Toeplitz and Asymptotic Toeplitz operators on $H^2(\mathbb{D}^n)$

Amit Maji

(Joint work with Jaydeb Sarkar & Srijan Sarkar)

Indian Statistical Institute, Bangalore Centre

OTOA, December 13-22, 2016

• To characterize Toeplitz operators on $H^2(\mathbb{D}^n)$.

2

・ロト ・回ト ・ヨト ・ヨト

- To characterize Toeplitz operators on $H^2(\mathbb{D}^n)$.
- To characterize asymptotically Toeplitz operators on $H^2(\mathbb{D}^n)$.

э

A D > A B > A B > A

- To characterize Toeplitz operators on $H^2(\mathbb{D}^n)$.
- To characterize asymptotically Toeplitz operators on $H^2(\mathbb{D}^n)$.
- To generalize some of the recent results of Chalendar and Ross to vector-valued Hardy space H²_E(D) and as well as quotient spaces of H²(Dⁿ).

< □ > < ^[] >

Notation

- Open unit polydisc $\mathbb{D}^n = \{(z_1, \ldots, z_n) \in \mathbb{C}^n : |z_i| < 1, i = 1, \ldots, n\}.$
- Distinguished boundary of \mathbb{D}^n $\mathbb{T}^n = \{(z_1, \ldots, z_n) \in \mathbb{C}^n : |z_i| = 1, i = 1, \ldots, n\}.$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Notation

- Open unit polydisc $\mathbb{D}^n = \{(z_1, \ldots, z_n) \in \mathbb{C}^n : |z_i| < 1, i = 1, \ldots, n\}.$
- Distinguished boundary of \mathbb{D}^n $\mathbb{T}^n = \{(z_1, \ldots, z_n) \in \mathbb{C}^n : |z_i| = 1, i = 1, \ldots, n\}.$
- Hardy space $H^2(\mathbb{D}) = \{f = \sum_{n=0}^{\infty} a_n z^n : \sum_{n=0}^{\infty} |a_n|^2 < \infty\}.$
- Vector-valued Hardy space $H^2_{\mathcal{E}}(\mathbb{D}) = \{ f = \sum_{n=0}^{\infty} a_n z^n : a_n \in \mathcal{E} \text{ and } \sum_{n=0}^{\infty} \|a_n\|^2_{\mathcal{E}} < \infty \}.$
- $H^{\infty}(\mathbb{D}) = \{ f = \sum_{n=0}^{\infty} a_n z^n : \sup_{n \ge 0} |a_n| < \infty \}.$
- M_z is the multiplication operator on $H^2(\mathbb{D})$ by the coordinate function z.

Notation

- Open unit polydisc $\mathbb{D}^n = \{(z_1, \ldots, z_n) \in \mathbb{C}^n : |z_i| < 1, i = 1, \ldots, n\}.$
- Distinguished boundary of \mathbb{D}^n $\mathbb{T}^n = \{(z_1, \ldots, z_n) \in \mathbb{C}^n : |z_i| = 1, i = 1, \ldots, n\}.$
- Hardy space $H^2(\mathbb{D}) = \{ f = \sum_{n=0}^{\infty} a_n z^n : \sum_{n=0}^{\infty} |a_n|^2 < \infty \}.$
- Vector-valued Hardy space $H^2_{\mathcal{E}}(\mathbb{D}) = \{ f = \sum_{n=0}^{\infty} a_n z^n : a_n \in \mathcal{E} \text{ and } \sum_{n=0}^{\infty} \|a_n\|^2_{\mathcal{E}} < \infty \}.$

•
$$H^{\infty}(\mathbb{D}) = \{f = \sum_{n=0}^{\infty} a_n z^n : \sup_{n \ge 0} |a_n| < \infty\}.$$

- M_z is the multiplication operator on $H^2(\mathbb{D})$ by the coordinate function z.
- Hardy space over polydisc $H^2(\mathbb{D}^n) = \left\{ f = \sum_{k \in \mathbb{N}^n} a_k z^k : \sum_{k \in \mathbb{N}^n} |a_k|^2 < \infty \right\},$ where $k = (k_1, \dots, k_n) \in \mathbb{N}^n$ and $z^k = z_1^{k_1} \cdots z_n^{k_n}$.
- For j = 1,..., n, M_{zj} are the multiplication operators on H²(Dⁿ) by the jth coordinate functions z_j.

