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0. OVERVIEW

The classification of bounded linear operators up to unitary equivalence is not an entirely tractable
problem. However, the spectral theorem provides a complete set of unitary invariants for normal
operators. There are only a few other instances where such a complete classification is possible.
In a foundational paper [18], Cowen and Douglas initiated the study of a class of operators T
possessing an open set € of eigenvalues. Such an operator cannot be normal on a separable Hilbert
space. The class of all such operators is denoted by B,,(€2), where the dimension of the kernel of
T —w for w € Q, which is assumed to be constant, is n. They associate a Hermitian holomorphic
vector bundle E7 on 2 to the operator T in B,,(£2). One of the main results of [18] says that T’
and T in B, (Q) are unitarily equivalent if and only if E7 and E; are equivalent as Hermitian
holomorphic vector bundles. Moreover, they provide a complete set of unitary invariants for an
operator T in B, (2), namely, the simultaneous unitary equivalence class of the curvature and its
covariant derivatives up to a certain order of the corresponding bundle E7. While these invariants
are not easy to compute in general, it may be reasonable to expect that they are tractable for
some appropriately chosen family of operators. Over the last few years, it has become evident
that one such family is the class of homogeneous operators. Several constructions of homogeneous
operators are known. One such construction is via the jet construction of [24], see also, [46, 29].
It was observed in [9] that all the homogeneous operators in By(ID) which were described in [51]
arise from the jet construction. This naturally leads to a two parameter family of “generalized
Wilkins operators” in B (D) for & > 2. We show that it is possible to construct, starting with the
jet construction, a much larger class of homogeneous operators via a simple similarity. Indeed,
the class of homogeneous operators obtained this way coincides with the homogeneous operators
which were recently constructed in [31]. Using the explicit description of these operators and the

homogeneity, we answer, in part, a question of Cowen and Douglas [18, page. 214 |.

Let M6b := {4 : t € T and a € D} be the group of bi-holomorphic automorphisms of the

unit disc D, where
zZ—«

Vralz) = , zeD.

1—az
As a topological group (with the topology of locally uniform convergence) it is isomorphic to
PSU(1,1) and to PSL(2,R).

An operator T from a Hilbert space into itself is said to be homogeneous if ¢(T) is unitarily
equivalent to 1" for all ¢ in M6b which are analytic on the spectrum of 7. The spectrum of a

homogeneous operator T is either the unit circle T or the closed unit disc D, so that, actually,
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©(T) is unitarily equivalent to T for all ¢ in M&ob.

We say that a projective unitary representation U of Mob is associated with an operator 1" if
o(T) = U, TU,

for all ¢ in Mob. If T has an associated representation then it is homogeneous. Conversely,
if a homogeneous operator T is irreducible then it has an associated representation U (cf. [10,
Theorem 2.2]). It is not hard to see that U is uniquely determined up to unitary equivalence. The
ongoing research of B. Bagchi and G. Misra has established that the associated representation,
in case of an irreducible cnu (completely non unitary) contraction, lifts to the dilation space and
intertwines the dilations of 7" and ¢(7"). What is more, they have found an explicit formula for this
lift and for a cnu irreducible homogeneous contraction, they have also found a product formula for
the Sz.- Nagy—Foias characteristic function. A related question involves Mobius invariant function
spaces [1, 2, 3, 43, 44, 45].

The first examples of homogeneous operators were given in [32, 34]. These examples also
appeared in the the work of Berezin in describing what is now known as “Berezin quantization”
[11]. This was followed by a host of examples [7, 10, 35, 51]. The homogeneous scalar shifts were
classified in [10]. However, the classification problem, in general, remains open.

Many examples (unitarily inequivalent) of homogeneous operators are known [9]. Since the
direct sum (more generally direct integral) of two homogeneous operators is again homogeneous,
a natural problem is the classification (up to unitary equivalence) of atomic homogeneous oper-
ators, that is, those homogeneous operators which cannot be written as the direct sum of two
homogeneous operators. However, the irreducible homogeneous operators in the Cowen-Douglas
class B1(D) and Bo(D) have been classified (cf. [34] and [51]) and all the scalar shifts (not only the
irreducible ones) which are homogeneous are known. Clearly, irreducible homogeneous operators

are atomic. Therefore, it is important to understand when a homogeneous operator is irreducible.

There are only two examples of atomic homogeneous operators known which are not irre-
ducible. These are the multiplication operators — by the respective co-ordinate functions — on
the Hilbert spaces L?(T) and L?(D). Both of these examples happen to be normal operators.
We do not know if all atomic homogeneous operators possess an associated projective unitary
representation. However, to every homogeneous operator in B (D), there exists an associated
representation of the universal covering group of Méb [30, Theorem 4].

It turns out that an irreducible homogeneous operator in Bo(D) is the compression of an
operator of the form 7' ® I, for some homogeneous operator 7' in Bi(D) (cf. [9]) to the ortho-
complement of a suitable invariant subspace of T®1I. In the language of Hilbert modules, this is the
statement that every homogeneous module in By(DD) is obtained as quotient of a homogeneous
modules in Bj(D?) by the sub-module of functions vanishing to order 2 on A C D?, where
A ={(z,2): z € D}. However, beyond the case of rank 2, the situation is more complicated. The

question of classifying homogeneous modules in the class B (D) amounts to not only classifying
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Hermitian holomorphic vector bundles of rank k£ on the unit disc which are homogeneous but
also deciding that when they correspond to modules in B (D). Classification problems such as
this one are well known in the representation theory of locally compact second countable groups.
However, in that context, there is no Hermitian structure present which makes the classification
problem entirely algebraic. A complete classification of homogeneous modules in B (D) may still
be possible using techniques from the theory of unitary representations of the Mobius group.
Leaving aside, the classification problem of the homogeneous operators in By (D), we proceed to
show that the “generalized Wilkins examples” (cf. [9]) are irreducible in section 2.1 and [37].
A trick involving a simple change of inner product in the “generalized Wilkins examples”, we
construct a huge family of homogeneous modules in By1(D). These are shown to be exactly the
same family given in the recent paper of Koranyi and Misra [31].

Many of these results can be recast, following R. G. Douglas and V. I. Paulsen [25], in the
language of Hilbert modules. A Hilbert module is just a Hilbert space on which a natural action
of an appropriate function algebra is given.

Let M be a complex and separable Hilbert space. Let A(€)) be the natural function algebra
consisting of functions holomorphic in a neighborhood of the closure 2 of some open, connected
and bounded subset © of C™. The Hilbert space M is said to be a Hilbert module over A() if
M is a module over A(Q2) and

1f - hllm < Clflla@llhllam for fe A(Q) and h € M,

for some positive constant C independent of f and h. It is said to be contractive if we also have
C<1.

Fix an inner product on the algebraic tensor product A(2) ® C™. Let the completion of
A(Q) ® C™ with respect to this inner product be the Hilbert space M. A Hilbert module is

obtained if this action

A(Q) x (AQ) ®C") — AQ) ®C"

extends continuously to A(2) x M — M.

The simplest family of modules over A(£2) corresponds to evaluation at a point in the closure
of Q). For z in the closure of 2, we make the one-dimensional Hilbert space C into the Hilbert
module C,, by setting gv = ¢(z)v for p € A(Q) and v € C. Classical examples of contractive
Hilbert modules are the Hardy and Bergman modules over the algebra A4(€2).

Let G be a locally compact second countable group acting transitively on 2. Let us say that

the module M over the algebra A(2) is homogeneous if

o(fop) Zo(f) for all p € G,

where = stands for “unitary equivalence”. (This is the imprimitivity relation of Mackey.) Here
0 : A(Q) — L(M) is the homomorphism of the algebra A(2) defined by o(f)h := f - h for
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f € A(Q) and h € M. Here L£L(M) is the algebra of bounded linear operators on M. In the
particular case of the unit disc I, it is easily seen that a Hilbert module M is homogeneous if and
only if the multiplication by the coordinate function defining the module action for the function
algebra A(D) is a homogeneous operator.

We point out that the notion of a “system of imprimitivity” which is due to Mackey is closely
related to the notion of homogeneity — a system of imprimitivity corresponds to a homogeneous
normal operator, or equivalently, a homogeneous Hilbert module over a C* - algebra. As one may
expect, if we work with a function algebras rather than a C* - algebra, we are naturally lead to a
homogeneous Hilbert module over this function algebra. A * - homomorphism o of a C* - algebra
C and a unitary group representation U of G on the Hilbert space M satisfying the condition as
above were first studied by Mackey [33] and were called Systems of Imprimitivity. Mackey proved
the Imprimitivity theorem which sets up a correspondence between induced representations of the
group G and the Systems of Imprimitivity. The notion of homogeneity is obtained, for instance,
by taking C to be the algebra of continuous functions on the boundary 0€2. However, in this case,
the homomorphism g defines a commuting tuple of normal operators. More interesting examples
are obtained by compressing these to a closed subspace N' C M invariant under the representation
U:

Pyo(fop)w =Ule Din(ProlHn) U™ for all p € G, f € A(Q)

(cf. [6]). However, in the case of = D, Clark and Misra [15] established the converse for a
contraction as long as it is assumed to be irreducible. Clearly, a homogeneous operator T defines
an imprimitivity over A(2) via the map o(f) = f(T) for f € A(Q) and vice-versa.

The notion of homogeneity is of interest not only in operator theory but it is also related to
the inductive algebras of Steger-Vemuri [47], the Higher order Hankel forms [27, 28], the holo-
morphically induced representations and homogeneous holomorphic Hermitian vector bundles.

At a future date, we will consider a somewhat more general situation. Let X C C™ is a
bounded connected open set. As usual, let A(X) be the function algebra consisting of continuous
functions on the closure of X which are holomorphic on X. Let M be a Hilbert module over
the algebra A(X) and Aut(X) be the group of bi-holomorphic automorphisms of X. It is easy to
see that the systems of imprimitivity, as above, are in one-one correspondence with homogeneous

Hermitian holomorphic vector bundles over X.

In the important special case that X = G/K is a bounded symmetric domain (generalizing
the disk and the ball), a number of examples of systems of imprimtivity (Aut(X),X, M) were
given in [4, 7, 35, 46] and many of their properties are described in [4, 7]. In this case, the
relationship between Hilbert quotient modules, Toeplitz C*-algebras and harmonic analysis on
the semi-simple Lie group G = Aut (X) can be made quite explicit in the following way: Suppose
Y is another bounded symmetric domain (of higher dimension) such that X C Y is realized as

the fixed point set under a reflection symmetry of Y (preserving the so-called Jordan structure).
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An example is Y = X x X, with X C Y identified with the diagonal. The Hilbert quotient
module M associated with this setting is induced by the ideal of holomorphic functions on Y
which vanish (up to a certain order) on the linear subvariety X. This Hilbert module corresponds
to a homogeneous vector bundle on X related to the so-called Jordan-Grassmann manifolds which
are of current interest in algebraic geometry. Recent work along these lines [4, 7, 30, 31, 27, 28]

shows the following features:

The Hilbert module M decomposes as a multiplicity-free sum of irreducible G - representa-
tions; moreover, the associated intertwining operators have an interesting combinatorial structure
(related to multi-variate special functions).

In the paper [28], the explicit matrix representation for the two multiplication operators
compressed to the quotient module is calculated. These are exactly the generalized Wilkins’
operators discussed in [9]. One of the main points of this thesis is to construct a large family of
new Hilbert modules from these quotient modules involving a simple modification of the inner
product, which continue to be homogeneous. Moreover, for each generalized Wilkins’ operator,
there corresponds via this construction, a k-parameter family of homogeneous operators which
are mutually similar but unitarily inequivalent. As result, a (k + 1)-parameter family of mutually
inequivalent homogeneous operator is produced.

In a recent preprint [31] Koranyi and Misra produce a large class of mutually inequivalent
irreducible homogeneous operators all of which belong to the class B, (D). The multiplier repre-
sentation of the universal covering group of the Mobius group associated with such an operator
is reducible and multiplicity free. A one-one correspondence between this class of operators and

the (k + 1)-parameter family of operators constructed above is established in this thesis.

It turns out that for n = 2 and 3, all the representations associated with an irreducible ho-
mogeneous operator in B, (D) are multiplicity free. For n = 4, we construct an example of an
irreducible homogeneous operator in B4(ID) such that the associated representation is not multi-
plicity free. In the decomposition of the associated representation of an irreducible homogeneous
operator which irreducible representations occur and with what multiplicity appears to be an
enticing problem.

Suppose T is a bounded linear operator on a Hilbert space H possessing an open set of
eigenvalues, say €2, with constant multiplicity 1. For w € €2, let =, be the eigenvector for T" with
eigenvalue w. In a significant paper [18], Cowen and Douglas showed that for these operators
T, under some additional mild hypothesis, one may choose the eigenvector +,, to ensure that the
map w +— 7, is holomorphic. Thus the operator T' gives rise to a holomorphic Hermitian vector
bundle E7 on €. They proved that

(i) the equivalence class of the Hermitian holomorphic vector bundle Er determines the unitary

equivalence class of the operator T

(ii) The operator T is unitarily equivalent to the adjoint of the multiplication by the coordinate
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function on a Hilbert space H of holomorphic functions on Q*. The point evaluation on
‘H are shown to be bounded and locally bounded assuring the existence of a reproducing

kernel function for H.

From (i), as shown in [18], it follows that the curvature

0 0
K(w) := %%log ||7w\|2, w €

of the line bundle Er is a complete invariant for the operator 7. On the other hand, following

(ii), Curto and Salinas [21] showed that the normalized kernel
K(z,w) = K (wo, wo)?K (2, wo) " K (z,w) K (wo, w) " K (wo, wo) /%, z, w € Q,

at wg € Q) is a complete invariant for the operator T' as well.

If the dimension of the eigenspace of the operator 1" at w is no longer assumed to be 1, then a
complete set of unitary invariants for the operator 7" involves not only the curvature but a certain
number of its covariant derivatives. The reproducing kernel, in this case, takes values in the n xn
matrices M,,, where n is the (constant) dimension of the eigenspace of the operator T" at w. The
normalized kernel, modulo conjugation by a fixed unitary matrix from M,,, continues to provide
a complete invariant for the operator T'.

Unfortunately, very often, the computation of these invariants tend to be hard. However,
there is one situation, where these computations become somewhat tractable, namely, if T" is as-
sumed to be homogeneous. One may expect that in the case of homogeneous operators, the form
of the invariants, discussed above, at any one point will determine it completely. We illustrate
this phenomenon throughout the section 4.1 and section 4.2. Homogeneous operators have been
studied extensively over the last few years ([4, 7, 8, 9, 10, 12, 30, 31, 46, 51]). Some of these ho-
mogeneous operators correspond to a holomorphic Hermitian homogeneous bundle — as discussed
above. Recall that a Hermitian holomorphic bundle £ on the open unit disc D is homogeneous if
every @ in Mob lifts to an isometric bundle map of E.

Although, the homogeneous bundles E on the open unit disc D have been classified in [12, 51],
it is not easy to determine which of these homogeneous bundles E comes from a homogeneous
operators. In [51], Wilkins used his classification to describe all the irreducible homogeneous
operators of rank 2. In the paper [31], Koranyi and Misra gives an explicit description of a class
of homogeneous bundles and the corresponding homogeneous operator. Thus making it possible
for us to compute the curvature invariants for these homogeneous operators. Although, our main
focus will be the computation of the curvature invariants, we will also compute the normalized
kernel and explain the relationship between these two sets of invariants. Along the way, we give

a partial answer to some questions raised in [18, 20].

For a bounded open connected set & C C and n € N, let us recall that the class B, (1),

introduced in [18], consists of bounded operators T' with the following properties:
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a) QCo(T)

b) ran(T — w) = H for w € Q

¢) Vyeqker(T —w) =H for w € Q
d) dim ker(T — w) = n for w € Q.

It was shown in [18, proposition 1.11] that the eigenspaces for each T' in B,,(§2) form a Hermitian

holomorphic vector bundle Er over €2, that is,
Er ={(w,z2) e A xH:z cker(T —w)}, m(w,x) =w

and there exists a holomorphic frame w — y(w) := (y1(w),...,Wm(w)) with v;(w) € ker(T" —
w), 1 < i < n. The Hermitian structure at w is the one that ker(T" — w) inherits as a
subspace of the Hilbert space H. In other words, the metric at w is simply the grammian
h(w) = (((yj(w),%(w)»)?j:l. The curvature Krp(w) of the bundle Ep is then defined to be
%(h_la%h) (w) for w € Q (cf. [50, pp. 78 — 79]).

Theorem 0.0.1. [19, Page. 326] Two operators T, T in B1(Q) are unitarily equivalent if and
only if Kr(w) = Kz(w) for w in Q.

Thus, the curvature of the line bundle Er is a complete set of unitary invariant for an operator
T in B1(Q2). Although, more complicated, a complete set of unitary invariants for the operators
in the class B,,(£2) is given in [18].

It is not hard to see (cf. [50, pp. 72]) that the curvature of a bundle E transforms according
to the rule K(fg)(w) = (¢7'K(f)g)(w), w € A, where f = (e1,...,e,) is a frame for E over an
open subset A C Q and g : A — GL(n,C) is a holomorphic change of frame. For a line bundle FE,
locally, the change of frame g is a scalar valued holomorphic function. In this case, it follows from
the transformation rule for the curvature that it is independent of the choice of a frame. In general,
the curvature of a bundle E of rank n > 1 depends on the choice of a frame. Thus the curvature
itself cannot be an invariant for the bundle E. However, the eigenvalues of K are invariants for
the bundle E. More interesting is the description of a complete set of invariants given in [18,

Definition 2.17 and Theorem 3.17] involving the curvature and the covariant derivatives
Kzi2j7 0 S 1 S j S Z+] S n, (Zaj) 75 (O7n)7

where rank of E = n. In a subsequent paper (cf. [20, page. 78]), by means of examples, they
showed that fewer covariant derivatives of the curvature will not suffice to determine the class
of the bundle E. These examples do not necessarily correspond to operators in the class B, ().
Recall that if a Hermitian holomorphic vector bundle E is the pullback of the tautological bundle

defined over the Grassmannian Gr(n,H) under the holomorphic map

t:Q— gr(n,H), t(w) =ker(T —w), we N
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for some operator T': H — H, T € B,(Q2), then E = Ep and we say that it corresponds to
the operator T'. On the other hand, for certain class of operators like the generalized Wilkins
operators Wy, = {M,ga’ﬁ) ca, >0} C Bryri(D) (cf. [9, page 428]) discussed in section 2.1 and
[37], the unitary equivalence class of the curvature IC (just at one point) determines the unitary
equivalence class of these operators in Wy. This is easily proved using the form of the curvature
at 0 of the generalized Wilkins operators M,ga’ﬁ), namely, diag(a, -+ ,a,a+ (k+ 1)+ k(k+1))
(cf. [37, Theorem 4.12]).

