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Abstract

The larger first part of the talk (joint work with Nik Weaver) is concerned
with quantum measure theory (in the sense of generalizations of measure
theory to von Neumann algebras and their projections). We make some new
contributions here, obtaining new results for states on von Neumann alge-
bras which are not normal but have other natural continuity properties We
also develop some basics of the theory of quantum cardinals, using as tools
e.g. the recent Kadison-Singer solution, and Farah and Weavers theory of
quantum filters. As an application we characterize in terms of quantum mea-
sure theory the von Neumann algebras for which Uedas peak set theorem
holds. Recently with Labuschagne we generalized this theorem in the con-
text of (Arvesons) noncommutative Hardy spaces to von Neumann algebras
possessing faithful states, using Haagerups reduction theory. As discussed in
the Workshop, Uedas peak set theorem is needed currently to prove generali-
zations for subalgebras of σ-finite von Neumann algebras, of classical results
about H∞(D) such as uniqueness of predual, noncommutative versions of
the Lebesgue decomposition, F and M Riesz theorem, etc.

*Note: Weaver and I have recently revised our ArXiV preprint, so this talk
will include several new improvements and extensions



Recall the nc Lebesgue decomposition: Functionals on a von Neumann
algebra have a unique normal plus singular decomposition ϕ = ϕn + ϕs,
and ‖ϕ‖ = ‖ϕn‖ + ‖ϕs‖.

Here normal means weak* continuous, and singular for a state means that
e.g. every nonzero projection dominates a nonzero projection in the kernel
of the functional



Part I. Quantum measure theory

Quantum measure theory for us today is the theory of ‘measures’ and
states on projection lattices of von Neumann algebras.

These projection lattices replace the σ-algebras of ordinary measure theory
(which are of course Boolean algebras).

Question: To what extent do the basic properties from standard measure
theory hold?
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• Many distinguished names associated with this topic.

Text: Quantum measure theory by J. Hamhalter (Springer), focussed in
part on the impressive work of Bunce and Hamhalter
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• Special case of interest is when the states are pure, i.e. extreme points
in the state space.

• Note states will only correspond to finitely additive measures in general.
So sometimes one may want to consider states which are countably additive
(on projections).

• [B-Weaver] looks at some natural continuity properties for singular states
on a von Neumann algebra. Similar conditions on states were studied in the
context of axiomatic von Neumann algebraic quantum mechanics by e.g. L.
Bunce and J. Hamhalter.

• For example, there is an important intermediate condition between finite
additivity and countable additivity:

We say that a state ϕ on a von Neumann algebra M is regular if for
every sequence (qn) of projections in M with ϕ(qn) = 1 for all n, we have
ϕ(q) = 1 for q = ∧n qn (infimum in M).



The results on this page are due to Bunce and Hamhalter or follow easily
from their work.

Theorem For a state ϕ on a von Neumann algebra M TFAE:

(i) ϕ is regular.

(ii) ϕ(∨n qn) = 0 for every increasing sequence of projections (qn) in Ker(ϕ).

(iii) ϕ(∨n qn) = 0 for every sequence of projections (qn) in Ker(ϕ).

(iv) Ker(ϕ)+ is weak* sequentially closed (that is, if 0 ≤ xn → x weak*
with xn ∈ Ker(ϕ) then ϕ(x) = 0).

(v) ϕ annihilates the support projection of any nonzero positive element in
Ker(ϕ).

(vi) ϕ is not singular on every σ-finite von Neumann subalgebra of M .
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from their work.

Theorem For a state ϕ on a von Neumann algebra M TFAE:

(i) ϕ is regular.

(ii) ϕ(∨n qn) = 0 for every increasing sequence of projections (qn) in Ker(ϕ).

(iii) ϕ(∨n qn) = 0 for every sequence of projections (qn) in Ker(ϕ).

(iv) Ker(ϕ)+ is weak* sequentially closed (that is, if 0 ≤ xn → x weak*
with xn ∈ Ker(ϕ) then ϕ(x) = 0).

(v) ϕ annihilates the support projection of any nonzero positive element in
Ker(ϕ).

(vi) ϕ is not singular on every σ-finite von Neumann subalgebra of M .

Theorem A pure state on a von Neumann algebra M is regular iff it is
countably additive (as usual, on projections).



