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I: The classical case

Given: Ω = set of points, Y = a Hilbert space, B(Y) = bounded
linear operators on Y , K : Ω× Ω→ B(Y) = a function

Theorem (and Definition) 1:

We say that K is a positive kernel if any of the following
equivalent conditions hold:

1.
∑N

i ,j=1〈yi ,K (ωi , ωj)yj〉Y ≥ 0 ∀ y1, . . . , yn in Y ,
ω1, . . . , ωN in Ω for N = 1, 2, . . .

2. K is the reproducing kernel for a uniquely determined
Reproducing Kernel Hilbert Space H(K ) :
kω,y := K (·, ω)y ∈ H(K ) and 〈kω,y , f 〉H(K) = 〈y , f (ω)〉Y

3. ∃ auxiliary Hilbert space X and function H : Ω→ B(X ,Y)
so that K (ζ, ω) = H(ζ)H(ω)∗ (Kolmogorov decomposition)
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Discussion of proof

I Property (2) = Reproducing property: For the case Y = C,
Zaremba (1907): bdry-value problems for harmonic fctns

I The construction that (1) ⇒ (2): Moore (1935), Aronszajn
(systematic theory 1950) for the case Y = C

I Property (3): Kolmogorov in the context of covariance
matrices
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Sketch of (1) ⇒ (2)

Proof of (1) ⇒ (2)

Given K (ζ, ω) satisfying (1), define
kernel elements kζ,y = K (·, ζ)y : Ω→ Y
Define an inner product on H0 = span of kernel elements so that
〈kζ,y ′ , kω,y 〉H0 = 〈y ′,K (ζ, ω)y〉Y = 〈y ′, kω,y (ζ)〉Y
(1) ⇒ 〈·, ·〉H0 positive semidefinite —even positive definite if H0

taken to be subspace of functions f : Ω→ Y
Let H(K ) = Hilbert-space completion of H0 : identify elements
as still consisting of functions f : Ω→ Y determined via
reproducing property 〈y , f (ω)〉Y = 〈kω,y , f 〉H(K)
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Sketch of (2) ⇒ (3) and (3) ⇒ (1)

Proof of (2) ⇒ (3):

Take X = H(K ) and define H : Ω→ B(H(K ),Y) to be point
evaluation: H(ω) : f 7→ f (ω) . Then this works!

Proof of (3) ⇒ (1):

Elementary computation: Assume (3). Then∑N
i ,j=1〈yi ,K (ωi , ωj)yj〉Y =

∑N
i ,j=1〈yi ,H(ωi )H(ωj)

∗yj〉Y =∑N
i ,j=1〈H(ωi )

∗yi ,H(ωj)
∗yj〉Y = ‖

∑N
j=1H(ωj)

∗yj‖2X ≥ 0.
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Converse: which functional Hilbert spaces are RKHSs?

Theorem 2:
Given H = Hilbert space consisting of functions f : Ω→ Y ,
TFAE:

1. There is a positive kernel K : Ω× Ω→ B(Y) so that
H = H(K )

2. The point evaluations ev(ω) : f 7→ f (ω) are continuous

Sketch of proof

If 〈y , f (ω)〉Y = 〈kω,y , f 〉H(K) with kω,y ∈ H(K ) , then
f 7→ 〈y , f (ω)〉Y continuous for each y . Then PUB ⇒ f 7→ f (ω)
continuous as well.

Converse: Riesz representation theorem and PUB
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Construction of RKHS from Kolmogorov decomp. factor

Theorem 3
Given H : Ω→ B(X ,Y), define H = {H(·)x : x ∈ X} with norm
‖f ‖2H = min{‖x‖2 : f (·) = H(·)x}.
Then H = H(K ) isometrically, where K (ζ, ω) = H(ζ)H(ω)∗

Proof
Compute:

〈f (ω), y〉Y = 〈H(ω)x , y〉Y = 〈x ,H(ω)∗y〉X =
〈PkerMH

x ,H(ω)∗y〉X = 〈H(·)x ,H(·)H(ω)∗y〉H = 〈f ,K (·, ω)y〉H
⇒ H = H(K )

Direct proof of (3) ⇒ (2) in Theorem 1
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Application 1.

1. Function-theoretic operator theory

Given a Hilbert space of analytic functions H with an explicit
computable inner product, e.g.