It is surprising that there are no known examples of operators T' € B,,(2), n > 1, for which the
set of eigenvalues of the curvature Cr is not a complete invariant. We construct some examples
in [36] to show that one needs the covariant derivatives of the curvature as well to determine the
unitary equivalence class of an operator T € B,,(2), n > 1. The inherent difficulty in finding such
examples suggests the possibility that the complete set of invariants for an operator T € B,,(Q2)
described in [18, 20] may not be the most economical. Although, in [18, 20], it is shown that for
generic bundles, the set of complete invariants is much smaller and consists of the curvature and
its covariant derivatives of order (0,1) and (1,1). However, even for generic bundles, it is not clear
if this is the best possible. Indeed, we show that for a certain class of homogeneous operators
corresponding to generic holomorphic Hermitian homogeneous bundles, the curvature along with

its covariant derivative of order (0,1) at 0 provides a complete set of invariants.

Here is a detailed description of the contents of the thesis:

Multiplication operators on functional Hilbert space and the Cowen-Douglas class

We discuss the multiplication operator on a Hilbert space H consisting of holomorphic functions
on a bounded domain Q C C™. We assume that our Hilbert space H possesses a reproducing
kernel K, that is, K : Q x Q — M,, which is

1. holomorphic in the first variable and anti-holomorphic in the second;
2. K(-,w){ is in H for w € Q and £ € C";

3. it has the reproducing property:

<f>K(7w)£> = <f(w)7£>7 for w € Qy 5 e C".

In particular, the kernel K is positive definite. The important role that the kernel functions play in
operator theory, representation theory, and theory of several complex variables is evident from the
papers [5, 38, 41, 48, 49] which by no means a complete list. For most naturally occurring positive
definite kernels the joint eigenspace of the m - tuple M = (Mj, ..., M,,) defines a holomorphic
map, that is, the map ¢ : Q — Gr(n,H)

t:w— Nty ker(My —wg)®, w e Q,



0. Overview 9

is holomorphic. Here Gr(n,H) denotes the Grassmannian of manifold of rank n, the set of all
n-dimensional subspcaes of H. Clearly, the holomorphy of the map ¢ also defines a holomorphic
Hermitian vector bundle E on €. A mild hypothesis on the kernel function [21] ensures that the
commuting tuple of multiplication operators M is bounded. The adjoint M* of the commuting
tuple M is then said to be in the Cowen-Douglas class By, (2), where n is the dimension of the
joint eigenspace N}*_, ker(Mj, —wy,)*. One of the main theorems of [18] states that the equivalence
class, as a Hermitian holomorphic vector bundle, of £ and the unitary equivalence class of the

operator M determines each other.

Quasi-invariant kernels, cocycle and unitary representations

We formulate the transformation rule for the kernel function under the action of the automorphism
group of the domain  and the functional calculus for the operator M for automorphisms of the
domain 2. We assume that the action z +— ¢ - z of the automorphism group Aut({2) is transitive.
We show that if H is a Hilbert space possessing a reproducing kernel K then the following are

equivalent. The positive definite kernel K transforms according to the rule
J(g,2)K(g.2,9.w)J(g,w)" = K(z,w), z,w €

and the map U, : f +— J(g~',-)f o g~! is unitary. Furthermore, the map g Uy is a unitary
representation if and only if J is a cocyle. Unitary representations of this form induced by a
cocycle J are called multiplier representations. Recall that J is a cocyle if there exists a Borel

map J : Aut(Q) x Q — M,, satisfying the cocyle property:
J(9192,2) = J(92,2)J (g1, 92.2) for g1, g2 € Aut(Q2) and z € Q.

A positive definite kernel K transforming according to the rule prescribed above with a cocycle
J is said to be quasi-invariant.

In the body of the thesis, we will be forced to work with projective unitary representations.
This involves some technical complications and nothing will be achieved by elaborating on them

now.

Homogeneous operators and associated representations

It is not hard to see that if the kernel K is quasi-invariant then the operator tuple M is homo-
geneous in the sense that g - M is unitarily equivalent to M for all g in Aut(€2). Here g - M is
defined using the usual holomorphic functional calculus and consequently, g-M is the commuting

tuple of multiplication operators My := (My,, ..., Mg, ), where

(Mg, f)(z) = (95 - 2)f(2), fEH, z€ Q.

Indeed, it is easy to verify that UyMU, = g - M. The representation Uy, in this case, is the

associated representation.
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The jet construction

For z, w in the unit disc D, let S(z,w) = (1 — zw)~! be the Szego kernel. Among several other
properties, the Szego kernel is characterized by its reproducing property for the Hardy space of
the unit disc D. Any positive (o > 0) real power of the Szego kernel determines a Hilbert space,
say, A(@) (D) whose reproducing kernel is S*. A straightforward computation shows that not only
the SZego kernel but all its positive real powers S%, « > 0 are quasi-invariant with respect to
the group Md&b, the automorphism group of the unit disc D. A little more work shows that the
corresponding multiplication operator M (@) on the Hilbert space A(®) (D) is homogeneous and
its adjoint belongs to the Cowen-Douglas class B; (D). In fact, the associated representation is
the familiar Discrete series representation D (o™1) : f — (¢ )2 f o, ¢ € M6b . (We have to
remember that unless « is an even integer, the map D7 is merely a projective representation.)
It is not hard to see that {M(®) : o > 0} is the the complete list of homogeneous operators in
B1(D).

However, constructing homogeneous operators of rank > 1 seems to be somewhat difficult.
There is no clear choice of a quasi-invariant kernel.

In a somewhat intriguing manner, Wilkins [51] was the first to construct explicit examples
of all irreducible homogeneous operators in the Cowen-Douglas class Ba(ID). (We observe that a
homogeneous operator in the class Bo(D) is either the direct sum of two homogeneous operators

from B (D) or it is irreducible completing the classification of homogeneous operators in Ba(D).)

In a later paper [9], using the jet construction of [24], a large family of homogeneous operators
were constructed. We briefly recall the “jet construction”. Let a, # > 0 be any two positive real
numbers. The representation DI ® DE acts naturally (as a unitary representation of the group
M&b) on the tensor product A (D)® AP (D). Now, identify the Hilbert space A (D)® AP (D)
with the Hilbert space of holomorphic functions in two variables on the bi-disc D? and call it
A@A(D?). One may now consider the subspace A,(Ca’ﬁ )(]D)z) C A@P)(D?) of all functions which
vanish to order k + 1 on the diagonal A := {(z,2) € D? : z € D}. It was pointed out in [9]
that the compression of the operator M(® ® I to the ortho-complement A(*#)(D?) & A,(f’ﬁ ) (D?)
is homogeneous.

A concrete realization of these operators is possible via the jet construction as follows. Let
JRA@B (D) = {Jf = Zf:o Af @e; : f € Al (D?)}, where ¢;, 0 < i < k, denotes the
standard unit vectors in C*¥+'. The vector space J®* A(®9)(D?) inherits a Hilbert space struc-
ture via the map J. Now, A,(f’ﬁ ) (D?) is realized in the Hilbert space J®A@H)(D?) as the
largest subspace of functions in J*) A5 (D?) vanishing on the diagonal A which we denote
by Jék)A(o"ﬁ) (D?). The main theorem of [23, 24] then states that the compression of M(®) @ I to
the orthocomplement of the subspace Jék)A(o"ﬁ) (D?) is the multiplication operator on the space
J(k)A(aﬂ)(Dz)msA = {f: [ = Gjresn for some g € J®) A@B)(D2)}. We will denote this operator
by M, ,Ea’ﬁ ), Also, the reproducing kernel B,(ga’ﬁ ) for the space J k) A(@5) (]D)2)‘ms A can be written
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down explicitly (cf. [24, page. 376]). The operators M ,ga’ﬁ ), a, 3,k > 1 are called the “generalized
Wilkins’ operators” [9].

However, irreducibility of these operators was left open. In section 2.1 we show that all
these operators are irreducible and mutually inequivalent [37]. Also, the transformation rule
for the reproducing kernel obtained via the jet construction is given explicitly. In particular,
the corresponding cocycle J is determined concretely. It is also pointed out that the associated
representation is multiplicity free.

Although, this may appear to produce a large family of inequivalent irreducible homogeneous
operators (a two parameter family in rank k£ > 1), it turns out that except in the case k = 2,

there are many more of these [31].

We also point out that the notion of a quasi-invariant kernel occurs, although somewhat
implicitly, in the work of Berezin [11]. A host of papers have appeared applying the notion of
the Berezin transform to several areas of operator theory [3, 22, 48, 49], representation theory
[38, 39, 40, 41, 42, 43] and several complex variables [16, 17] etc.

The jet construction applies with very little modification to the p-fold tensor product
ALY ® .- @ AlP)(D) ~ Aler o) (pP)

thought of as a space of holomorphic functions on the polydisc DP. As before, we consider the
submodule M of functions vanishing to order k on the diagonal {(z,...,2): z € D} C DP. Then
it is not hard to see that the compression of the operator M(“) @I ...®1 to /\/10l is a homogeneous
operator. Although, a systematic study of this class of operators for p > 2 is postponed to the
future, here we show that for p = 3 and with an appropriate choice of Mg consisting of functions
vanishing to order 3 on the diagonal, the corresponding homogeneous operator is irreducible and

the associated representation is no longer multiplicity - free!

A different jet construction

Fix a positive integer m and a real A > m/2. Let @TZOD;A—m—i-Zj be the direct sum of the
usual Discrete series representations of the universal covering group of the group Mob acting on
the Hilbert space EB;”:OujA(z)‘_mHj)(]D)). The operator &7 M (2A=m+2j) acting on this Hilbert
space is in By,+1(D) and is homogeneous being the direct sum of the homogeneous operators
M@A=m+2)) 5 — (), . m. Starting from here, a m+1 parameter family of inequivalent irreducible

homogeneous operators were constructed in [31] as described below.

Let Hol(ID, C™*1) be the space of all holomorphic functions taking values in C™*!. Define the
map I'; : AGA=7+2)(D) — Hol(D,C™*1), 0 < j < m, as in [31]:
‘ 1 —j) ;
() ey 77 =g
0 it0<l<y,

(L)) =
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for f € AP ="+2)(D), 0 < j < m, where (z), := z(z +1)--- (z + n — 1) is the Pochhammer
symbol. Here (T';f)(¢) denotes the f-th component of the function I';f and f(*~7) denotes the
(¢ — j)-th derivative of the holomorphic function f.

We transport the inner product of A2A—m+2 )(]D)) to the range of I'; making I'; a unitary and
I; (A m+2)(D)) a Hilbert space. Let

A(A’”)(D) = @T:ON]F] (A(2)\_m+2j) (D))7 1= KOs 15+ - o5 U > 07

where j1; AGA~m+21)(D) is the same as a linear space A*~"+2)(D) with the inner product %
i

times that of A(A~™+2/)(DD). The direct sum of the discrete series representations EB;-”:OD;'A_m 42
acting on EB;-”:O,ujA(%_m‘sz )(D) transforms into a multiplier representation on AM#) (D) with the
multiplier:

J(g,2) = (g/))‘_%D(g, z)exp(—cgSy)D(g,2), g € Méb, z € D,

1

where D(g, z) is a diagonal matrix of size m + 1 with D(g, z),; = (g’)m_j(z) and ¢, = —W.

It follows from [31, Proposition 2.1] that the reproducing kernel BX#) is quasi-invariance. Hence

—2X—m

BMH (2, w) = (1 — zw) D(zw) exp(wS;,, ) BYH (0, 0) exp(2SE, ) D(21w),

z, w € D.

It was shown in [31] that the multiplication operators M (Am) acting on the Hilbert space
A (D) are mutually bounded, homogeneous, unitarily inequivalent, irreducible and its adjoint
belong to the Cowen-Douglas class By, +1(D). Finally, the associated representation is multiplicity-

free by the construction.

The relationship between the two jet constructions

Although, it is not clear at the outset that there exists («, ) and (A, p) such that the two
homogeneous operators MTS? ) and MO are unitarily equivalent. We calculate those A and p
(for a fixed m) as a function of «, 5 explicitly for which My(,f ) s unitarily equivalent to M#).
We show in this chapter that the set of homogeneous operators that appear from the first jet
construction, is a small subset of those appearing in the second one. However, there is an easy
modification of the first construction that allows us to construct the entire family of homogeneous
operators which were first exhibited in [31]. To do this, we start with the pair «,3 > 0 and

observe that the kernel B,(qf 0) can be written as :
B9 (2 w) = (1 — 20) " P2 D(2w) exp(wS5)D exp(253)D(2w), z,w € D,
where Sj is a forward shift on C™! with weights (j(8 + j — 1))jL; and D is a diagonal matrix

with Dj; = j1(8);, 0 < j < m. We therefore easily see that

1
(I)Bﬁ,?’ﬁ)q)* _ B()"“), P, = W’ 0<j53<m,
J
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® is a diagonal matrix,

.
2\ =a+ B+ m and p? == JHaly ,0<j<m.
7o (a+B+i-008); T T

Thus, the two multiplication operators are unitarily equivalent as we have claimed.

Now, the family of these quasi-invariant kernels can be enlarged in a very simple manner.
Clearly, if we replace the constants %, 0 < 57 < m appearing in reproducing ker-
nel Bﬁ,? ) by arbitrary positive constants p; > 0, 0 < j < m then the new kernel coincides with
the kernel BM#) of [31]. However, now the multiplication operator M (A1) on this space is similar
to the operator My(na ) that we had constructed earlier by the usual jet construction.

We point out that in our situation, if we start with a homogeneous operator corresponding to
a quasi-invariant kernel, then there is a natural family of operators similar to it which are also
homogeneous with the same associated representation. The similarity transformation is easily

seen to be a direct sum of scalar operators using the Schur Lemma.

Complete invariants for operators in the Cowen-Douglas class By 1(D)

We construct examples of operators T in By(D) and B3(D) to show that the eigenvalues of the
curvature for the corresponding bundle E7 does not necessarily determine the class of the bundle
Er. Our examples consisting of homogeneous bundles Er show that the covariant derivatives of
the curvature up to order (1, 1) cannot be dropped, in general, from the set of invariants described
above. These verifications are somewhat nontrivial and use the homogeneity of the bundle in an
essential way. It is not clear if for a homogeneous bundle the curvature along with its derivatives
up to order (1,1) suffices to determine its equivalence class. Secondly the original question of
sharpness of [18, Page. 214] and [20, page. 39], remains open, although our examples provide a

partial answer.

One of the main theorems we prove in section 4.2 and [36] involves the class of operators con-
structed in [31]. This construction provides a complete list (up to mutual unitary in-equivalence)
of irreducible homogeneous operators in Bi;1(D), k > 1, whose associated representation is mul-
tiplicity free. It turns out that for k = 1, this is exactly the same list as that of Wilkins [51],
namely, W,. However, for k > 2, the class of operators Wy C By11(D) is much smaller than the
corresponding list from [31]. Now consider those homogeneous and irreducible operators from
[31] for which the eigenvalues of the curvature are distinct and have multiplicity 1. The Her-
mitian holomorphic vector bundles corresponding to such operators are called generic (cf. [18,
page. 226]). We show that for these operators, the simultaneous unitary equivalence class of the
curvature and the covariant derivative of order (0, 1) at 0 determine the unitary equivalence class
of the operator T'. This is considerably more involved than the corresponding result for the class
Wi of section 2.1 and [37, Theorem 4.12, page 187 |.

Although, we have used techniques developed in the paper of Cowen-Douglas [18, 20], a
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systematic account of Hilbert space operators using a variety of tools from several different areas
of mathematics is given in the book [26]. This book provides, what the authors call, a sheaf model
for a large class of commuting Hilbert space operators. It is likely that these ideas will play a

significant role in the future development of the topics discussed here.



1. PRELIMINARIES

In this chapter we briefly describe reproducing kernel, the Cowen-Douglas class, quasi-invariant

kernel and the jet construction.

1.1 Reproducing kernel

Let L(F) be the Banach space of all linear transformations on a Hilbert space IF of dimension n
for some n € N. Let Q C C™ be a bounded, open, connected set. A function K : Q x Q — L(F),
satisfying
p . .
> (K@D wG, e = 0, wh L wP e, ¢,...,,€eF, p>0 (1.1.1)
ij=1
is said to be a non negative definite (nnd) kernel on Q. Given such an nnd kernel K on €, it is

easy to construct a Hilbert space H of functions on € taking values in F with the property
(F(w), Cr = (£, K(w)C)n, for weQ, (€ F, and f € H. (1.1.2)

The Hilbert space H is simply the completion of the linear span of all vectors of the form § =
{K(-,w)(, w € Q, ¢ € F}, where the inner product between two of the vectors from S is defined
by

(K(,w)¢, K(-,w")n) = (K (w',w)¢,n), for (,n € F, and w,w € Q, (1.1.3)

which is then extended to the linear span H® of the set S. This ensures the reproducing property
(1.1.2) of K on H°.

Remark 1.1.1. We point out that although the kernel K is required to be merely nnd, the equation
(1.1.8) defines a positive definite sesqui-linear form. To see this, simply note that |(f(w), ()| =
[(f, K (-,w)C)| which is at most || f||(K (w,w)¢, )2 by the Cauchy - Schwarz inequality. It follows
that if || f||*> = 0 then f = 0.