(日) (周) (三) (三)

Multiplication operator

• For $\phi \in L^{\infty}(\mathbb{T})$, define $M_{\phi} : L^{2}(\mathbb{T}) \to L^{2}(\mathbb{T})$ by $M_{\phi}f = \phi f$ for $f \in L^{2}(\mathbb{T})$.

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Multiplication operator

For φ ∈ L[∞](T), define M_φ : L²(T) → L²(T) by M_φf = φf for f ∈ L²(T).
The matrix of M_φ with respect to the orthonormal basis {e^{inθ}}[∞]_{n=-∞} of L²(T) = H²(D)[⊥] ⊕ H²(D) is

$$M_{\phi} = \begin{bmatrix} \ddots & \ddots & \ddots & & & \\ \ddots & \phi_0 & \phi_{-1} & \phi_{-2} & & \\ & \ddots & \phi_1 & \phi_0 & \phi_{-1} & \phi_{-2} & & \\ & \phi_2 & \phi_1 & \phi_0 & \phi_{-1} & \ddots & \\ & & \phi_2 & \phi_1 & \phi_0 & \phi_{-1} & \ddots & \\ & & & \phi_2 & \phi_1 & \phi_0 & \ddots & \\ & & & & \ddots & \ddots & \end{bmatrix}$$

where $\phi = \sum_{i=1}^{\infty} \phi_n e^{in\theta}$ is a Fourier expansion of ϕ .

 $n = -\infty$

(日) (同) (日) (日)

Multiplication operator

For φ ∈ L[∞](T), define M_φ : L²(T) → L²(T) by M_φf = φf for f ∈ L²(T).
The matrix of M_φ with respect to the orthonormal basis {e^{inθ}}[∞]_{n=-∞} of L²(T) = H²(D)[⊥] ⊕ H²(D) is

$$M_{\phi} = \begin{bmatrix} \ddots & \ddots & \ddots & & & \\ \ddots & \phi_0 & \phi_{-1} & \phi_{-2} & & & \\ \vdots & & \phi_1 & \phi_0 & \phi_{-1} & \phi_{-2} & & \\ & & \phi_2 & \phi_1 & \phi_0 & \phi_{-1} & \phi_{-2} & & \\ & & & \phi_2 & \phi_1 & \phi_0 & \phi_{-1} & \ddots & \\ & & & & \phi_2 & \phi_1 & \phi_0 & \ddots & \\ & & & & & \ddots & \ddots & \end{bmatrix}$$

where $\phi = \sum_{n=1}^{\infty} \phi_n e^{in\theta}$ is a Fourier expansion of ϕ .

• Toeplitz operator with symbol $\phi \in L^{\infty}(\mathbb{T})$ is the operator T_{ϕ} defined by $T_{\phi}f = P_{H^2(\mathbb{D})}(\phi f)$ for $f \in H^2(\mathbb{D})$.

 $n = -\infty$

• Toeplitz operators on the Hardy space (or, on the *l*² space) were first studied by O. Toeplitz (1911)(and then by P. Hartman and A. Wintner (1954)).

< □ > < ^[] >

- Toeplitz operators on the Hardy space (or, on the l^2 space) were first studied by O. Toeplitz (1911)(and then by P. Hartman and A. Wintner (1954)).
- A systematic study of Toeplitz operators on H²(D) was triggered by the seminal paper of Brown and Halmos: Algebraic properties of Toeplitz operators J.Reine Angew. Math. 213:89–102, 1963/1964.

- Toeplitz operators on the Hardy space (or, on the *l*² space) were first studied by O. Toeplitz (1911)(and then by P. Hartman and A. Wintner (1954)).
- A systematic study of Toeplitz operators on H²(D) was triggered by the seminal paper of Brown and Halmos: Algebraic properties of Toeplitz operators J.Reine Angew. Math. 213:89–102, 1963/1964.
- Brown-Halmos theorem characterize Toeplitz operators on $H^2(\mathbb{D})$ as follows: Let T be a bounded linear operator on $H^2(\mathbb{D})$. Then T is a Toeplitz operator if and only if

$$M_z^* T M_z = T.$$

Image: A matrix of the second seco

- Toeplitz operators on the Hardy space (or, on the *l*² space) were first studied by O. Toeplitz (1911)(and then by P. Hartman and A. Wintner (1954)).
- A systematic study of Toeplitz operators on H²(D) was triggered by the seminal paper of Brown and Halmos: Algebraic properties of Toeplitz operators J.Reine Angew. Math. 213:89–102, 1963/1964.
- Brown-Halmos theorem characterize Toeplitz operators on H²(D) as follows: Let T be a bounded linear operator on H²(D). Then T is a Toeplitz operator if and only if

$$M_z^* T M_z = T.$$

• The notion of Toeplitzness was extended to more general settings by Barría and Halmos (1982) and Feintuch (1989).