H2(D) = {f : D →
holo

C : f (z) =
∑∞

n=0 fnz
n with

‖f ‖2H2 :=
∑∞

n=0 |fn|2 <∞}
Polarization ⇒ 〈g , f 〉H2 =

∑∞
n=0 gnfn if g(z) =

∑∞
n=0 gnz

n

Then guess that H2(D) = RKHS with kernel
= Szegő kernel kSz(z ,w) = 1

1−zw :

Check: 〈kw , f 〉H2 =
∑∞

n=0 w
nfn = f (w)

Operator algebra of interest: the multiplier algebra
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Application 2.

2. Machine Learning/Support Vector Machines

Start with Ω = input data points

Cook up feature map (nonlinear change of variable)
Φ: ω 7→ Φ(ω) = kω,1 = H(ω)∗1 ∈ H (big unknown Hilbert space).

Nevertheless: Assume 〈Φ(ω),Φ(ω′)〉H = K (ω, ω′) known
(Choice of K ⇐ heuristic arguments for particular problem)

Language: one says that K = the kernel having Φ as its feature
map (i.e., having Φ(ω) = H(ω)∗ as right factor in Kolmogorov
decomposition: K (ω′, ω) = H(ω′)H(ω)∗ = Φ(ω′)∗Φ(ω) ) and then
H = H(K ) (the RKHS) as in Theorem 3 = the feature space
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Application 2 continued

Learning algorithm: Solve for f ∗ ∈ H(K ) which minimizes the
regularized risk function:

inff ∈H(K) λ‖f ‖2H +RL,D(f )

where RL,D = the loss or error associated with choice of
predicted-value function x 7→ f (x) based on training data set
D = {(xi , yi ) : i = 1, . . . ,N}.
Assumptions: L depends only on (yi , f ) , not on (xi , yi , f );
RL,D(f ) convex in f and depends only on f (xi ) (i = 1, . . . ,N)

⇒ solution has the form f ∗ =
∑N

i=1 ciK (·, xi ) and therefore is
computable (kernel trick!) .

⇒ Good employment opportunities for Math grad students in
operator theory, but very different questions:
no interest in multiplier algebras in machine learning literature

Source: Steinwart-Christmann, Support Vector Machines,
Springer 2008
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Application 3.

3: Quantum mechanics: coherent states
Assume we have a map H : Ω→ B(CN ,Y)
(Ω = locally compact Hausdorff space, N ∈ N ∪ ℵ0 (Cℵ0 = `2) )
written out in terms of coordinates:
H(ω) =

[
h1(ω) h2(ω) · · · hn(ω) · · ·

]
where hn(ω) ∈ Y

Then RanMH = {H(·)x : x ∈ `2} with lifted norm = RKHS with
kernel K (ζ, ω) = H(ζ)H(ω)∗ as in Theorem 3

Then for y ∈ Y , the functions {kω,y : ω ∈ Ω, y ∈ Y} given by
kω,y (ζ) = K (ζ, ω)y = H(ζ)H(ω)∗y are called coherent states (CS)
thought of as an overcomplete system of vectors indexed by ω, y

i.e., CS = kernel elements in terminology above
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Application 3 continued.

Additional structure: Assume ∃ Resolution of the Identity:
∃ Borel measure ν on Ω so that

∫
X H(ω)∗H(ω) dν(ω) = I`2

Then the Reproducing Kernel is square-integrable in the sense that∫
X K (ω, ζ)K (ζ, ω′) dν(ζ) = K (ω, ω′)

Proof uses associativity:∫
X K (ω, ζ)K (ζ, ω′) dν(ζ) =

∫
X (H(ω)H(ζ)∗)(H(ζ)H(ω′)∗) dν(ζ)

=
∫
X H(ω)(H(ζ)∗H(ζ))H(ω′)∗ dν(ζ)

= H(ω)
(∫

X H(ζ)∗H(ζ) dν(ζ)
)
H(ω′)∗ = H(ω)H(ω′)∗

= K (ω, ω′)

Source: S.T. Ali, Reproducing Kernels in Coherent States,
Wavelets, and Quantization , in: Part I Reproducing Kernel Hilbert
Spaces (ed. F.H. Szafraniec), in:
Operator Theory, Volume 1 (ed. D. Alpay), Springer, 2015
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Introduction to global/cp nc kernels