Conversely, let H be any Hilbert space of functions on ) taking values in F. Let ¢, : H — F
be the evaluation functional defined by e,(f) = f(w), w € Q, f € H. If e, is bounded for
each w € € then it admits a bounded adjoint €}, : F — H such that (e, f,{) = (f, e} () for all
f € Hand ¢ € F. A function f in H is then orthogonal to e (F) if and only if f = 0. Thus
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f=>" e’ i (G) with w®, o wP) e Q, Cly---,¢ € F, and p > 0, form a dense set in H.

Therefore, we have
P

1P =D (ewmelm G G,

ij=1
where f =37 | e’ i (Gi) w® € Q, ¢ € F. Since ||f]|? > 0, it follows that the kernel K (z, w) =
e.e) is non-negative definite as in (1.1.1). It is clear that K (z,w)( € H for each w € Q and ¢ € F,
and that it has the reproducing property (1.1.2).

Remark 1.1.2. If we assume that the evaluation functional e, is surjective then the adjoint e},

is ingective and it follows that (K (w,w)(,() > 0 for all non-zero vectors ¢ € F.

There is a useful alternative description of the reproducing kernel K in terms of the orthonor-
mal basis {ex : k£ > 0} of the Hilbert space H. We think of the vector ei(w) € F as a column

vector for a fixed w € Q and let ex(w)* be the row vector (e}(w),...,eF(w)). We see that

<K(27 w)C7 77> = <K(7 w)Ca K('? Z)T/>

o0

= > (K( w)¢, er)er, K(-2)n)
k=0

= > Tl Oles().)
k=0

= Z(ek(z)ek(w)*<7 ),

k=0
for any pair of vectors (,n € F. Therefore, we have the following very useful representation for

the reproducing kernel K:
K(z,w) = Z er(2)er(w)*, (1.1.4)
k=0

where {eg : kK > 0} is any orthonormal basis in H.

1.2 The Cowen-Douglas class

Let T = (Ty,...,T,,) be a d-tuple of commuting bounded linear operators on a separable complex
Hilbert space H. Define the operator Dy : H — H® - ®H by Dr(x) = (Thz,...,Thx), x € H.
Let Q be a bounded domain in C™. For w = (wy,...,wy,) € Q, let T — w denote the operator

tuple (T} — w1, ..., Ty — wy,). Let n be a positive integer. The m-tuple T is said to be in the
Cowen-Douglas class B, (€2) if

1. ran Dy_,, is closed for all w € Q)
2. span {ker Dp_,, : w € Q} is dense in H

3. dimker Dp_,, = n for all w € €.
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This class was introduced in [19]. The case of a single operator was investigated earlier in the
paper [18]. In this paper, it is pointed out that an operator 7' in B;(f2) is unitarily equivalent
to the adjoint of the multiplication operator M on a reproducing kernel Hilbert space, where
(Mf)(z) = zf(z). It is not very hard to see that, more generally, a m-tuple T in B, (Q) is
unitarily equivalent to the adjoint of the m-tuple of multiplication operators M = (M, ..., My,)
on a reproducing kernel Hilbert space [18] and [21, Remark 2.6 a) and b)]. Also, Curto and Salinas
[21] show that if certain conditions are imposed on the reproducing kernel then the corresponding

adjoint of the m-tuple of multiplication operators belongs to the class B, ().

To an m-tuple T in B, (), on the one hand, one may associate a Hermitian holomorphic
vector bundle E1 on Q (cf. [18]), while on the other hand, one may associate a normalized
reproducing kernel K (cf. [21]) on a suitable sub-domain of Q* = {w € C™ : w € Q}. It is
possible to answer a number of questions regarding the m-tuple of operators T' using either the
vector bundle or the reproducing kernel . For instance, in the two papers [18] and [20], Cowen
and Douglas show that the curvature of the bundle Et along with a certain number of covariant
derivatives forms a complete set of unitary invariants for the operator T while Curto and Salinas
[21] establish that the unitary equivalence class of the normalized kernel K is a complete unitary
invariant for the corresponding m-tuple of multiplication operators. Also, in [18], it is shown that
a single operator in B,,(£2) is reducible if and only if the associated Hermitian holomorphic vector
bundle admits an orthogonal direct sum decomposition.

We recall the correspondence between an m-tuple of operators in the class B, (€2) and the
corresponding m-tuple of multiplication operators on a reproducing kernel Hilbert space on 2.

Let T be an m-tuple of operators in B,,(§2). Pick n linearly independent vectors v, (w), . .., yn(w)
in ker Dp_yy, w € Q. Define a map I' : Q@ — L(F,H) by I'(w){ = > ", Gvi(w), where
¢ =(C,...,¢n) € F, dimF = n. It is shown in [18, Proposition 1.11] and [21, Theorem 2.2]
that it is possible to choose v1(w),...,v,(w), w in some domain Qy C Q, such that I' is holo-

morphic on Q. Let A(Q2,F) denote the linear space of all F-valued holomorphic functions on €.
Define Ur : H — A(, F) by

(Urz)(w) =T(w)*z, € H, weE Q. (1.2.5)

Define a sesqui-linear form on Hr = ran Ur by (Urf,Urg)r = (f,9), f,g € H. The map Ur is
linear and injective. Hence Hr is a Hilbert space of F-valued holomorphic functions on € with
inner product (-,-)r and Ur is unitary. Then it is easy to verify the following (cf. [21, Remarks
2.6]).

a) K(z,w) =T(2)*I'(w), z,w € Q) is the reproducing kernel for the Hilbert space Hr.
b) M}Ur = UrT;, where (M;f)(z) = zif(2), z = (21,..., 2m) € S

An nnd kernel K for which K(z,wp) = I for all z € Qf and some wy € 2 is said to be normalized

at wy.
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For 1 < i < m, suppose that the operators M; : H — H are bounded. Then it is easy to verify
that for each fixed w € Q, and 1 < i < m,

MK (-,w)n = w; K(-,w)n for n € F. (1.2.6)
Differentiating (1.1.2), we also obtain the following extension of the reproducing property:
(@ ) w),n) = (f,PK(w)n) for l<i<m, j>0, weQ, neF, fecH. (1.2.7)

Let M = (M, ..., M,,) be the commuting m-tuple of multiplication operators and let M™ be
the m-tuple (M, ..., M}). It then follows from (1.2.6) that the eigenspace of the m-tuple M*

at w € Q* C C™ contains the n-dimensional subspace ran K (-,w) C 'H.

One may impose additional conditions on K to ensure that M is in B,(2*). Assume that

K (w,w) is invertible for w € Q. Fix wg € © and note that K (z,wp) is invertible for z in some

neighborhood Qg C Q of wg. Let Ky be the restriction of K to ¢ x £2y. Define a kernel function
Ky on Qg by

Ko(z,w) = ¢(2)K(z,w)p(w)", z,w € N, (1.2.8)

where p(z) = Kres(wo,wo)l/zKres(z,wo)_l. The kernel Ky is said to be normalized at wg and
is characterized by the property Ko(z,wo) = I for all z € Qy. Let M denote the m-tuple of
multiplication operators on the Hilbert space H. It is not hard to establish the unitary equivalence
of the two m - tuples M and M as in (cf. [21, Lemma 3.9 and Remark 3.8]). First, the restriction
map res : f — fres, Which restricts a function in H to ¢ is a unitary map intertwining the m-
tuple M on ‘H with the m-tuple M on H,es = ran res. The Hilbert space H,es is a reproducing
kernel Hilbert space with reproducing kernel K. Second, suppose that the m-tuples M defined
on two different reproducing kernel Hilbert spaces H; and Hs are in B,(Q2) and X : Hy — Ha
is a bounded operator intertwining these two operator tuples. Then X must map the joint
kernel of one tuple in to the other, that is, XK;(-,w)x = Ky(-,w)®(w)x, x € C", for some
function ® : Q@ — C™*". Assuming that the kernel functions K; and K5 are holomorphic in
the first and anti-holomorphic in the second variable, it follows, again as in [21, pp. 472], that
® is anti-holomorphic. An easy calculation then shows that X* is the multiplication operator
Mg If the two operator tuples are unitarily equivalent then there exists an unitary operator U
intertwining them. Hence U* must be of the form My for some holomorphic function ¥. Also,
the operator U must map the joint kernel of (M — w)* acting on H; isometrically onto the joint
kernel of (M — w)* acting on Hy for all w € Q. The unitarity of U is equivalent to the relation
Ki(,w)x = U*Kg(',w)wtraz for all w € Q and x € C". It then follows that

Ki(z,w) = U(2)Ks(z,w) ¥ (w) (1.2.9)

where ¥ : Qy C Q — GL(F) is some holomorphic function. Here, GL(F) denotes the group of all

invertible linear transformations on F.
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Conversely, if two kernels are related as above then the corresponding tuples of multiplication

operators are unitarily equivalent since
MZ*K(,'IU)C = le(7w)C7 w e Qy C € ]Fa
where (M;f)(z) = zif(2), f € Hfor 1 <i<m.

Remark 1.2.1. We observe that if there is a self adjoint operator X commuting with the m-
tuple M on the Hilbert space H then we must have the relation @trK(z, w) = K(z,w)®(w) for
some anti-holomorphic function ® : Q — C"™*™. Hence if the kernel K is normalized then any
projection P commuting with the m-tuple M is induced by a constant function ® such that ®(0)

is an ordinary projection on C™.

In conclusion, what is said above shows that a m-tuple of operators in B,,(2*) admits a repre-
sentation as the adjoint of a m-tuple of multiplication operators on a reproducing kernel Hilbert
spaces of F-valued holomorphic functions on €2y, where the reproducing kernel K may be assumed
to be normalized. Conversely, the adjoint of the m-tuple of multiplication operators on the re-
producing kernel Hilbert space associated with a normalized kernel K on € belongs to B, (%) if
certain additional conditions are imposed on K (cf. [21]).

Our interest in the class B, () lies in the fact that the Cowen-Douglas theorem [18] provides
a complete set of unitary invariants for operators which belong to this class. However, these
invariants are somewhat intractable. Besides, often it is not easy to verify that a given operator
is in the class B,,(£2). Although, we don’t use the complete set of invariants that [18] provides,
it is useful to ensure that the homogeneous operators that arise from the jet construction are in

this class.

1.3 Quasi-invariant kernels, cocycle and unitary representations

Let G be a locally compact second countable (lcsc) topological group acting transitively on the
domain Q C C™. Let C™*"™ denote the set of n X n matrices over the complex field C. We start
with a cocycle J, that is, a Borel map J : G x @ — C™*™ holomorphic on {2, satisfying the
cocycle relation

J(gh,z) = J(h,z)J(g,h - z), forall g,h € G, z€Q, (1.3.10)

Let Hol(€2,C™) be the linear space consisting of all holomorphic functions on € taking values in
C™. We then obtain a natural (left) action U of the group G on Hol(2, C"):

Uy f)(2) = J(9,2)f(g - 2), [ €Hl(Q,C"), z€Q. (1.3.11)

Let e be the identity element of the group G. Note that the cocycle condition (1.3.10) implies,
among other things, J(e,2) = J(e, 2)? for all z € Q.
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Let K C G be the compact subgroup which is the stabilizer of 0. For A,k in K, we have
J(kh,0) = J(h,0)J(k,0) so that k — J(k,0)~! is a representation of K on C".

A positive definite kernel K on {2 defines an inner product on some linear subspace of
Hol(2,C™). The completion of this subspace is then a Hilbert space of holomorphic functions
on Q (cf. [5]). The natural action of the group G described above is seen to be unitary for an
appropriate choice of such a kernel. Therefore, we first discuss these kernels in some detail.

Let ‘H be a functional Hilbert space consisting of holomorphic functions on 2 possessing
a reproducing kernel K. We will always assume that the m-tuple of multiplication operators
M = (M, ..., M,,) on the Hilbert space H is bounded. We also define the action of the group G
on the space of multiplication operators — g - My = Myoq for f € A(Q2) and g € G. In particular,
we have g - M = M ,. We will say that the m-tuple M is G-homogeneous if the operator g - M
is unitarily equivalent to M for all g € G. g +— U1 defined in (1.3.11) leaves H invariant. The
following theorem says that the reproducing kernel of such a Hilbert space must be quasi invariant
under the G action.

A version of the following Theorem appears in [31] for the unit disc. However, the proof here,

which is taken from [31], is for a more general domain € in C™.

Theorem 1.3.1. Suppose that H is a Hilbert space which consists of holomorphic functions on §2
and possesses a reproducing kernel K on which the m-tuple M is irreducible and bounded. Then

the following are equivalent.

1. The m-tuple M is G-homogeneous.

2. The reproducing kernel K of the Hilbert space H transforms, for some cocycle J : G x ) —

C™ " according to the rule

K(Z7w) = J(97 Z)K(g Tz, 9 w)J(g,w)*, Z,w € Q.
3. The operator Ug-1 : f — My yf og for f € H is unitary.

Proof. Assuming that K is quasi-invariant, that is, K satisfies the transformation rule, we see

that the linear transformation U defined in (1.3.11) is unitary. To prove this, note that

(
(K (2,@)J (g, 0)" &, K (2,9)J (g, 7))
= (K (@', @) (g,®)" &, J(g, ') 'y)
(J(g, ") K (@, @) J(g,0)" a,y)
(

1 1

where w = ¢ -w and @ = ¢~ - w'. Hence

(K(g-a',g-w)z,y) = (K, w)x,y).
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It follows that the map U,-1 is isometric. On the other hand, if U of (1.3.11) is unitary then the
reproducing kernel K of the Hilbert space H satisfies

K(z,w)=J(g,2)K(g-z,9-w)J(g,w)". (1.3.12)

This follows from the fact that the reproducing kernel has the expansion (1.1.4) for some or-
thonormal basis {e; : £ > 0} in H. The uniqueness of the reproducing kernel implies that the
expansion is independent of the choice of the orthonormal basis. Consequently, we also have
K(z,w) = > 20(Uy-1€0)(2)(Uy-1€¢)(w)* which verifies the equation (1.3.12). Thus we have
shown that U is unitary if and only if the reproducing kernel K transforms according to (1.3.12).

We now show that the m-tuple M is homogeneous if and only if f +— My, yf o g is unitary.
The eigenvector at w for g.M is clearly K(-,g~'-w). It is not hard, using the unitary operator
Ur in (1.2.5), to see that that g—! - M is unitarily equivalent to M on a Hilbert space Hy whose
reproducing kernel is Ky(z,w) = K(g-z,¢-w) and the unitary Ur is given by f — fog for f € H.
However, the homogeneity of the m-tuple M is equivalent to the existence of a unitary operator
intertwining the m-tuple of multiplication on the two Hilbert spaces H and H,. As we have pointed
out in section 1.2, this unitary operator is induced by a multiplication operator M, ), where
J(g,.) is a holomorphic function (depends on g) such that K,(z,w) = J(g, z)K(z,w)mtr.

The composition of these two unitaries is f +— My, )f o g and is therefore a unitary. O

The discussion below and the Corollary following it is implicit in [31]. Let g, be an element
of G which maps 0 to z, that is g, - 0 = z. We could then try to define possible kernel functions

K : Q x Q — C™" satisfying the transformation rule (1.3.12) via the requirement
K(g:+0,9:-0) = (J(g2,0)) " K(0,0)(J (92, 0)") ", (1.3.13)

choosing any positive operator K(0,0) on C™ which commutes with Ji(0) for all ¥ € K. Then
the equation (1.3.13) determines the function K unambiguously as long as J(k,0) is unitary for
k € K. Pick g € G such that g-0 = z. Then g = g,k for some k£ € K. Hence

K(g:k-0,g:k-0) = (J(g:k,0))" K(0,0)(J ( ,0))~

= (J(k,0)J(gs, k- 0)) 'K ( (9=, k- 0)* I (k,0)*) "
(J(g2,0)) " (J(k,0))~ 1K(O 0)(J(k,0)*)"(J(g:,0)*) "
(J(g2,0) " K(0,0)(J (g:,0)*) "

= K(g--0,9:-0)

Given the definition (1.3.13), where the choice of K(0,0) = A involves as many parameters as
the number of irreducible representations of the form k ~ J(k,0)~! of the compact group K, one
can polarize (1.3.13) to get K(z,w). In this approach, one has to find a way of determining if K

is non-negative definite, or for that matter, if K(-,w) is holomorphic on all of 2 for each fixed
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but arbitrary w € Q. However, it is evident from the definition (1.3.13) that
K(h-2h-2) = J(hg:-0)""J(g:,0)" AT (g2, 0)" " (J (. gz - 0)") "
= J(h,2) " K(z,2)J(h,2) !
for all h € G. Polarizing this equality, we obtain
K(h-zh-w)=Jh,2) " ' K(z,w)J(h,w) !

which is the identity (1.3.12). It is also clear that the linear span of the set {K(-,w)( : w €
Q, ¢ € C"} is stable under the action (1.3.11) of G:

_ 1 sl
gHJ(g,Z)K(gZ,U))CZK(Z,g ! w)J(g7g 1'(0) Ca
where J(g, g 'w)*~1( is a fixed element of C".

Corollary 1.3.2. If J : G x Q — C™" s a cocycle and g, is an element of G which maps 0 to
z then the kernel K : Q x Q — C™*"™ defined by the requirement

K(g.-0,g.-0) = (J(gz,O))_lK(O, 0)('](92,0)*)_1

is quasi-invariant, that is, it transforms according to (1.3.12).

1.4 The jet construction

Let M be a Hilbert module over the algebra A(f2) for Q a bounded domain in C™. Let My be
the submodule of functions in M vanishing to order (k+1), £ > 0 on some analytic hyper-surface
Z in Q — the zero set of a holomorphic function ¢ in A(Q2). A function f on  is said to vanish
to order k on Z if it can be written f = ¢*+1g for some holomorphic function g. The quotient
module Q@ = M © My, has been characterized in [24]. This was done by a generalization of the
approach in [5] to allow vector-valued kernel Hilbert modules. The basic result in [24] is that Q
can be characterized as such a vector-valued kernel Hilbert space over the algebra A(Q)|z of the
restriction of functions in A(€2) to Z and multiplication by ¢ acts as a nilpotent operator of order
k.

