Ando dilation and its applications

Bata Krishna Das

Indian Institute of Technology Bombay

OTOA - 2016 ISI Bangalore, December 20

(joint work with J. Sarkar and S. Sarkar)

A (10) × (10) ×

Introduction

- \mathbb{D} : Open unit disc.
- $H^2_{\mathcal{E}}(\mathbb{D})$: \mathcal{E} -valued Hardy space over the unit disc.
- The shift operator on $H^2_{\mathcal{E}}(\mathbb{D})$ is denoted by M_z .
- For a contraction T, $D_T := (I TT^*)^{1/2}$ is the defect operator and $D_T := \overline{\text{Ran}} D_T$ is the defect space of T.
- A contraction T on H is pure if $T^{*n} \rightarrow 0$ in S.O.T.

Introduction

- \mathbb{D} : Open unit disc.
- $H^2_{\mathcal{E}}(\mathbb{D})$: \mathcal{E} -valued Hardy space over the unit disc.
- The shift operator on $H^2_{\mathcal{E}}(\mathbb{D})$ is denoted by M_z .
- For a contraction *T*, D_T := (*I* − *TT*^{*})^{1/2} is the defect operator and D_T := RanD_T is the defect space of *T*.
- A contraction T on H is pure if $T^{*n} \rightarrow 0$ in S.O.T.

Theorem (Nagy-Foias)

Let T be a contraction on a Hilbert space H. Then T has a unique minimal unitary dilation.

Image: A image: A

- \mathbb{D} : Open unit disc.
- $H^2_{\mathcal{E}}(\mathbb{D})$: \mathcal{E} -valued Hardy space over the unit disc.
- The shift operator on $H^2_{\mathcal{E}}(\mathbb{D})$ is denoted by M_z .
- For a contraction *T*, D_T := (*I* − *TT*^{*})^{1/2} is the defect operator and D_T := RanD_T is the defect space of *T*.
- A contraction T on H is pure if $T^{*n} \rightarrow 0$ in S.O.T.

Theorem (Nagy-Foias)

Let T be a contraction on a Hilbert space H. Then T has a unique minimal unitary dilation.

• von Neumann inequality: For any polynomial $p \in \mathbb{C}[z]$,

$$\|p(T)\| \leq \sup_{z\in\mathbb{D}} |p(z)|.$$

イロン イヨン イヨン イヨン

Theorem (T. Ando)

Let (T_1, T_2) be a pair of commuting contractions on H. Then (T_1, T_2) dilates to a pair of commuting unitaries (U_1, U_2) .

イロン イヨン イヨン イヨン

æ

Theorem (T. Ando)

Let (T_1, T_2) be a pair of commuting contractions on H. Then (T_1, T_2) dilates to a pair of commuting unitaries (U_1, U_2) .

• von Neumann inequality: For any polynomial $p \in \mathbb{C}[z_1, z_2]$,

$$\|p(T_1, T_2)\| \leq \sup_{(z_1, z_2) \in \mathbb{D}^2} |p(z_1, z_2)|.$$

・ロン ・回と ・ヨン ・ヨン

Theorem (T. Ando)

Let (T_1, T_2) be a pair of commuting contractions on H. Then (T_1, T_2) dilates to a pair of commuting unitaries (U_1, U_2) .

• von Neumann inequality: For any polynomial $p \in \mathbb{C}[z_1, z_2]$,

$$\|p(T_1, T_2)\| \leq \sup_{(z_1, z_2) \in \mathbb{D}^2} |p(z_1, z_2)|.$$

Definition

A variety $V = \{(z_1, z_2) \in \mathbb{D}^2 : p(z_1, z_2) = 0\}$ is a distinguished variety of the bidisc if

$$\overline{V} \cap \partial \mathbb{D}^2 = \overline{V} \cap (\partial \mathbb{D})^2.$$

- 4 同 ト 4 三 ト 4

Theorem (Agler and McCarthy)

V is a distinguished variety of the bidisc if and only if there is a matrix valued inner function Φ such that $V = \{(z_1, z_2) \in \mathbb{D}^2 : det(z_1I - \Phi(z_2)) = 0\}.$

・日・ ・ヨ・ ・ヨ・

Theorem (Agler and McCarthy)

V is a distinguished variety of the bidisc if and only if there is a matrix valued inner function Φ such that $V = \{(z_1, z_2) \in \mathbb{D}^2 : det(z_1I - \Phi(z_2)) = 0\}.$

• A distinguished variety V of the bidisc $\iff (M_z, M_{\Phi})$ on some $H^2_{\mathbb{C}^m}(\mathbb{D})$ with Φ is a matrix valued inner function.