The next step: Barreto-Bhat-Liebscher-Skeide (JFA 2004)

Given K : Ω× Ω→ B(A,B(Y)) where A = C ∗-algebra

Thus, for ζ, ω ∈ Ω and a ∈ A , K (ζ, ω)(a) ∈ B(Y)

We say that K as above is a completely positive (cp) kernel if
any of the following equivalent conditions hold:

1.
∑N

i ,j=1〈yi ,K (ωi , ωj)(a∗i aj)yj〉Y ≥ 0 ∀ ω1, . . . , ωN in Ω, a1,
. . . , aN in A, y1, . . . , yN in Y

2. The kernel K : (Ω×A)× (Ω×A)→ B(Y) given by
K((ω, a), (ω′, a′)) = K (ω, ω′)(a∗a′) is a Moore-Aronszajn
positive kernel

3. The mapping K (n) : [aij ] 7→ [K (ωi , ωj)(a∗i aj)] is a positive map
from An×n into B(Y)n×n for any choice of ω1, . . . , ωn in Ω
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BBLS version of Theorem 1

Theorem 1′

Given a kernel K : Ω× Ω→ B(A,B(Y)), TFAE:

1. K is a cp kernel

2. K is the Reproducing Kernel for a
Reproducing Kernel (A,C)-correspondence: see next slide

3. K has a Kolmogorov decomposition: ∃ (A,C)-
correspondence X and function H : Ω→ B(X ,Y)
so that K (ζ, ω)(a) = H(ζ)σ(a)H(ω)∗

where σ(a)x = a · x for x ∈ X
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Details on part 2 of Theorem 1′

Reproducing Kernel (A,C)-correspondence

Given a kernel K as above, H(K ) is the associated unique (A,C)
-correspondence means:

(i) Elements of H(K ) are functions f : Ω→ B(A,Y)

(ii) kω,a,y ∈ H(K ) for any ω ∈ Ω ,a ∈ A , y ∈ Y , where
kω,a,y (ζ)(a′) = K (ζ, ω)(a′a)y

(iii) kω,a,y has the reproducing property:

〈kω,a,y , f 〉H(K) = 〈y , f (ω)(a)〉Y
(iv) for a′ ∈ A ,

(a′ · f ) (ω)(a) = f (ω)(aa′) , or equivalently a′ · kω,a,y = kω,a′a,y

Proof of Theorem 1′: functorial modification of proof of Theorem 1
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cp global/nc kernels

Recall formulation (3) of K : Ω×Ω→ B(A,B(Y)) is a cp kernel:

The mapping K (n) : [aij ] 7→ [K (zi , zj)(a∗i aj)] is a positive map from
An×n into B(Y)n×n for any choice of z1, . . . , zn in Ω

This suggests: Extend set of points Ω to its nc envelope [Ω]nc
defined as follows . . .
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Preliminaries on nc sets and envelopes

Let S = a set. Define Snc = q∞n=1Sn×n

where Sn×n = n × n matrices with entries in S
Suppose that T ⊂ Snc. Set Tn = T ∩Sn×n. Thus T = q∞n=1Tn
We say that T is a nc set if Z ∈ Tn and W ∈ Tm ⇒[
Z 0
0 W

]
∈ Tn+m

For T = arbitrary subset of Snc , define [T ]nc = smallest nc
subset containing T (noncommutative envelope of T )

Suppose Ω ⊂ S = (Snc)1. Then

[Ω]nc = q∞n=1

{[ z1
. . .

zn

]
: z1, . . . , zn ∈ Ω

}
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Extensions of kernels to nc envelopes

Given kernel K : Ω× Ω→ B(A,B(Y)) , extend K to
K : [Ω]nc,n × [Ω]nc,m → B(An×m,B(Y)n×m ∼= B(Ym,Yn)) by

K

([ z1
. . .

zn

]
,

[ w1

. . .
wm

])
([aij ]) = [K (zi , zj)(aij)]

for any n,m ∈ N
Then K being a cp kernel can be expressed more succinctly as:

for all Z ∈ [Ω]nc , say Z ∈ [Ω]nc,n, K (Z ,Z ) : An×n → B(Y)n×n is
a positive map

This suggests a more general formulaton . . .
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Cp global kernels and global RK (A,C)-Correspondences