For a fixed integer n > 0, in this realization, M consists of C"-valued holomorphic functions,
and there is an C™*"-valued function K(z,w) on € x Q which is holomorphic in z and anti-

holomorphic in w such that
(1) K(-,w)v is in M for w in 2 and v in C";
(2) (f, K(-,w)v)pm = (f(w),v)cn for fin M, win Q and v in C™; and

(3) AQ)M C M.
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If we assume that M is in the class B1(£2), then it is possible to describe the quotient module
via a jet construction along the normal direction to the hypersurface Z. The details are in
[24]. In this approach, to every positive definite kernel K : Q x Q — C, we associate a kernel
JK = ((a{a’lj K )) f,j:O’ where 0; denotes differentiation along the normal direction to Z. Then we

may equip
k
IM={E:=3 0if@eie Mo T fem),
i=0
where g, . ..,ex_1 are standard unit vectors in C*, with a Hilbert space structure via the kernel

JK. The module action is defined by f — Jf for f € JM, where J is the array —

1 ... ... .. ...0
) 1
J= .
(or~ 1
: 0
ok 1

with 0 </, j < k. The module J M, z which is the restriction of JM to Z is then shown to be
isomorphic to the quotient module M & M.

We illustrate these results by means of an example. Let A(®)(D) be the Hilbert module over
A(D) with reproducing kernel (1 — zw)~%, z,w € D, a > 0. Let A (D?) := A(®)(D) ® A®)(D)

be the Hilbert module which corresponds to the reproducing kernel
B(a’ﬁ)(z,w) = (1 — lel)_a(l — 2227)2)_5,

z = (21,2) € D? and w = (wy,ws) € D% Let Aga’ﬁ)(]D)z) be the subspace of all functions
in A% (D?) which vanish to order 2 on the diagonal A := {(z,2) : z € D} C D x D. The
quotient module Agar’fs) (D?) := AlA(D?) o Aga’ﬁ) (D?) which is realized as J(l)A("ﬁ)(]D)Q)hCS A
was described in [23] using an orthonormal basis for the quotient module J (1)A(“75)(D2)|ms A- This
includes the calculation of the compression of the two operators, My : f— z1f and My : f+— 2of
for f € AP (D?), on the quotient module JMA(*0) (]D)2)‘ms A (block weighted shift operators)
with respect to this orthonormal basis. These are homogeneous operators in the class Bo(ID) which

were first discovered by Wilkins [51].

o0
In [23], an orthonormal basis {ez(,l), ef) } , s constructed in the quotient module A(®*#) (D?)e
p:

Aga’ﬁ ) (D?). It was shown that the matrix

p+1 0
a+B+p

MO —
p B(a+B+1) /
\/ ala+B+p)(a+p+p+l) a+ﬁip+l
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represents the operator M; which is multiplication by z; with respect to the orthonormal basis

{eg), 61(,2) oo Similarly,

MO — \ a+B+p
r— | a(a+B+1) _ \/T
Bla+p+p)(atf+p+l) atpB+p+1

represents the operator My which is multiplication by zo with respect to the orthonormal basis

e;g,l),e,(,z) p—o- Therefore, we see that Qgp ) = %(Ml(p ) M2(p )) is a nilpotent matrix of index 2

while Qgp ) = %(Ml(p ) 4 M2(p )) is a diagonal matrix in case 3 = a. These definitions naturally give

a pair of operators Q; and Qy on the quotient module JM A(@5) (]])2)|res A- Let f be a function
in the bi-disc algebra A(D?) and

flur,ug) = fo(ur) + fi(ui)ug + fo(ur)us + - -

be the Taylor expansion of the function f with respect to the coordinates u; = # and ug =
#1522 Now, the module action for f € A(D?) in the quotient module J™ A(5) (Dz)‘res A is then
given by

f-h = f(Q,Q2) N
= fo(@1)-h+ [1(Q1)Q2 - A
det [fo O hy
- <f1 fo) ‘ <h2> ’
where h = (Z;) e JWA(B) (]1))2)‘rOS A is the unique decomposition obtained from realizing the
quotient module as the direct sum .J) A(®F) (D?)jyes A = (A(a’ﬁ) (Dz)eAgx’ﬁ) (D?)® (Aéa’ﬁ)(]Dﬂ)@
Aga’ﬁ ) (D?)), where Agflﬁ ) (D?), i = 1,2, are the submodules in A(®*#)(ID?) consisting of all functions

vanishing on A to order 1 and 2 respectively.

Following [23] the curvature (@9 for the bundle E(®#) corresponding to the metric B(*A) (u, u),

where u = (u, us) € D? can be calculated as follows:

IC(Q“B)(Ul,UQ) = (1 — \ul + U2’2)_2 @@ + (1 — \ul — u2]2)_2 B —p .
a a 5 B
The restriction of the curvature to the hyper-surface {us = 0} is
a+p a—p
a=f a+p)

where u; € D. Thus we find that if a = 3, then the curvature is of the form 2a/(1 — |u1|?)72I5.

’C(a’ﬁ)(ul,w)mgzo =(1—|u )2 <

Also, the unitary map which is basic to the construction of the quotient module is easy to

describe, namely,

k
hi > dth®e
£=0

res A
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for h € Al®P)(D?). For k = 2, it is enough to describe this map just for the orthonormal basis
{eg), 61(,2) :p >0}

(~lecke) /2

eél)(zl, 29) P 1

—(a 1/2 1
B )
(2) 0
ep (21,22) — aB_(—(a+5+2) 1/2 p—1 (1414)
m( p—1 ) 21

This allows the computation of the 2 x 2 matrix-valued kernel function [23]
Kolzw) = 3 e (2l )" + 3 ef? (2)ef? (w)', 2w € D2
p=0

which restricted to A corresponds to the quotient module. Recall that S(z,w) := (1 — zw)~! is
the Szegd kernel for the unit disc D. We set S"(z) := S(z,2)" = (1 — |2|>)™", 7 > 0. A straight

forward computation shows that

KQ(Z7Z)\reS A

< S(z)a-i-ﬁ ﬁzS(z)a"‘B"‘l >

_ 2
ﬁzs(z)a-i-ﬁ-i-l aﬁJrﬁd‘chP (|z|2S(z)°‘+5+l) +o¢ﬁTaﬁs(Z)a+ﬁ+2

= ((S(Zl)aag@jg(@)ﬁ\res A))i,j:&l
= (JK)(2,2)jres A, z €D?,

where A = {(2,2) € D? : 2 € D}. These calculations give an explicit illustration of one of the

main theorems on quotient modules from [24, Theorem 3.4].



2. HOMOGENEOUS OPERATORS VIA THE JET CONSTRUCTION

Our main results on irreducibility of certain class of homogeneous operators is in Section 2.1. The
kernel B(@P) (2, w) = (1 — z1w1)~*(1 — 20109) P, 2 = (21, 22), w = (w1, w) € D?, determines a
Hilbert module over the function algebra A(D?). We recall the computation of a matrix valued
kernel on the unit disc D using the jet construction for this Hilbert module which consists of
holomorphic functions on the unit disc D taking values in C". The multiplication operator on
this Hilbert space is then shown to be irreducible by checking that all of the coefficients of the
“normalized” matrix valued kernel, obtained from the jet construction, cannot be simultaneously

reducible.

In section 5, we show that the kernel obtained from the jet construction is quasi-invariant and
consequently, the corresponding multiplication operator is homogeneous. This proof involves the
verification of a cocycle identity, which in turn, depends on a beautiful identity involving binomial
coefficients.

Finally, in section 6, we discuss some examples arising from the jet construction applied to a
certain natural family of Hilbert modules over the algebra A(D?). Along the way we construct an
example of an irreducible homogeneous operator in By4(ID) such that the associated representation

is not multiplicity—free.

2.1 lrreducibility

In the section 1.4, we have already pointed out that any Hilbert space H of scalar valued
holomorphic functions on Q@ C C™ with a reproducing kernel B determines a line bundle &
on Q* = {w : w € Q}. The fibre of £ at w € Q is spanned by B(.,w). We can now
construct a rank (n + 1) vector bundle JE over 2*. A holomorphic frame for this bundle is
{06B(.,w) : 0 < £ <n,we N}, and as usual, this frame determines a metric for the bundle which

we denote by JB, where

JB(w,w) = ((3B(.,w),dB(.,w)))" (9504 B(w,w))"

0j=0 = ij=0r W € S

Recall that A(® (D) is the Hilbert space of holomorphic functions on D whose reproducing
kernel is (1 — zw)~®, o > 0 and the multiplication operator on A(®) (D) is denoted by M(®. The
reproducing kernel for the tensor product A (D) @ A®)(D) is

B(aﬂ)(z,w) =(1—zwy) %1 - 2’21172)_57
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for z = (21, 22) € D? and w = (wy,ws) € D?, o, 3 > 0.

Now, identify the Hilbert space A(®)(D)® A ) (D) with the Hilbert space of holomorphic functions
in two variables on the bi-disc D? and call it A(®%)(ID?). One may now consider the subspace
AP (D?) € A (D?) of all functions which vanish to order (n + 1) on the diagonal A :=
{(z,2) € D?: z € D}. Let us denote the ortho-complement A(®*#)(D?) o AlP) (D?) by Aﬁf‘;@(D?).

A concrete realization of the Hilbert space A%a’r@ (]D)2) is possible via the jet construction as
follows. Let JMWA@A(D?) = {Jf = 3" Ohf @ e : f € AP (D?)}, where e;, 0 < i < n,
denotes the standard unit vectors in C"*'. The vector space J™A(*5)(D?) inherits a Hilbert
space structure via the map J. Now, A,({l’ﬁ ) (D?) is realized in the Hilbert space .J (n) A\ (20) (D?) as
the largest subspace of functions in J A(*#)(D?) vanishing on the diagonal A which we denote
by Jén)A(o"ﬁ) (D?). The main theorem of [23, 24] then states that the compression of M @ I to
the orthocomplement of the subspace Jén)A(o"B) (D?) is the multiplication operator on the space
J) plef) (D2)|resA = {f 1 f = Gjresn for some g € J™ AP (D2)}. We will denote this operator
by MT(La’ﬁ ). Moreover, the Hilbert space Aﬁf‘;@(D?) is realized as J() A(e.0) (]])2)|reS A- Here, Q = D2
and B = B(®%)_ The reproducing kernel (JB(O"ﬁ))‘reS A for the Hilbert space J (™ A(@5) (]])2)|res A
can be written down explicitly (cf. [24, page. 376]). We write BYP for (JB(O“B))|res A-

It follows from [24] that h(z) = Bl? (z,2) is a metric for the Hermitian anti-holomorphic
vector bundle JEe5 o over A = {(2,2) : z € D} C D2. However, JEes A 18 a Hermitian holo-
morphic vector bundle over A* = {(z,2) : z € D}, that is, Z is the holomorphic variable in this
description. Thus df = 0 if and only if f is holomorphic on A*. To restore the usual meaning of
0 and 0, we interchange the roles of z and Z in the metric which amounts to replacing h by its
transpose.

As shown in [24], this Hermitian anti-holomorphic vector bundle J& s o defined over the diag-
onal subset A of the bi-disc D? gives rise to a reproducing kernel Hilbert space J(™) A(0) (D2)|ms N

The reproducing kernel for this Hilbert space is B,(La’ﬁ )(z,w) which is obtained by polarizing
BYP (2, 2) = (2.

Lemma 2.1.1. /9, Theorem 5.2] Let o, 3 be two positive real numbers and n > 1 be an integer.
Let A%Q}QQ(DQ) be the ortho-complement of the subspace of Al (D) @ AP (D) consisting of all the
functions vanishing to order (n + 1) on the diagonally embedded unit disc A\ := {(z,z) : z € D}.
The compressions to AS{*;@(D?) of M @D @7 and I @ MB) qgre homogeneous operators with a

common associated representation.

Proof. For each real number a > 0, let A (D) be the Hilbert space completion of the inner
product space spanned by {fx : k € Z*} where the fi’s are mutually orthogonal vectors with

norms given by
I(1+k)

P(a+k)’

(Up to scaling of the norm, this Hilbert space may be identified, via non-tangential boundary

1l = kelr.



2. Homogeneous operators via the jet construction 28

values, with the Hilbert space of analytic functions on D with reproducing kernel (z,w) +— (1 —
2w)~®.) The representation D7 lives on A(®)(ID), and is given (at least on the linear span of the
fx’s) by the formula

DI )f = (¢)**f o, € Mib.

Clearly, the subspace Aﬁf‘;@(D?) is invariant under the Discrete series representation 7 :=

Df ® Dg associated with both the operators M® @ I and I ® M®). Tt is also co-invariant
under these two operators. An application of Proposition 2.4 in [8] completes the proof of the

lemma. O

The subspace AP (D?) conmsists of those functions f € A(®#)(D?) which vanish on A along
with their first n derivatives with respect to z5. As it turns out, the compressions to A%a’r@ (]D)2) =
AP (D)o NG (D?) of M(® ® I is the multiplication operator on the Hilbert space NG (D?)
which we denote MT(LO"B ). An application of [24, Proposition 3.6] shows that the adjoint of the

multiplication operator M s in B,+1(D).

Theorem 2.1.2. The multiplication operator M := Mr(La’ﬁ) 1s irreducible.

The proof of this theorem will be facilitated by a series of lemmas which are proved in the
sequel. We first describe the notion of a normalized kernel which was introduced by Curto-Salinas
and plays a significant role in this thesis.

Let K(z,w) = K(0,0)"Y2K(z,w)K(0,0)"Y/2, so that K(0,0) = I. Also, let K(z,w) =
K(z,0)" K (z,w)K(0,w)"'. This ensures that K(z,0) = I for z € D, that is, K is a nor-
malized kernel (cf . [21, Remark 4.7 (b)]). Each of the kernels K, K and K admit a power series
A 2™ 0P I?(z,w) = >
Zm’ pzodmp ZMwP for z, w € D, respectively. Here the coefficients a,,, and @,,, and a,,, are
in M4y for m, p > 0. In particular, @, = K(0,0)_l/zamp K(O,O)_l/2 = a501/2amp a501/2
m,p > 0. Also, let us write K (z,w)™t =Y binp 2™ wP and K(zw) ' =%

z,w € D. Again, the coefficients b,,, and Zmp are in M, 41 for m, p > 0. However, agg = I and

expansion, say, K(z,w) = Zm7p>0 m.p> 0 mp 2" WP, and K(z,w) =

for

m,np
m,p>0 m,p >0 Omp 2" 0P,

amo = agp = 0 for m, p > 1.
We set K = Bﬁla’ﬁ ) for simplicity of notation. The following Theorem is from [21, Theorem

3.7, Remark 3.8 and Lemma 3.9]. The proof was discussed in section 1.2.

Theorem 2.1.3. The multiplication operators on Hilbert spaces Hi and Hs with reproducing
kernels K1(z,w) and Ka(z,w) respectively, are unitarily equivalent if and only if Ky(z,w) =

\I/(z)Kl(z,w)\IJ(w)tr, where W is an invertible matriz-valued holomorphic function.

The proof of the lemma below appears in [31, Lemma 5.2] and is discussed in section 1.2, see
Remark 1.2.1.

Lemma 2.1.4. The multiplication operator M on the Hilbert space H with reproducing kernel K
is irreducible if and only if there is no non-trivial projection P on C"1 commuting with all the

coefficients in the power series expansion of the normalized kernel K(z,w).
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We will prove irreducibility of M by showing that only operators on C"*! which commutes
with all the coefficients of K(z,w) are scalars. It turns out that the coefficients of zFw for
2 < k < n+1, that is, the coefficients a; for 2 < k < n + 1 are sufficient to reach the desired

conclusion.

k
Lemma 2.1.5. The coefficient of 25w is ay = ngofik_s,l + gy for1 <k<n-+1.
s=1

Proof. Let us denote the coefficient of zF@’ in the power series expansion of K (z,w) by agg for
k,¢ > 0. We see that

k¢
E b0l 50— ibot
s=0 ¢
k k ‘
= E E As00k—s,0—tbor + E bso@k—s.0 + E ay o—tbor + e
s=1t=1 s=1 t=1

as EL\()Q = bo() =1 AlSO,

k K
Gp1 = Y ba0lin—s,0b01 + Y bsolk—s1 + Grobor + Gkt
s=1 s=1
k

k
= ( E bsolr—s,0)bo1 + E bsoUr—s,1 + Qk1
=0 s=1

s00k—s,1 T QK1

[l
w
||M?r .
I,

as 500 = I and coefficient of z* in I?(z,w)_ll?(z,w) = Z’;ZOBsoak_&O =0 for k> 1. O

Now we compute some of the coefficients of K (z,w) which are useful in computing ag;. In
what follows, we will compute only the non-zero entries of the matrices involved, that is, all those

entries which are not specified are assumed to be zero.

Notation 2.1.6. For a positive integer m, let S(cy,...,cm) denote the forward shift on C™F!

with weight sequence (ci,...,¢n), ¢; € C, that is,
S(Cl7 v 7C7TI)(€7p) = cfép-l-lf fOT’ 0 < p7€ <m.

We set Sy, == S(1,...,m). For A in M, ,, we let A(i,j) denote the (i,j)-th entry of the matrix
Aforl <i<p, 1<j<qand A(i,j) is understood to be zero if the ordered pair (i,j) ¢
{1...p} x{1,...q}. For a vector v in CF, let v(i) denote the i-th component of the vector v,
1<i<Ek.

ForzeC, (z)o=1and (), =z(z+1)...(x+n—1) forn > 1.

Lemma 2.1.7. In the notation as above, we have
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ago(k, k) = KN (B)k for 0 <k <n.

!
amo(r,r +m) = (mn—;r)'(ﬂ)mw for0<r<n-—-m,0<m<n,
and ( )
m+r) r
a1 (17 + ) = e (B (0 (L =) (B 4+ 4 7))

for0<r<n—-—m,0<m<n.

