

• There are many alternative characterizations, e.g. in terms of an inner
product on a containing C∗-module (which if you want can be chosen to
be expressible in terms of the C∗-envelope (‘minimal’ C∗-algebra/nc Shilov
boundary), or in terms of an approximate identity for Y ⊗hAX , etc.

• Here X is the ‘adjoint’ module Ỹ of the rigged module Y , which may
be viewed as a submodule of CBA(Y,A). It has many characterizations,
for example as the maps f ∈ CBA(Y,A) with f ◦ ψα ◦ φα → f (this is
independent of the particular factorization nets)



• To get our ‘primary definition’ going; that is, to connect it to anything
useful (e.g. things even remotely connected with e.g. the [B-Muhly-Paulsen]
Morita equivalence ideas), one needs Hay’s theorem discussed in Lecture
1; and the recent theory of hereditary subalgebras of operator algebras due
to B-Hay-Neal (recall this uses some deep ideas from ‘peak interpolation
theory’)



• To get our ‘primary definition’ going; that is, to connect it to anything
useful (e.g. things even remotely connected with e.g. the [B-Muhly-Paulsen]
Morita equivalence ideas), one needs Hay’s theorem discussed in Lecture
1; and the recent theory of hereditary subalgebras of operator algebras due
to B-Hay-Neal (recall this uses some deep ideas from ‘peak interpolation
theory’)

• The operator space structure of a rigged module Y over M is given by
‖[yij]‖Mn(Y ) = supα ‖[φα(yij)]‖ for [yij] ∈Mn(Y ).



Theorem (2016) If Y is a rigged module over an operator algebra A,
viewed as an operator space, and if LM(Y ) is the operator space left mul-
tiplier algebra of Y in the sense of Lecture 1, then LM(Y ) = CB(Y )A
completely isometrically isomorphically. This also equals the left multiplier
algebra of K(Y ), where the latter is the so-called compact maps on Y ,
namely the closure of the span of the maps on Y of form y 7→ y′(x, y) for
some y′ ∈ Y and x ∈ Ỹ

The last result should have many consequences. We give a couple of exam-
ples:



Corollary For any orthogonally complemented submodule W of a rigged
module Y over an operator algebra A (that is, the range of a completely
contractive A-module projection), there is a unique contractive linear pro-
jection from Y onto W .



Corollary For any orthogonally complemented submodule W of a rigged
module Y over an operator algebra A (that is, the range of a completely
contractive A-module projection), there is a unique contractive linear pro-
jection from Y onto W .

The next corollary is really a theorem related to the good tensor product
in the present category. We studied this tensor product many years ago, but
were assuming some extra conditions, which the new theorem above allows
us to remove.



Corollary For any orthogonally complemented submodule W of a rigged
module Y over an operator algebra A (that is, the range of a completely
contractive A-module projection), there is a unique contractive linear pro-
jection from Y onto W .

The next corollary is really a theorem related to the good tensor product
in the present category. We studied this tensor product many years ago, but
were assuming some extra conditions, which the new theorem above allows
us to remove.

In the C∗-algebra case the modules with respect to which one can take a
tensor product are often called correspondences. Rieffel called them B-rigged
A-modules. As we saw, they are the right C∗-modules Y over B for which
there exists a nondegenerate/essential ∗-homomorphism θ : A → BB(Y )
(so θ(et)y → y for all y ∈ Y , where (et) is a cai for A)



Theorem Suppose that A,B are approximately unital operator algebras,
and that Y is a right rigged B-module which is a nondegenerate left A-
module via a homomorphism θ : A → BB(Y ) = M(K(Y )). Then with
this action Y is a left operator A-module if and only if θ is completely
contractive. If these hold then θ is essential/nondegenerate: there is a con-
tractive approximate identity (et) for A with ety → y and xet → x for all
y ∈ Y, x ∈ Ỹ .

• This substantially simplifies my earlier definition of anA-B-correspondence.



Theorem (2016) Suppose that A,B are approximately unital operator
algebras, and that Y is a right rigged B-module which is a nondegenerate
left A-module via a homomorphism θ : A → BB(Y ) = M(K(Y )). Then
with this action Y is a left operator A-module if and only if θ is completely
contractive. If these hold then θ is essential/nondegenerate: there is a con-
tractive approximate identity (et) for A with ety → y and xet → x for all
y ∈ Y, x ∈ Ỹ .

• This substantially simplifies my earlier definition of anA-B-correspondence.

Interior tensor product: We define this to be the module Haagerup tensor
product of a right A-rigged module and a right A-B-correspondence, both
viewed as operator modules. We will write this tensor product as X ⊗θ Y ,
where θ is the left action as above.

It has the same wonderful properties as in the C∗-case, so I will not take
the time to repeat them. We will just mention one:



For example, the assignment X 7→ X ⊗θ Y gives a strongly continuous
completely contractive linear functor from the category of rigged modules
over A to the category of rigged modules over B. The morphisms are the
adjointable completely bounded M -module maps.



For example, the assignment X 7→ X ⊗θ Y gives a strongly continuous
completely contractive linear functor from the category of rigged modules
over A to the category of rigged modules over B. The morphisms are the
adjointable completely bounded M -module maps.

The following Eilenberg-Watts result is the converse of the last fact:

Theorem (2016) Let A and B be approximately unital operator algebras,
and suppose that F is a strongly continuous completely contractive linear
functor from the category of rigged modules over A to the category of rigged
modules over B Then there exists an A-B-correspondence Y such that F
is naturally unitarily isomorphic to the interior (= Haagerup module) tensor
product with Y .