Suppose Ω = nc subset of Snc
(in particular, Ω not necessarily equal to [Ω1]nc)

Suppose K : Ω× Ω→ B(Anc,B(Y)nc) .
We say that K is a global kernel if
(i) K is graded : K : Ωn × Ωm 7→ B(An×m,B(Y)n×m)
(ii) K respects direct sums:

K
([

Z 0
0 Z̃

]
,
[
W 0
0 W̃

])([
P11 P12
P21 P22

])
=
[
K(Z ,W )(P11) K(Z ,W̃ )(P12)

K(Z̃ ,W )(P21) K(Z̃ ,W̃ )(P22)

]
We say that K is a cp global kernel if also for all Z ∈ Ωn,
K (Z ,Z ) : An×n → B(Y)n×n is a positive map , n ∈ N arbitrary
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Cp global kernels and RK correspondences continued

Theorem 1′: first upgrade (Ball-Marx-Vinnikov JFA 2016)

Given Ω = nc subset of Snc, K : Ω× Ω→ B(Anc,B(Y)nc),
TFAE:

1. K is a cp global kernel

2. K is the RK for a global RK (A,C)-correspondence —see
next slide

3. K has a global Kolmogorov decomposition: ∃ a (A,C)
-correspondence X and a global function
H : Ω→ B(X ,Y)nc (see next slide) so that

K (Z ,W )(P) = H(Z )(idCn×m ⊗ σ)(P)H(W )∗

for all Z ∈ Ωn, W ∈ Ωm, P ∈ An×m where
σ(a)x = a · x for a ∈ A and x ∈ X and
(idCn×m ⊗ σ)([Pij ]) = [σ(Pij)]
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Background material on global kernels and global functions

We say that H : Ω→ B(X ,Y)nc is a global function if
(i) H is graded : Z ∈ Ωn ⇒ H(Z ) ∈ B(X ,Y)n×n ∼= B(X n,Yn)

(ii) H respects direct sums: H
([

Z 0
0 Z̃

])
=
[
H(Z) 0

0 H(Z̃)

]
H(K ) = global RK (A,C)-correspondence associated with cp
global kernel K means:

(i) H(K ) = (A,C)-correspondence with elements f equal to
global functions from Ω to B(A,Y)nc
(so f (Z ) ∈ B(An,Yn) for Z ∈ Ωn )

(ii) for W ∈ Ωm, v ∈ A1×m, y ∈ Ym, kW ,v ,y ∈ H(K ) where
kW ,v ,y (Z )(u) = K (Z ,W )(uv)y for Z ∈ Ωn, u ∈ An
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Global RK correspondence continued

(iii) kW ,v ,y has the reproducing property:
〈kW ,v ,y , f 〉H(K) = 〈y , f (W )(v∗)〉Y

(iv) The left action of A on H(K ) is given by
(a · f )(W )(u) = f (W )(ua) or equivalently a · kW ,v ,y = kW ,av ,y
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Stinespring representation theorem

Special case: Ω = [Ω1]nc and Ω1 = {ω0} (singleton set)

Then Ωn =

{[ ω0

. . .
ω0

]}
(singleton set)

Suppose that K : Ω× Ω→ B(Anc,B(Y)nc) is a global kernel

Define ϕ : A → B(Y) by ϕ(a) = K (ω0, ω0)(a)

Then K

([ ω0

. . .
ω0

]
,

[ ω0

. . .
ω0

])
([aij ])

= [K (ω0, ω0)(aij)] = [ϕ(aij)] = ϕ(n)([aij ])

Conclude: K = cp global kernel ⇔ ϕ : A → B(Y) = cp map

Kolmogorov decomposition for K ⇒
ϕ(a) = K (ω0, ω0)(a) = H(ω0)σ(a)H(ω0)∗ = V ∗σ(a)V where
V = H(ω0)∗ : Y → X and σ : A → B(X ) = ∗-representation ⇒
Steinspring representation for cp map ϕ
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The next upgrade: noncommutative functions

Assume S = V is a vector space, Vnc = q∞n=1Vn×n is the
associeted full nc set
Note: Vector spaces are bimodules over C ⇒, for [α] ∈ Ck×`,
[v ] ∈ V`×m, [β] ∈ Cm×n, the product [α] · [v ] · [β] makes sense
via standard matrix multiplication