Remarkably, if M is a factor, or has no σ-finite direct summand, or is type
III and σ-finite, then regularity is equivalent to the Jauch-Piron condition
from quantum physics:

ϕ(q1 ∨ q2) = 0 for all projections q1, q2 in Ker(ϕ)



• Some new quantum measure theoretic results from [B-Weaver]:

Theorem Let κ be an uncountable cardinal and let φ be a <κ-additive (on
projections) pure state on a von Neumann algebra M . Then the restriction
of φ to any von Neumann subalgebra generated by <κ elements is normal
(we thank Ilijas Farah for pointing out that this version follows from a similar
but weaker version of ours)
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Theorem Let κ be an uncountable cardinal and let φ be a <κ-additive (on
projections) pure state on a von Neumann algebra M . Then the restriction
of φ to any von Neumann subalgebra generated by <κ elements is normal
(we thank Ilijas Farah for pointing out that this version follows from a similar
but weaker version of ours)

Corollary If φ is a countably additive (on projections) pure state on a von
Neumann algebra M , then the restriction of φ to any countably generated
von Neumann subalgebra is normal.

• These are theorems in ordinary set theory. However they are ‘not
provable’ in ZFC for non-pure states. Indeed assuming a positive solution
to Banach’s measure problem there is a singular countably additive state
φ on l∞(R), but l∞(R) is countably generated, so by the above φ must
be normal, a contradiction! But a positive solution to Banach’s measure
problem is generally believed to be consistent with ZFC.



Theorem Any countably additive pure state on a von Neumann algebra
M is sequentially weak* continuous on M .

• This again is a ZFC theorem.



We now turn to measurable cardinals

Reminder: Banach’s measure problem: Is there a probability measure defi-
ned on all subsets of [0, 1] which is zero on singletons? [If there is, then one
can find another that extends Lebesgue measure.]

• You cannot prove an affirmitive answer in ZFC. It is generally believed
that a positive answer is consistent with ZFC, thus in almost all of set
theory it would be considered safe to add the affirmitive answer to Banach’s
measure problem as an extra axiom of set theory, if convenient (if you dont
add CH too, or similar)



In set theory there is an elaborate hierarchy of large cardinal properties,
some of which involve various notions of measurability. These are related to
natural continuity properties for singular measures, which can be viewed as
states on l∞(κ) for the cardinal κ.

An uncountable cardinal κ is said to be

measurable if there is a nonzero <κ-additive {0, 1}-valued measure on
κ which vanishes on singletons

real-valued measurable if there is a <κ-additive probability measure on
κ which vanishes on singletons

Ulam measurable if there is a nonzero countably additive {0, 1}-valued
measure on κ which vanishes on singletons

Ulam real-valued measurable if there is a countably additive probability
measure on κ which vanishes on singletons. (cf. Banach’s measure pro-
blem)



Here measures on κ are assumed defined on all subsets of κ, and “<κ-
additive” means “additive on any family of fewer than κ disjoint sets”.



Some of these cardinals are necessarily monstrous if they exist, others may
possibly be the cardinality of R.

• It is generally believed that the existence of such cardinals is consistent
with ordinary set theory. They all have the same consistency strength.



• Each of these four kinds of measurability can be expressed in terms of
states on l∞(κ):

Proposition An uncountable cardinal κ is

(i) Ulam real-valued measurable if and only if there is a singular countably
additive state on l∞(κ)

(ii) Ulam measurable if and only if there is a singular countably additive pure
state on l∞(κ)

(iii) measurable iff there is a singular <κ-additive pure state on l∞(κ)

(iv) real-valued measurable iff there is a singular <κ-additive state on l∞(κ)

• It is natural to consider the quantum measure theory analogues, i.e.
replace l∞(κ) by B(l2(κ)) or other von Neumann algebras in each of the
above. We will do this.



Theorem If it is consistent that a measurable cardinal exists, then it is
consistent that both l∞(R) and B(l2(R)) have regular singular states, but
neither algebra admits a countably additive singular state

The proof uses a relatively new result in set theory by Kumar and Kunen.
The conclusion here is not consistent with the continuum hypothesis:

Theorem Assuming the continuum hypothesis, l∞(κ) and B(l2(κ)) have
regular singular states if and only if κ is Ulam measurable.



Theorem Let κ be an uncountable cardinal. A von Neumann algebra M
possesses a singular countably additive (resp. <κ-additive) state iff M has
a collection of mutually orthogonal projections of cardinality the first real
valued measurable cardinal (resp. the first real valued measurable cardinal
≥ κ).

• If there is no real valued measurable cardinal ≥ κ this says that every
< κ-additive state is normal.