個 と く ヨ と く ヨ と …

Theorem (Agler and McCarthy)

V is a distinguished variety of the bidisc if and only if there is a matrix valued inner function Φ such that $V = \{(z_1, z_2) \in \mathbb{D}^2 : det(z_1I - \Phi(z_2)) = 0\}.$

• A distinguished variety V of the bidisc $\iff (M_z, M_{\Phi})$ on some $H^2_{\mathbb{C}^m}(\mathbb{D})$ with Φ is a matrix valued inner function.

Theorem (Agler and McCarthy)

Let (T_1, T_2) be a pair of commuting strict matrices. Then there is a distinguished variety V of the bidisc such that

$$\|p(T_1, T_2)\| \leq \sup_{(z_1, z_2) \in V} |p(z_1, z_2)| \quad (p \in \mathbb{C}[z_1, z_2]).$$

・ロッ ・日マ ・ ヨマ

• T_1 has to be a pure contraction with dim $\mathcal{D}_{T_1} < \infty$.

- T_1 has to be a pure contraction with dim $\mathcal{D}_{T_1} < \infty$.
- Is that all we need?

- T_1 has to be a pure contraction with dim $\mathcal{D}_{T_1} < \infty$.
- Is that all we need?
- Φ is an operator valued multiplier of $H^2_{\mathcal{E}}(\mathbb{D})$ if and only if there exist a Hilbert space H and an isometry $U = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ in $\mathcal{B}(\mathcal{E} \oplus H)$ such that

$$\Phi(z) = A + zB(I - zD)^{-1}C$$

for all $z \in \mathbb{D}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

• Let (T_1, T_2) be a pair of commuting contractions on H with T_1 is pure and dim $\mathcal{D}_{T_i} < \infty$ for i = 1, 2.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

- Let (T_1, T_2) be a pair of commuting contractions on H with T_1 is pure and dim $\mathcal{D}_{T_i} < \infty$ for i = 1, 2.
- Let M_z be the minimal isometric dilation of T_1 on $H^2_{\mathcal{D}_{T_*}}(\mathbb{D})$.

・ 回 ・ ・ ヨ ・ ・ ヨ ・

- Let (T_1, T_2) be a pair of commuting contractions on H with T_1 is pure and dim $\mathcal{D}_{T_i} < \infty$ for i = 1, 2.
- Let M_z be the minimal isometric dilation of T_1 on $H^2_{\mathcal{D}_{T_1}}(\mathbb{D})$.
- Consider the operator equality $(I - T_1 T_1^*) + T_1(I - T_2 T_2^*) T_1^* = T_2(I - T_1 T_1^*) T_2^* + (I - T_2 T_2^*).$

(《圖》 《문》 《문》 - 문

- Let (T_1, T_2) be a pair of commuting contractions on H with T_1 is pure and dim $\mathcal{D}_{T_i} < \infty$ for i = 1, 2.
- Let M_z be the minimal isometric dilation of T_1 on $H^2_{\mathcal{D}_{T_1}}(\mathbb{D})$.
- Consider the operator equality $(I - T_1 T_1^*) + T_1(I - T_2 T_2^*) T_1^* = T_2(I - T_1 T_1^*) T_2^* + (I - T_2 T_2^*).$
- $U : \{(D_{T_1}h, D_{T_2}h) : h \in H\} \rightarrow \{(D_{T_1}T_2^*h, D_{T_2}h) : h \in H\}$ defines an isometry defined by

$$(\mathsf{D}_{T_1}h,\mathsf{D}_{T_2}T_1^*h)\mapsto (\mathsf{D}_{T_1}T_2^*h,\mathsf{D}_{T_2}h) \quad (h\in H).$$