Proof. The coeflicient of zPw? in Bl ’5)(2 w) is the same as the coefficient of zPz7 in By 5)(2, z).
Recalling that S(z) = (1 — |2[*)~! we have ago(k, k) = constant term in 9595 (S(z1)*S(22)") |-

Now,

0505 (S(21)°S(22)°) | = 9505 (S(21)*S(22)”) |
= S(21)*(B)k0% (S(22)"T*25) | A
E /e )
= (S(Zl)a(ﬁ)k Z <£> OS—Z(S(Zz)ﬁ‘Hﬂ)@g(z_zk)ﬂA

(=0
k

= (S(z)™(B)k Y (E) (B + k)i_gS(z0) P+ k=L gy <’;> 250,

=0
that is, ago(k, k) = kl(B) for 0 < k < n.
We see that amo(r,r 4+ m) is the coefficient of 2™ in 857705 (S(21)*S(22)”)|. Thus
05795 (S(21)S(22)%) | & = S(21)*(8)r 05" (S(22) 77 25) |

m—+r

= (S(z0)*(®)r Y (") S (22) ") (27))

=0

m-+r
= (S(z1)*(B)~ Z (™Y (B + S (2) P E M ymetr—ty) (2) ).

=0

Therefore, the term containing z™ occurs only when £ = r in the sum above, that is,

m-+r
T

|
>(ﬁ +r)pmr! = (m:@—!r).(ﬂ)m”, for0<r<n-—m,0<m<n.

(7,7 + ) = w)r(

One observes that ap,41,1(r,7 4+ m) is the coefficient of 2™z in 057795 (S(21)*S(22)")|a.
For any real analytic function f on D, for now, let ( f(z, 2))(p 0 denote the coefficient of zPz? in
f(z,z). We have

ams1,1(r,r +m) = (@HT%(S(%)QS(@)B)’A)(m+1,1)

m-+r
m-r o r+(m-+r— m—+r— ™\ r—
— <(ﬁ)r Z( T (B4 1) mar—iS(2) +B+r+(mr—L) ;m+r—L py <£>Z Z)(m+1,1)

£=0
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The terms containing 2™z occurs in the sum above, only when ¢ = r and ¢ = r — 1, that is,

ms1a (v +m) = (Bt ((77) (0 + PomS( e

F(I) B+ PmaaS() Yy

= (@ (R 5 )1t (@t B m )

(m+r)lr

m(ﬂ + T)m+ls(z)a+ﬁ+m+r+lzm+12>)(m+171)
|
— 7(mntlr)'(ﬂ)m+r((a +B+m+r)+ —m: 1(5 +m+r))

(m+r)!

= T Bmer(a+ (4 (B m o)),

for 0 <r <n-—m,0 <m < n, where we have followed the convention: (‘;’) = 0 for a negative

integer ¢. This completes the proof. [l
Lemma 2.1.8. Let ¢ denote aéézgkoaéé2. We have
~D)F(r + k)!
cko(r,r +k) = w(ﬁ)ﬁk for0<r<n—k,0<k<n.

k!
Proof. Recall that

. _ 1/2 1172 1/2 1/2\ m —n
K(z,w) 1 aoé K(z,w) lao(/) = Z (aoé bmnaoé )z w".
m,n>0

Hence gmn = aéé2bmnaéé2 for m,n > 0. By invertibility of agg, we see that Eko and cp uniquely

determine each other for £ > 0. Since @ko)kzo are uniquely determined as the coefficients of

m
power series expansion of IA((z,w)_l, it is enough to prove that Zam_gbgo =0forl1<m<n.
/=0

m
Equivalently, we must show that Z(a&]l/ 2am_g70a801/ 2)(&801/ 2Cgoa801/ 2

£=0

) = 0 which amounts to

m
showing aaol/z(Zam_g,oaaolcm)aaolp =0 for 1 < m < n. It follows from Lemma 2.1.7 that

(=0
m—r,0(r,7 + (M —20)) = (ngﬁ)ﬁ)! (8)m—e+r and ago(r,r) = r1(5),. Therefore

(am—e0agy ) (1,7 + (M — £)) = am_po(r,r + (m — €))agy (r + (m — £),r + (m — £))
m — r)! -
- %wh—ur((m — 4+ ) (B mtir)
. 1
(m =0V

We also have

(am—Z,OQSOICZO)(Tv T+ m)
= (am_g,oagol)(r, r+ (m—4£))cp(r+ (m—2~0),r+ (m—20)+¥)

—1)f(r +m)!
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for 0 </ <m,0<r<n-—m,1 <m <n. Now observe that

(O am-roagsco)(r,r +m) = (r+m)(B)msr Y (72%
(=0 prd (m —£)!¢!
(r+m)! n o(m
= 1 B > (=) /
=0
= 0,
which completes the proof of this lemma. 0

Lemma 2.1.9. The matriz entry ag(n — k + 1,n) is a non-zero real number, for 2 <k <n+1,

n > 1. All other entries of ap1 are zero.

Proof. From Lemma 2.1.5 and Lemma 2.1.8, we know that

k
ag1 = E bsoGr—s,1 + Qg1
s=1
B 12 —1/2y, —1/2 ~1/2 ~1/2 ~1/2
= E(aoo cs0agy " )(agg ' “ak—s100 ") + agg ' “ak1agy’ -
s=1

k
Consequently, aéé2dk1aéé2 = Z csoaaolak_s,l +ap for 1 <k<n+1.
s=1

By Lemma 2.1.7 and Lemma 2.1.8, we have

(csoagol)(r, r+s) = cso(r,r+ s)ao_o1 (r+s,r+s)

_ EDCHD gyt 5 (Brrs)

s!

for0<r<mn—-—s50<s<k1<k<n+1

ap—s1(r,r+ (k—s—1))
(k+r—s—1)!

= (k—s— 1) (5)T—|—k—s—1(a+(1"_&)(54-7‘—1-]43—8—1)),

fork—s—12>0,2<k<n+1. Now,

(csoagyap—s1)(r + 8,7+ 5+ (k—s—1))
= (cs0agy)(r,7 + 8)ap—s1(r+s,7 + 5+ (k—s—1))

- (_311)8 Ezti:gi(ﬁ)r—l—k—l(aﬁ-(lﬁ- l:+3)(6+r+k—1)),

for1<s<k—10<r<n—-k+1,1<k<n-+1. Hence

— S

(csoao_olak_&l)(r +s,r+k—1)

SO )
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Since K(z,w)tr = K(w, 2), it follows that @, = Gpm"* for m,n > 0. Thus, by Lemma 2.1.7,
ao1(r+1,7) = (r+ 1)(B)py1 for 0 <r <n-—1,

(=D*
Kl

(ckoagy ) (ryr + k) = yfor0<r<n-—-k1<k<n+1

and
(—1)*
k!

0<r<n-—k1<k<n+1. Since cgp = agy, we have for 0 <r<n—k,2<k<n+1,

(ckoagola()l)(r, r+k—1)= (ckoaoo Y(rr + k)apr (r + k,r+k—1) = (r + E)B)rsks

(aé(/)2ak1a(1)é2)(r r+k—1) <Z Csoaoo Qk—s,1 T akl) (r,r+k—1)

k-1

= <Z Csoa&]lak—s,l + Ckoa&)lam) (r,r+k—1)

s=0

k— k

B (=1D)F(r + k)!
k!

k+r—1)!
s'(k( s Tl )H'k—l (a
s=0

+ B4+ k- 1)) +

(6)r+k

e
—_
e
—_

= a(B)r4h— 1(]“(;”‘1)1)' (=1 (") + (B)rr ( (s!g (kJ;r) Ge) k('k—i-r)!)

©
Il
o
©
Il
o

Therefore (aoé akla(l](/) )(r,r+k—1) = 0. Now, coo = agp and (ckoaaolam)(n —k+1,n) =0 for
2 <k <n+1. Hence

k

(a(lJ(/)zakla(l)(/) )(n—k+1,n) <Z Cs0a0y Tp—s,1 + akl) (n—k+1,n)
s=1
k-1
= <Z Csoa(;olak—sJ) (n —k+1, n)
s=0
k-1

— (—1)-5(814';62(718—]61-‘1)-1)—1)'(/3) <OZ+ n k‘-‘rl (ﬁ‘i‘ ))

k—1 k—1
n<az s'(k 1 5 + (n+ 1)(64‘”)2 s!((7€1—);)!>

s=0 s

=0
k—1 k
_ < Z (k 1) + (n+1)(ﬁ+n) Z(_l)s(l;) _(=D* (n;—ll)(ﬁ-i-n))

s=0 s=0

fl)

_ k+1 ’I’L+1)'(IB)”+1 for 2 < k < n + 1

Since agg is a diagonal matrix with positive diagonal entries, ax; has the form as stated in the
lemma, for 2 < k<n-+1,n>1. O

Here is a simple lemma which will be useful for us in the sequel.
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Lemma 2.1.10. Let {Ak}z;é be in Mp41 such that Ag(k,n) =X #0 for 0 < k<n-—1,n>1.
If AA, = ALA for some matriz A = ((A(i,j)))?jzo in Mpyyq for 0 <k <n—1, then A is upper
triangular with equal diagonal entries.

Proof. AAk(i,n) = A(i, k)Ar(k,n) = A(i, k) N\, and A A(k,j) = Ak(k,n)A(n,j) = M\A(n,j) for
0 <i,j<n0<k<mn-—1 Puttingi =%k and j = n, we have AAx(k,n) = A(k, k) \; and
ArA(k,n) = A\gA(n,n). By hypothesis we have A(k,k)\r = A\gA(n,n). As A\ # 0, this implies
that A(k,k) = A(n,n) for 0 < k < n — 1, which is same as saying that A has equal diagonal
entries. Now observe that ApA(4,j) = 0 if i # k for 0 < j < n, which implies that Ay A(i,n) =0
if i # k. By hypothesis this is same as AAy(i,n) = A(i, k) = 0 if ¢ # k. This implies A(i, k) =0
ifi # k0 <1i<mn0<k<n-—1, which is a stronger statement than saying A is upper

triangular. O

Lemma 2.1.11. If a matriz A in My+1 commutes with ax; and dy for 2 <k <n+1,n > 1,

then A is a scalar.

Proof. It follows from Lemma 2.1.9 and Lemma 2.1.10 that if A commutes with az; for 2 < k <
n + 1, then A is upper triangular with equal diagonal entries. As the entries of ap, are real,
arp = (ap1)". If A commutes with ayy, for 2 < k < n + 1, then by a similar proof as in Lemma
2.1.10, it follows that A is lower triangular with equal diagonal entries. So, A is both upper

triangular and lower triangular with equal diagonal entries, hence A is a scalar. O

This sequence of Lemmas put together constitutes a proof of Theorem 4.2.

For the operator Ml(a’ﬁ " in the class Bo(ID), we have a proof of irreducibility that avoids the
normalization of the kernel. This proof makes use of the fact that if such an operator is reducible
then each of the direct summands must belong to the class B;(ID). We give a precise formulation
of this phenomenon along with a proof below. Recall that B(®#) is a positive definite kernel
on D? and A(®#)(D?) be the corresponding Hilbert space. We know that the pair (M, My) on

AP (D?) is in B;(D?). The operator Ml(a’ﬁ )" is the adjoint of the multiplication operator on
A(a7ﬁ)

127 (D?) which consists of C2-valued holomorphic function on I and possesses

Hilbert space
the reproducing kernel Bga’ﬁ)(z, w). The operator Ml(a’ﬁ)* is in Bo(D) (cf. [24, Proposition 3.6]).

Proposition 2.1.12. The operator Ml(a’ﬁ)* on Hilbert space A®D) (D) is irreducible.

1 res

Proof. If possible, let Ml(a’ﬁ)* be reducible, that is, Ml(a’ﬁ)* =T ® Ty for some T1,T, € B1(D).
This is the same as saying [18, Proposition 1.18] that the associated bundle E (@B is reducible.
1

A metric on the associated bundle E, (a5~ is given by h(z) = Bia’ﬁ)(z, 2)¥. So, there exists a
1

r h
holomorphic change of frame ¢ : D — GL(2,C) such that w(z)t h(z)y(z) = ( 1(52) h (z ) >
2\ 2

for z € D, where h; and hy are metrics on the associated line bundles E7, and Er, respectively.
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So, 1(2) ' Kn(2)Y(2) =

the bundle EM(a,g
1
Er, for i =1,2 as in [18, pp. 211]. A direct computation shows that

e =28+ 11— 27z 22
ICh(Z)—<O 042842 )(1 |2%)7".

( IChl (Z) 0
0 Kh, (2)

y+ with respect to the metric h and Ky, (2) are the curvatures of the bundles

), where Kp(2) = %(h_I%h)(z) is the curvature of

Thus the matrix ¢ (z) diagonalizes KCp(z) for z € D. It follows that ¢(z) is determined, that
is, the columns of ¥ (z) are eigenvectors of Kp(z) for z € . These are uniquely determined
up to multiplication by non-vanishing scalar valued functions f; and fo on ID. Now one set of

1 s
eigenvectors of Kp(2) is given by {( 0 ) , ( pz

L2 )} and it is clear that there does not exist
— |z

_ﬁg
1—|[zf?

Kr(z) whose entries are holomorphic functions on D). Hence there does not exist any holomorphic
0

any non-vanishing scalar valued function fy on D such that fo(z) ( ) is an eigenvector for

—tr h a,B8)* .
change of frame ¢ : D — GL(2,C) such that Q/Jt hy = ( ! > on . Hence Ml( A7 i

2
irreducible.

Although, the unitary equivalence class of the curvature K7 of an operator T' does not deter-
mine the unitary equivalence class of an operator 7" in B,,(D) for n > 1, here we show that for the

homogeneous operators M,(La’ﬁ ), the eigenvalues of the curvature K )+ determines the unitary

ms
equivalence class of these operators in W,,. Let T and T denote the operators MT(La’ﬁ ) and Mfld’ﬁ )

respectively.

Theorem 2.1.13. The operators T and T are unitarily equivalent if and only if « = & and § = 8.

If « = & and 3 = 3 then clearly T and T are unitarily equivalent. To prove the other
implication, recall that [24, Proposition 3.6] T,T € Bpy1(D). It follows from [18] that if 7,7 €
Bj+1(D) are unitarily equivalent then the curvatures Kr, K of the associated bundles £ and E;
respectively, are unitarily equivalent as matrix-valued real-analytic functions on . In particular,
this implies that Kr(0) and K7(0) are unitarily equivalent . Therefore, we compute K7 (0) and
K7(0). Let Kr denote the curvature of the bundle Er with respect to the metric h(z) := K (z, z)".

Lemma 2.1.14. The curvature I@T(O) at 0 of the bundle Er equals the coefficient of zZ in h, that

is, Kr(0) = aty.

Proof. The curvature of the bundle Ep with respect to the metric h(z) = K(z,2)" is Kr(z) =
(P ZLh)(2). If h(z) = Y mn>0 Bnz™Z", then hp, = at, for m,n > 0. So, hog = I and

Bmo = hon = 0 for m,n > 1. Hence

Kr(0) = dh=1(0)0h(0) + A~1(0)0R(0) = (Dh~1(0))h1g + hgy hay = hi1 = @t
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0

Lemma 2.1.15. (K7(0))(,i) = a, fori =0,...,n— 1 and (K7(0))(n,n) = a+ (n + 1)(8 +n)
forn > 1.

Proof. From Lemma 2.1.14 and Lemma 2.1.5, we know that

]CT(O) = dgrl = (611 +310601)tr.

Thus I@T(O) is the transpose of aaol/z(au + cloaaolam)aaol/2 by Lemma 2.1.8. Now, by Lemma
2.1.7 and Lemma 2.1.8,

010(7‘,7‘ + 1) = _(T + 1)!(5)7“4-1 for 0 S r S n-— 1’
ago(r,r) = r(B)r, ann(r,r) = 71(B), (@ + (r +1)(B + 7)) for 0 <r <n

and (a01)r+1 L=+ DB for 0<r <n—1.
Therefore, (cloaaolam)(r,r) =—(r+1)I(B)p41 for 0 <r <n—1. Also,

(a11 + cloagolagl)(r,r) =arl(B)rpr for 0 <r<n-—1,

and (a11 + Cloaaolam)(n, n) =n!l(B)n(a+ (n+1)(8+n)).

Finally, K7(0) = a%, = @11, as a1 is a diagonal matrix with real entries. In fact, (Kr(0))(i,4) = a,
for i =0,...,n— 1 and (K7(0))(n,n) = a+ (n+ 1)(8 +n). O

We now see that 7' and T are unitarily equivalent implies that a = & and a+ (n+1)(8+n) =
&+ (n+1)(3+n), that is, @ = @ and 8 = 3. This proves Theorem 2.1.13.

2.2 Homogeneity of the operator M,\*"”

Theorem 2.2.1. The multiplication operator M := Mfla’ﬁ) on the Hilbert space whose reproducing

kernel is Bﬁla’ﬁ) 18 homogeneous.

This theorem is a particular case of the Lemma 2.1.1. A proof first appeared in [9, Theorem
5.2.]. We give an alternative proof of this Theorem by showing that that the kernel is quasi-

invariant, that is,

for some cocycle
J : Mob x D — CHDx(4D - e Mob, z, w € D.

First we prove that K(z,z) = J,-1(2)K (¢ (2), 071 (2)) Jp1 (z)t]r and then polarize to obtain the

final result. We begin with a series of lemmas.
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Lemma 2.2.2. Suppose that J : Mob x D — C DX+ 46 o cocycle. Then the following are

equivalent
1. K(z,2) = J,-1(2) K (¢ (2), cp_l(z))Jspﬂ(z)tr for all ¢ € Méb and z € D
2. K(0,0) = J,1(0)K (#71(0), 97 1(0))T,—1(0)" for all ¢ € Méb.