Theorem Let κ be an uncountable cardinal. A von Neumann algebra M
possesses a singular countably additive (resp. <κ-additive) state iff M has
a collection of mutually orthogonal projections of cardinality the first real
valued measurable cardinal (resp. the first real valued measurable cardinal
≥ κ).

• If there is no real valued measurable cardinal ≥ κ this says that every
< κ-additive state is normal.

Corollary There exists a singular countably additive state (resp. <κ-
additive) on B(l2(κ)) if and only if κ is Ulam real valued measurable (resp.
real valued measurable).



• The last corollary is saying that the quantum measure theory variant of
two of the four notions of measurable cardinal is equivalent to its classical
set theoretic variant. How about the other two?
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• The last corollary is saying that the quantum measure theory variant of
two of the four notions of measurable cardinal is equivalent to its classical
set theoretic variant. How about the other two?

We just discuss the case of measurable cardinals, the Ulam measurable
cardinal case being somewhat similar.

• In our workshop talk we gave the proof, using a generalization of the
recently solved Kadison-Singer problem (Marcus, Spielman and Srivastava,
2013), that if κ is measurable then there is a singular <κ-additive pure state
on B(l2(κ)). The converse follows from the following general von Neumann
algebra result:
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M has a collection of mutually orthogonal projections of cardinality the first
measurable cardinal (resp. the first measurable cardinal ≥ κ).
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• So we have proved the earlier claimed result:

Theorem An uncountable cardinal κ is

(i) Ulam real-valued measurable if and only if there is a singular countably
additive state on B(l2(κ))

(ii) Ulam measurable if and only if there is a singular countably additive pure
state on B(l2(κ))

(iii) real-valued measurable if and only if there is a singular <κ-additive state
on B(l2(κ))

(iv) measurable if and only if there is a singular <κ-additive pure state on
B(l2(κ)).



Corollary Every countably additive state on a von Neumann algebra M is
normal if M contains ‘not too many’ (in some kind of measurable cardinal
sense) mutually orthogonal projections.

• This strengthens a similar theorem of Neufang for sequentially weak*
continuous states/functionals.



A tool used in proofs: Farah and Weaver’s theory of quantum filters

A quantum filter on a von Neumann algebra M is a family of projections
F in M with the properties

(i) if p ∈ F and p ≤ q then q ∈ F
(ii) if p1, . . . , pn ∈ F then ‖p1 · · · pn‖ = 1.

If φ is a state on M then

Fφ = {p ∈M : p is a projection and φ(p) = 1}
is a quantum filter

• Pure states correspond to quantum ultrafilters



Some tools used in proofs (contd):

Lemma (Farah-W) Suppose that φ is a pure state on a von Neumann
algebra M and that ψ is a state on M such that

φ(p) = 1 ⇒ ψ(p) = 1

for any projection p ∈M . Then φ = ψ.

(Proof shown in workshop lecture)



Part II. (Application to Arveson’s) noncommutative H∞–for general von
Neumann algebras (joint with Louis Labuschagne, ArXiV 2016).

• In several papers B-Labuschagne extended much of the theory of gene-
ralized Hp spaces for function algebras from the 1960s to the von Neumann
algebraic setting of Arveson’s subdiagonal algebras, a.k.a. noncomm. H∞,
inside ‘finite’ von Neumann algebras

• Subdiagonal algebras are certain unital weak* closed subalgebras A of a
von Neumann algebra M , such that there exists a normal (= weak* conts)
conditional expectation M → A ∩ A∗ which is multiplicative on A.
A =M is OK, so we are again in a situation generalizing both the classical

function theory, and von Neumann algebras (and nc Lp-spaces)

• Earlier, we worked in the setting that M possesses a faithful normal
tracial state, as Arveson mostly did too.



(Actually we should say maximal subdiagonal algebra above, and everyw-
here, but for brevity we will abusively just call them subdiagonal)



• Ueda followed our work by removing a hypothesis involving a dimensional
restriction on A ∩ A∗ in four or five of our results (e.g. F. & M. Riesz and
Gleason-Whitney theorems), and also establishing several other beautiful
theorems such as the fact that such an A has a unique predual, all of which
followed from his very impressive noncommutative peak set theorem.



• Ueda followed our work by removing a hypothesis involving a dimensional
restriction on A ∩ A∗ in four or five of our results (e.g. F. & M. Riesz and
Gleason-Whitney theorems), and also establishing several other beautiful
theorems such as the fact that such an A has a unique predual, all of which
followed from his very impressive noncommutative peak set theorem.

