Positive kernels and reproducing kernel spaces: a rich tapestry of settings and applications

Joseph A. Ball

Department of Mathematics, Virginia Tech, Blacksburg, VA joint work with Gregory Marx (Virginia Tech) and Victor Vinnikov (Ben Gurion University)

OTOA, Indian Institute of Science Bangalore December 2016

Given: Ω = set of points, \mathcal{Y} = a Hilbert space, $\mathcal{B}(\mathcal{Y})$ = bounded linear operators on \mathcal{Y} , $\mathcal{K}: \Omega \times \Omega \rightarrow \mathcal{B}(\mathcal{Y})$ = a function

Theorem (and Definition) 1:

We say that K is a positive kernel if any of the following equivalent conditions hold:

- 1. $\sum_{i,j=1}^{N} \langle y_i, K(\omega_i, \omega_j) y_j \rangle_{\mathcal{Y}} \ge 0 \quad \forall \ y_1, \ldots, \ y_n \text{ in } \mathcal{Y}, \\ \omega_1, \ldots, \ \omega_N \text{ in } \Omega \text{ for } N = 1, 2, \ldots$
- 2. *K* is the reproducing kernel for a uniquely determined Reproducing Kernel Hilbert Space $\mathcal{H}(K)$: $k_{\omega,y} := K(\cdot, \omega)y \in \mathcal{H}(K)$ and $\langle k_{\omega,y}, f \rangle_{\mathcal{H}(K)} = \langle y, f(\omega) \rangle_{\mathcal{Y}}$
- 3. \exists auxiliary Hilbert space \mathcal{X} and function $H: \Omega \to B(\mathcal{X}, \mathcal{Y})$ so that $K(\zeta, \omega) = H(\zeta)H(\omega)^*$ (Kolmogorov decomposition)

- Property (2) = Reproducing property: For the case *Y* = C,
 Zaremba (1907): bdry-value problems for harmonic fctns
- ► The construction that (1) ⇒ (2): Moore (1935), Aronszajn (systematic theory 1950) for the case 𝒴 = ℂ
- Property (3): Kolmogorov in the context of covariance matrices

Proof of $(1) \Rightarrow (2)$

Given $K(\zeta, \omega)$ satisfying (1), define kernel elements $k_{\zeta,y} = K(\cdot, \zeta)y \colon \Omega \to \mathcal{Y}$

Define an inner product on \mathcal{H}_0 = span of kernel elements so that $\langle k_{\zeta,y'}, k_{\omega,y} \rangle_{\mathcal{H}_0} = \langle y', \mathcal{K}(\zeta, \omega)y \rangle_{\mathcal{Y}} = \langle y', k_{\omega,y}(\zeta) \rangle_{\mathcal{Y}}$

 $(1) \Rightarrow \langle \cdot, \cdot \rangle_{\mathcal{H}_0}$ positive semidefinite —even positive definite if \mathcal{H}_0 taken to be subspace of functions $f: \Omega \to \mathcal{Y}$

Let $\mathcal{H}(\mathcal{K})$ = Hilbert-space completion of \mathcal{H}_0 : identify elements as still consisting of functions $f: \Omega \to \mathcal{Y}$ determined via reproducing property $\langle y, f(\omega) \rangle_{\mathcal{Y}} = \langle k_{\omega,y}, f \rangle_{\mathcal{H}(\mathcal{K})}$ Proof of (2) \Rightarrow (3): Take $\mathcal{X} = \mathcal{H}(K)$ and define $H: \Omega \rightarrow B(\mathcal{H}(K), \mathcal{Y})$ to be point evaluation: $H(\omega): f \mapsto f(\omega)$. Then this works!

Proof of (3) \Rightarrow (1):

Elementary computation: Assume (3). Then

 $\sum_{i,j=1}^{N} \langle y_i, K(\omega_i, \omega_j) y_j \rangle_{\mathcal{Y}} = \sum_{i,j=1}^{N} \langle y_i, H(\omega_i) H(\omega_j)^* y_j \rangle_{\mathcal{Y}} = \\ \sum_{i,j=1}^{N} \langle H(\omega_i)^* y_i, H(\omega_j)^* y_j \rangle_{\mathcal{Y}} = \| \sum_{j=1}^{N} H(\omega_j)^* y_j \|_{\mathcal{X}}^2 \ge 0.$

Theorem 2:

Given $\mathcal{H} =$ Hilbert space consisting of functions $f: \Omega \to \mathcal{Y}$, TFAE:

- 1. There is a positive kernel $K : \Omega \times \Omega \to B(\mathcal{Y})$ so that $\mathcal{H} = \mathcal{H}(K)$
- 2. The point evaluations $ev(\omega)$: $f \mapsto f(\omega)$ are continuous

Sketch of proof If $\langle y, f(\omega) \rangle_{\mathcal{Y}} = \langle k_{\omega,y}, f \rangle_{\mathcal{H}(K)}$ with $k_{\omega,y} \in \mathcal{H}(K)$, then $f \mapsto \langle y, f(\omega) \rangle_{\mathcal{Y}}$ continuous for each y. Then PUB $\Rightarrow f \mapsto f(\omega)$ continuous as well.