©

Proof. One of the implications is trivial. To prove the other implication, note that

-1 (0)K (071(0), 97 1(0)) J,1(0) " = K(0,0)
= J, (0K (25(0),951(0) T, (0)

for any 1,02 € Mob and z € D. Now pick ¢» € Mob such that ¢¥~1(0) = z and taking ¢; =
¥, 2 = Y in the previous identity we see that

1 (0K (71(0), 71 (0) Ty (0)
= Ty (0K (077 1(0), 07 7 H(0)) T 1y (0)
= Ty (00T, (0 O) K (71 (0), 07 H(0)) T (0 1(0)) Ty (0)

tr

for o € Méb, z € D. Since Jy,-1(0) is invertible, it follows from the equality of first and third

expressions that

K (¢71(0),971(0)) = Jpmr (0 0)K (9~ 07 1(0), 077 1(0)) Ty (971(0))
This is the same as K(z,2) = J,-1(2)K (¢ (2), <,0_1(z)),]@71(z)tr by the choice of 1. The proof

of this lemma is therefore complete. O

Let J,-1(z) = (J,-1(2)") 7!, ¢ €Mbb, z € D, where X' denotes the transpose of the matrix

X. Clearly, (J,-1(2)")"" satisfies the cocycle property if and only if J,-1(z) does and they

uniquely determine each other. It is easy to see that the condition

K(0,0) = J,—1(0)K (¢71(0),71(0)) J,-1(0)

is equivalent to
tr

h(™1(0)) = T,-1(0) h(0)T,-1(0), (2.2.1)
where h(z) is the transpose of K (z,z) as before. It will be useful to define the two functions:
Notation 2.2.3. We set

(i) ¢: Méb x D — C with c(¢™1,2) = (=) (2) and

(ii) p: Méb x D — C with p(p~t,2) = 15‘1_&2

for ¢r, € Mob, t € T, a € D. We point out that the function c is the well-known cocycle for the
group Mab .
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Lemma 2.2.4. With notation as above, we have

(4) Via =¥l ta

(b) s pPta = Pt win

(c) c(p™h 71 (2)e( ™1 (2)) = clp™ 9™, 2) for p,9) €MEb, z €D

(d) pleh v (2)e( ™t 2) + p(" 2) = ple~ 11, 2) for p,9 €Mbb, z € D.

Proof. The proof of (a) is a mere verification. We note that

Csb(Pra(z)) = s 12—_(:1[12' —b . tz—ta—f)—l—dbzi _ s(t+alz) z— ii%g
5,b\Ft,a 1_btlz—_aaz 1 —az — thz + tab 1+tab 1 — Fz—i—tb_z’
1+tab

which is (b). The chain rule gives (c). To prove (d), we first note that for ¢ = ¢y, and ¢ = @4y,

if 7™t = @y o for some (¢',a’) € T x D then

— 5({+ab) a+tb  5(b+ta)
1+tab 1+tab  1+7tab’

It is now easy to verify that
ta 5(1 —|b]?) sb
1+tay, [ (2) (1+sbz)2 1+ sbz
5(b+ta)
1 +7ab+ 5(b+1%a)z

P LT N\ —1
_ 5(b —I-_ta) 14 s(b +_ta)z
1+ tab 1+ tab

= ple ' 2).

ple™ v (2)e(w ™ 2) + (1 2)

Let

for0<i<j<n.

Lemma 2.2.5. J,-1(2) defines a cocycle for the group Mab.

Proof. To say that J,-1(z) satisfies the cocycle property is the same as saying J,-1(z) satisfies

the cocycle property, which is what we will verify. Thus we want to show that

(Ty-1(2)T -1 (71(2))) (4,§) = (Tp-14-1(2)) (4, 5) for 0 < i, j < n.
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We note that J,-1(2) is upper triangular, as the product of two upper triangular matrices is again

upper triangular, it suffices to prove this equality for 0 < i < j < n. Clearly, we have

J
(Tp1(2) Tpmr (0 (2))) (0, 5) =D (Typ=1(2)) (i k) (T =1 (0™ (2))) (R, )
k=1

= w2 el ) (G (8 etw o

2\ (B);

1 k=i B)j (3 -1 -1 =1/ \\j—k

p0 0 () e w0 )
=c -1,,—1 —i—n@ -1 S\ -1

J
J: - J= =1 = J— - —i
I e s (R T O (Ol
—exs_, (B)) (7 (o= =1 2y
O (T)etmut 2

W 2 Fpemt T (2)) T Ep(w 2)F

M-

N

x> .
[

~ ~.

N————
(o)

- M—n ﬁ i (J -1,,— n—j -1,,— j—1
= ) G (el o 2 e Y
= (Tp1p-1(2)) (i, )
for 0 < i < j < n. The penultimate equality follows from Lemma 2.2.4. O

We need the following beautiful identity to prove Lemma (2.2.7). We provide two proofs, the
first one is due to C. Varughese and the second is due to B. Bagchi.

Lemma 2.2.6. For nonnegative integers j > i and 0 < k <1, we have

;Z]f 0+ k) (6 JZr /<;> <€ik> <€ ; k:> (a+5)i—e—r = k! (;) <‘Z}> (a+k)ig

for all a € C.



2. Homogeneous operators via the jet construction 40

Proof. Here is the first proof due to C. Varughese: For any integer i > 1 and a € C\ Z, we have

zk . .
i j (+k N
ko L+ h)! Q+w><e+é><e >m+””4*

- il Ef Tla+j+i—{0—k)

T kT(a+ ) E'z—k: Of TG—L—-k+1)

- kw—wmma+ﬁFﬂ—a—@gﬂ ' ! |
i—k

B ily! Z(_l)e(i—k) /1 gati+i—h—=1( _ gy=a—ig
N k!(i—k)!f‘(a—l—])f‘(l—a—z) 7

B k!(i—k)!F(a+] (1—a—1) Jo
_ ’l'j' /1(1—t —a— zta-i-j 1 Zzlf Z k tl k— Z)dt
Kl(i — k)T (a+ H)T(1 —a—1i) Jo —
ilj! ! a—ieatie -
= 1 — ) aiati=t — )ik
k!(z’—k)!l“(aJrj)F(l—a—i)/o( ) =y
(=1t
— B 1—a—k
i - BOT(a 1T —a—p e til-a=h
B (—1)i=k4151 T(a+)T(1—a—k)
T ORKG—k)T(a+ )1 —a—i) TA+j—Fk)
(—1)7ki14! I'(l—a—k)

El(i—E)I(1—a—1d) (j—Fk)

)
>< > (1—a—k)
'l—a—1)
I'(1-a) (-1)T(1 —a—k)
DED(1 —a —1) I'(1-a)

(
)
> I'(a+1i)sin(a + 47 T COS i
)

7 cos km sin(a + k)7l (a + k)

Since we have an equality involving a polynomial of degree i — k for all a in C \ Z, it follows

that the equality holds for all a € C.

—m(—m—l)-r;-!(—m—n—i-l) _ (_1)11(5(34-;1—1) and

Here is another proof due to B. Bagchi: Since (_nx) =



2. Homogeneous operators via the jet construction 41

(@)p=xz(x+1)--(x+n—-1)= n!(”z_l), it follows that

71—

i(—l)g(“r k‘)!<€ j_ k) (Ei k> <€ ; k) (a+J)i—e—k

1=0
- Ml_k (1) (ko) a+j+i—k—(0-1
T R A k-0 k-0 ‘ ikt
R e — k) Ca—
_ &Y Z( 1) (] k)( 1)2—19—@ a—]
K — k) 2= 0 — k0] ikt

where the equality after the last summation symbol follows from Vandermonde’s identity which

says that for s, € C and n > 0, one hasZ(Z)( k;> _ <3+ > O
k=0 "o "

Lemma 2.2.7. For ¢ € Méb and J,-1(z) as in (2.2.2), we have

tr

h(p71(0)) = T,-1(0) 1(0)T,-1(0).

Proof. Since h(z)tr = h(z), it is enough to show that

tr

A7 H(0)) (i, 5) = (T,-1(0) h(0)T,-1(0)) (4, 5), for 0 <i < j < n.

= (8);8(1)° () (8 + 9)irS(z) 7+ 21 <J ) 47"l

r=0
= <ﬁ>js<z>°"+ﬁ””5j_iZ%r!(i) <j> (84 )i-rS(2) "]227"),

for ¢ < j.
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Clearly, (7,-1(0))(i,5) = c(e™,0)= 5 G (e(p!, 0" Ip(p~",01~" and h(0)(i,i) =
il(6)i, 0 < i <j <n.We have

i
(Tt (©) RO T2 (0) (i) = D (T (0) "h(0)) (0. k) (T2 (0)) (k. )

k=0
= > D (To1(0)7) (@ k) (1(0)) (k, k) (Tp1.(0)) (K, )
k=0 k=0
min(i,5)
= (T-1(0)") (G, k) (h(0)) (K, k) (T2 (0)) (K, 5)
k=0

Now, for 0 <¢ < j <mn,

(G (k) c<so—1,o>”‘ip<eo—1,o>“kk!<ﬁ>k%

(o war

_ 2\ B+2n ( )2(6) ]
= 8™ ,;0 B)e <k><k>
(tS(2)) " (t2) R (1S (2)) T (E2)

s B e

= (B);S(z)>HPHitizi~i ;k! <;> <‘IZ:> %M?(i—/ﬂ

Clearly, to prove the desired equality we have to show that

;)”(;) <‘77,> (B + 7)ierS(2) ™" |22~ Zk'< )( ) g))k|z|2(i—k> (2.23)

for 0 <i<j <n.But
;}T!<;> )i
=2 <Z> (i) B+ )ir Z(—1)£<Z> 22612207
0

/\

)(ﬁﬂ (L [2[2)7 ]2

0

£
(1) (7) ()4 el

Ve T [ o [CES )

<
<.

I
Nng
(]

|

0

S0
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S

(=0 r=
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For 0 < k < — £, the coefficient of |2|20—*) in the left hand side of (2.2.3) is

S+ (4 ) (L) (7 )i

£=0

which is the same as

g(_l)z(kj +0)! (k: i €> <k: i €> (k Z €> (B4 7)i-k—t,

=0
for 0 < /¢ <i—k <i. So, to complete the proof we have to show that

S0 <k: ; é) (k : e) <k : g) I i =R (Z:) <i> ((g))k

(=0
for 0 < k <i,i < j. But this follows from Lemma 2.2.6. O

2.3 The case of the tri-disc D?

Let M be a Hilbert space of holomorphic functions on D? considered as a Hilbert module over
the function algebra A(D3). Assume that M possesses a reproducing kernel K : D? x D3 — C.
For k > 1 let

Tp = {I = (i1,i2) € (ZT)?: |I| = iy +iy < k}
and A := {(z,z,2) : z € D} be the diagonal set in D3. We consider Z) C T, such that (i) there is
at least one I € I, |I| = k and (ii) that the set

Mgy ={feM:d'fi, =0for I € I}}

of functions vanishing to order (k + 1) on the diagonal is a submodule of M. Clearly, Mzg is a
submodule of M if 70 = 7;. As we shall see in the second example Mzg can be a submodule of
M even if I C T

Following [24], it is not hard to see that jet construction of that paper applies to this case as
well. Consequently, as in that paper, it is possible to describe the quotient module explicitly as a
reproducing kernel Hilbert space consisting of CIT- valued holomorphic functions on which the

algebra A(D3) acts by pointwise multiplication, where |Z?| denotes the cardinality of Zp.
Throughout this section, we take M = A(®)(D) ® AP¥)(D) ® AM) (D) and K = B8 where
B (2 w) = (1 — z1101) (1 — 20w2) P (1 — zgw3) ™"
for z = (21,22, 23), w = (w1, wa,w3) € D3, o, 3,7 > 0.
Example 2.3.1. In particular, take k = 1 and Z¥ = Z; = {(0,0),(1,0),(0,1)} and let B%a’ﬁ’w
denote the reproducing kernel for the quotient Hilbert module M & Mz, . We have:
K(z,w) *hK(z,w) O&K(z,w)

Biaﬂ”)(z,w) = | hK(z,w) 0dhK(z,w) 0:0:K(z,w) , z, wED.
03K (z,w) 003K (z,w) 0303K(z,w)

‘resAXA
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7577)(

As in section 2.1, we replace B{a z,w) by its transpose to retain the usual meaning of 9 and

0. Let Ml(a’ﬁv“f) denotes the multiplication operator on the quotient M & Mz,. For simplicity of
tr
notation, we let H(z,w) := BY%KM)

D3 is

. In this notation, recalling that the kernel function K on

K(z,'w) = (1 — lef)l)_a(l — ZQ'[Z)Q)_'B(l — Z3’LZ)3)_A/,

we have

—_

(1—zw)?  Bz(1—zw) vz(1— zw0)
H(z,w) = | Bw(l—zw) B(+pzw)  Pyzw (1 — zw)—0=02,
~yw(1 — zw) Bryzw v(1 + yzw)
for z,weD, «,8,7>0.

Theorem 2.3.2. The adjoint of the multiplication operator Ml(aﬂ,v)* on the Hilbert space of C3
(ev,8,7)

valued holomorphic functions on D with reproducing kernel B} is in B3(D). It is homogeneous
and reducible. Moreover, Ml(a’ﬁ’y) is unitarily equivalent to M{ @ M3 for a pair of irreducible

homogeneous operators M{ and M3 from B1(D) and Bo(D) respectively.

Proof. Although homogeneity of Ml(oc,ﬁw)*

follows along the same line as in [9, Theorem 5.2.],
we give an independent proof using the ideas we have developed in this chapter. Recalling the

notation B%a’ﬁ’y) = H let
H(z,w) = H(0,0)"?H(z,0)" ' H (2, w)H(0,w) " H(0,0)"/2.

Evidently, ]fl(z, 0) = I, that is, H is a normalized kernel at 0. The form of ﬁ(z, w) for z,w € D is

(1—zw)% —(B47)(1—2w)zw
- +(BAY(A+B+Y) 2w —/BA+B+) 2w — A (1+B+) 2w

H(z,w) = —VB(L4+7) 25 1+ 82w N (1—zw)==f==2,
—/A(1+B+7)zw? VByzm 1+y2zw
1 0 0
Let U=| 0 % \/ ﬁ which is unitary on C3. By a direct computation, we see that
0o —. /-2 /B
B+ B+

the equivalent normalized kernel UH (z,w)Utr is equal to the direct sum Hs(z,w) & Hi(z,w),
where Hy(z,w) = (1 — zw)~*#~7=2 and
(1—2w)2% = (B+7) (1—2w) 2w
Hy(z,w) = ( +(B+7)(1+8+7) 22 w? —\/W(1+ﬁ+'y)z2@> (1 — zw)~ P72,
—VBH(14B+7)zw? 1H+(B+)zw

It follows that Ml(a’ﬁ " is unitarily equivalent to a reducible operator by an application of
Theorem 2.1.3, that is, Ml(a’ﬁ " is reducible. If we replace 8 by 3+ in Theorem 2.1.2 and take
n =1, then

Bia’ﬁ—i_’\/)(z,’w) _ ( (1 —2w)? (B+7)z(1 — 2w) > 1- Zw)—a—ﬁ—’y—27
(B+7)w(l —zw) (B+7)(1+ (8+7)zw)
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for z,w € D. We observe that

Hy(z,w) = Bia’ﬁJﬂ/)(z,w) for z,w € D,

where Bia’ﬁ ) is the normalization of B%a’ﬁ ) at 0. The multiplication operator corresponding
to the reproducing kernel Hy, which we denote by My, is unitarily equivalent to Ml(a’ﬁ ) by

Theorem 2.1.3. Hence it is in Bo(D) by [24, Proposition 3.6]. Since both homogeneity and
irreducibility are invariant under unitary equivalence, it follows by an easy application of Theorem
2.1.3, Theorem 2.1.2 and Theorem 2.2.1 that MJ is a irreducible homogeneous operator in
Bo(D). Irreducibility of M5 also follows from Proposition 2.1.12. Let M; be the multiplication
operator on the Hilbert space of scalar valued holomorphic functions with reproducing kernel
H,. Again, M7 is in B1(D). The operator M; is irreducible by [18, corollary 1.19]. Homogeneity
of M7 was first established in [32], see also [51]. An alternativsﬁfroof is obtained when we
atpfty

observe that I' : Méb x D — C, where I',-1(2) = ((¢71)'(2)) 2 s a cocycle such that

Hi(z,w) =T -1(2)H1 (¢ (2), o7 (w))Ty-1(w) for z,w € D, € Mob. Now, we conclude that
Ml(a’ﬁﬁ)*

is homogeneous as it is unitarily equivalent to the direct sum of two homogeneous
*
operators. Also, Ml(a’ﬁ D7 s in B3(D) being the direct sum of two operators from the Cowen-

Douglas class. U

Example 2.3.3. Now, let us take k = 2 and Z9 = {(0,0),(1,0),(0,1),(1,1)}. This example
enables us to produce an irreducible homogeneous operator in By(ID) whose associated repre-
sentation is not multiplicity—free. We denote the reproducing kernel for the quotient module
M 6/\/113 by Béa’ﬁ Y Let Méa’ﬁ " denotes the multiplication operator on the quotient M 6./\/(23.

As in Example 2.3.1, we have:

( : (1—2117): B(1—zw)3z , ’y(l—zﬂ})gzz By(1—zw)222

a8,y . B(l—zw)*w  B(1+Lzw)(1—2zw) Byzw(1—zw) By(14+B2w)(1—2w)z ) —a—B——

B2 (Z’w) - ~y(1—2w)3w Byzw(1—zw)? y(1+yzw)(1—2w)?  By(1+vzw)(1—2w)z (1 ) i
By(1—20)2 02 B (1-+B2)(1— )@ fry(1-+2) (1—20)@ By (1+520)(14+2)

for z,w € D.

M2(a71677)

Theorem 2.3.4. The multiplication operator on the Hilbert space whose reproducing

kernel is Béa’ﬁﬁ) is irreducible for B # .

The proof will consist of a sequence of lemmas. Before going into the proof let us recall:

Notation 2.3.5. For any reproducing kernel K on D, the normalized kernel f((z, w) at 0 is defined
to be the kernel K(0,0)/2K(z,0) " K (z,w)K (0,w) ' K(0,0)"/2. This kernel is characterized by
the property K (2,0) = I and is therefore uniquely determined up to a conjugation by a constant
unitary matriz. Let K(z,w) = ZWZO agezFwt and f((z,w) = ZWZO apez*wt, where agy and gy
are determined by the real analytic functions K and K respectively, ary and axe are in My, for

k,¢ > 0. Since K'(z, w) s a normalized kernel, it follows that agy = I and agy = age = 0 for k, 0 >
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1. Let K(z,w)™! = ZWZO brez" @’ where by is in M, for k,£ > 0. Clearly, K(z,w)* = K(w, z)
for any reproducing kernel K and z,w € D. Therefore, aj, = asu, aj, = ag and by* = by, for

k,¢ >0, where X* denotes the conjugate transpose of the matriz X.