Suppose that V0 = another vector space and f : Ω→ (V0)nc
We say that f is a nc function if
(i) f is global, i.e. (i-a) f is graded: f (Z ) ∈ (V0)n×n if Z ∈ Ωn

and (i-b) f respects direct sums: f
([

Z 0
0 Z̃

])
=
[
f (Z) 0

0 f (Z̃)

]
(ii) f respects similarities: Z ∈ Ωn, α invertible in Cn×n such
that αZα−1 ∈ Ωn ⇒ αf (Z )α−1 = f (αZα−1)
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Noncommutative kernels

Suppose K : Ω× Ω→ B((V1)nc, (V0)nc).

We say that K is a nc kernel if

(i) K is a global kernel, i.e., (i-a) K is graded: Z ∈ Ωn, W ∈ Ωm

⇒ K (Z ,W ) ∈ B((V1)n×m, (V0)n×m)
and (i-b) K respects direct sums:

K
([

Z 0
0 Z̃

]
,
[
W 0
0 W̃

])([
P11 P12
P21 P22

])
=
[
K(Z ,W )(P11) K(Z ,W̃ )(P12)

K(Z̃ ,W )(P21) K(Z̃ ,W̃ )(P22)

]
,

and

(ii) K respects similarities:
Z , Z̃ ∈ Ωn, α ∈ Cn×n invertible with Z̃ = αZα−1 ∈ Ωn,
W , W̃ ∈ Ωm, β ∈ Cm×m invertible with W̃ = βWβ−1 ∈ Ωm,
P ∈ Vn×m1 ⇒ K (Z̃ , W̃ )(P) = αK (Z ,W )(α−1Pβ−1∗)β∗.
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cp nc kernels

Restrict now to the case where V1 = A = a C ∗-algebra,
V0 = B(Y) for a Hilbert space Y.

We say that K is a cp nc kernel if K is a cp global kernel which
is also a nc kernel, i.e.,

(i) K is graded,

(ii) K respects direct sums, and

(iii) K respects similarities, and

(iv) K (Z ,Z ) : An×n → B(Y)n×n is a positive map for any
Z ∈ Ωn
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cp nc kernels and nc RKHSs

Theorem 1′: second upgrade (Ball-Marx-Vinnikov JFA 2016)

Assume that K : Ω→ B(Anc,B(Y)nc). Then TFAE:

1. K is a cp nc kernel.

2. K is the RK for a nc RK (A,C)-correspondence —see next
slide

3. K has a nc Kolmogorov decomposition: ∃ a (A,C)
-correspondence X and a nc function H : Ω→ B(X ,Y)nc
so that K (Z ,W )(P) = H(Z )(idCn×m ⊗ σ)(P)H(W )∗

for all Z ∈ Ωn, W ∈ Ωm, P ∈ An×m where
σ(a) = a · x for a ∈ A and x ∈ X and
(idCn×m ⊗ σ)([Pij ]) = [σ(Pij)]
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nc Reproducing Kernel Correspondence

We say that H(K ) = nc RK (A,C)-correspondence associated
with cp nc kernel K if:

(i) H(K ) = (A,C)-correspondence with elements f equal to nc
functions from Ω to B(A,Y)nc

(ii) for W ∈ Ωm , v ∈ A1×m, y ∈ Ym, kW ,v ,y ∈ H(K ) where
kW ,v ,y (Z )(v) = K (Z ,W )(uv)y for Z ∈ Ωn, u ∈ An

(iii) kW ,v ,y has the reproducing property
〈kW ,v ,y , f 〉H(K) = 〈y , f (W )(v∗)〉Y
(iv) The left action of A on H(K ) is given by
(a · f )(v∗) = f (W )(v∗a) or equivalently a · kW ,v ,y = kW ,av ,y
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Global/nc RK correspondences: converse statements

Theorems 2′ with First/ Second Upgrade:

Suppose H = Hilbert space with elements f equal to global/nc
functions from Ω into B(A,L(Y))nc such that

(i) W ∈ Ωm ⇒ f 7→ f (W ) bounded from H to
B(A,Y)m×m ∼= B(Am,Ym)

(ii) σ : A → B(H) given by (σ(a)f )(W )(u) = f (W )(ua) defines
a unital ∗-representation of A
⇒ ∃ cp global/nc kernel K so that H = H(K ) isometrically
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Global/nc RK correspondences: converse statements cont.