• • • • • • • • • • • •

- Toeplitz operators on the Hardy space (or, on the *l*² space) were first studied by O. Toeplitz (1911)(and then by P. Hartman and A. Wintner (1954)).
- A systematic study of Toeplitz operators on H²(D) was triggered by the seminal paper of Brown and Halmos: Algebraic properties of Toeplitz operators J.Reine Angew. Math. 213:89–102, 1963/1964.
- Brown-Halmos theorem characterize Toeplitz operators on H²(D) as follows: Let T be a bounded linear operator on H²(D). Then T is a Toeplitz operator if and only if

$$M_z^* T M_z = T.$$

- The notion of Toeplitzness was extended to more general settings by Barría and Halmos (1982) and Feintuch (1989).
- A bounded linear operator T on H²(D) is (uniformly) asymptotically Toeplitz operator if {M^{*m}_zTM^m_z}_{m≥1} converges in operator norm.

(日) (同) (三) (三)

- Toeplitz operators on the Hardy space (or, on the *l*² space) were first studied by O. Toeplitz (1911)(and then by P. Hartman and A. Wintner (1954)).
- A systematic study of Toeplitz operators on H²(D) was triggered by the seminal paper of Brown and Halmos: Algebraic properties of Toeplitz operators J.Reine Angew. Math. 213:89–102, 1963/1964.
- Brown-Halmos theorem characterize Toeplitz operators on H²(D) as follows: Let T be a bounded linear operator on H²(D). Then T is a Toeplitz operator if and only if

$$M_z^* T M_z = T.$$

- The notion of Toeplitzness was extended to more general settings by Barría and Halmos (1982) and Feintuch (1989).
- A bounded linear operator T on H²(D) is (uniformly) asymptotically Toeplitz operator if {M^{*m}_zTM^m_z}_{m≥1} converges in operator norm.
- Feintuch (1989) gives a remarkable characterization of asymptotically Toeplitz operators: A bounded linear operator T on $H^2(\mathbb{D})$ is asymptotically Toeplitz if and only if T = compact + Toeplitz.

イロン 不良と 不良と 不良と

• A closed subspace S of H is said to be invariant subspace of $T \in \mathcal{B}(H)$ if $T(S) \subseteq S$ and S is said to be co-invariant subspace if $T^*(S) \subseteq S$.

< □ > < ^[] >

- A closed subspace S of H is said to be invariant subspace of $T \in \mathcal{B}(H)$ if $T(S) \subseteq S$ and S is said to be co-invariant subspace if $T^*(S) \subseteq S$.
- An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be contraction if $||T|| \leq 1$.

Image: A matrix

- A closed subspace S of H is said to be invariant subspace of $T \in \mathcal{B}(H)$ if $T(S) \subseteq S$ and S is said to be co-invariant subspace if $T^*(S) \subseteq S$.
- An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be contraction if $||T|| \leq 1$.
- A contraction T is said to be pure contraction if $T^{*m} \to 0$ as $m \to \infty$ in strong operator topology.

- A closed subspace S of H is said to be invariant subspace of $T \in \mathcal{B}(H)$ if $T(S) \subseteq S$ and S is said to be co-invariant subspace if $T^*(S) \subseteq S$.
- An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be contraction if $||T|| \leq 1$.
- A contraction T is said to be pure contraction if $T^{*m} \to 0$ as $m \to \infty$ in strong operator topology.
- An inner function is a bounded analytic function ψ on \mathbb{D} (that is, $\psi \in H^{\infty}(\mathbb{D})$) such that $|\psi(e^{i\theta})| = 1$ for almost everywhere on the unit circle.

- A closed subspace S of H is said to be invariant subspace of $T \in \mathcal{B}(H)$ if $T(S) \subseteq S$ and S is said to be co-invariant subspace if $T^*(S) \subseteq S$.
- An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be contraction if $||T|| \leq 1$.
- A contraction T is said to be pure contraction if $T^{*m} \to 0$ as $m \to \infty$ in strong operator topology.
- An inner function is a bounded analytic function ψ on \mathbb{D} (that is, $\psi \in H^{\infty}(\mathbb{D})$) such that $|\psi(e^{i\theta})| = 1$ for almost everywhere on the unit circle.
- *H*[∞]_{B(E)}(D): the space of all operator valued bounded analytic functions on D. A multiplier Θ ∈ *H*[∞]_{B(E)}(D) is said to be inner if *M*_Θ is an isometry on *H*²_E(D), where

$$(M_{\Theta}f)(w) = \Theta(w)f(w) \qquad (f \in H^2_{\mathcal{E}}(\mathbb{D}), w \in \mathbb{D}).$$

< ロ > < 同 > < 三 > < 三

(Beurling Theorem (1948)) Let S be a non-zero shift invariant subspace of H²(D). Then S = θH²(D) for some inner function θ ∈ H[∞](D).

