Fixed points of completely contractive maps and convolution operators joint work with Pekka Salmi

Adam Skalski

IMPAN, Polish Academy of Sciences, Warsaw

Bangalore, 15th of December 2016

Convolution operators I

G – locally compact group Prob(G) – probability measures on GM(G) – bounded (Radon) measures on G

Given $\mu \in M(G)$ define the convolution operator

$$(L_{\mu} f)(g) = \int_{G} f(hg) d\mu(h), \quad g \in G.$$

Such operators appear very naturally in the study of random walks on G, harmonic analysis on G, etc.. Our aim is to understand their fixed point spaces – spaces of μ -harmonic elements.

Convolution operators II

Recall

$$(L_{\mu} f)(g) = \int_{G} f(hg) d\mu(h), \quad g \in G.$$

Then $L_{\mu} : L^{\infty}(G) \to L^{\infty}(G)$; for $\mu \in Prob(G)$, L_{μ} is unital, (completely) positive.

Consider
$$\Delta : L^{\infty}(G) \to L^{\infty}(G \times G) \approx L^{\infty}(G) \overline{\otimes} L^{\infty}(G)$$

 $\Delta(f)(g,h) = f(gh), \quad g,h \in G$

Then

$$L_{\mu} = (\mu \otimes \mathsf{id}) \circ \Delta.$$

Quantum groups

 \mathbb{G} – a locally compact quantum group – virtual object, described via von Neumann algebra $L^{\infty}(\mathbb{G})$ and the coproduct $\Delta : L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G})\overline{\otimes}L^{\infty}(\mathbb{G})$.

We can associate with \mathbb{G} also C^* -algebras $C_0(\mathbb{G})$ and $C_0^u(\mathbb{G})$ (the universal object)

 $C_0(\mathbb{G})\subset L^\infty(\mathbb{G}),$

the space $\mathsf{M}(\mathbb{G})=\mathsf{C}_0(\mathbb{G})^*$ and further convolution operators

 $L_{\mu} = (\mu \otimes \mathsf{id}) \circ \Delta$

 $\mathsf{Prob}(\mathbb{G}) - \mathsf{states} \text{ on } \mathsf{C}_0(\mathbb{G}), \ L^1(\mathbb{G}) = \mathsf{L}^\infty(\mathbb{G})_*, \ \mathsf{M}^u(\mathbb{G}) = \mathsf{C}^u_0(\mathbb{G})^*.$

Maps L_{μ} can be also defined for $\mu \in M_{\mu}(\mathbb{G}) = C_0^{\mu}(\mathbb{G})^*$; these are completely bounded normal maps whose preduals are $L^1(\mathbb{G})$ -module maps (abstract Herz-Schur multipliers).

Convolution operators for group duals

 Γ – locally compact group, $\mathbb{G} := \hat{\Gamma}$ – its quantum dual, so that $L^{\infty}(\mathbb{G}) = VN(\Gamma)$ $L^{1}(\mathbb{G}) = A(\Gamma)$ – Fourier algebra (a Banach algebra of functions on Γ , convolutions of pairs of $L^{2}(\Gamma)$ functions)

 $M_u(\mathbb{G}) = B(\Gamma)$ – Fourier-Stieltjes algebra (a Banach algebra of functions on Γ – span of positive definite functions)

Herz-Schur/Fourier multipliers: functions f on Γ such that the map

$$\varphi \mapsto f\varphi, \quad \varphi \in A(\Gamma)$$

is well-defined.

We then have $A(\Gamma) \subset B(\Gamma) \subset M_{cb}A(\Gamma)$.

Conditional expectations

M – von Neumann algebra

 $E:\mathsf{M}\to\mathsf{M}$ – a ucp normal idempotent $(E\circ E=E)$ and $\mathsf{Fix}\,(E)=E(\mathsf{M})$ a subalgebra of M

Then *E* is a conditional expectation (E(M)-bimodule map, etc.).

 $P : M \to M - a$ normal ucp idempotent $(P \circ P = P)$, and Fix(P) = P(M). This is only an *operator subsystem* of M, need not be an algebra!