• [B-Labuschagne, 2016] generalized these five or six results (Ueda’s peak
set theorem plus the improved F. & M. Riesz and Gleason-Whitney theorems,
etc) to subalgebras of σ-finite von Neumann algebras. See workshop talk
(note: σ-finite does not mean a countable sum of finite ones).

• As reminder we state the function algebra case of some of these results
first, then the matching von Neumann algebra results.



• H∞(D) has a unique predual (Ando-Wojtaszczyk)/von Neumann alge-
bras have unique predual (Dixmier-Sakai)

Related to the nc Lebesgue decomposition: Functionals on a von Neumann
algebra have a unique normal plus singular decomposition ϕ = ϕn + ϕs,
and ‖ϕ‖ = ‖ϕn‖ + ‖ϕs‖.

Similar fact relative to H∞: functionals on H∞ have a unique normal
plus singular decomposition on H∞, and ‖ϕ‖ = ‖ϕn‖ + ‖ϕs‖.

F. & M. Riesz reformulation For any functional ϕ on L∞(T) annihilating
H∞(D), we have ϕn, ϕs ⊥ H∞(D).

The latter is not exactly the classical F. & M. Riesz theorem, but it implies
it easily (see e.g. Hoffman, Acta)



Gleason-Whitney type theorem Suppose that A is a weak* closed subal-
gebra of M = L∞(T) satisfying the last result. Then A+A∗ is weak* dense
in M if and only if every normal functional on A has a unique Hahn-Banach
extension to M , and if and only if every normal functional on A has a unique
normal Hahn-Banach extension to M .



• The main ingredient one may use to prove these, is a theorem about
peak sets, in the classical case due to Amar and Lederer: ‘Any closed set of
measure zero is contained in a peak set of measure zero’.

Ueda’s (nc Amar-Lederer) peak set theorem may be phrased as saying
that any singular support projection (i.e. the support of any singular state
on M), is dominated by a peak projection p for A with p in the ‘singular
part’ of M∗∗ (that is, p annihilates all normal functionals on M).



• Ueda proved this noncommutative peak set result in the case that M
has a faithful normal tracial state (‘finite’ vNA).

In the workshop talk (1) we described the generalization of this, and hence
all the consequences above, to von Neumann algebras with a faithful state
(that is σ-finite vNa’s). (2) We also dashed hopes of being able to prove
the result in ZFC for all von Neumann algebras (or even commutative ones).



Theorem (B-Weaver, 2016) For a von Neumann M TFAE:

(i) Ueda’s peak set result holds for M .

(ii) There exist no regular singular states on M (i.e. for all singular states ϕ of
M , there is a sequence (qn) of projections in Ker(ϕ) with ϕ(∨n qn) > 0).

(ii)’ For all singular states ϕ of M , there is a sequence (qn) of projections in
Ker(ϕ) with ∨n qn = 1.

(iii) Every collection of mutually orthogonal projections in M has cardinality
< a fixed cardinal κ, namely the first cardinal having a finitely additive
‘regular’ singular measure

It is possible (i.e. believed to be consistent with ZFC) that the cardinal
here is the continuum (cardinality of R, so not so threatening). This uses a
theorem early in our talk, and is related to (but is not the same as) Banach’s
measure problem.



• Summary: Ueda’s peak set theorem (case A = M) is largely about
regular singular states on M , and about ‘not too many’ mutually orthogonal
projections in M .



• Under the continuum hypothesis the relations between the notions we
consider are somewhat simpler
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On the other hand, we can show in ZFC that if κ is the first uncountable
cardinal ℵ1, then l∞(κ) satisfies Ueda’s theorem (see last slide workshop
talk). Similarly for the second uncountable cardinal, etc.

So there definitely are (‘small’) non σ-finite von Neumann algebras satisf-
ying Ueda’s theorem.



• Under the continuum hypothesis the relations between the notions we
consider are somewhat simpler

On the other hand, we can show in ZFC that if κ is the first uncountable
cardinal ℵ1, then l∞(κ) satisfies Ueda’s theorem (see last slide workshop
talk). Similarly for the second uncountable cardinal, etc.

So there definitely are (‘small’) non σ-finite von Neumann algebras satisf-
ying Ueda’s theorem.

(This may suggest somebody should study variants of the notion of σ-
finite von Neumann algebras strictly between σ-finite and ‘every collection
of mutually orthogonal projections has cardinality < 2ℵ0, assuming ¬CH)