< □ > < ^[] >

- (Beurling Theorem (1948)) Let S be a non-zero shift invariant subspace of $H^2(\mathbb{D})$. Then $S = \theta H^2(\mathbb{D})$ for some inner function $\theta \in H^{\infty}(\mathbb{D})$.
- For an inner function θ , the model space K_{θ} is defined as $K_{\theta} = H^2(\mathbb{D}) \ominus \theta H^2(\mathbb{D})$. \mathcal{K}_{θ} is finite dimensional if θ is finite Blaschke product (that is, $\theta(z) = \prod_{k=1}^{n} \frac{z-z_k}{1-\overline{z_k z}}$).

Image: A matrix

- (Beurling Theorem (1948)) Let S be a non-zero shift invariant subspace of H²(D). Then S = θH²(D) for some inner function θ ∈ H[∞](D).
- For an inner function θ , the model space K_{θ} is defined as $K_{\theta} = H^2(\mathbb{D}) \ominus \theta H^2(\mathbb{D})$. \mathcal{K}_{θ} is finite dimensional if θ is finite Blaschke product (that is, $\theta(z) = \prod_{k=1}^{n} \frac{z-z_k}{1-\overline{z_k z}}$).

Let

$$S_{\theta}=P_{\mathcal{K}_{\theta}}M_{z}|_{\mathcal{K}_{\theta}},$$

where $P_{\mathcal{K}_{\theta}}$ denotes the orthogonal projection from $H^2(\mathbb{D})$ onto \mathcal{K}_{θ} . S_{θ} is called a Jordan block.

- (Beurling Theorem (1948)) Let S be a non-zero shift invariant subspace of H²(D). Then S = θH²(D) for some inner function θ ∈ H[∞](D).
- For an inner function θ , the model space K_{θ} is defined as $K_{\theta} = H^2(\mathbb{D}) \ominus \theta H^2(\mathbb{D})$. \mathcal{K}_{θ} is finite dimensional if θ is finite Blaschke product (that is, $\theta(z) = \prod_{k=1}^{n} \frac{z-z_k}{1-\overline{z_k z}}$).

Let

$$S_{\theta}=P_{\mathcal{K}_{\theta}}M_{z}|_{\mathcal{K}_{\theta}},$$

where $P_{\mathcal{K}_{\theta}}$ denotes the orthogonal projection from $H^2(\mathbb{D})$ onto \mathcal{K}_{θ} . S_{θ} is called a Jordan block.

Theorem (Chalendar and Ross (2016))

Let $T \in \mathcal{B}(\mathcal{K}_{\theta})$. Then (i) $S_{\theta}^* TS_{\theta} = T$ if and only if T = 0(ii) $\{S_{\theta}^{*m} TS_{\theta}^m\}_{m \ge 1}$ converges in norm if and only if T is compact.

・ロン ・四 と ・ ヨン ・ ヨン

Let *E* be a Hilbert space and Θ ∈ H[∞]_{B(E)}(D) be an inner multiplier. Then the model operator S_Θ (see Garcia et al. (2016)) corresponding to Θ is the compression of M_z on the model space K_Θ := H²_E(D) ⊙ ΘH²_E(D), that is,

$$S_{\Theta}=P_{\mathcal{K}_{\Theta}}M_{z}|_{\mathcal{K}_{\Theta}},$$

where $P_{\mathcal{K}_{\Theta}}$ denotes the orthogonal projection from $H^2_{\mathcal{E}}(\mathbb{D})$ onto \mathcal{K}_{Θ} .

< < >>

Let *E* be a Hilbert space and Θ ∈ H[∞]_{B(E)}(D) be an inner multiplier. Then the model operator S_Θ (see Garcia et al. (2016)) corresponding to Θ is the compression of M_z on the model space K_Θ := H²_E(D) ⊙ ΘH²_E(D), that is,

$$S_{\Theta}=P_{\mathcal{K}_{\Theta}}M_{z}|_{\mathcal{K}_{\Theta}},$$

where $P_{\mathcal{K}_{\Theta}}$ denotes the orthogonal projection from $H^2_{\mathcal{E}}(\mathbb{D})$ onto \mathcal{K}_{Θ} .

