On the C^* -algebras of solvable Lie groups

Daniel Beltiță Institute of Mathematics of the Romanian Academy *** Joint work with Ingrid Beltiță, José Galé, Jean Ludwig

OTOA Bengaluru, 21.12.2016

Solvable Lie groups

• *G* connected closed subgroup of \mathcal{T}^{\times} , where $\mathcal{T} := \left\{ \begin{pmatrix} * & * \\ 0 & \ddots & \\ 0 & 0 & * \end{pmatrix} \right\}$

 $\bullet \ \mathfrak{g}$ the linear subspace of $\mathcal T$ given by

$$X \in \mathfrak{g} \iff (orall t \in \mathbb{R}) \quad \exp(tX) \in G$$

• *G* exponential Lie group $\iff \exp : \mathfrak{g} \to G$ is a bijection

• G nilpotent Lie group
$$\iff G \subseteq \left\{ \begin{pmatrix} 1 & & * \\ 0 & \ddots & \\ 0 & 0 & 1 \end{pmatrix} \right\}$$

The C^* -algebra of a solvable Lie group G

- There is a Haar measure dx on G, invariant under left translations: $\int_{G} \varphi(a \cdot x) dx = \int_{G} \varphi(x) dx \text{ for } a \in G \text{ and } \varphi \in \mathcal{C}_{c}(G)$
- regular representation $\lambda : C_c(G) \to \mathcal{B}(L^2(G)), \lambda(f)\varphi = f * \varphi$, where $(f * \varphi)(x) = \int_G f(a)\varphi(a^{-1} \cdot x)da$

•
$$C^*(G) := \overline{\lambda(\mathcal{C}_c(G))}^{\|\cdot\|} \subseteq \mathcal{B}(L^2(G))$$

This is actually the *reduced* C^* -algebra of G, but G is an amenable group.

- \widehat{G} = equivalence classes [π] of unitary irreducible repres. $\pi: G \to U(\mathcal{H}_{\pi})$
- Similar notation for C^* -alg. \mathcal{A} : $[\pi] \in \widehat{\mathcal{A}}$ for *-repres. $\pi \colon \mathcal{A} \to \mathcal{B}(\mathcal{H}_{\pi})$

•
$$\widehat{G} \simeq \widehat{C^*(G)}$$

Every $\pi \colon G \to U(\mathcal{H}_{\pi})$ leads to $\pi \colon L^{1}(G) \to \mathcal{B}(\mathcal{H}_{\pi}), \ \pi(\psi) := \int_{G} \psi(x) \pi(x) \mathrm{d}x.$

Basic question

What topology can \widehat{G} have if G is a connected solvable Lie group?

• If G is an exponential solvable Lie group, then

$$\widehat{G}$$
 Hausdorff \iff G commutative \iff $G = (\mathfrak{g}, +)$

and if this is the case, then $\widehat{G} = \mathfrak{g}^*$, $C^*(G) \simeq \mathcal{C}_0(\widehat{G})$ via Fourier transf. What else when G is an exponential solvable Lie group? $\widehat{G} \ni [\pi] \rightsquigarrow \pi \colon C^*(G) \to \mathcal{B}(\mathcal{H}_{\pi})$

- *G* type I $\implies \mathcal{K}(\mathcal{H}_{\pi}) \subseteq \boxed{\pi(\mathcal{C}^*(\mathcal{G}))} \simeq \mathcal{C}^*(\mathcal{G})/\mathrm{Ker}\,\pi$
- $\{[\pi]\}$ is a locally closed (i.e., open \cap closed) subset of \widehat{G}

On closed points of \widehat{G}

•
$$[\pi]$$
 closed point of $\widehat{G} \iff \pi(C^*(G)) = \mathcal{K}(\mathcal{H}_{\pi})$

Now let G be a nilpotent Lie group.