Converse: Riesz representation theorem and PUB

Theorem 3 Given $H: \Omega \to B(\mathcal{X}, \mathcal{Y})$, define $\mathcal{H} = \{H(\cdot)x : x \in \mathcal{X}\}$ with norm $\|f\|_{\mathcal{H}}^2 = \min\{\|x\|^2 : f(\cdot) = H(\cdot)x\}.$ Then $\mathcal{H} = \mathcal{H}(K)$ isometrically, where $K(\zeta, \omega) = H(\zeta)H(\omega)^*$

Proof

Compute:

 $\begin{array}{l} \langle f(\omega), y \rangle_{\mathcal{Y}} = \langle H(\omega)x, y \rangle_{\mathcal{Y}} = \langle x, H(\omega)^*y \rangle_{\mathcal{X}} = \\ \langle P_{\ker M_{H}}x, H(\omega)^*y \rangle_{\mathcal{X}} = \langle H(\cdot)x, H(\cdot)H(\omega)^*y \rangle_{\mathcal{H}} = \langle f, K(\cdot, \omega)y \rangle_{\mathcal{H}} \\ \Rightarrow \mathcal{H} = \mathcal{H}(K) \\ \text{Direct proof of (3)} \Rightarrow (2) \text{ in Theorem 1} \end{array}$

1. Function-theoretic operator theory

Given a Hilbert space of analytic functions \mathcal{H} with an explicit computable inner product, e.g.

$$H^{2}(\mathbb{D}) = \{f : \mathbb{D} \xrightarrow{holo} \mathbb{C} : f(z) = \sum_{n=0}^{\infty} f_{n} z^{n} \text{ with} \\ \|f\|_{H^{2}}^{2} := \sum_{n=0}^{\infty} |f_{n}|^{2} < \infty\}$$

Polarization $\Rightarrow \langle g, f \rangle_{H^2} = \sum_{n=0}^{\infty} \overline{g_n} f_n$ if $g(z) = \sum_{n=0}^{\infty} g_n z^n$

Then guess that $H^2(\mathbb{D}) = \mathsf{RKHS}$ with kernel

= Szegő kernel $k_{Sz}(z, w) = \frac{1}{1-z\overline{w}}$:

Check: $\langle k_w, f \rangle_{H^2} = \sum_{n=0}^{\infty} w^n f_n = f(w)$

Operator algebra of interest: the multiplier algebra

2. Machine Learning/Support Vector Machines Start with Ω = input data points Cook up feature map (nonlinear change of variable) $\Phi: \omega \mapsto \Phi(\omega) = k_{\omega,1} = H(\omega)^* 1 \in \mathcal{H}$ (big unknown Hilbert space). Nevertheless: Assume $\langle \Phi(\omega), \Phi(\omega') \rangle_{\mathcal{H}} = K(\omega, \omega')$ known (Choice of $K \leftarrow$ heuristic arguments for particular problem) Language: one says that K = the kernel having Φ as its feature map (i.e., having $\Phi(\omega) = H(\omega)^*$ as right factor in Kolmogorov decomposition: $K(\omega', \omega) = H(\omega')H(\omega)^* = \Phi(\omega')^*\Phi(\omega)$ and then $\mathcal{H} = \mathcal{H}(K)$ (the RKHS) as in Theorem 3 = the feature space

Learning algorithm: Solve for $f^* \in \mathcal{H}(K)$ which minimizes the regularized risk function:

 $\inf_{f\in\mathcal{H}(\mathcal{K})}\lambda\|f\|_{\mathcal{H}}^{2}+\mathcal{R}_{L,D}(f)$

where $\mathcal{R}_{L,D}$ = the loss or error associated with choice of predicted-value function $x \mapsto f(x)$ based on training data set $\mathcal{D} = \{(x_i, y_i) : i = 1, ..., N\}.$

Assumptions: *L* depends only on (y_i, f) , not on (x_i, y_i, f) ; $\mathcal{R}_{L,D}(f)$ convex in *f* and depends only on $f(x_i)$ (i = 1, ..., N) \Rightarrow solution has the form $f^* = \sum_{i=1}^N c_i K(\cdot, x_i)$ and therefore is computable (kernel trick!).

 \Rightarrow Good employment opportunities for Math grad students in operator theory, but very different questions:

no interest in multiplier algebras in machine learning literature

Source: Steinwart-Christmann, Support Vector Machines, Springer 2008

3: Quantum mechanics: coherent states

Assume we have a map $H: \Omega \to B(\mathbb{C}^N, \mathcal{Y})$ (Ω = locally compact Hausdorff space, $N \in \mathbb{N} \cup \aleph_0$ ($\mathbb{C}^{\aleph_0} = \ell^2$)) written out in terms of coordinates:

 $\begin{array}{ll} H(\omega) = \begin{bmatrix} h_1(\omega) & h_2(\omega) & \cdots & h_n(\omega) & \cdots \end{bmatrix} & \text{where } h_n(\omega) \in \mathcal{Y} \\ \text{Then } \operatorname{Ran} M_H = \{ H(\cdot) x \colon x \in \ell^2 \} & \text{with lifted norm} = \mathsf{RKHS} & \text{with} \\ \text{kernel } K(\zeta, \omega) = H(\zeta) H(\omega)^* & \text{as in Theorem 3} \end{array}$

Then for $y \in \mathcal{Y}$, the functions $\{k_{\omega,y} : \omega \in \Omega, y \in \mathcal{Y}\}$ given by $k_{\omega,y}(\zeta) = K(\zeta, \omega)y = H(\zeta)H(\omega)^*y$ are called coherent states (CS) thought of as an overcomplete system of vectors indexed by ω, y i.e., CS = kernel elements in terminology above

Additional structure: Assume \exists Resolution of the Identity: \exists Borel measure ν on Ω so that $\int_X H(\omega)^* H(\omega) d\nu(\omega) = I_{\ell^2}$