General ucp maps

 $\Phi:M\to M$ – a normal ucp map. Then $Fix\,(\Phi)$ – an operator subsystem of M. Of course $Fix\,(\Phi)\subset\Phi(M)$

Theorem (Choi-Effros)

The operator system Fix (Φ) has a (unique) structure of an (abstract!) von Neumann algebra, with the weak*-closed operator system structure inherited from M. It will be denoted H_{Φ} and called the Poisson boundary of Φ .

The product is constructed via an idempotent (non-normal!) projection $P_{\Phi,\mathcal{U}} : \mathsf{M} \to \mathsf{Fix}(\mathsf{M})$:

$$P_{\Phi,\mathcal{U}} = \lim_{\mathcal{U}} \frac{1}{N} \sum_{k=1}^{N} \Phi^k$$

where ${\cal U}$ is a fixed free ultrafilter, and convergence is point-weak*. Indeed,

$$x \circ y := P_{\Phi, \mathcal{U}}(xy), \quad x, y \in Fix(M).$$

In fact Arveson showed later that $x \circ y = \lim_{N \to \infty} \Phi^N(xy)$.

Positive convolution operators revisited $\mu \in Prob(G), L_{\mu} : L^{\infty}(G) \rightarrow L^{\infty}(G)$

In fact L_{μ} always has a natural extension to a ucp map $\Phi_{\mu}: B(L^{2}(G)) \rightarrow B(L^{2}(G))$ – the unique map such that

$$ilde{\Delta}\circ \Phi_{\mu} = (\mathsf{id}\otimes L_{\mu})\circ ilde{\Delta}$$

(where $\tilde{\Delta} : B(L^2(G)) \to B(L^2(G)) \otimes B(L^2(G))$ is a natural extension of the coproduct).

Questions to be asked:

- when is L_µ an idempotent or conditional expectation? [answered in the earlier work]
- **(i)** what is the structure of $H_{\Phi_{\mu}}$ or $H_{L_{\mu}}$?
- what changes when we pass to quantum groups?

Poisson boundaries and crossed product identification

Classically $H_{L_{\mu}} \approx L^{\infty}(Y)$ for some measure space (equipped with a distinguished measure ν) – this is the famous classical Poisson boundary of Furstenberg, Kaimanovich, Vershik, etc..

We always get a natural \mathbb{G} -action α on $H_{L_{\mu}}$. Moreover

Theorem (Kalantar, Neufang and Ruan)

 \mathbb{G} – locally compact quantum group, $\mu \in \mathsf{Prob}(\mathbb{G})$. Then

$$H_{\Phi_{\mu}} = \mathbb{G} \ltimes_{\alpha} H_{L_{\mu}}.$$

General convolution operators

Convolution operator L_{μ} can be defined for any $\mu \in M(G)$. But then even full characterisation of idempotent measures $(\mu \star \mu = \mu)$ is unknown!

We get much more information when $\mu \in M(G)_1$ – then $L_{\mu} : L^{\infty}(G) \to L^{\infty}(G)$ is (completely) contractive!

We will see it leads us to considering ternary rings of operators.

W*-TROs

Definition

A (concrete) W^* -TRO – ternary ring of operators – is a weak*-closed subspace $X \subset B(H; K)$ such that

$$xy^*z \in X, \quad x, y, z \in X.$$

 $W^*\mbox{-}\mathsf{TROs}$ can also be defined abstractly – they are always equipped with a triple product

$$\{\cdot,\cdot,\cdot\}:X\times X\times X\mapsto X$$

W*-TROs vs von Neumann algebras

Concrete W^* -TROs arise as corners of von Neumann algebras: given $X \subset B(H; K)$ we define the von Neumann algebra

$$\mathsf{R}_{\mathsf{X}} := \begin{pmatrix} \langle \mathsf{X}\mathsf{X}^*\rangle'' & \mathsf{X} \\ \mathsf{X}^* & \langle \mathsf{X}^*\mathsf{X}\rangle'' \end{pmatrix} \subset B(\mathsf{K} \oplus \mathsf{H}).$$

and call R_X the linking von Neumann algebra of X.

X is nondegenerately represented if $\langle XH\rangle=K,\;\langle X^*K\rangle=H$ (equivalently, if $\mathit{I}_{K\oplus H}\in\mathsf{R}_X).$

A linear map $\alpha : X \to Y$ is a TRO morphism if it preserves the ternary product; it is said to be nondegenerate if the linear spans of $\alpha(X)Y^*Y$ and $\alpha(X)^*YY^*$ are weak*-dense respectively in Y and Y*.