The following lemma is from [21, Theorem 3.7, Remark 3.8 and Lemma 3.9].
Following Lemma 2.1.4, we will prove irreducibility of Méa’ﬁ ) for B # ~ by showing that only

Béavﬁﬂ/)(

operators on C* which commutes with all the coefficients of z,w) for 3 # ~ are scalars.

Lemma 2.3.6. The coefficient of 2¥w is ai = aéé2(zlj:1 bsoak_svlboo)a(l)(/]2 + a501/2ak1a801/2 for
1 <k<3.

Proof. Let us denote the coefficient of z*@! in the power series expansion of K (z,w) is age for
k,¢ > 0. We see that

l
1/2
ajp = aoo Z Z bsoak—s,é—tbOt)aoo

s=0 t=0
k¢ k ¢
1/2 1/2
= ap) (D> asoar—se—tbor + Y _ bsoak—s.eboo + Y _ booctr,e—tbor + booaeboo) agh
s=1t=1 s=1 t=1
Also,
k k
N 1/2 1/2
ag1 = %(/) (Z bsoak—s,0b01 + Z bsoak—s,1b00 + booarobo1 + booamboo)aoé
s=1 s=1
1/2 ~1/2 ~1/2
= ao(/) Z bsok—s,0)bo1 + Z bsoak—s 1500)%(/) + agy / aklaoo/
s=0 s=1
1/2 12, - —1
= aoé Z bsoak—svlbOO)%(/) + agg 2 ak1000 2
s=1
as byy = ao_ol and coefficient of z¥ in K (z,w) 'K (z,w) = z];:o bsoag—s0 = 0 for k > 1. O
Lemma 2.3.7. For the reproducing kernel Béaﬂﬁ),
a +20ﬁ+2 0 0 0 —VB(B+1) —y(y+1) 0
~ o ~ —
ap; = <0 0 at2y+2 0 ) and ag = 8 8 8 \/:’('YJF?
0 0 0 a+2(B+y)+4 O L A
Proof. For any reproducing kernel K with
K(z,w) = Z U 2™ 0" and K (z,w)™1 = Z byn 2" W™
m,n>0 m,n>0
k
the identity K(z,w) 'K (z,w) = I implies that byy = agol and Zbk_mago =0 for k > 1. For
(=0
k =1 we have bjg = _aoo aloaoo We have from Lemma 2.3.6,
~1/2 1
a11 = aoé (bloaooboo)aoé + 0 / auaoo/

= %01/2 (all — a10Qq aOl)a001/2~ (2.3.4)
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For k = 2 we have byg = — (b10a10 + booagg)agol = agol (aloagolalo — agg)aaol. We get from Lemma
2.3.6

_ 1/2 12 —1/2 —1/2
a1 = ag) (broar1boo + baoaoiboo) ag) + agy’ “aziag

—1/2 — — — —1/2
= aOO/ (a21 — a10a001 (a11 — a10a001a01) — agoaoolam)aoo/ . (2.3.5)

From the reproducing kernel Béa’ﬁ ) we see that

o2

100 0 08~ 0 000 By
030 0
ao =100~ 0 |,a10 = 888?1 7“20:<8888>’
000 By 000 O 000 O
a+pB+y 0 0 0
_ 0 Blat+26+7+2) By 0
ain = 0 By Y(a+B4+27+2) 0 )
0 0 0 By(a+2(B+v)+4)
0 Bla+B+v+1) v(a+B+vy+1) 0
ay = 0 0 0 By(a428+v+3)
0 0 0 By(a+B+2y+3) | °
0 0 0 0
0 plat20+2) 0 0
Therefore, a1 —a10agy a1 = <0 B(OHFOBJF ) Y(at27+2) 0 ) , hence from Equation (2.3.4),
0 0 0 By(a+2(B+v)+4)
0 at2prz 0 0
we have a1 = | ¢ ot 0 at2y+2 0 . Now, from Equation (2.3.5), we obtain by a rou-
0 0 0 a+2(8+)+4
0 —VB(B+1) —y7(y+1) 0
tine calculation a9 = | © 0 0 =0+ ] O
0o o0 0 —vB(B+1)
0 0 0 0

Lemma 2.3.8. If P € My commutes with a1, and asy for 8 # -, then P is a scalar matriz.

Proof. We see from Lemma 2.3.7 that if § # + then a1 is a matrix with distinct diagonal entries.
Now, if Pajq; = a11 P then P is a diagonal matrix. If a diagonal matrix P commutes with ag;

then by direct computation it is easy to see that P has to be a scalar matrix. O

Combining all the lemmas above we have a proof of Theorem 2.3.4.

Theorem 2.3.9. The multiplication operator Méa’ﬁm on the Hilbert space whose reproducing

kernel is Béa’ﬁﬁ) is homogeneous .

We write K for Béa’ﬁ ) for simplicity of notation. We give a proof of this Theorem by showing

that that the kernel is quasi-invariant, that is,

K(Z7 w) = Jgofl(Z)K(QD_l(Z% w_l(w))‘]gofl(w)

for some cocycle
J : Mob x D — C*4, » € Méb, z, w € D.

First we prove that K(z,z) = J,-1(2)K (¢ (2), 71 (2)) Jp1 (z)t]r and then polarize to obtain the

final result. It follows from Lemma 2.2.2 that the above equality is same as showing

K(0,0) = J,-1(0)K (¢71(0),¢71(0)) J -1 (0) (2.3.6)
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Let J,-1(z) = (J,-1(2)") "1, ¢ € Méb, z € D, where X' denotes the transpose of the matrix X.
Clearly, (J,-1(2)")~" satisfies the cocycle property if and only if J,-1(z) does and they uniquely

determine each other. It is easy to see that the condition (2.3.6) is equivalent to

tr

h(e71(0)) = T,-1(0) 1(0)T,-1(0), (2.3.7)

where h(z) is the transpose of K(z, z).
Recalling Notaton 2.2.3 let

0 (e ,2) 0 p(p~t,2)

0 0 c(e™1,2) Bp(e~1,2)
0 0 0 1

Tp-1(2) =

c(p™1,2)? Bele™,2)p(™1,2) velp,2)p(e™1,2) Byplet,2)
< >c( T (2.3.8)

Lemma 2.3.10. J,-1(2) defines a cocycle for the group Mob.

Proof. To say that J,-1(z) satisfies the cocycle property is the same as saying J,-1(z) satisfies
the cocycle property, which we will verify. Thus we want to show that Jy-1(2)J,-1 (¥ (2)) =
Jp-14-1(2). This follows from direct computation and Lemma 2.2.4(d). O

Lemma 2.3.11. For p € M6b and J,-1(2) as in (2.3.8),

tr

h(71(0)) = T,-1(0) h(0)T,-1(0).
Proof. Taking ¢ = ¢, t € T and z € DD, we get the result by an easy direct computation. O

Thus we have a proof of Theorem 2.3.9.

We briefly describe the class of homogeneous operators which appear in [31].

Notation 2.3.12. Let A be a real number and m be a positive integer such that 2\ —m > 0. For
brevity, we will write 2\; = 2X\ —m + 25, 0 < j < m. Let

02 (0—j)! .
(j) (2(/\1')]‘3)7]- for0<j<l<m

LV, §) =
W(&) { 0 otherwise.
and B = diag (do,d1,...,dn). Now, for = (po,- ., pm)™ with pg = 1 and py, > 0 for £ =

1,...,m, let

BMH (2, w) = (1 — 20) 2™ D(2w) exp(w0S,,)B exp(zSE,) D (zw), (2.3.9)

4 2 .
O\ (0= 5)!
where B is a positive diagonal matriz with B(¢,£) = dy = E <j> ((2)\7)‘7),113 for 0 <4 < m,
jZO .7 Z_j

D(zw) = diag((1 — zw)™ Y)7,) and Sy, is the forward shift on C™1 with weight sequence
(1,...,m). Thus, LA)u? = d for p? := (ud, u3,..., u2)" and d = (dy,dy, . .., dy)".
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The kernel BM#) is positive definite. Indeed, it is the reproducing kernel for the Hilbert
space A (D) of C™*! - valued holomorphic functions on D described in [31]. Let M)
denote the multiplication operator on the Hilbert space A\H) (D). The Hermitian holomorphic
vector bundle associated with BA#) is denoted by EX#). In [31], it is shown that MM is an
irreducible homogeneous operator and M*#™ is in Bpn+1(D).

It will be convenient to let KA#) denote the curvature K/ (z) = %(h’_I%h’)(z), where
B (z) = BOW (2, 2)* for z in D.

Theorem 2.3.13. The operator Méa’ﬁ’y) described here does not belong to the class discussed in

/31].

The proof of this Theorem will be completed after proving a sequence of Lemmas.

Lemma 2.3.14. trace KM#)(0) > m(m + 1).

Proof. We know that the curvature of the determinant bundle is same as the trace of the curvature
of the given bundle. So, Kqet n(2) = trace KM (2) for b/ (z) = BOHW (2, 2), 2 € D. Now,

det B (2) = (1 — |22) A=+ D+2x 202 Qo B ot B x (1 — [2]2) =207+,

Therefore, Kaet n(2) = 2(m + 1)A(1 — |z|?)~2, so the trace KM (0) = 2(m + 1)\ > m(m + 1), as
2)\ > m by construction. O

Let K(®#7) denote the curvature Kp(z) = %(h_l%h) (z), where h(z) = Bg)"ﬁ’ﬁ/)(z,z)tr for
z € D.

Lemma 2.3.15. trace K(*#7)(0) = 4(a+ 8+~ +2).

tr

Proof. From Lemma 2.3.11, it follows that h((pt_zl(O)) = ‘7%0;1(0) h(O)jw;I(O) forze Dandt e T.

From 2.2.2, we get det h(z) = (1 — |z[2)8*(~ CEF-248 et h(0) = 327%(1 — |2|?)~4e+B+1+2) S0,
KB (2) = 4(a + B+~ +2)(1 — |2|?)~2. Hence, trace K5 (0) = 4(a + B+~ + 2). O

For m = 3 in Lemma 2.3.14, we have K*#)(0) > 12. Whereas we see that from Lemma 2.3.15
that one can choose «, 8,y > 0 such that trace fc(eeB:7) (0) < 12. Hence, we have proved Theorem
2.3.13.

Theorem 2.3.16. The multiplication operator on the Hilbert space whose reproducing kernel is
Béa’ﬁ’ﬁf) is reducible for B =~. That is, Mz(a’ﬁ’w 1s unitarily equivalent to My & Moy, where My
is unitarily equivalent to MM for 2\ = a+ 26+ 2 and p = (1, py, pu2)¥, p1, pi2 > 0 and My

is a homogeneous operator in B1(D).
Proof. One observes that

B (z,w) = (1 — 2w) = P774D, (200) exp(@S3,,) BP0, 0) exp (257, ) Dy (210)
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for z,w € D, where

Let

1 0 0
US55 = ST and WBS*P(0,0)0 = (8 Fa I ) .
00

Observing that WS 3 = SV implies W exp(wSg,5) = exp(wS)¥ and exp(zSj 5)U* = U* exp(2S”)
we get
OB (2 w) 0 = Ki(z,0) @ Ky(z,w)

where

o oo
M)

Ki(z,w) = (1 — 2@) " 274D (2w@) exp(wS) D exp(25*) D(zw) for S = (2%

w oo
o O

o=

0 0
28 0
'3

and
Ko(z,w) = 26(1 — zw) "~ 272,

10 0
Taking & = (0 2 ? >, noting that ®S = Sy®, det ® # 0 and arguing as before we get
00 2

where B = .
For 2\ = a + 206 + 2 we note that the vector

1 0 0 1
-1
E=L\) " 'd= — a9 1 0 (1/%)
2 __ 4 1 1/62
(a+2B8+1) (a+28+2) a+26+2

is of the form (1,&1,&)" for &,& > 0. Therefore, for A = 5 +08+1and p? = € we have
OK(z,w)®* = BM® . This completes the proof. O



3. CONSTRUCTION OF NEW HOMOGENEOUS OPERATORS SIMILAR TO THE
GENERALIZED WILKINS” OPERATORS

3.1 The generalized Wilkins' operators

Although, it is not clear at the outset that there exists («, 3) and (A, ) such that the two homo-
geneous operators M,E;Ll B and MO®) are unitarily equivalent. We calculate those A and p (for a
fixed m) as a function of «, 3 explicitly for which M,E;Ll P is unitarily equivalent to M) We show
in this chapter that the set of homogeneous operators that appear from the first jet construction,
is a small subset of those appearing in the second one. The multiplication operators constructed
via the first jet construction are known as the “Generalized Wilkins’ operators”[9]. However,
there is an easy modification of the first jet construction that allows us to construct the entire

family of homogeneous operators which were first exhibited in [31].

Let us consider the function G: D x D — M, 11 defined by
G(z,w) = (1 — zw) "2 P=2mD(zw) exp(wS5)A exp(255)D(2w)
for Sg = S((r(B+r—1)",), A = diag((r!(8),)™,) and D(zw) = diag((1 — zw)™ 4)7,).
Proposition 3.1.1. In the above notations one has

BY%) — G onD x D.

—_—tr
The proof of this Proposition will be facilitated by a sequence of lemmas. Since By(,? ) (z,w) =

Bﬁgz,ﬁ) (w, 2) and G(z,w)tr = G(w, z) for (z,w) € D x D it suffices to show that
(B (2,0)) (i, ) = (G(2,w))(i,5) for 0 < i < j < m.

Lemma 3.1.2. In the above notations we have

Glev)lid) = (311 - z)--i333-1 3" (1) (1) + ey

k=0

for0<i<j<m.

Proof. Only the nonzero entries of the matrices are mentioned throughout this proof except for

the last computation. One can easily see that Slg(z’, i—k)=(G0—k+1)(B+i—k)g for 0 <i<m,
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wk Sk
k

k > 1. Clearly, Sg”l = 0. So, exp(wSg) = Z
k=0

i—k+ 1)

(exp(wSp))(i,i — k) = ( i (B+i— k) = <;> (B+i—k)pa® for 0 <k <i<m.

So, we have (exp(@Sp))(i,5) = (;)(8 + j)i—j@' 7 and (exp(255))(j,i) = (5)(B + j)i—jz" for
0<j<i<m. Now,
min(z,5)

(exp(wSp)A exp(255))(i,5) = Y (exp(wSs)A) (i, k)( exp(z55)(k. )
k=0

= Z < > B+ k)i ik (B)k(B + k) j_g2? '

-t E)

for 0 < i < j < m. Since D(zw) is a diagonal matrix one can easily see that G(z,w) has the

desired expression. O

Lemma 3.1.3. We have

B ey) (1) = (A1 — )T+ 3 (1) (1) + mioatemr,

k=0

for0<j<i<m.

Proof.
(Bﬁ,‘j"ﬁ)(z,w))( 2( 1 —zwy)~ (1—z2w2)‘5)ym&

= (8);(1 = zyw1)" "0 ,i (1 — 202) P79 23) | axa

= (501 = svmn) = Y ()0 ((1 = s P L (Dl
r=0

= 1= 20 3 ()5 +)imn 1 = maany P 1)
r=0

= (8);(1 — 2w) @A77y "yl <;> (‘; > (B4 5)i—r(1 = 2z0)" (z0)" ",

r=0
for i < j.

Clearly, to prove the desired equality we have to show that

ZT'(Z) <r>(ﬁ + 5)i—r (1 — 2w)"( Zk'( >< ) (B4 k)iek(zw)™F  (3.1.1)

r=0
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for 0 <i<j <n. Now
J —\i—7
5 ()C)oreis- ey
— rl( >< > B+ )i TZ( 1)5<Z>(zw)é(zm)"‘7”
r=0 =0
= Z Z ( ) ( ) () (B + Dimr (z0) =
r)\/ o
=0 r=¢
Ll i i\ [r+t
— o | -\ —\i—T
oo, ) (L) () ety
£=0 r=0
For 0 < k < i — £, the coefficient of (2w)'~* in the left hand side of (3.1.1) is
~ e jo\(k+e N
which is the same as
i— k . .
7 j k+7¢ N
620 k—i_g <k+€> <k+€>< g )(/8+j)2—k—£7
for 0 < ¢ < k < 1. So, to complete the proof we have to show that
< k : i\ (k+¢ i\ (j
. — k! .
for 0 < k < i < j. But this follows from Lemma 2.2.6. Hence the proof is complete. O

Proof of Proposition 3.1.1: Combining Lemma 3.1.2 and Lemma 3.1.3, we have a proof of Propo-

sition 3.1.1.

Recall Notation 2.3.12: For 2A =a+ 8+ m, o, 3 > 0,m > 1, one has
() oz for0=isism
0 otherwise.

LN, 5) = {

Lemma 3.1.4. In the above notation one has

i+ (1) 2 (i—j)! o .
(—1)Z ](;) m fOfOS]SZSm,
0 otherwise.

LN)™Y(i,4) = {

0

Proof. Since L()) is a lower-triangular matrix with 1 as diagonal entries, it is enough to verify

that »  L(A)(i,k)L(A) "' (k,j) = 0 for 0 < j <i <m.
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o4

So writing o 4+ 3 = a we have

ZL(A)(Z’, k)YLN) (K, )

k=j
i—j -\ 2 2 . :
_ e ([ (1 —k)!(k —j)!
= 20 (o) 0) aro o
_ 7 ( 1)k+] VTE (Z')2 . 1 .
P N2 =K (k= ) (a+2k)i—gla+k+j—1)k;

i i—j
— E k+2j Z_]) 1
2(0—13j 'kzo (i—J—Fk)K (a+2j+2k)i—j_rla+2) +k—1)

k

Il
~.
N/
no
~
|
<
—
|
—_
SN—
B
Ry

' i—j> (a+ 27)23i—j)
(112 (@ — J)Na + 25)23i—j) o (

- (_1)k<z‘ —j> (a+ 25)2i—))
k (a—|—2j+2k:),-_j_k(a—|—2j+k‘—1)k

(—1)* (Z ;‘7> (a+2j)p—1(a+2j+2k—1)(a+i+j+k)iji
+la+i+7)i—j+ (=) (a+27)i—j—1(a+2i — 1)

i—j—1 i
= Y ()@ 2tk i R

(_1),%(2' -/ > (a4 2)kmr(a+i+ 5+ K)isjs

Ha+itg)img+ (=1 (a+25)ij + (=177 (i — j)(a + 20)i—j-1

=] . .
= (—1)k<z_j> (a+2j)k(a+z+j+k)2_j_k

i—j .
11— . . .
+ - k ( >(a+2])k_1(a+z+j+k)i_j_k
1
i—1

k=
= (z‘—j)' ( a+2j><c;t§z_—1>_(i_j)!i—ﬂ

2 (W)
() e ()

a + 2j + 2/<:)Z-_j_k(a + 2j + k — 1)k

The last equality follows from the Vandermonde’s identity and the conclusion follows from the

fact that (:f) = (n T) for 0 < r < n. Hence the verification is complete.