Old fact: every point $[\pi] \in \widehat{G}$ is closed

Theorem

 $\begin{aligned} \pi\colon G \to \mathcal{B}(\mathcal{X}) \text{ irreducible, } \|\pi(x)\| &\leq C \text{ for some } C > 0 \text{ and all } x \in G, \\ \mathcal{X} \text{ reflexive Banach space } \Longrightarrow \overline{\pi(L^1(G))}^{\|\cdot\|} &= \mathcal{K}(\mathcal{X}) \end{aligned}$

Proof: $\mathcal{X}_{\infty} := \{x \in \mathcal{X} \mid \pi(\cdot)x \in \mathcal{C}^{\infty}(G, \mathcal{X})\}$ Fréchet space, dense in \mathcal{X} $\mathcal{S}(G) :=$ the space of Schwartz functions, is a *-subalgebra of $L^{1}(G)$ $\pi_{\mathcal{S}} : \mathcal{S}(G) \to \operatorname{End}(\mathcal{X}_{\infty}), \quad \pi_{\mathcal{S}}(\varphi) := \pi(\varphi)|_{\mathcal{X}_{\infty}}$ Step 1. $\pi_{\mathcal{S}}$ is an algebraically irreducible representation Step 2. There is a unique unirrep $\pi_{0} : G \to \mathcal{B}(\mathcal{H})$ with

 $\mathcal{H}_\infty \simeq \mathcal{X}_\infty$ as topological $\mathcal{S}(\mathcal{G})$ -modules

Step 3. Use (*) for \subseteq and reflexivity of \mathcal{X} for \supseteq .

(*)

When does \widehat{G} have dense points?

 \mathcal{C}^* -algebra \mathcal{A} ; {[π_0]} dense in $\widehat{\mathcal{A}} \iff \operatorname{Ker} \pi_0 = \{0\}$

Def. \mathcal{A} is *primitive* if it has faithful irreducible representations

 ${\it G}$ exponential solvable Lie group

- $C^*(G)$ is not primitive, unless $G = \{1\}$
- *G* nilpotent $\iff (\forall [\pi] \in \widehat{G}) \quad \mathcal{K}(\mathcal{H}_{\pi}) = \pi(C^*(G))$
- • Thus there is no dense point of \widehat{G} in this case.
 - Yet, there always exist non-closed points of \widehat{G} , unless G is nilpotent.

 Groupoids → "many" examples of connected solvable Lie groups G (besides C ⋊ C*) for which G has a dense point. Let s = n⁻ + h + n⁺ be a complex simple Lie alg. with its Cartan subalgebra h. Borel subalgebra is g := h × n⁺, and its group G acts algebraically on g and on g*. Fact: G has a nonempty open (dense) orbit in g*

 $\iff \mathfrak{s} \in \{\mathsf{so}(2\ell+1,\mathbb{C}),\mathfrak{sp}(2\ell,\mathbb{C}),\mathsf{so}(2\ell,\mathbb{C}) \text{ with } \ell \in 2\mathbb{N}, \textit{E}_{7},\textit{E}_{8},\textit{F}_{4},\textit{G}_{2}\}$

Examples

Example 1 (ax + b group)

$$G=$$
 set of all $egin{pmatrix} a&b\0&1 \end{pmatrix}$ with $a>0,\ b\in\mathbb{R}$

•
$$0 \to \mathbb{C}^2 \otimes \mathcal{K}(L^2(\mathbb{R})) \to C^*(G) \to \mathcal{C}_0(\mathbb{R}) \to 0$$

• {2 open points} $\sqcup \mathbb{R} \simeq \widehat{G}$

Example 2 (Heisenberg group)

$$\mathbb{H}_{2n+1} = \text{ set of all } \begin{pmatrix} 1 & \mathbf{x} & z \\ & \ddots & \mathbf{y} \\ & & 1 \end{pmatrix} \text{ with } \mathbf{x}, \mathbf{y} \in \mathbb{R}^n, \, z \in \mathbb{R}, \, 0 \text{ elsewhere }$$