Theorem 3 with Fist/Second Upgrade:

X = Hilbert space equipped with ∗ -rep σ : A → B(X )
H : Ω→ B(X ,Y)nc = global/nc function

Define H = {f (·) = H(·)x : x ∈ X} with
‖f ‖H = min{‖x‖X : f (·) = H(·)x}
Set K (Z ,W )(P) = H(Z )(idCn×m ⊗ σ(P)H(W )∗ for Z ∈ Ωn,
W ∈ Ωm, P = [aij ] ∈ An×m.

Then K is a global/nc kernel and H = H(K ) isometrically as a
global/nc (A,C)-correspondence
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Applications of nc RK Correspondences

Applications to function-theoretic operator theory

(i) Nevanlinna-Pick interpolation theory for multipliers on nc RK
correspondences

(ii) Notion of complete cp nc kernels

(iii) nc Schur-Agler class vs nc Schur class: skip
Ball-Marx-Vinnikov 2016: to appear in IWOTA 2015 Proceedings
(Tbilsi, Georgia) (available on arXiv)

Applications to Machine Learning/Support Vector Machines

?

Applications to Math Physics (coherent states)

?
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Recall Moore-Aronszajn

Moore-Aronszajn RKHS

Given K : Ω× Ω→ B(Y), TFAE:

1. K is a positive kernel:∑N
i ,j=1〈yi ,K (ωi , ωj)yj〉Y ≥ 0 ∀ ys, ωs, Ns

2. K = RK for RKHS H(K ): 〈y , f (ω)〉Y = 〈kω,y , f 〉H(K)

3. ∃ Hilbert space X and function H : Ω→ B(S,Y) so that
K (ζ, ω) = H(ζ)H(ω)∗
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Moore-Aronszajn pos. kernel: op.-valued case reformulated

Given K : Ω× Ω→ B(Y), TFAE:

1. K is a positive kernel: [K (ωi , ωj)] is positive in B(Y)N×N ,

or
∑N

i ,j=1 T
∗
i K (ωi , ωj)T

∗
j � 0 ∀ Tjs, ωjs, Ns, Tj ∈ B(Y)

2. K = RK for RK Hilbert module over B(Y):
f (ω) = 〈kω, f 〉H(K) where kω(ζ) = K (ζ, ω) and where
f (ω) ∈ B(Y)

3. K has a Kolmogorov decomposition K (ζ) = H(ζ)H(ω)∗:
the same
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Hilbert module version: replace B(Y) by B = C ∗-algebra

Theorem A
Given B = C ∗-algebra and K : Ω× Ω→ B , TFAE:

1. K is a positive kernel:
[K (ωi , ωj)] � 0 in BN×N ∀ ω1, . . . , ωN ∈ Ω ∀ N = 1, 2, . . . ,

or
∑N

i ,j=1 b
∗
i K (ωi , ωj)b

∗
j � 0 ∀ ωs in Ω, bs in B

2. K is the RK for a RK Hilbert module H(K ) over B:
f (ω) = 〈kω, f 〉H(K) where kω(ζ) = K (ζ, ω) ∈ B and where
f (ω) ∈ B

3. ∃ Hilbert B -module X and H : Ω→ L(X ,B) so that
K (ζ, ω) = H(ζ)H(ω)∗

History:
Stinespring rep. with L(E ) in place of B(H): Kasparov 1980

(1) ⇔ (3): Murphy 1997

Incorporate (2): Szafraniec 2010
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Original form of Barreto-Bhat-Liebscher-Skeide (JFA 2004)

We say that K : Ω× Ω→ B(A,B) is a cp kernel if∑N
i ,j=1 b

∗
i K (ωi , ωj)(a∗i aj)bj � 0

for all as in A, bs in B, ωs in Ω, N = 1, 2, . . .

or equivalently
[K (ωi , ωj)] : AN×N → BN×N is a positive map for all
ω1, . . . , ωN ∈ Ω, N = 1, 2, . . .
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cp kernels and RK (A,B)-correspondences

Theorems A, A-first upgrade, A-second upgrade

Given K : Ω× Ω→ B(A,B) , TFAE:

1. K is a cp (global/nc) kernel

2. ∃ (global/nc) (A,B)-corresondence H(K ) with RK equal to
K —see next slide

3. K has a Kolmogorov decompostion: ∃
(A,B)-correspondence X and (global/nc) function
H : Ω→ L(X ,B) so that
K (Z ,W )(P) = H(Z )(idCn×m ⊗ σ)(P)H(W )∗ where
σ(a)x = a · x , for Z ∈ Ωn, W ∈ Ωm, P = [aij ] ∈ An×m

Joseph A. Ball Positive kernels



RK (A,B)-correspondence associated with RK K

H(K ) = RK (A,B)-correspondence associated with cp
(global/nc) kernel K means:

H(K ) = (A,B)-correspondence with elements f equal to
(global/nc) functions f : Ω→ B(A,B)nc such that

(i) For each W ∈ Ωm, v ∈ A1×m , kW ,v ∈ H(K ) where
kW ,v (Z )(u) = K (Z ,W )(uv) for Z ∈ Ωn, u ∈ An

(ii) kW ,v has the reproducing property:
f (W )(v∗) = 〈kW ,v , f 〉H(K)

(iii) Left A -action on H(K ) given by

(a · f )(W )(v∗) = f (W )(v∗a) for a ∈ A, W ∈ Ωm, v ∈ A1×m,

or equivalently a · kW ,v = kW ,av (Theorem A: n = m = 1 only)

History: (1) ⇔ (3) in Theorem A: Barreto-Bhat-Liebscher-Skeide
2004
Incorporate (2): Ball-Marx-Vinnikov 2016
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Converse theorems for Hilbert-module setting

Theorem B/B′ (Hilbert -module analogue of Theorem 2/2′)
problematical, due to failure of Riesz representation theorem for
linear functions X → B (X = Hilbert module over the
C ∗-algebra B ).
The fix: Let A, B = W ∗-algebras and let X be a self-dual
W ∗-(A,B)- correspondence
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Converse theorems for Hilbert-module setting continued

Theorem B′ (with First/Second Upgrade)

A, B = W ∗-algebras

H = self-dual W ∗-(A,B)- correspondence whose elements f are
(global/nc) functions from Ω to B(A,B)nc such that

(i) for W ∈ Ωm, f 7→ f (W ) bounded from H to
B(A,B)m×m ∼= B(Am,Bm) , and

(ii) (a · f )(W )(u) = f (W )(ua) gives the left action of A on H
Then ∃ a cp (global/nc) normal kernel K so that H = H(K )
isometrically as (global/nc) self-dual W ∗-(A,B)-correspondences

History: Self-dual W ∗-Hllbert modules in general: Paschke 1973,
Skeide 2000 & 2005
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Lifted-norm (global/nc) RK self-dual W ∗-correspondences

Theorem C
Given: B = W ∗-algebra, E = self-dual Hilbert module over B
X = self-dual W ∗-module over B,
H = a function from Ω to L(X ,E )

Define H = {H(·)x : x ∈ X} with ‖H(·)x‖ = ‖P(KerMH)⊥x‖
(X & B self-dual ⇒ P(KerMH)⊥ exists)

Then H = H(K ) (self-dual RK Hilbert module over B consisting
of functions f : Ω→ E ) with RK K : Ω× Ω→ L(E) given by
K (ζ, ω) = H(ζ)H(ω)

Interpretation: Let {en : n ∈ N} = o.n.b. for E (over B )
Then {H(ω)∗en : ω ∈ Ω, n ∈ N} = module-valued coherent states
Bhattacharyya-Roy 2012
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Summary

I Choose one of three:
Theorems 1/A: Given K , construct H(K ) and H
Theorems 2/B: Given H with . . . , identify H = H(K )
Theorem 3/C: Given ω 7→ H(ω) , construct H(K )

I Choose one of two:
Without ′: A = C or no A
With ′: general A

I Choose one of two:
Theorems 1, 2, 3: Target space of K (·, ·) or K (·, ·)(·) is B(Y)
Theorems A, B, C: Target space of K (·, ·) or K (·, ·)(·) is B

I Choose one of three:
No upgrade: f ∈ H(K ) = function
First Upgrade: f ∈ H(K ) = global function
Second Upgrade: f ∈ H(K ) = nc function

Conclusion: 1 theorem with 36 flavors!
Thanks for your attention!
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