• Note that $\mathcal{K}_{\Theta}^{\perp} = \Theta \mathcal{H}_{\mathcal{E}}^{2}(\mathbb{D})$ is an M_{z} -invariant subspace of $\mathcal{H}_{\mathcal{E}}^{2}(\mathbb{D})$ and $S_{\Theta}^{*} = M_{z}^{*}|_{\mathcal{K}_{\Theta}} \in \mathcal{B}(\mathcal{K}_{\Theta}).$

Let *E* be a Hilbert space and Θ ∈ H[∞]_{B(E)}(D) be an inner multiplier. Then the model operator S_Θ (see Garcia et al. (2016)) corresponding to Θ is the compression of M_z on the model space K_Θ := H²_E(D) ⊙ ΘH²_E(D), that is,

$$S_{\Theta}=P_{\mathcal{K}_{\Theta}}M_{z}|_{\mathcal{K}_{\Theta}},$$

where $P_{\mathcal{K}_{\Theta}}$ denotes the orthogonal projection from $H^2_{\mathcal{E}}(\mathbb{D})$ onto \mathcal{K}_{Θ} .

• Note that $\mathcal{K}_{\Theta}^{\perp} = \Theta \mathcal{H}_{\mathcal{E}}^{2}(\mathbb{D})$ is an M_{z} -invariant subspace of $\mathcal{H}_{\mathcal{E}}^{2}(\mathbb{D})$ and $S_{\Theta}^{*} = M_{z}^{*}|_{\mathcal{K}_{\Theta}} \in \mathcal{B}(\mathcal{K}_{\Theta}).$

Questions

• Characterize those $T \in \mathcal{B}(\mathcal{K}_{\Theta})$ for which

$$S_{\Theta}^* T S_{\Theta} = T.$$

Let *E* be a Hilbert space and Θ ∈ H[∞]_{B(E)}(D) be an inner multiplier. Then the model operator S_Θ (see Garcia et al. (2016)) corresponding to Θ is the compression of M_z on the model space K_Θ := H²_E(D) ⊙ ΘH²_E(D), that is,

$$S_{\Theta}=P_{\mathcal{K}_{\Theta}}M_{z}|_{\mathcal{K}_{\Theta}},$$

where $P_{\mathcal{K}_{\Theta}}$ denotes the orthogonal projection from $H^2_{\mathcal{E}}(\mathbb{D})$ onto \mathcal{K}_{Θ} .

• Note that $\mathcal{K}_{\Theta}^{\perp} = \Theta \mathcal{H}_{\mathcal{E}}^{2}(\mathbb{D})$ is an M_{z} -invariant subspace of $\mathcal{H}_{\mathcal{E}}^{2}(\mathbb{D})$ and $S_{\Theta}^{*} = M_{z}^{*}|_{\mathcal{K}_{\Theta}} \in \mathcal{B}(\mathcal{K}_{\Theta}).$

Questions

• Characterize those $T \in \mathcal{B}(\mathcal{K}_{\Theta})$ for which

$$S_{\Theta}^* T S_{\Theta} = T.$$

• Characterize those $T \in \mathcal{B}(\mathcal{K}_{\Theta})$ for which

$$S_{\Theta}^{*m}TS_{\Theta}^{m} \to A,$$

in norm, for some $A \in \mathcal{B}(\mathcal{K}_{\Theta})$.

Lemma 1(Böttcher and Silbermann)

Let A be a compact operator on a Hilbert space \mathcal{H} and $R^{*m} \to 0$ in strong operator topology as $m \to \infty$, then $R^{*m}A \to 0$ in norm as $m \to \infty$.

Image: A math a math

Lemma 1(Böttcher and Silbermann)

Let A be a compact operator on a Hilbert space \mathcal{H} and $R^{*m} \to 0$ in strong operator topology as $m \to \infty$, then $R^{*m}A \to 0$ in norm as $m \to \infty$.

Theorem 2

Let \mathcal{E} be a Hilbert space and $T \in \mathcal{B}(H^2_{\mathcal{E}}(\mathbb{D}))$. Then T is a Toeplitz operator if and only if $M^*_z TM_z = T$.

(日) (同) (三) (三)

Lemma 1(Böttcher and Silbermann)

Let A be a compact operator on a Hilbert space \mathcal{H} and $R^{*m} \to 0$ in strong operator topology as $m \to \infty$, then $R^{*m}A \to 0$ in norm as $m \to \infty$.