Then the Reproducing Kernel is square-integrable in the sense that $\int_X K(\omega,\zeta)K(\zeta,\omega') \, d\nu(\zeta) = K(\omega,\omega')$

Proof uses associativity:

- $\int_X K(\omega,\zeta) K(\zeta,\omega') \, \mathrm{d}\nu(\zeta) = \int_X (H(\omega)H(\zeta)^*) (H(\zeta)H(\omega')^*) \, \mathrm{d}\nu(\zeta)$ = $\int_Y H(\omega) (H(\zeta)^*H(\zeta)) H(\omega')^* \, \mathrm{d}\nu(\zeta)$
- = $H(\omega) \left(\int_X H(\zeta)^* H(\zeta) \, \mathrm{d}\nu(\zeta) \right) H(\omega')^* = H(\omega) H(\omega')^*$

 $= K(\omega, \omega')$

Source: S.T. Ali, Reproducing Kernels in Coherent States, Wavelets, and Quantization , in: Part I Reproducing Kernel Hilbert Spaces (ed. F.H. Szafraniec), in: Operator Theory, Volume 1 (ed. D. Alpay), Springer, 2015 The next step: Barreto-Bhat-Liebscher-Skeide (JFA 2004) Given $K: \Omega \times \Omega \rightarrow B(\mathcal{A}, B(\mathcal{Y}))$ where $\mathcal{A} = C^*$ -algebra

Thus, for $\zeta, \omega \in \Omega$ and $a \in \mathcal{A}$, $K(\zeta, \omega)(a) \in B(\mathcal{Y})$

We say that K as above is a completely positive (cp) kernel if any of the following equivalent conditions hold:

- 1. $\sum_{i,j=1}^{N} \langle y_i, \mathcal{K}(\omega_i, \omega_j)(a_i^* a_j) y_j \rangle_{\mathcal{Y}} \geq 0 \ \forall \ \omega_1, \ \ldots, \ \omega_N \ \text{in } \Omega, \ a_1, \ \ldots, \ a_N \ \text{in } \mathcal{A}, \ y_1, \ \ldots, \ y_N \ \text{in } \mathcal{Y}$
- 2. The kernel $\mathfrak{K}: (\Omega \times \mathcal{A}) \times (\Omega \times \mathcal{A}) \to \mathcal{B}(\mathcal{Y})$ given by $\mathfrak{K}((\omega, a), (\omega', a')) = K(\omega, \omega')(a^*a')$ is a Moore-Aronszajn positive kernel
- 3. The mapping $\mathcal{K}^{(n)} : [a_{ij}] \mapsto [\mathcal{K}(\omega_i, \omega_j)(a_i^*a_j)]$ is a positive map from $\mathcal{A}^{n \times n}$ into $\mathcal{B}(\mathcal{Y})^{n \times n}$ for any choice of $\omega_1, \ldots, \omega_n$ in Ω

Theorem 1'

Given a kernel $K: \Omega \times \Omega \rightarrow B(\mathcal{A}, B(\mathcal{Y}))$, TFAE:

- 1. *K* is a cp kernel
- K is the Reproducing Kernel for a Reproducing Kernel (A, C)-correspondence: see next slide
- 3. *K* has a Kolmogorov decomposition: $\exists (\mathcal{A}, \mathbb{C})$ correspondence \mathcal{X} and function $H: \Omega \to B(\mathcal{X}, \mathcal{Y})$ so that $K(\zeta, \omega)(a) = H(\zeta)\sigma(a)H(\omega)^*$ where $\sigma(a)x = a \cdot x$ for $x \in \mathcal{X}$

Reproducing Kernel $(\mathcal{A}, \mathbb{C})$ -correspondence

Given a kernel K as above, $\mathcal{H}(K)$ is the associated unique $(\mathcal{A}, \mathbb{C})$ -correspondence means:

(i) Elements of H(K) are functions f: Ω → B(A, Y)
(ii) k_{ω,a,y} ∈ H(K) for any ω ∈ Ω, a ∈ A, y ∈ Y, where k_{ω,a,y}(ζ)(a') = K(ζ, ω)(a'a)y
(iii) k_{ω,a,y} has the reproducing property:
⟨k_{ω,a,y}, f⟩_{H(K)} = ⟨y, f(ω)(a)⟩_Y
(iv) for a' ∈ A,
(a' ⋅ f) (ω)(a) = f(ω)(aa'), or equivalently a' ⋅ k_{ω,a,y} = k_{ω,a'a,y}
Proof of Theorem 1': functorial modification of proof of Theorem 1

Recall formulation (3) of $K: \Omega \times \Omega \rightarrow B(\mathcal{A}, B(\mathcal{Y}))$ is a cp kernel:

The mapping $\mathcal{K}^{(n)}: [a_{ij}] \mapsto [\mathcal{K}(z_i, z_j)(a_i^* a_j)]$ is a positive map from $\mathcal{A}^{n \times n}$ into $\mathcal{B}(\mathcal{Y})^{n \times n}$ for any choice of z_1, \ldots, z_n in Ω This suggests: Extend set of points Ω to its nc envelope $[\Omega]_{nc}$

defined as follows . . .

