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Aim

To characterize Toeplitz operators on H2(Dn).

To characterize asymptotically Toeplitz operators on H2(Dn).

To generalize some of the recent results of Chalendar and Ross to
vector-valued Hardy space H2

E(D) and as well as quotient spaces of H2(Dn).
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Notation

Open unit polydisc Dn = {(z1, . . . , zn) ∈ Cn : |zi | < 1, i = 1, . . . , n}.
Distinguished boundary of Dn

Tn = {(z1, . . . , zn) ∈ Cn : |zi | = 1, i = 1, . . . , n}.

Hardy space H2(D) = {f =
∑∞

n=0 anz
n :
∑∞

n=0 |an|2 <∞}.
Vector-valued Hardy space
H2
E(D) = {f =

∑∞
n=0 anz

n : an ∈ E and
∑∞

n=0 ‖an‖2
E <∞}.

H∞(D) = {f =
∑∞

n=0 anz
n : sup

n≥0
|an| <∞}.

Mz is the multiplication operator on H2(D) by the coordinate function z .

Hardy space over polydisc H2(Dn) =

{
f =

∑
k∈Nn

akz
k :
∑
k∈Nn

|ak |2 <∞

}
,

where k = (k1, . . . , kn) ∈ Nn and zk = zk1
1 · · · zknn .

For j = 1, . . . , n, Mzj are the multiplication operators on H2(Dn) by the j th

coordinate functions zj .
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Multiplication operator

For φ ∈ L∞(T), define Mφ : L2(T)→ L2(T) by Mφf = φf for f ∈ L2(T).

The matrix of Mφ with respect to the orthonormal basis {e inθ}∞n=−∞ of
L2(T) = H2(D)⊥ ⊕ H2(D) is

Mφ =



. . .
. . .

. . .
. . . φ0 φ−1 φ−2

. . . φ1 φ0 φ−1 φ−2

φ2 φ1 φ0 φ−1 φ−2

φ2 φ1 φ0 φ−1
. . .

φ2 φ1 φ0
. . .

. . .
. . .


where φ =

∞∑
n=−∞

φne
inθ is a Fourier expansion of φ.

Toeplitz operator with symbol φ ∈ L∞(T) is the operator Tφ defined by
Tφf = PH2(D)(φf ) for f ∈ H2(D).
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Toeplitz operator

Toeplitz operators on the Hardy space (or, on the l2 space) were first studied
by O. Toeplitz (1911)(and then by P. Hartman and A. Wintner (1954)).

A systematic study of Toeplitz operators on H2(D) was triggered by the
seminal paper of Brown and Halmos: Algebraic properties of Toeplitz
operators J.Reine Angew. Math. 213:89–102, 1963/1964.

Brown-Halmos theorem characterize Toeplitz operators on H2(D) as follows:
Let T be a bounded linear operator on H2(D). Then T is a Toeplitz operator
if and only if

M∗z TMz = T .

The notion of Toeplitzness was extended to more general settings by Barŕıa
and Halmos (1982) and Feintuch (1989).

A bounded linear operator T on H2(D) is (uniformly) asymptotically Toeplitz
operator if {M∗mz TMm

z }m≥1 converges in operator norm.

Feintuch (1989) gives a remarkable characterization of asymptotically
Toeplitz operators: A bounded linear operator T on H2(D) is asymptotically
Toeplitz if and only if T = compact + Toeplitz.
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Basic Definitions

A closed subspace S of H is said to be invariant subspace of T ∈ B(H) if
T (S) ⊆ S and S is said to be co-invariant subspace if T ∗(S) ⊆ S.

An operator T ∈ B(H) is said to be contraction if ‖T‖ ≤ 1.

A contraction T is said to be pure contraction if T ∗m → 0 as m→∞ in
strong operator topology.

An inner function is a bounded analytic function ψ on D (that is,
ψ ∈ H∞(D)) such that |ψ(e iθ)| = 1 for almost everywhere on the unit circle.

H∞B(E)(D): the space of all operator valued bounded analytic functions on D.

A multiplier Θ ∈ H∞B(E)(D) is said to be inner if MΘ is an isometry on H2
E(D),

where

(MΘf )(w) = Θ(w)f (w) (f ∈ H2
E(D),w ∈ D).
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Model Space in H2(D)

(Beurling Theorem (1948)) Let S be a non-zero shift invariant subspace of
H2(D). Then S = θH2(D) for some inner function θ ∈ H∞(D).

For an inner function θ, the model space Kθ is defined as
Kθ = H2(D)	 θH2(D). Kθ is finite dimensional if θ is finite Blaschke
product (that is, θ(z) =

∏n
k=1

z−zk
1−z̄kz ).

Let
Sθ = PKθ

Mz |Kθ
,

where PKθ
denotes the orthogonal projection from H2(D) onto Kθ. Sθ is

called a Jordan block.

Theorem (Chalendar and Ross (2016))

Let T ∈ B(Kθ). Then
(i) S∗θTSθ = T if and only if T = 0
(ii){S∗mθ TSm

θ }m≥1 converges in norm if and only if T is compact.
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Model Operator and Model Space

Let E be a Hilbert space and Θ ∈ H∞B(E)(D) be an inner multiplier. Then the

model operator SΘ (see Garcia et al. (2016)) corresponding to Θ is the
compression of Mz on the model space KΘ := H2

E(D) � ΘH2
E(D), that is,

SΘ = PKΘ
Mz |KΘ

,

where PKΘ
denotes the orthogonal projection from H2

E(D) onto KΘ.

Note that K⊥Θ = ΘH2
E(D) is an Mz -invariant subspace of H2

E(D) and
S∗Θ = M∗z |KΘ

∈ B(KΘ).