Theorem 2

Let \mathcal{E} be a Hilbert space and $T \in \mathcal{B}(H^2_{\mathcal{E}}(\mathbb{D}))$. Then T is a Toeplitz operator if and only if $M^*_z TM_z = T$.

Theorem 3

Let $T, A \in \mathcal{B}(H^2_{\mathbb{C}^p}(\mathbb{D}))$ and $M_z^{*m}TM_z^m \to A$ in norm. Then A is a Toeplitz operator and (T - A) is compact. Conversely, if A is a Toeplitz operator and T - A is a compact operator, then T is asymptotically Toeplitz.

イロン イヨン イヨン イヨン

Proposition 4

Let $\Theta \in H^{\infty}_{\mathcal{B}(\mathcal{E})}(\mathbb{D})$ be an inner multiplier and $T \in \mathcal{B}(\mathcal{K}_{\Theta})$. Assume that $\Theta(e^{i\theta})$ is invertible a.e. Then $S^*_{\Theta}TS_{\Theta} = T$ if and only if T = 0.

Image: A mathematical states and a mathem

Proposition 4

Let $\Theta \in H^{\infty}_{\mathcal{B}(\mathcal{E})}(\mathbb{D})$ be an inner multiplier and $T \in \mathcal{B}(\mathcal{K}_{\Theta})$. Assume that $\Theta(e^{i\theta})$ is invertible a.e. Then $S^*_{\Theta}TS_{\Theta} = T$ if and only if T = 0.

Theorem 5

Let $\Theta \in H^{\infty}_{\mathcal{B}(\mathbb{C}^p)}(\mathbb{D})$ be an inner multiplier and $T \in \mathcal{B}(\mathcal{K}_{\Theta})$. Assume that $\Theta(e^{i\theta})$ is invertible a.e. Then T is compact if and only if $\{S^{*m}_{\Theta}TS^m_{\Theta}\}_{m\geq 1}$ converges in norm.

Proposition 4

Let $\Theta \in H^{\infty}_{\mathcal{B}(\mathcal{E})}(\mathbb{D})$ be an inner multiplier and $T \in \mathcal{B}(\mathcal{K}_{\Theta})$. Assume that $\Theta(e^{i\theta})$ is invertible a.e. Then $S^*_{\Theta}TS_{\Theta} = T$ if and only if T = 0.

Theorem 5

Let $\Theta \in H^{\infty}_{\mathcal{B}(\mathbb{C}^p)}(\mathbb{D})$ be an inner multiplier and $T \in \mathcal{B}(\mathcal{K}_{\Theta})$. Assume that $\Theta(e^{i\theta})$ is invertible a.e. Then T is compact if and only if $\{S^{*m}_{\Theta}TS^m_{\Theta}\}_{m\geq 1}$ converges in norm.

Theorem 6

Let $\Theta \in H^{\infty}_{\mathcal{B}(\mathbb{C}^{p})}(\mathbb{D})$ be an inner multiplier and $\Theta(e^{i\theta})$ is invertible a.e. and $T \in \mathcal{B}(\mathcal{K}_{\Theta})$. Then TFAE: (i) $\{S^{*m}_{\Theta}TS^{m}_{\Theta}\}_{m\geq 1}$ converges in norm; (ii) $S^{*m}_{\Theta}TS^{m}_{\Theta} \to 0$ in norm; (iii) T is a compact operator.

< ロ > < 同 > < 三 > < 三

Results on $H^2(\mathbb{D}^n)$

Theorem 7

Let $T \in \mathcal{B}(H^2(\mathbb{D}^n))$. Then T is a Toeplitz operator if and only if $M_{z_j}^*TM_{z_j} = T$ for all j = 1, ..., n.

< ロ > < 同 > < 三 > < 三

Results on $H^2(\mathbb{D}^n)$

Theorem 7

Let $T \in \mathcal{B}(H^2(\mathbb{D}^n))$. Then T is a Toeplitz operator if and only if $M_{z_j}^*TM_{z_j} = T$ for all j = 1, ..., n.

Proof.