· < @ > < 문 > < 문 > · · 문

- Let (T_1, T_2) be a pair of commuting contractions on H with T_1 is pure and dim $\mathcal{D}_{T_i} < \infty$ for i = 1, 2.
- Let M_z be the minimal isometric dilation of T_1 on $H^2_{\mathcal{D}_{T_1}}(\mathbb{D})$.
- Consider the operator equality $(I - T_1 T_1^*) + T_1(I - T_2 T_2^*) T_1^* = T_2(I - T_1 T_1^*) T_2^* + (I - T_2 T_2^*).$
- $U : \{(D_{T_1}h, D_{T_2}h) : h \in H\} \rightarrow \{(D_{T_1}T_2^*h, D_{T_2}h) : h \in H\}$ defines an isometry defined by

$$(\mathsf{D}_{T_1}h,\mathsf{D}_{T_2}T_1^*h)\mapsto (\mathsf{D}_{T_1}T_2^*h,\mathsf{D}_{T_2}h) \quad (h\in H).$$

• Extend U to a unitary in $\mathcal{B}(\mathcal{D}_{T_1} \oplus \mathcal{D}_{T_2})$.

イロン イ部ン イヨン イヨン 三日

- Let (T_1, T_2) be a pair of commuting contractions on H with T_1 is pure and dim $\mathcal{D}_{T_i} < \infty$ for i = 1, 2.
- Let M_z be the minimal isometric dilation of T_1 on $H^2_{\mathcal{D}_{T_1}}(\mathbb{D})$.
- Consider the operator equality $(I - T_1 T_1^*) + T_1(I - T_2 T_2^*) T_1^* = T_2(I - T_1 T_1^*) T_2^* + (I - T_2 T_2^*).$
- $U : \{(D_{T_1}h, D_{T_2}h) : h \in H\} \rightarrow \{(D_{T_1}T_2^*h, D_{T_2}h) : h \in H\}$ defines an isometry defined by

$$(\mathsf{D}_{T_1}h, \mathsf{D}_{T_2}T_1^*h) \mapsto (\mathsf{D}_{T_1}T_2^*h, \mathsf{D}_{T_2}h) \quad (h \in H).$$

- Extend U to a unitary in $\mathcal{B}(\mathcal{D}_{T_1} \oplus \mathcal{D}_{T_2})$.
- Let Φ ∈ H[∞]_{B(D_{T1})}(D) be the matrix valued inner function corresponding to U*. Then M^{*}_Φ is the co-isometric extension of T^{*}₂.

ロ と く 聞 と く き と く き と …

Theorem

Let (T_1, T_2) be a pair of commuting contractions on H with T_1 is pure and dim $\mathcal{D}_{T_i} < \infty$, i = 1, 2. Then (T_1, T_2) dilates to (M_z, M_{Φ}) on $H^2_{\mathcal{D}_{T_1}}(\mathbb{D})$. Therefore, there exists a variety $V \subset \overline{\mathbb{D}^2}$ such that

$$\|p(T_1, T_2)\| \leq \sup_{(z_1, z_2) \in V} |p(z_1, z_2)| \quad (p \in \mathbb{C}[z_1, z_2]).$$

If, in addition, T_2 is pure then V can be taken to be a distinguished variety of the bidisc.

- 4 同 ト 4 臣 ト 4 臣 ト

Berger-Coburn-Lebow representation

• A pure pair of commuting isometries is a pair of commuting isometries (V₁, V₁) with V₁V₂ is pure.

同 と く ヨ と く ヨ と

Berger-Coburn-Lebow representation

 A pure pair of commuting isometries is a pair of commuting isometries (V₁, V₁) with V₁V₂ is pure.