Hamana extensions...

Proposition

Let X and Y be W*-TROs and let $\alpha : X \to Y$ be a normal TRO morphism. Then there exists a unique normal *-homomorphism $\beta : R_X \to R_Y$ such that

$$eta egin{pmatrix} 0 & x \ 0 & 0 \end{pmatrix} = egin{pmatrix} 0 & lpha(x) \ 0 & 0 \end{pmatrix}, \qquad x \in \mathsf{X}.$$

Moreover

- α is injective if and only if β is injective;
- **(**) α is non-degenerate if and only if β is unital.

A C^* -version of this result is due to Hamana.

Fixed points

...and group actions

Definition

G – locally compact group, X – W*-TRO. Aut(X) – set of all normal automorphisms of X (normal bijective TRO morphisms from X onto itself). A (continuous) *action* of G on X is a homomorphism $\alpha : G \to Aut(X)$ such that for each $x \in X$ the map $\alpha^x : G \to X$ defined by

$$\alpha^{x}(s) = (\alpha(s))(x), \qquad s \in G,$$

is weak*-continuous.

Theorem

Let α be an action of a locally compact group G on a W*-TRO X. Then it possesses a unique extension to an action of G on R_X.

Group actions II

Theorem

There is a 1-1 correspondence between actions of G on X and injective, normal, non-degenerate TRO morphisms $\alpha : X \to L^{\infty}(G) \overline{\otimes} X$ such that

$$(\Delta \otimes \operatorname{id}_{\mathsf{X}}) \circ \alpha = (\operatorname{id}_{L^{\infty}(G)} \otimes \alpha) \circ \alpha.$$

This allows us to define the actions of quantum groups on W^* -TROs.

Definition

Let $\alpha : X \to L^{\infty}(\mathbb{G}) \overline{\otimes} X$ be an action of a locally compact quantum group \mathbb{G} on a W^* -TRO $X \subset B(H; K)$. The space

$$\mathrm{w}^*-\mathsf{cl} \operatorname{Lin}\{(\mathsf{L}^\infty(\widehat{\mathbb{G}})\otimes \mathit{I}_{\mathsf{K}})lpha(\mathsf{X})\}$$

is a W^* -TRO in $B(L^2(\mathbb{G}) \otimes H; L^2(\mathbb{G}) \otimes K)$, called the crossed product of X by α and denoted $\mathbb{G} \ltimes_{\alpha} X$.

Group actions III

For classical group G we have $L^{\infty}(\widehat{\mathbb{G}}) = VN(G)$. TRO crossed products are corners in the von Neumann crossed products.

Proposition

Let $\alpha : X \to L^{\infty}(\mathbb{G}) \overline{\otimes} X$ be an action of a locally compact quantum group \mathbb{G} on a W^* -TRO X and let $\beta : R_X \to L^{\infty}(\mathbb{G}) \overline{\otimes} R_X$ be its Hamana extension. Then β is an action of \mathbb{G} on the von Neumann algebra R_X and

$$\mathsf{R}_{\mathbb{G}\ltimes_{\alpha}\mathsf{X}}=\mathbb{G}\ltimes_{\beta}\mathsf{R}_{\mathsf{X}}.$$

Completely contractive maps

 $\Phi: M \to M$ – a normal completely contractive map, and $\mathsf{Fix}\,(\Phi) \subset \Phi(M)$ – a subspace of M.

Theorem

The subspace Fix (Φ) has a (unique) structure of an (abstract!) W^* -TRO, with the weak* topology inherited from M. It will be denoted H_{Φ} and called the (generalised) Poisson boundary of Φ .

The product is constructed via an idempotent (non-normal!) completely contractive projection $P_{\Phi,\mathcal{U}}: \mathsf{M} \to \mathsf{Fix}(\mathsf{M})$:

$$P_{\Phi,\mathcal{U}} = \lim_{\mathcal{U}} \frac{1}{N} \sum_{k=1}^{N} \Phi^k$$

where ${\cal U}$ is a fixed ultrafilter, and convergence is point-weak*. Indeed,

$$\{x, y, z\} := P_{\Phi, \mathcal{U}}(xy^*z), \quad x, y, z \in Fix(M).$$

The proof uses ideas of Choi and Effros, properties of completely contractive maps due to Youngson and results on abstract/concrete W^* -TROs due to Zettl.