Summary: Rigged modules over a (nonselfadjoint) operator algebra genera-
lize much of the (basic) theory of the Hilbert C∗-modules over C∗-algebras.



Summary: Rigged modules over a (nonselfadjoint) operator algebra genera-
lize much of the (basic) theory of the Hilbert C∗-modules over C∗-algebras.

Note: they do not necessarily give a Morita equivalence, or ‘countable sta-
bilization’ results, although we have a matching notion of Morita equivalence
which constitute examples of rigged modules.

Eleftherakis has a stronger (i.e. more restrictive, but with much stronger
consequences sometimes, such as ‘countable stabilization’) notion of Morita
equivalence. His modules are examples of ours.



Section 4. Weak* rigged modules over dual operator algebras

Recall: A W ∗-module is a Hilbert C∗-module over a von Neumann algebra
which is ‘selfdual’ (i.e. the appropriate ‘Riesz representation theorem’ for
‘functionals’ works), or equivalently which has a Banach space predual



Section 4. Weak* rigged modules over dual operator algebras

Recall: A W ∗-module is a Hilbert C∗-module over a von Neumann algebra
which is ‘selfdual’ (i.e. the appropriate ‘Riesz representation theorem’ for
‘functionals’ works), or equivalently which has a Banach space predual

The weak∗-rigged or w∗-rigged modules, were introduced by [B+Kashyap],
and are a generalization of W ∗-modules to the setting of modules over a
dual operator algebra. By the latter term we mean a unital weak* closed
(nonselfadjoint) algebra of operators on a Hilbert space.



Definition Suppose that Y is a dual operator space and a right module
over a dual operator algebra M . We say that Y is a weak* rigged module if
there exists a net of positive integers n(α), and weak* continuous completely
contractive M -module maps φα : Y → Cn(α)(M) and ψα : Cn(α)(M)→
Y with ψα(φα(y))→ y in the weak* topology on Y for all y ∈ Y .



Definition Suppose that Y is a dual operator space and a right module
over a dual operator algebra M . We say that Y is a weak* rigged module if
there exists a net of positive integers n(α), and weak* continuous completely
contractive M -module maps φα : Y → Cn(α)(M) and ψα : Cn(α)(M)→
Y with ψα(φα(y))→ y in the weak* topology on Y for all y ∈ Y .

Proposition (B-Kashyap, 2016) If Y is a weak* rigged module over M
then the module action Y ×M → Y is separately weak* continuous.

• With Kashyap we generalized much of the von Neumann algebra theory
of W ∗-modules to weak* rigged modules



• As in the W ∗-module theory one has well behaved direct sums, tensor
products, linking dual operator algebra, etc. Indeed tensoring with a von
Neumann algebra produces a genuine W ∗-module, so one can plug into
that theory.
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• Things work.... mostly because we are using the same key tool, the
module Haagerup tensor product (= weak∗-interior tensor product), and its
‘calculus’, i.e. strong algebraic properties.

Namely, the weak∗-interior tensor product is functorial, associative, ‘in-
jective’, ‘projective’, can be expressed in terms of nice norm formulae, etc.
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Namely, the weak∗-interior tensor product is functorial, associative, ‘in-
jective’, ‘projective’, can be expressed in terms of nice norm formulae, etc.

Using these properties you can show that the Picard group behaves as it
ought (B-Kashyap 2016)



• As in the W ∗-module theory one has well behaved direct sums, tensor
products, linking dual operator algebra, etc. Indeed tensoring with a von
Neumann algebra produces a genuine W ∗-module, so one can plug into
that theory.

• Things work.... mostly because we are using the same key tool, the
module Haagerup tensor product (= weak∗-interior tensor product), and its
‘calculus’, i.e. strong algebraic properties.

Namely, the weak∗-interior tensor product is functorial, associative, ‘in-
jective’, ‘projective’, can be expressed in terms of nice norm formulae, etc.

Using these properties you can show that the Picard group behaves as it
ought (B-Kashyap 2016)

We also obtain the HOM-TENSOR relations mentioned in the early part
of the talk



• As in the last section we have an Eilenberg-Watts theorem characteri-
zing functors as the appropriate ‘weak* module Haagerup tensor product’.
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There is also an exterior tensor product, of w∗-rigged modules. If Y is a
right w∗-rigged module over M , and if Z is a right w∗-rigged module over
N , then the weak∗-exterior tensor product Y⊗Z is their normal minimal
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• As in the last section we have an Eilenberg-Watts theorem characteri-
zing functors as the appropriate ‘weak* module Haagerup tensor product’.

There is also an exterior tensor product, of w∗-rigged modules. If Y is a
right w∗-rigged module over M , and if Z is a right w∗-rigged module over
N , then the weak∗-exterior tensor product Y⊗Z is their normal minimal
(or spatial) tensor product from operator space theory.

• This is again a w∗-rigged module over M⊗N .



The weak∗-exterior tensor product has properties analogous to the interior
tensor product, e.g. it is associative, ‘injective’, and commutes with direct
sums:

Proposition Suppose that M,N are dual operator algebras. If (Yk)k∈I
is a family of right w∗-rigged modules over M , and Z is a right w∗-rigged
module over N then we have

(⊕ck Yk)⊗̄Z ∼= ⊕ck (Yk⊗̄Z),

unitarily as right w∗-rigged modules

(Similar formula for exterior tensor product.)



Summary: Much of the basic theory of C∗-modules and W ∗-modules ge-
neralizes ‘functorially’ to the case of nonselfadjoint operator algebras

• In addition to use for nonselfadjoint algebras, hopefully this will find
more applications to C∗-theory such as those discussed, where a selfadjoint
problem leads naturally to a nonselfadjoint operator algebra/module, and
computations with these.