Questions

Characterize those T ∈ B(KΘ) for which

S∗ΘTSΘ = T .

Characterize those T ∈ B(KΘ) for which

S∗mΘ TSm
Θ → A,

in norm, for some A ∈ B(KΘ).
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Results on Vector-valued Hardy space

Lemma 1(Böttcher and Silbermann)

Let A be a compact operator on a Hilbert space H and R∗m → 0 in strong
operator topology as m→∞, then R∗mA→ 0 in norm as m→∞.

Theorem 2

Let E be a Hilbert space and T ∈ B(H2
E(D)). Then T is a Toeplitz operator if

and only if M∗z TMz = T .

Theorem 3

Let T ,A ∈ B(H2
Cp (D)) and M∗mz TMm

z → A in norm. Then A is a Toeplitz
operator and (T − A) is compact. Conversely, if A is a Toeplitz operator and
T − A is a compact operator, then T is asymptotically Toeplitz.
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Results on Vector-valued Hardy space

Proposition 4

Let Θ ∈ H∞B(E)(D) be an inner multiplier and T ∈ B(KΘ). Assume that Θ(e iθ) is
invertible a.e. Then S∗ΘTSΘ = T if and only if T = 0.

Theorem 5

Let Θ ∈ H∞B(Cp)(D) be an inner multiplier and T ∈ B(KΘ). Assume that Θ(e iθ) is

invertible a.e. Then T is compact if and only if {S∗mΘ TSm
Θ }m≥1 converges in norm.

Theorem 6

Let Θ ∈ H∞B(Cp)(D) be an inner multiplier and Θ(e iθ) is invertible a.e. and

T ∈ B(KΘ). Then TFAE:
(i) {S∗mΘ TSm

Θ }m≥1 converges in norm;
(ii) S∗mΘ TSm

Θ → 0 in norm;
(iii) T is a compact operator.
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Results on H2(Dn)

Theorem 7

Let T ∈ B
(
H2(Dn)

)
. Then T is a Toeplitz operator if and only if M∗zjTMzj = T

for all j = 1, . . . n.

Proof.

Let ϕ ∈ L∞(Tn) and T = PH2(Dn)Mϕ|H2(Dn). Then for f , g ∈ H2(Dn) and
j = 1, . . . n, we have

〈(M∗zjTMzj )f , g〉H2(Dn) = 〈ϕe iθj f , e iθjg〉L2(Tn) = 〈ϕf , g〉L2(Tn),

that is,
〈(M∗zjTMzj )f , g〉H2(Dn) = 〈PH2(Dn)Mϕ|H2(Dn)f , g〉H2(Dn),

and therefore M∗zjTMzj = T for all j = 1, . . . n.
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Proof Cont.

Conversely, for each k ∈ N, define kd ∈ Nn by kd = (k , . . . , k). From
M∗zjTMzj = T , j = 1, . . . n, we obtain that

M∗kdz TMkd
z = T (k ∈ N).

Setting
Ak = M∗kd

e iθ
TPH2(Dn)M

kd
e iθ

(k ≥ 1),

we can prove that

lim
k→∞

〈Ak f , g〉 = 〈A∞f , g〉 (f , g ∈ L2(Tn))

and A∞Me iθj = Me iθj A∞ for j = 1, . . . n. Hence there exists ϕ in L∞(Tn) such
that A∞ = Mϕ. Using the above condition, we also have
T = PH2(Dn)A∞|H2(Dn) = PH2(Dn)Mϕ|H2(Dn), that is, T is a Toeplitz operator.
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Results on H2(Dn)

Theorem 8

A bounded linear operator T on H2(Dn) is compact if and only if M∗mzi TMm
zj → 0

in norm for all i , j ∈ {1, ...., n}.

Following Feintuch (1989) (and Barŕıa and Halmos (1982)) one can now define
asymptotic Toeplitz operator as follows:

Definition 9

A bounded linear operator T on H2(Dn) is said to be asymptotic Toeplitz
operator if there exists A ∈ B(H2(Dn)) such that M∗mzi TMm

zi → A and
M∗mzi (T − A)Mm

zj → 0 as m→∞ in norm, 1 ≤ i , j ≤ n.

Theorem 10

Let T be a bounded linear operator on H2(Dn). Then T is an asymptotic Toeplitz
operator if and only if T is a compact perturbation of Toeplitz operator.
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Quotient spaces of H2(Dn)

Let Q be a joint (M∗z1
, . . . ,M∗zn)-invariant subspace of H2(Dn) and

Czi = PQMzi |Q, i = 1, . . . , n.

Theorem 11

Let T ,A ∈ B(Q), C∗mzi TCm
zi → A and C∗mzi (T − A)Cm

zj → 0 in norm for all
i , j = 1, . . . , n. Then T = A + K , where K ∈ B(Q) is a compact operator and
C∗ziACzi = A for all i = 1, . . . n.
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Quotient spaces of H2(Dn)

Proposition 12

Let Θ ∈ H∞(Dn) be an inner function and Q = H2(Dn)/ΘH2(Dn) and
A ∈ B(Q). Then C∗ziACzi = A for all i = 1, . . . n, if and only if A = 0.

Summing up the above two results, we have the following generalization of
Chalendar and Ross.

Theorem 13

Let Θ ∈ H∞(Dn) be an inner function, and T and A be bounded linear operators
on Q = H2(Dn)/ΘH2(Dn). Then TFAE:
(i) C∗mzi TCm

zi → A and C∗mzi (T − A)Cm
zj → 0 in norm for all i , j = 1, . . . , n;

(ii) C∗mzi TCm
zi → 0 in norm for all i = 1, . . . , n;

(iii) T is compact.
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