Let S = a set. Define $S_{nc} = \coprod_{n=1}^{\infty} S^{n \times n}$ where $S^{n \times n} = n \times n$ matrices with entries in S Suppose that $\mathcal{T} \subset \mathcal{S}_{nc}$. Set $\mathcal{T}_n = \mathcal{T} \cap \mathcal{S}^{n \times n}$. Thus $\mathcal{T} = \coprod_{n=1}^{\infty} \mathcal{T}_n$ We say that \mathcal{T} is a **nc set** if $Z \in \mathcal{T}_n$ and $W \in \mathcal{T}_m \Rightarrow$ $\begin{bmatrix} Z & 0 \\ 0 & M \end{bmatrix} \in \mathcal{T}_{n+m}$ For \mathcal{T} = arbitrary subset of S_{nc} , define $[\mathcal{T}]_{nc}$ = smallest nc subset containing \mathcal{T} (noncommutative envelope of \mathcal{T}) Suppose $\Omega \subset S = (S_{nc})_1$. Then $[\Omega]_{\mathrm{nc}} = \coprod_{n=1}^{\infty} \left\{ \begin{bmatrix} z_1 \\ \ddots \end{bmatrix} : z_1, \ldots, z_n \in \Omega \right\}$

Given kernel $K: \Omega \times \Omega \to B(\mathcal{A}, B(\mathcal{Y}))$, extend K to $\mathfrak{K}: [\Omega]_{\mathrm{nc},n} \times [\Omega]_{\mathrm{nc},m} \to B(\mathcal{A}^{n \times m}, B(\mathcal{Y})^{n \times m} \cong B(\mathcal{Y}^m, \mathcal{Y}^n))$ by $\mathfrak{K}\left(\begin{bmatrix}z_1\\ \ddots\\ z_n\end{bmatrix}, \begin{bmatrix}w_1\\ \ddots\\ w_m\end{bmatrix}\right)([a_{ij}]) = [K(z_i, z_j)(a_{ij})]$ for any $n, m \in \mathbb{N}$ Then K being a cp kernel can be expressed more succinctly as: for all $Z \in [\Omega]_{\mathrm{nc}}$, say $Z \in [\Omega]_{\mathrm{nc},n}$, $K(Z, Z): \mathcal{A}^{n \times n} \to B(\mathcal{Y})^{n \times n}$ is a positive map

This suggests a more general formulaton ...

Suppose $\Omega = \text{nc subset}$ of S_{nc} (in particular, Ω not necessarily equal to $[\Omega_1]_{nc}$) Suppose $K: \Omega \times \Omega \to B(\mathcal{A}_{nc}, B(\mathcal{Y})_{nc})$. We say that K is a global kernel if (i) K is graded : $K: \Omega_n \times \Omega_m \mapsto B(\mathcal{A}^{n \times m}, B(\mathcal{Y})^{n \times m})$ (ii) K respects direct sums: $K\left(\begin{bmatrix} Z & 0\\ 0 & \widetilde{Z} \end{bmatrix}, \begin{bmatrix} W & 0\\ 0 & \widetilde{W} \end{bmatrix}\right) \left(\begin{bmatrix} P_{11} & P_{12}\\ P_{21} & P_{22} \end{bmatrix}\right) = \begin{bmatrix} K(Z,W)(P_{11}) & K(Z,\widetilde{W})(P_{12})\\ K(\widetilde{Z},W)(P_{21}) & K(\widetilde{Z},\widetilde{W})(P_{22}) \end{bmatrix}$ We say that K is a cp global kernel if also for all $Z \in \Omega_n$, $K(Z,Z): \mathcal{A}^{n \times n} \to B(\mathcal{Y})^{n \times n}$ is a positive map, $n \in \mathbb{N}$ arbitrary

Cp global kernels and RK correspondences continued

Theorem 1': first upgrade (Ball-Marx-Vinnikov JFA 2016) Given Ω = nc subset of S_{nc} , $K: \Omega \times \Omega \rightarrow B(\mathcal{A}_{nc}, \mathcal{B}(\mathcal{Y})_{nc})$, TFAE:

- 1. K is a cp global kernel
- 2. *K* is the RK for a global RK $(\mathcal{A}, \mathbb{C})$ -correspondence —see next slide
- 3. *K* has a global Kolmogorov decomposition: $\exists a (\mathcal{A}, \mathbb{C})$ -correspondence \mathcal{X} and a global function $H: \Omega \to B(\mathcal{X}, \mathcal{Y})_{nc}$ (see next slide) so that $K(Z, W)(P) = H(Z)(\operatorname{id}_{\mathbb{C}^{n \times m}} \otimes \sigma)(P)H(W)^*$ for all $Z \in \Omega_n$, $W \in \Omega_m$, $P \in \mathcal{A}^{n \times m}$ where $\sigma(a)x = a \cdot x$ for $a \in \mathcal{A}$ and $x \in \mathcal{X}$ and $(\operatorname{id}_{\mathbb{C}^{n \times m}} \otimes \sigma)([P_{ij}]) = [\sigma(P_{ij})]$

We say that $H: \Omega \to B(\mathcal{X}, \mathcal{Y})_{nc}$ is a global function if (i) H is graded : $Z \in \Omega_n \Rightarrow H(Z) \in B(\mathcal{X}, \mathcal{Y})^{n \times n} \cong B(\mathcal{X}^n, \mathcal{Y}^n)$ (ii) H respects direct sums: $H\left(\begin{bmatrix} Z & 0\\ 0 & Z \end{bmatrix}\right) = \begin{bmatrix} H(Z) & 0\\ 0 & H(\widetilde{Z}) \end{bmatrix}$

 $\mathcal{H}(K)$ = global RK (\mathcal{A}, \mathbb{C})-correspondence associated with cp global kernel K means:

(i) $\mathcal{H}(\mathcal{K}) = (\mathcal{A}, \mathbb{C})$ -correspondence with elements f equal to global functions from Ω to $\mathcal{B}(\mathcal{A}, \mathcal{Y})_{nc}$ (so $f(Z) \in \mathcal{B}(\mathcal{A}^n, \mathcal{Y}^n)$ for $Z \in \Omega_n$)

(ii) for $W \in \Omega_m$, $v \in \mathcal{A}^{1 \times m}$, $y \in \mathcal{Y}^m$, $k_{W,v,y} \in \mathcal{H}(K)$ where $k_{W,v,y}(Z)(u) = K(Z, W)(uv)y$ for $Z \in \Omega_n$, $u \in \mathcal{A}^n$

(iii) $k_{W,v,y}$ has the reproducing property: $\langle k_{W,v,y}, f \rangle_{\mathcal{H}(\mathcal{K})} = \langle y, f(W)(v^*) \rangle_{\mathcal{Y}}$

(iv) The left action of \mathcal{A} on $\mathcal{H}(K)$ is given by $(a \cdot f)(W)(u) = f(W)(ua)$ or equivalently $a \cdot k_{W,v,y} = k_{W,av,y}$ Special case: $\Omega = [\Omega_1]_{nc}$ and $\Omega_1 = \{\omega_0\}$ (singleton set) Then $\Omega_n = \left\{ \begin{bmatrix} \omega_0 \\ \ddots \end{bmatrix} \right\}$ (singleton set) Suppose that $K: \Omega \times \Omega \to B(\mathcal{A}_{nc}, B(\mathcal{Y})_{nc})$ is a global kernel Define $\varphi \colon \mathcal{A} \to \mathcal{B}(\mathcal{Y})$ by $\varphi(a) = \mathcal{K}(\omega_0, \omega_0)(a)$ Then $\mathcal{K}\left(\begin{bmatrix}\omega_{0}&&\\&\ddots&\\&&&\end{bmatrix},\begin{bmatrix}\omega_{0}&&\\&&&\end{bmatrix}\right)([a_{ij}])$ $= [K(\omega_0, \omega_0)(a_{ii})] = [\varphi(a_{ii})] = \varphi^{(n)}([a_{ii}])$ Conclude: K = cp global kernel $\Leftrightarrow \varphi \colon \mathcal{A} \to \mathcal{B}(\mathcal{Y}) = cp$ map Kolmogorov decomposition for $K \Rightarrow$ $\varphi(a) = K(\omega_0, \omega_0)(a) = H(\omega_0)\sigma(a)H(\omega_0)^* = V^*\sigma(a)V$ where $V = H(\omega_0)^* : \mathcal{Y} \to \mathcal{X}$ and $\sigma : \mathcal{A} \to B(\mathcal{X}) = *$ -representation \Rightarrow Steinspring representation for cp map φ

Assume S = V is a vector space, $V_{nc} = \coprod_{n=1}^{\infty} V^{n \times n}$ is the associeted full nc set

Note: Vector spaces are bimodules over $\mathbb{C} \Rightarrow$, for $[\alpha] \in \mathbb{C}^{k \times \ell}$, $[v] \in \mathcal{V}^{\ell \times m}$, $[\beta] \in \mathbb{C}^{m \times n}$, the product $[\alpha] \cdot [v] \cdot [\beta]$ makes sense via standard matrix multiplication

Suppose that \mathcal{V}_0 = another vector space and $f: \Omega \to (\mathcal{V}_0)_{nc}$ We say that f is a nc function if (i) f is global, i.e. (i-a) f is graded: $f(Z) \in (\mathcal{V}_0)^{n \times n}$ if $Z \in \Omega_n$ and (i-b) f respects direct sums: $f\left(\begin{bmatrix} Z & 0\\ 0 & \tilde{Z} \end{bmatrix}\right) = \begin{bmatrix} f(Z) & 0\\ 0 & f(\tilde{Z}) \end{bmatrix}$ (ii) f respects similarities: $Z \in \Omega_n$, α invertible in $\mathbb{C}^{n \times n}$ such that $\alpha Z \alpha^{-1} \in \Omega_n \Rightarrow \alpha f(Z) \alpha^{-1} = f(\alpha Z \alpha^{-1})$ Suppose $K: \Omega \times \Omega \to B((\mathcal{V}_1)_{\mathrm{nc}}, (\mathcal{V}_0)_{\mathrm{nc}}).$ We say that K is a nc kernel if (i) K is a global kernel, i.e., (i-a) K is graded: $Z \in \Omega_n$, $W \in \Omega_m$ $\Rightarrow K(Z, W) \in B((\mathcal{V}_1)^{n \times m}, (\mathcal{V}_0)^{n \times m})$ and (i-b) K respects direct sums: $K\left(\begin{bmatrix} Z & 0\\ 0 & \widetilde{Z} \end{bmatrix}, \begin{bmatrix} W & 0\\ 0 & \widetilde{W} \end{bmatrix}\right) \left(\begin{bmatrix} P_{11} & P_{12}\\ P_{21} & P_{22} \end{bmatrix}\right) = \begin{bmatrix} K(Z,W)(P_{11}) & K(Z,\widetilde{W})(P_{12})\\ K(\widetilde{Z},W)(P_{21}) & K(\widetilde{Z},\widetilde{W})(P_{22}) \end{bmatrix},$ and (ii) K respects similarities: $Z, Z \in \Omega_n, \ \alpha \in \mathbb{C}^{n \times n}$ invertible with $\widetilde{Z} = \alpha Z \alpha^{-1} \in \Omega_n$. $W, \widetilde{W} \in \Omega_m, \beta \in \mathbb{C}^{m \times m}$ invertible with $\widetilde{W} = \beta W \beta^{-1} \in \Omega_m$. $P \in \mathcal{V}_1^{n \times m} \Rightarrow \mathcal{K}(\widetilde{Z}, \widetilde{W})(P) = \alpha \, \mathcal{K}(Z, W)(\alpha^{-1} P \beta^{-1*}) \, \beta^*.$