Let $\varphi \in L^{\infty}(\mathbb{T}^n)$ and $T = P_{H^2(\mathbb{D}^n)}M_{\varphi}|_{H^2(\mathbb{D}^n)}$. Then for $f, g \in H^2(\mathbb{D}^n)$ and $j = 1, \ldots n$, we have

$$\langle (M_{z_j}^* T M_{z_j}) f, g \rangle_{H^2(\mathbb{D}^n)} = \langle \varphi e^{i\theta_j} f, e^{i\theta_j} g \rangle_{L^2(\mathbb{T}^n)} = \langle \varphi f, g \rangle_{L^2(\mathbb{T}^n)},$$

that is,

$$\langle (M_{z_j}^* TM_{z_j})f,g\rangle_{H^2(\mathbb{D}^n)} = \langle P_{H^2(\mathbb{D}^n)}M_{\varphi}|_{H^2(\mathbb{D}^n)}f,g\rangle_{H^2(\mathbb{D}^n)},$$

and therefore $M_{z_i}^* T M_{z_j} = T$ for all $j = 1, \ldots n$.

(日) (同) (三) (三)

Proof Cont.

Conversely, for each $k \in \mathbb{N}$, define $k_d \in \mathbb{N}^n$ by $k_d = (k, \ldots, k)$. From $M_{z_j}^* TM_{z_j} = T$, $j = 1, \ldots n$, we obtain that

$$M_z^{*k_d}TM_z^{k_d}=T \qquad (k\in\mathbb{N}).$$

Setting

$$A_k = M_{e^{i heta}}^{*k_d} TP_{H^2(\mathbb{D}^n)} M_{e^{i heta}}^{k_d} \qquad (k \ge 1),$$

we can prove that

$$\lim_{k\to\infty} \langle A_k f, g \rangle = \langle A_\infty f, g \rangle \qquad (f, g \in L^2(\mathbb{T}^n))$$

and $A_{\infty}M_{e^{i\theta_j}} = M_{e^{i\theta_j}}A_{\infty}$ for j = 1, ..., n. Hence there exists φ in $L^{\infty}(\mathbb{T}^n)$ such that $A_{\infty} = M_{\varphi}$. Using the above condition, we also have $T = P_{H^2(\mathbb{D}^n)}A_{\infty}|_{H^2(\mathbb{D}^n)} = P_{H^2(\mathbb{D}^n)}M_{\varphi}|_{H^2(\mathbb{D}^n)}$, that is, T is a Toeplitz operator.

Results on $H^2(\mathbb{D}^n)$

Theorem 8

A bounded linear operator T on $H^2(\mathbb{D}^n)$ is compact if and only if $M_{z_i}^{*m}TM_{z_j}^m \to 0$ in norm for all $i, j \in \{1, ..., n\}$.

Theorem 8

A bounded linear operator T on $H^2(\mathbb{D}^n)$ is compact if and only if $M_{z_i}^{*m}TM_{z_j}^m \to 0$ in norm for all $i, j \in \{1, ..., n\}$.

Following Feintuch (1989) (and Barría and Halmos (1982)) one can now define asymptotic Toeplitz operator as follows:

Definition 9

A bounded linear operator T on $H^2(\mathbb{D}^n)$ is said to be asymptotic Toeplitz operator if there exists $A \in \mathcal{B}(H^2(\mathbb{D}^n))$ such that $M_{z_i}^{*m}TM_{z_i}^m \to A$ and $M_{z_i}^{*m}(T-A)M_{z_j}^m \to 0$ as $m \to \infty$ in norm, $1 \le i, j \le n$.

(日) (同) (三) (三)

Theorem 8

A bounded linear operator T on $H^2(\mathbb{D}^n)$ is compact if and only if $M_{z_i}^{*m}TM_{z_j}^m \to 0$ in norm for all $i, j \in \{1, ..., n\}$.

Following Feintuch (1989) (and Barría and Halmos (1982)) one can now define asymptotic Toeplitz operator as follows:

Definition 9

A bounded linear operator T on $H^2(\mathbb{D}^n)$ is said to be asymptotic Toeplitz operator if there exists $A \in \mathcal{B}(H^2(\mathbb{D}^n))$ such that $M_{z_i}^{*m}TM_{z_i}^m \to A$ and $M_{z_i}^{*m}(T-A)M_{z_i}^m \to 0$ as $m \to \infty$ in norm, $1 \le i, j \le n$.

Theorem 10

Let T be a bounded linear operator on $H^2(\mathbb{D}^n)$. Then T is an asymptotic Toeplitz operator if and only if T is a compact perturbation of Toeplitz operator.