Theorem (B-C-L)

A pure pair of commuting isometries (V_1, V_2) is unitary equivalent to a commuting pair of isometries (M_{Φ}, M_{Ψ}) on $H_{\mathcal{E}}^2$ for some Hilbert space \mathcal{E} with

$$\Phi(z) = (zP^{\perp} + P)U^*$$
 and $\Psi(z) = U(zP + P^{\perp})$

where U is a unitary in $\mathcal{B}(\mathcal{E})$ and P is a projection in $\mathcal{B}(\mathcal{E})$.

イロト イヨト イヨト イヨト

Berger-Coburn-Lebow representation

• A pure pair of commuting isometries is a pair of commuting isometries (V_1, V_1) with V_1V_2 is pure.

Theorem (B-C-L)

A pure pair of commuting isometries (V_1, V_2) is unitary equivalent to a commuting pair of isometries (M_{Φ}, M_{Ψ}) on $H_{\mathcal{E}}^2$ for some Hilbert space \mathcal{E} with

$$\Phi(z) = (z P^{\perp} + P) U^*$$
 and $\Psi(z) = U(z P + P^{\perp})$

where U is a unitary in $\mathcal{B}(\mathcal{E})$ and P is a projection in $\mathcal{B}(\mathcal{E})$.

- $H^2_{\mathcal{E}}(\mathbb{D})$ is the model space of the pure isometry V_1V_2 .
- Pure pair of commuting isometry $(V_1, V_2) \iff (\mathcal{E}, U, P)$.

•
$$M_z = M_{\Phi} M_{\Psi}$$
.

- 4 回 2 - 4 □ 2 - 4 □

Dilation and factorization of pure pair of contractions

• A pure pair of commuting contractions is a pair commuting contractions (T_1, T_2) with T_1T_2 is pure.

Dilation and factorization of pure pair of contractions

• A pure pair of commuting contractions is a pair commuting contractions (T_1, T_2) with T_1T_2 is pure.

Theorem

A pure pair of commuting contractions (T_1, T_2) dilates to a pure pair of commuting isometries corresponding to a triple $(\mathcal{D}_{T_1} \oplus \mathcal{D}_{T_2}, U, P)$ where U is a unitary and P is a projection in $\mathcal{B}(\mathcal{D}_{T_1} \oplus \mathcal{D}_{T_2})$.

Dilation and factorization of pure pair of contractions

• A pure pair of commuting contractions is a pair commuting contractions (T_1, T_2) with T_1T_2 is pure.

Theorem

A pure pair of commuting contractions (T_1, T_2) dilates to a pure pair of commuting isometries corresponding to a triple $(\mathcal{D}_{T_1} \oplus \mathcal{D}_{T_2}, U, P)$ where U is a unitary and P is a projection in $\mathcal{B}(\mathcal{D}_{T_1} \oplus \mathcal{D}_{T_2})$.

Theorem

Let T be a pure contraction on H and let $T \cong P_Q M_z|_Q$ be the Sz.-Nagy and Foias representation of T. TFAE (i) $T = T_1 T_2$ for some commuting contractions T_1 and T_2 on H. (ii) There exist $\mathcal{B}(\mathcal{D}_T)$ -valued polynomial ϕ and ψ of degree ≤ 1 such that Q is a joint (M_{ϕ}^*, M_{ψ}^*) - invariant subspace,

$$P_{\mathcal{Q}}M_{z}|_{\mathcal{Q}}=P_{\mathcal{Q}}M_{\phi\psi}|_{\mathcal{Q}}=P_{\mathcal{Q}}M_{\psi\phi}|_{\mathcal{Q}}.$$

- J. Agler and J. E. McCarthy, *Distinguished Varieties*, Acta Math. **194** (2005), 133-153.
- C.A. Berger, L.A. Coburn and A. Lebow, Representation and index theory for C*-algebras generated by commuting isometries, J. Funct. Anal. 27 (1978), 51-99.
- B. K. Das and J. Sarkar, Ando dilations, von Neumann inequality, and distinguished varieties, J. Funct. Anal. (to appear).
- B.K. Das, J. Sarkar and S. Sarkar, Factorizations of contractions, arxiv:1607.05815.