Restrict now to the case where $\mathcal{V}_1 = \mathcal{A}_1 = a C^*$ -algebra, $\mathcal{V}_0 = \mathcal{B}(\mathcal{Y})$ for a Hilbert space \mathcal{Y} . We say that K is a cp nc kernel if K is a cp global kernel which is also a nc kernel, i.e., (i) K is graded, (ii) K respects direct sums, and (iii) K respects similarities, and (iv) $K(Z,Z): \mathcal{A}^{n \times n} \to B(\mathcal{Y})^{n \times n}$ is a positive map for any $Z \in \Omega_n$

Theorem 1': second upgrade (Ball-Marx-Vinnikov JFA 2016) Assume that $K: \Omega \to B(\mathcal{A}_{nc}, B(\mathcal{Y})_{nc})$. Then TFAE:

- 1. *K* is a cp nc kernel.
- 2. *K* is the RK for a nc RK $(\mathcal{A}, \mathbb{C})$ -correspondence —see next slide
- 3. *K* has a nc Kolmogorov decomposition: $\exists a (\mathcal{A}, \mathbb{C})$ -correspondence \mathcal{X} and a nc function $H: \Omega \to B(\mathcal{X}, \mathcal{Y})_{nc}$ so that $K(Z, W)(P) = H(Z)(\mathrm{id}_{\mathbb{C}^{n \times m}} \otimes \sigma)(P)H(W)^*$ for all $Z \in \Omega_n$, $W \in \Omega_m$, $P \in \mathcal{A}^{n \times m}$ where $\sigma(a) = a \cdot x$ for $a \in \mathcal{A}$ and $x \in \mathcal{X}$ and $(\mathrm{id}_{\mathbb{C}^{n \times m}} \otimes \sigma)([P_{ij}]) = [\sigma(P_{ij})]$

We say that $\mathcal{H}(K) = \operatorname{nc} \operatorname{RK} (\mathcal{A}, \mathbb{C})$ -correspondence associated with cp nc kernel K if:

(i) $\mathcal{H}(K) = (\mathcal{A}, \mathbb{C})$ -correspondence with elements f equal to nc functions from Ω to $\mathcal{B}(\mathcal{A}, \mathcal{Y})_{nc}$

(ii) for $W \in \Omega_m$, $v \in \mathcal{A}^{1 \times m}$, $y \in \mathcal{Y}^m$, $k_{W,v,y} \in \mathcal{H}(K)$ where $k_{W,v,y}(Z)(v) = K(Z, W)(uv)y$ for $Z \in \Omega_n$, $u \in \mathcal{A}^n$ (iii) $k_{W,v,y}$ has the reproducing property $\langle k_{W,v,y}, f \rangle_{\mathcal{H}(K)} = \langle y, f(W)(v^*) \rangle_{\mathcal{Y}}$ (iv) The left action of \mathcal{A} on $\mathcal{H}(K)$ is given by $(a \cdot f)(v^*) = f(W)(v^*a)$ or equivalently $a \cdot k_{W,v,y} = k_{W,av,y}$

Theorems 2' with First/ Second Upgrade:

Suppose $\mathcal{H} = \text{Hilbert space}$ with elements f equal to global/nc functions from Ω into $B(\mathcal{A}, \mathcal{L}(\mathcal{Y}))_{nc}$ such that

(i) $W \in \Omega_m \Rightarrow f \mapsto f(W)$ bounded from \mathcal{H} to $B(\mathcal{A}, \mathcal{Y})^{m \times m} \cong B(\mathcal{A}^m, \mathcal{Y}^m)$

(ii) $\sigma: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ given by $(\sigma(a)f)(W)(u) = f(W)(ua)$ defines a unital *-representation of \mathcal{A}

 $\Rightarrow \exists cp global/nc kernel K$ so that $\mathcal{H} = \mathcal{H}(K)$ isometrically

Theorem 3 with Fist/Second Upgrade:

$$\begin{split} \mathcal{X} &= \text{Hilbert space equipped with } * \text{-rep } \sigma \colon \mathcal{A} \to \mathcal{B}(\mathcal{X}) \\ \mathcal{H} \colon \Omega \to \mathcal{B}(\mathcal{X}, \mathcal{Y})_{\mathrm{nc}} &= \text{global/nc function} \\ \text{Define } \mathcal{H} &= \{f(\cdot) = \mathcal{H}(\cdot) x \colon x \in \mathcal{X}\} \text{ with} \\ \|f\|_{\mathcal{H}} &= \min\{\|x\|_{\mathcal{X}} \colon f(\cdot) = \mathcal{H}(\cdot) x\} \\ \text{Set } \mathcal{K}(Z, W)(P) &= \mathcal{H}(Z)(\mathrm{id}_{\mathbb{C}^{n \times m}} \otimes \sigma(P)\mathcal{H}(W)^* \text{ for } Z \in \Omega_n, \\ W \in \Omega_m, P = [a_{ij}] \in \mathcal{A}^{n \times m}. \\ \text{Then } \mathcal{K} \text{ is a global/nc kernel and } \mathcal{H} = \mathcal{H}(\mathcal{K}) \text{ isometrically as a} \end{split}$$

global/nc $(\mathcal{A}, \mathbb{C})$ -correspondence

Applications to function-theoretic operator theory

(i) Nevanlinna-Pick interpolation theory for multipliers on nc RK correspondences

(ii) Notion of complete cp nc kernels

(iii) nc Schur-Agler class vs nc Schur class: skip Ball-Marx-Vinnikov 2016: to appear in IWOTA 2015 Proceedings (Tbilsi, Georgia) (available on arXiv)

Applications to Machine Learning/Support Vector Machines ?