• 0
$$\rightarrow C_0(\mathbb{R} \setminus \{0\}) \otimes \mathcal{K}(L^2(\mathbb{R}^n)) \rightarrow C^*(\mathbb{H}_{2n+1}) \rightarrow C_0(\mathbb{R}^{2n}) \rightarrow 0$$

• $(\mathbb{R} \setminus \{0\}) \sqcup \mathbb{R}^{2n} \simeq \widehat{\mathbb{H}}_{2n+1}$

On open points of \widehat{G}

G exponential Lie group with its Lie algebra \mathfrak{g} and the duality pairing $\langle \cdot, \cdot \rangle \colon \mathfrak{g}^* \times \mathfrak{g} \to \mathbb{R}$. For any basis $\{X_1, \ldots, X_m\}$ in \mathfrak{g} define the polynomial function

$${\mathcal P}\colon {\mathfrak g}^* o {\mathbb R}, \quad {\mathcal P}(\xi):= {\sf det}(\langle \xi, [X_j, X_k]
angle)_{1\leq j,k\leq m}.$$

- \widehat{G} has open points \iff $(\exists \xi \in \mathfrak{g}^* \setminus \{0\})$ $P(\xi) \neq 0$
- The number of open points of \widehat{G} is even.

On C^* -algebras of nilpotent Lie groups (1)

Theorem

G nilpotent Lie group \implies $C^*(G)$ is a solvable C*-algebra

That is, there are ideals $\{0\} = \mathcal{J}_0 \subseteq \mathcal{J}_1 \subseteq \cdots \subseteq \mathcal{J}_n = \mathcal{A} := C^*(G)$ with $\mathcal{J}_j/\mathcal{J}_{j-1} \simeq \mathcal{C}_0(\Gamma_j, \mathcal{K}(\mathcal{H}_j))$ for $j = 1, \ldots, n$, and moreover

- $\widehat{\mathcal{A}} = \Gamma_1 \sqcup \cdots \sqcup \Gamma_n$
- \mathfrak{O} dim $\mathcal{H}_n = 1$ and $\Gamma_n \simeq [\mathfrak{g}, \mathfrak{g}]^{\perp} \subseteq \mathfrak{g}^*$
- **③** dim $\mathcal{H}_j = \infty$ if j < n, Γ_j is open dense in $\widehat{\mathcal{A}} \setminus \widehat{\mathcal{J}}_{j-1}$
- $\Gamma_j \simeq$ semi-algebraic cone in a finite-dimensional vector space, which is a Zariski open set for j = 1

Corollary: Real rank of $C^*(G) = \dim(\mathfrak{g}/[\mathfrak{g},\mathfrak{g}])$ (holds true for any exponential Lie group, with a different proof)

On C^* -algebras of nilpotent Lie groups (2)

A subquotient of a C^{*}-algebra \mathcal{A} is any quotient $\mathcal{J}_2/\mathcal{J}_1$, where $\mathcal{J}_1 \subseteq \mathcal{J}_2$ are ideals of \mathcal{A} .

- $SQ^{Tr}(\mathcal{A}) :=$ the subquotients with continuous trace;
- $SQ_0^{Tr}(\mathcal{A}) :=$ the subquotients that are Morita equivalent to commutative \mathcal{C}^* -algebras (i.e., whose Dixmier-Douady invariant is equal to zero) $\sim SQ_0^{Tr}(\mathcal{A}) \subseteq SQ^{Tr}(\mathcal{A})$

Conjecture (R.L. Lipsman, I. Raeburn, J. Rosenberg, 1988, 1996)

$$\mathcal{A} = \mathcal{C}^*(\mathcal{G}) \implies \mathrm{SQ}_0^{\mathrm{Tr}}(\mathcal{A}) = \mathrm{SQ}^{\mathrm{Tr}}(\mathcal{A})$$

Motivation: noncommutative version of the Fourier isomorphism $C^*(\mathcal{V}, +) \simeq C_0(\mathcal{V}^*)$. They proved the above only for 2-step nilpotent Lie groups G, i.e., $[\mathfrak{g}, [\mathfrak{g}, \mathfrak{g}]] = \{0\}$.