イロト イポト イヨト イヨト

Let \mathcal{Q} be a joint $(M^*_{z_1}, \ldots, M^*_{z_n})$ -invariant subspace of $H^2(\mathbb{D}^n)$ and

$$C_{z_i} = P_{\mathcal{Q}} M_{z_i}|_{\mathcal{Q}}, \quad i = 1, \ldots, n.$$

< ロ > < 同 > < 三 > < 三

Let \mathcal{Q} be a joint $(M^*_{z_1}, \ldots, M^*_{z_n})$ -invariant subspace of $H^2(\mathbb{D}^n)$ and

$$C_{z_i} = P_{\mathcal{Q}} M_{z_i}|_{\mathcal{Q}}, \quad i = 1, \ldots, n.$$

Theorem 11

Let $T, A \in \mathcal{B}(\mathcal{Q}), C_{z_i}^{*m}TC_{z_i}^m \to A$ and $C_{z_i}^{*m}(T-A)C_{z_j}^m \to 0$ in norm for all i, j = 1, ..., n. Then T = A + K, where $K \in \mathcal{B}(\mathcal{Q})$ is a compact operator and $C_{z_i}^*AC_{z_i} = A$ for all i = 1, ..., n.

< ロト < 同ト < ヨト < ヨト

Proposition 12

Let $\Theta \in H^{\infty}(\mathbb{D}^n)$ be an inner function and $\mathcal{Q} = H^2(\mathbb{D}^n)/\Theta H^2(\mathbb{D}^n)$ and $A \in \mathcal{B}(\mathcal{Q})$. Then $C^*_{z_i}AC_{z_i} = A$ for all i = 1, ..., n, if and only if A = 0.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proposition 12

Let $\Theta \in H^{\infty}(\mathbb{D}^n)$ be an inner function and $\mathcal{Q} = H^2(\mathbb{D}^n)/\Theta H^2(\mathbb{D}^n)$ and $A \in \mathcal{B}(\mathcal{Q})$. Then $C^*_{z_i}AC_{z_i} = A$ for all i = 1, ..., n, if and only if A = 0.

Summing up the above two results, we have the following generalization of Chalendar and Ross.

Theorem 13

Let $\Theta \in H^{\infty}(\mathbb{D}^n)$ be an inner function, and T and A be bounded linear operators on $Q = H^2(\mathbb{D}^n)/\Theta H^2(\mathbb{D}^n)$. Then TFAE: (i) $C_{z_i}^{*m}TC_{z_i}^m \to A$ and $C_{z_i}^{*m}(T-A)C_{z_j}^m \to 0$ in norm for all i, j = 1, ..., n; (ii) $C_{z_i}^{*m}TC_{z_i}^m \to 0$ in norm for all i = 1, ..., n; (iii) T is compact.

(日) (周) (三) (三)

References

- P. Ahern, E. Youssfi and K. Zhu, Compactness of Hankel operators on Hardy-Sobolev spaces of the polydisk. J. Operator Theory 61 (2009), 301-312.
- J. Barría and P. R. Halmos, Asymptotic Toeplitz operators. Trans. Amer. Math. Soc., 273(2):621-630, 1982.
- A. Bottcher, Truncated Toeplitz operators on the polydisk. Monatsh. Math. 110 (1990), 23-32.
- A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators. J. Reine Angew. Math., 213:89–102, 1963/1964.
- I. Chalendar, W. T. Ross, Compact operators on model spaces, 2016.(arXiv:1603.01370).
- B. Choe, H. Koo and Y. Lee, Commuting Toeplitz operators on the polydisk. Trans. Amer. Math. Soc. 356 (2004), 1727-1749.
- R. G. Douglas, Banach algebra techniques in operator theory. Second edition. Graduate Texts in Mathematics, 179. Springer-Verlag, New York, 1998.

< ロ > < 同 > < 三 > < 三

References

- A. Feintuch, On asymptotic Toeplitz and Hankel operators. In The Gohberg anniversary collection, Vol. II (Calgary, AB, 1988), volume 41 of Oper. Theory Adv. Appl., pages 241254. Birkhauser, Basel, 1989.
- S. R. Garcia, J. Mashreghi, and W. Ross, Introduction to model spaces and their operators. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2016.
- C. Gu, Some algebraic properties of Toeplitz and Hankel operators on polydisk. Arch. Math. (Basel) 80 (2003), no. 4, 393–405.
- K. Guo and K. Wang, On operators which commute with analytic Toeplitz operators modulo the finite rank operators. Proc. Amer. Math. Soc. 134 (2006), 2571-2576.
- P. Hartman and A. Wintner, The spectra of Toeplitz's matrices. Amer. J. Math. 76 (1954), 867-882.
 - B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space. North-Holland , Amsterdam- London, 1970.

< ロ > < 同 > < 三 > < 三

Thank You

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?