Applications to Math Physics (coherent states) ?

Moore-Aronszajn RKHS Given $K: \Omega \times \Omega \rightarrow B(\mathcal{Y})$, TFAE:

- 1. *K* is a positive kernel: $\sum_{i,j=1}^{N} \langle y_i, K(\omega_i, \omega_j) y_j \rangle_{\mathcal{Y}} \ge 0 \forall y_{s}, \omega_{s}, N_{s}$
- 2. $K = \mathsf{RK}$ for RKHS $\mathcal{H}(K)$: $\langle y, f(\omega) \rangle_{\mathcal{Y}} = \langle k_{\omega,y}, f \rangle_{\mathcal{H}(K)}$
- 3. \exists Hilbert space \mathcal{X} and function $H: \Omega \to B(\mathcal{S}, \mathcal{Y})$ so that $K(\zeta, \omega) = H(\zeta)H(\omega)^*$

Given $K: \Omega \times \Omega \rightarrow B(\mathcal{Y})$, TFAE:

- 1. *K* is a positive kernel: $[K(\omega_i, \omega_j)]$ is positive in $B(\mathcal{Y})^{N \times N}$, or $\sum_{i,j=1}^{N} T_i^* K(\omega_i, \omega_j) T_j^* \succeq 0 \quad \forall T_j s, \, \omega_j s, \, Ns, \, T_j \in B(\mathcal{Y})$
- 2. $K = \mathsf{RK}$ for RK Hilbert module over $B(\mathcal{Y})$: $f(\omega) = \langle k_{\omega}, f \rangle_{\mathcal{H}(K)}$ where $k_{\omega}(\zeta) = K(\zeta, \omega)$ and where $f(\omega) \in B(\mathcal{Y})$
- 3. *K* has a Kolmogorov decomposition $K(\zeta) = H(\zeta)H(\omega)^*$: the same

Theorem A

Given $\mathcal{B} = C^*$ -algebra and $K: \Omega \times \Omega \rightarrow \mathcal{B}$, TFAE:

- 1. *K* is a positive kernel: $\begin{bmatrix} K(\omega_i, \omega_j) \end{bmatrix} \succeq 0 \text{ in } \mathcal{B}^{N \times N} \quad \forall \ \omega_1, \dots, \omega_N \in \Omega \quad \forall \ N = 1, 2, \dots,$ or $\sum_{i,j=1}^N b_i^* K(\omega_i, \omega_j) b_j^* \succeq 0 \quad \forall \ \omega s \text{ in } \Omega, \ bs \ \text{ in } \mathcal{B}$
- 2. *K* is the RK for a RK Hilbert module $\mathcal{H}(K)$ over \mathcal{B} : $f(\omega) = \langle k_{\omega}, f \rangle_{\mathcal{H}(K)}$ where $k_{\omega}(\zeta) = K(\zeta, \omega) \in \mathcal{B}$ and where $f(\omega) \in \mathcal{B}$
- 3. \exists Hilbert \mathcal{B} -module \mathcal{X} and $H: \Omega \to \mathcal{L}(\mathcal{X}, \mathcal{B})$ so that $K(\zeta, \omega) = H(\zeta)H(\omega)^*$

History:

Stinespring rep. with $\mathcal{L}(E)$ in place of $B(\mathcal{H})$: Kasparov 1980 (1) \Leftrightarrow (3): Murphy 1997 Incorporate (2): Szafraniec 2010 We say that $K : \Omega \times \Omega \to B(\mathcal{A}, \mathcal{B})$ is a cp kernel if $\sum_{i,j=1}^{N} b_i^* K(\omega_i, \omega_j)(a_i^* a_j) b_j \succeq 0$ for all as in \mathcal{A} , bs in \mathcal{B} , ωs in Ω , N = 1, 2, ...or equivalently $[K(\omega_i, \omega_j)]: \mathcal{A}^{N \times N} \to \mathcal{B}^{N \times N}$ is a positive map for all $\omega_1, \ldots, \omega_N \in \Omega, N = 1, 2, \ldots$ Theorems A, A-first upgrade, A-second upgrade Given $K: \Omega \times \Omega \rightarrow \mathcal{B}(\mathcal{A}, \mathcal{B})$, TFAE:

- 1. K is a cp (global/nc) kernel
- 2. \exists (global/nc) (\mathcal{A}, \mathcal{B})-corresondence $\mathcal{H}(K)$ with RK equal to K —see next slide
- 3. *K* has a Kolmogorov decomposition: \exists (\mathcal{A}, \mathcal{B})-correspondence \mathcal{X} and (global/nc) function $H: \Omega \to \mathcal{L}(\mathcal{X}, \mathcal{B})$ so that $K(Z, W)(P) = H(Z)(\mathrm{id}_{\mathbb{C}^{n \times m}} \otimes \sigma)(P)H(W)^*$ where $\sigma(a)x = a \cdot x$, for $Z \in \Omega_n$, $W \in \Omega_m$, $P = [a_{ij}] \in \mathcal{A}^{n \times m}$