Theorem

There is additional evidence for the above conjecture:

- a sequence of groups having arbitrarily high nilpotency step;
- ► a continuous family of 3-step nilpotent groups.

Quasidiagonality

 ${\mathcal A}$ separable ${\mathcal C}^*$ -algebra

• $\pi \colon \mathcal{A} \to \mathcal{B}(\mathcal{H})$ quasidiagonal *-representation if

$$(\forall a \in \mathcal{A}) \lim_{n \to \infty} \|\pi(a)P_n - P_n\pi(a)\| = 0$$

for some $P_n = P_n^* = P_n^2 \in \mathcal{B}(\mathcal{H})$, rank $P_n < \infty, P_n \nearrow \mathbf{1}$

• \mathcal{A} is *strongly quasidiagonal* if all its (irreducible) *-representations are quasidiagonal

Example: $\mathcal{K}(\mathcal{H})$ is strongly quasidiagonal

Rem.: Let π be a quasidiagonal *-representation and $a \in \mathcal{A}$.

With $E_n := P_n - P_{n-1}$ and $||\pi(a)P_n - P_n\pi(a)|| < \frac{1}{2^n}$ one has

$$\pi(a) = \sum_{n\geq 1} E_n \pi(a) E_n + K \text{ with } K := \sum_{n\geq 1} E_n \pi(a) P_n^{\perp} + P_n^{\perp} \pi(a) E_n.$$

Here $K \in \mathcal{K}(\mathcal{H})$. So if $\pi(a)$ is a Fredholm operator, then index $\pi(a) = 0$.

When is $C^*(G)$ strongly quasidiagonal?

G connected, simply connected, solvable Lie group of type I. So $\mathcal{K}(\mathcal{H}_{\pi}) \subseteq \pi(\mathcal{C}^*(G))$ for every $[\pi] \in \widehat{G}$

Theorem

Equivalent:

- $C^*(G)$ is strongly quasidiagonal
- **2** $\mathfrak{g} \ni X \mapsto [A, X] \in \mathfrak{g}$ has all its eigenvalues in $i\mathbb{R}$ for all $A \in \mathfrak{g}$
- **③** $\pi(C^*(G)) = \mathcal{K}(\mathcal{H}_{\pi})$ for every $[\pi] \in \widehat{G}$ (i.e., all points of \widehat{G} are closed)
- Fredholm operators in $\pi(C^*(G))$ have index zero for every $[\pi] \in \widehat{G}$

Corollary

If G is an exponential Lie group, then the above are further equivalent to:G is a nilpotent Lie group

Problem: For *G* exponential, non-nilpotent, determine the unirreps $\pi: G \to U(\mathcal{H})$ for which there are Fredholm operators in $\pi(C^*(G))$ having nonzero index.

Idea of proof

If $\mathcal{K}(\mathcal{H}_{\pi}) \subsetneqq \pi(C^*(G))$ for some $[\pi] \in \widehat{G}$, then there is a closed normal subgroup $H \subset G$ such that

$$G/H\simeq S_2$$
, S_3^σ with $\sigma
eq 0$, or S_4 , where

•
$$S_2 = \mathbb{R} \ltimes \mathbb{R}, (t, x) \cdot (t', x') = (t + t', x + e^t x')$$

• $S_3^{\sigma} = \mathbb{R} \ltimes \mathbb{R}^2, (t, x) \cdot (t', x') = (t + t', x + A(t)x'),$
 $A(t) = e^{\sigma t} \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}$
• $S_4 = \mathbb{R}^2 \ltimes \mathbb{R}^2, (s, t, x) \cdot (s', t', x') = (t + t', x + B(t, s)x')$
 $B(t, s) = e^t \begin{pmatrix} \cos s & \sin s \\ -\sin s & \cos s \end{pmatrix}$