Adam Skalski (IMPAN)

Fixed points of cpc maps

Contractive convolution operators

 $\omega \in \mathsf{M}(G)_1, \ L_\omega : \mathsf{L}^\infty(G) \to \mathsf{L}^\infty(G)$

In fact L_{ω} always has a natural extension to a completely contractive map $\Phi_{\omega}: B(L^2(G)) \to B(L^2(G))$

Questions to be asked:

- when is L_{ω} an idempotent?
- **(i)** what is the structure of $H_{\Phi_{\omega}}$ or $H_{L_{\omega}}$?
- what changes when we pass to quantum groups?

Contractive idempotent measures

 $\omega \in \mathsf{M}(G)_1$, $L_\omega : \mathsf{L}^\infty(G) \to \mathsf{L}^\infty(G)$

Theorem (Greenleaf)

 L_{ω} is an idempotent iff μ is an idempotent ($\omega \star \omega = \omega$) iff $\omega = h_H(\gamma \cdot)$, where h_H is the Haar measure on a compact subgroup H of G and γ is a character on H. Moreover $L_{\omega}(L^{\infty}(G))$ is a subTRO of $L^{\infty}(G)$.

For quantum groups the situation is more complicated: but if $\omega \in M(\mathbb{G})_1$ is an idempotent functional, then its left/right absolute values are idempotent states and if these 'behave well', we get a full quantum version of the above result:

M. Neufang, P. Salmi, A. Skalski and N. Spronk, Contractive idempotents on locally compact quantum groups, *Indiana Univ. Math. J.* (2013)

Poisson boundaries and crossed product identification

 $\omega \in \mathsf{M}(G)_1$, $L_\omega : \mathsf{L}^\infty(G) \to \mathsf{L}^\infty(G)$

We still get a natural G-action α on the W^* -TRO $H_{L_{\omega}}$. Moreover

Theorem

$$H_{\Phi_{\omega}}=G\ltimes_{\alpha}H_{L_{\omega}}.$$

An analogous result holds for duals of classical groups (via the work of Anoussis, Katavolos and Todorov).

We do not know if it holds for all quantum groups!

A reformulation

The last theorem can be reformulated as follows.

Theorem

If
$$\omega \in \mathsf{M}(G)_1$$
, $L_\omega : \mathsf{L}^\infty(G) \to \mathsf{L}^\infty(G)$, $\Phi_\omega : B(\mathsf{L}^2(G)) \to B(\mathsf{L}^2(G))$ then

$$\mathsf{Fix}\,\Phi_{\omega}=\overline{\mathsf{Lin}}^{w*}\{\mathsf{Fix}\,L_{\omega}\cup\mathsf{VN}(G)\}$$

(after us shown independently by Anoussis, Katavolos and Todorov to hold for any $\omega \in M(G)$ if G is compact).

Theorem (Anoussis+Katavolos+Todorov, Salmi+AS)

Let $\omega \in B(\Gamma)_1$, $L_\omega : VN(\Gamma) \to VN(\Gamma)$, $\Phi_\omega : B(L^2(\Gamma)) \to B(L^2(\Gamma))$. Then Fix Φ_ω , Fix L_ω are W^* -TROs and

$$\mathsf{Fix}\,\Phi_{\omega}=\overline{\mathsf{Lin}}^{w*}\{\mathsf{Fix}\,L_{\omega}\cup\mathsf{L}^{\infty}(\mathsf{\Gamma})\}$$

Summary and comments

- study of fixed points of completely contractive maps leads naturally to W*-TRO structures
- often one can borrow corresponding results from the von Neumann algebra theory, but this is not always straightforward!
- $\bullet\,$ many (but again, not all!) results on fixed points of convolution operators pass to the $C^*\mbox{-setting}$
- the next natural step is the study of the more specific structure of the space of harmonic elements...
- and convergence of iterates.

Pekka Salmi and AS, Actions of locally compact (quantum) groups on ternary rings of operators, their crossed products and generalized Poisson boundaries, *Kyoto Journal of Mathematics*, to appear.