RK $(\mathcal{A}, \mathcal{B})$ -correspondence associated with RK K

 $\mathcal{H}(K) = \mathsf{RK}(\mathcal{A}, \mathcal{B})$ -correspondence associated with cp (global/nc) kernel K means: $\mathcal{H}(K) = (\mathcal{A}, \mathcal{B})$ -correspondence with elements f equal to (global/nc) functions $f: \Omega \to B(\mathcal{A}, \mathcal{B})_{nc}$ such that (i) For each $W \in \Omega_m$, $v \in \mathcal{A}^{1 \times m}$, $k_{W,v} \in \mathcal{H}(K)$ where $k_{W,v}(Z)(u) = K(Z,W)(uv)$ for $Z \in \Omega_n$, $u \in \mathcal{A}^n$ (ii) $k_{W,v}$ has the reproducing property: $f(W)(v^*) = \langle k_{W,v}, f \rangle_{\mathcal{H}(K)}$ (iii) Left \mathcal{A} -action on $\mathcal{H}(K)$ given by $(a \cdot f)(W)(v^*) = f(W)(v^*a)$ for $a \in \mathcal{A}, W \in \Omega_m, v \in \mathcal{A}^{1 \times m}$ or equivalently $a \cdot k_{W,v} = k_{W,av}$ (Theorem A: n = m = 1 only) History: (1) \Leftrightarrow (3) in Theorem A: Barreto-Bhat-Liebscher-Skeide 2004 Incorporate (2): Ball-Marx-Vinnikov 2016

Theorem B/B' (Hilbert -module analogue of Theorem 2/2') problematical, due to failure of Riesz representation theorem for linear functions $\mathcal{X} \to \mathcal{B}$ (\mathcal{X} = Hilbert module over the C^* -algebra \mathcal{B}). The fix: Let $\mathcal{A}, \mathcal{B} = W^*$ -algebras and let \mathcal{X} be a self-dual W^* -(\mathcal{A}, \mathcal{B})- correspondence

Theorem B' (with First/Second Upgrade)

 $\mathcal{A}, \mathcal{B} = W^*$ -algebras

 $\mathcal{H} = \text{self-dual } W^* \cdot (\mathcal{A}, \mathcal{B}) \cdot \text{ correspondence whose elements } f$ are (global/nc) functions from Ω to $B(\mathcal{A}, \mathcal{B})_{\text{nc}}$ such that

(i) for $W \in \Omega_m$, $f \mapsto f(W)$ bounded from \mathcal{H} to $B(\mathcal{A}, \mathcal{B})^{m \times m} \cong B(\mathcal{A}^m, \mathcal{B}^m)$, and

(ii) $(a \cdot f)(W)(u) = f(W)(ua)$ gives the left action of \mathcal{A} on \mathcal{H}

Then \exists a cp (global/nc) normal kernel K so that $\mathcal{H} = \mathcal{H}(K)$ isometrically as (global/nc) self-dual W^* - $(\mathcal{A}, \mathcal{B})$ -correspondences

History: Self-dual W^* -Hllbert modules in general: Paschke 1973, Skeide 2000 & 2005

Theorem C Given: $\mathcal{B} = W^*$ -algebra, $\mathcal{E} = \text{self-dual Hilbert module}$ over \mathcal{B} $\mathcal{X} =$ self-dual W^* -module over \mathcal{B} . H = a function from Ω to $\mathcal{L}(\mathcal{X}, E)$ Define $\mathcal{H} = \{H(\cdot)x : x \in \mathcal{X}\}$ with $||H(\cdot)x|| = ||P_{(\text{Ker}M_{\mu})\perp}x||$ $(\mathcal{X} \& \mathcal{B} \text{ self-dual } \Rightarrow P_{(\text{Ker}M_{H})^{\perp}} \text{ exists})$ Then $\mathcal{H} = \mathcal{H}(K)$ (self-dual RK Hilbert module over \mathcal{B} consisting of functions $f: \Omega \to E$) with RK $K: \Omega \times \Omega \to \mathcal{L}(\mathcal{E})$ given by $K(\zeta,\omega) = H(\zeta)H(\omega)$ Interpretation: Let $\{e_n : n \in \mathbb{N}\} = o.n.b.$ for E (over \mathcal{B}) Then $\{H(\omega)^* e_n : \omega \in \Omega, n \in \mathbb{N}\}$ = module-valued coherent states Bhattacharyya-Roy 2012

Summary

Choose one of three:

Theorems 1/A: Given K, construct $\mathcal{H}(K)$ and HTheorems 2/B: Given \mathcal{H} with ..., identify $\mathcal{H} = \mathcal{H}(K)$ Theorem 3/C: Given $\omega \mapsto H(\omega)$, construct $\mathcal{H}(K)$

Choose one of two:

Without ': $\mathcal{A} = \mathbb{C}$ or no \mathcal{A} With ': general \mathcal{A}

Choose one of two:

Theorems 1, 2, 3: Target space of $K(\cdot, \cdot)$ or $K(\cdot, \cdot)(\cdot)$ is $B(\mathcal{Y})$ Theorems A, B, C: Target space of $K(\cdot, \cdot)$ or $K(\cdot, \cdot)(\cdot)$ is \mathcal{B}

Choose one of three:

No upgrade: $f \in \mathcal{H}(K)$ = function First Upgrade: $f \in \mathcal{H}(K)$ = global function Second Upgrade: $f \in \mathcal{H}(K)$ = nc function

Conclusion: 1 theorem with 36 flavors! Thanks for your attention!