0
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Lemma 3.1.5. For o, 3 >0 and n > 0, we have

n n 1 - n'(a)n
1)"n! kzzo(‘l)k (k;) (@ B+n+k—Dur@r  (@+B+n—1)auB)n

Proof. Since (z)n, = (—=1)"n!(7F) = n!(“"_l) we have

n

o n 1
(=1)"n! k:o(_l)k<k> (a+B+n+k—1nrB

_ (=1)"n! (™) (@t B+n—1)a(B)
RCETETESINIP D W=
(—=1)"n!

— = _1\E n o n—
T @+ B+n-1,0)n kzzo( 1 <k>( + 8+ 1= DB + k)nt

e ﬁ(;i)ini)n(g)n é(_l)k (Z) (1) k! <—(a + BkJr n— 1)) (n— k) (5 :lrf ; 1)

wéil_f; r (T

I
M

k=0

_ (=1)"(n})? o
B (a+5+n—1)n <n>
nl(a),
(a+B4+n—1)u(8)n

The penultimate equality follows from the Vandermonde’s identity. O
Corollary 3.1.6. For 2\ =a+ [+ m and d(r) = (E;T for0<r<m,a, B3>0, m>1, one has
(L) Yd)(r) = ni(@)n for0<r<m

(a+8+n—1),(0)n - =
Proof. Follows easily from Lemma 3.1.4 and Lemma 3.1.5. O

Proposition 3.1.7. For

nl(a),
a+B+n—1)u(B)n’

2X=a+8+m anduo(n):\/(

0<n<m, afB>0,m>1, we have B d* = BO#) op D x D for & = diag((3-)m)-

Proof. Tt follows from Corollary 3.1.6 that BGA#0)(0,0) = B = diag(((T; )io)- One observes that
OS3 =Sy, P = S(((mﬁ);”:l) and for A = diag((r!(8),)/L,), PAP* = dlag((( B ) = B. It
follows that ®exp(wSg) = exp(wSy,)® and exp(z55)®@* = @*exp(zS;,). Hence @GO* = B #o)
on D x D. Since Bﬁ,? ) G on D x D one has the desired conclusion. O

The proof of the following Theorem is a consequence of the Proposition 3.1.7 and Theorem 2.1.3.



3. Construction of new homogeneous operators similar to the generalized Wilkins’ operators 56

Theorem 3.1.8. The operator Mr(f’ﬁ) is unitarily equivalent to M) if 2X = o+ B+ m and

|
po(n) = %]‘brogngm, a,3>0,m>1.

Remark 3.1.9. Recall that W,, = {Mf(,f"ﬁ) s, 8> 0} form > 1. The inclusion
Wi C{MO 22X > m o= (1,1, .., o) > 0}

is proper unless m = 1. If m = 1, then the two sets coincide up to unitary equivalence. Moreover,
Wi is same as the complete list of irreducible homogeneous operators in Bo(D) first discovered by
Wilkins [51].

Remark 3.1.10. One knows from Theorem 3.1.8 that the adjoint of Mr(;f"ﬁ) is a member of the
class of homogeneous operators described in [31] for 2A = a+ +m and p, = %,
0 <n < m. Putting 2\ = a+ 3+ m one gets from [31] that Mr(,f"ﬁ) acts on a Hilbert space which
s isomorphic to EB;-”:OA(O‘Jrﬁ”j)(D). Consequently, the representation U, associated with Mr(,f"ﬁ)
acts on @TZOA(O‘Jrﬁ”j) (D).

3.2 The relationship between the two jet constructions

Let H be a Hilbert space and {e; } be an orthonormal basis for H. We will let ¢H denote the Hilbert
space whose orthonormal basis is {ce;} for ¢ > 0. This is same as saying (f, g), = c2(f,9) oy for
f,9 € H. The linear map ¢: ¢cH — H, ¢ : f — f has the matrix representation ¢l with respect to
the orthonormal bases {ce;} and {e;} respectively.

Now, let H be the Hilbert space ®ILoH;, an orthogonal direct sum of the Hilbert spaces H;
having reproducing kernel K;, 0 < j < m. Let H, be the Hilbert space ®LoniH;j- The inner
product (, )y of the Hilbert space H,, is given by

m m m
-2
O Fi > gin=>_m (f:95); for fj. g5 € My, mj >0,
j=0  j=0 §=0
where (,); is the inner product for the Hilbert space H; , 0 < j < m. Clearly, the reproducing
m m
kernels for ‘H and H,, are Z K; and Z UJQ-K ;j respectively.
j=0 §=0

The next Proposition is now immediate.

Proposition 3.2.1. The multiplication operators on the Hilbert spaces H and H,, are similar via

the map v : Hy — 'H.

We know from Theorem [31] that the operator M := M®™#) is homogeneous and irreducible.
It is natural to ask if there exists an invertible operator L such that L~'M L is homogeneous. The
irreducibility of the operator M ensures (cf. [10, Theorem 2.2]) the existence of a unique projective

unitary representation U, of Méb such that p(M) = U, MU, for all p € Méb. Clearly,

@(L'ML) = L 'o(M)L = L™'U;'MU,L, ¢ € Méb .
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It follows that L~'ML is homogeneous if LU, = U,L. Since U, is a multiplicity free repre-
sentation acting on the direct sum EB;“:OA(”‘_"LHJ)(]D)) of Hilbert spaces it follows by a simple
application of Schur’s Lemma that L = ®Locilj, where ¢; € C and I; is the identity on the
Hilbert space A@A—m+2i )(]D)), 0 < j <m. It is clear that L can be thought of as the linear map
£ f from @ c; APATH2)(D) to @I AR (D),

Let us recall the following from [31]. Let Hol(ID, C*) be the space of all holomorphic functions
taking values in C*, k € N. Let A be a real number and m be a positive integer satisfying
2\ —m > 0. For brevity, we will write 2A\; = 2XA —m + 25, 0 < j < m.

For each j, 0 < j < m, define the operator I'; : ACY) (D) — Hol(D, C™ 1) by the formula
B w et AR
0 if0<?l<y,

(L 1)(6) =

for f € AGY)(D), 0 < j < m, where (), := z(x +1) -+ (z +n — 1) is the Pochhammer symbol.
Here (T;f)(£) denotes the f-th component of the function I';f and f(~7) denotes the (£ — j)-th
derivative of the holomorphic function f.

We denote the range of I'; by A(?%)(D) and transfer to it the inner product of A(2%) (D), that
is, one sets (I, f,T;9) = (f,g) for f,g € APY)(D). The Hilbert space A})(D) is a reproducing
kernel space because the point evaluation f +— (I';f)(w) are continuous for each w € D. Let
B(%) denote the reproducing kernel for the Hilbert space A(?%)(D). Let

AMH(D) = &7 o ACY (D), 1= pg, pia, -+ s pim > 0.

The Hilbert space AXM#) (D) has the reproducing kernel BAG#) = Z;’n:o ,u?B(”‘J' ). The operator
MOH) is the multiplication operator on the Hilbert space AM# (D). The following Theorem is

then obvious.

Theorem 3.2.2. Then operator L*MMH L acting on AMH) (]D))77 is homogeneous , where L =

®jLonjlj. Moreover, the representation associated with MO and LIMOWL is the same.

Corollary 3.2.3. For2A =a+ 8+ m and p = (,Uj)}ﬂ:o; 1 = po, fb1s- -+ b > 0 arbitrary, the
)

operator MM s similar to MTS? B,

Proof. From Theorem 3.1.8 and Remark 3.1.10, one gets the desired conclusion by taking

for 0 <j <mand L = &7 gn;1;

" =uj\/(a+ﬂtj_,1)j(mj
JHa);

from the discussion that precedes Proposition 3.2.1. That is, for 2\ = a + § + m we have
LML = MO, m

Corollary 3.2.4. The operators MMB) and MO #) are similar if and only if X = X.
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/

Proof. “if” part: If A = X then taking n; = Z—j for 0 < j < m and L = @JLyn;1;, one has
LAMORW L = MX#) a5 in Corollary 3.2.3.

“only if” part: One knows from Theorem 3.1.8 and Remark 3.1.10 that M M#0) is unitarily
equivalent to MEP) i 2N = o + B+ m and py(j) = % for 0 < j < m. Also, for
IAX=a+B+mand 1= pg, p1,...,um > 0 arbitrary, M*# is similar to M*#0) by Corollary
3.2.3. Hence Mr(,ff’ﬁ) is similar to M#) if 2X = a+ S+ m. Similarly, Mr(,?/’ﬁl) is similar to M\ -#)
if 2\ = o/ + ' + m. So, to arrive at the desired conclusion it is enough to show the following:
The similarity of MEP and M) implies that a + 3 = o/ + 3.

Let T be a bounded invertible such that T_lMy(f’ﬁ)T = My(,f/’ﬁl). We know that My(f’ﬁ) is the
compression of M; ® I to A7) (D?) o AP )(]D)z) = @, M;, where M; denotes multiplication by
z1 and M; = Aff’f’(D?) S Aga’ﬁ) (D?) for 1 < i <m, Mg =A@ (D?) o A(()a’ﬁ) (D?). We observe
that Mr(,f“ﬁ)*./\/li C M; for 0 < ¢ < m. Similarly, Mr(,f‘/’ﬁ/)*./\/(; C M for 0 < i < m. Moreover,
TM; C M, for 0 < i < m. So, we have that the operators M,(,f"ﬁ)*

|rcs

MO and Mé’? “6 )|rcs MO
are similar. Therefore, the multiplication operators on the Hilbert spaces having reproducing
kernels ((1 — z1w1) (1 — 20w2) ") and ((1 — 2101) 7Y (1 — 29109) ™)

similar. These are weighted shift operators which are similar if and only if « + 8 =o' + /3.

are

‘zlzzz,wlzwz |21:Z2’w1:w2

0

It is clear from Corollary 3.2.3 that M,(ﬁx ) is similar to MOH if 2\ = 2o + m. The family
{M()"“) :2XA =2a+m,a > 0and 1 = pg, p1,. .., pm > 0} is clearly seen to be the same as the
family {MM#) 2 2\ > m and 1 = pg, i1, - - ., ftan > 0}

So, we have the following Theorem.

Theorem 3.2.5. We have MWMH = L‘le,f’a)L if 2X = 200+ m, where L = &7Ln;1; for
204+7—1); i .

N = oti—1);(B); Jrj?!(a))]?(ﬁ)ﬂ for 0 <j < m.

Remark 3.2.6. Recall that MTS? ) is the multiplication operator on the Hilbert space whose

reproducing kernel is Bﬁ,‘f ) and BN is the reproducing kernel for the Hilbert space AN) (D) =

T;(ACY)(D)) for 2\, = 2A —m +24,0 < j < m. Putting together Proposition 3.1.7 and Theorem

3.1.8 we see that

@Br(rfifﬁ)q)* — Zuo(j)2B(a+ﬁ+2j)’ where p(j) = \/( J'(a)] - 0<j<m. (3.2.2)

2. a+ i+ - D;0);

To prove Theorem 3.2.5 one may put a = 3 and replace the specific py of Theorem 3.1.8 by an

arbitrary p. By Corollary 3.2.3, we see that a simple similarity will do it. This produces all the
MR of [31].

Remark 3.2.7. The homogeneous operator M) acts on the Hilbert space A(@F) (D%@Aﬁff P )(]D)z)

with associated representation D} ® D;\res(A(aﬂ)(]D)z)@A(a’m(IDJQ)) [9]. The operator M*Fo) acts on
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the Hilbert space EB;-”:OA(Q)‘_’”*ZJ )(D) with associated representation EB;-”:OD;/\_m +2;- From The-
orem 3.1.8, one knows that M,(f B s unitarily equivalent to M (Ato) if 2X = o+ S 4+ m and
Ho(n) = %, 0 <n < m. Since the homogeneous operators Mr(,f"ﬁ) and M) are
both irreducible the representations associated with them are unique up to equivalence. Moreover,
M,(ﬁx B and MO#0) are unitarily equivalent for proper choice of A, p, as functions of o and f.

Hence it follows that the representations associated with them are same up to equivalence. There-

7/3
fore, one has D} ®DE|ros(A(aﬁ>(D2)eA,(ﬁ’ﬁ)(1D>2)) Sa @S-”ZOD;FJFBJFZJ.. Now, the subspaces Al )(]D)2)
decrease to {0} as m — oo. Therefore, DI ® DE Sa EB]-:OD;ZFﬁ +2;- This is the Clebsh-Gordan

formula. The identification of A©@#) & A )(]D)2) with the direct sum EB;-”:OA@’\_m”j)(]D) is a
special case of [46, Theorem 3.3, page 179], although we arrive at the same conclusion via a

different route.



4. ON A QUESTION OF COWEN AND DOUGLAS

For an operator T in the class B, (), introduced by Cowen and Douglas in [18], the simultaneous
unitary equivalence class of the curvature and the covariant derivatives up to a certain order
of the corresponding bundle E7 determine the unitary equivalence class of the operator 1. In
a subsequent paper [20], the authors ask if the simultaneous unitary equivalence class of the
curvature and these covariant derivatives are necessary to determine the unitary equivalence class
of the operator T' € B, (). Although, they have shown in [20] that the curvature and all its
covariant derivatives in the list of [18, 20] are necessary to determine the equivalence class of a
Hermitian holomorphic vector bundle bundle E but those examples do not necessarily correspond
an operator T' € B,,(2) such that E = Ep. Here we show that some of the covariant derivatives
are necessary to determine the unitary equivalence class of the operator T' € B,,(€2). Our examples
consist of homogeneous operators in B, (D). For homogeneous operators, the simultaneous unitary
equivalence class of the curvature and all its covariant derivatives at any point w in the unit disc D
are determined from the simultaneous unitary equivalence class at 0. This shows that it is enough
to calculate all the invariants and compare them at just one point, say 0. These calculations are
then carried out in number of examples. One of our main results is that the curvature along
with its covariant derivative of order (0,1) at 0 determines the equivalence class  of generic
homogeneous Hermitian holomorphic vector bundles associated with the homogeneous operators
described in [31]. This result is true for all (generic or not) rank 3 bundles associated with the

homogeneous operators discussed in [31].

4.1 Examples from the Jet Construction

Let S(z,w) = (1 — 2w)~! be the Siego kernel on the unit disc, the Hilbert space correspond-
ing to the non-negative definite kernel S%(z,w) = (1 — zw)~® be A®(D) for a > 0. We let
M@ A(D) — A@(D) denote the multiplication operator, that is, (M f)(z) = zf(2),
f € A®D),z € D. Following the jet construction of [24] (see also [46]), we construct a
Hilbert space J(k)A(a’ﬁ)(D2)‘res A (o, 8 > 0,k € N) starting from the kernel Hilbert space
ACA(D?) = A (D) @ AB®(D) with reproducing kernel B (z w) = S%(z1,w;)S? (22, ws),
z = (21,2),w = (w1, wy) € D?. The Hilbert space J® A5 (]])2)|res A consists of CFTlvalued

holomorphic functions defined on the open unit disc ). It turns out that the reproducing ker-
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nel B,ga’ﬁ) for Jk) A5 (D?)),.., 1s

Bz w) = (04,05,B (2, 0)) (4.1.)

Ofiyjfk\res AxA’

where A := {(2,2) : z € D} C D?. The multiplication operator on .J ) A(e0) (D?)jyes A is denoted
(2,8)
by M, "

Example 4.1.1. Consider the operators M := M™ @ M® and M’ := Ml(a’ﬁ) for A, u, a, 6 > 0.
Wilkins [51] has shown that the operator M’ is in Bo(ID) and that it is irreducible. This operator
is also homogeneous , that is, ¢(M') is unitarily equivalent to M’ for all bi-holomorphic auto-
morphisms ¢ of the open unit disc I (cf. [9]). It is easy to see that the operators M®) and M®)
are both homogeneous and the adjoint of these operators are in the class B; (D). Consequently,

the direct sum, namely, M* is homogeneous and lies in the class Bo(D). Let

Sz, 2) 0
< 0 SH(z,2) ) A >0,
(1—12[*)? Bz(1—|2P)
Bz(1—|z*) B+ Blz%)

1. h(z) =

zwa=%WWw“:<

zeD,

)(1 — 2)7*702 a8 > 0, for

where X% denotes the transpose of the matrix X.

The bundles (E, h) and (E’, h') correspond to the the operators M* and M'* respectively. We
denote the curvature and the covariant derivative of the curvature of order (0,1) for the bundles

(E,h) and (E', W) by K, K5 and K', K% respectively. By direct computation we have

1 A 2)2 0 1 AZQ 3 0
K(z) = [ TP L Ka(z) =2 TP :
0 L 0 —E
(1-1z[*)? (1=]2?)3

o —28(B+1)z az —B(B+1)(1+2[2]?)
IC,(Z) — <(1—|z|2)2 (1—12[?)3 ) ’ ICIZ(Z) —9 <(1—z2)3 (1—[z]?)* ) .

(TFTBI;F)% 0 (a+26+2)z
—|z

Choose A\, ;t > 0 with u—A > 2 and set « = A and 3 = %(,u—)\—2). Since curvature is self-adjoint
the set of eigenvalues is a complete set of unitary invariants for the curvature. The eigenvalues
for K(2) and K'(2), z € D, are clearly the same by the choice of A, y, a and 3. So, these matrices
are pointwise unitarily equivalent. Now, we observe that Kz(0) = 0 and K%(0) # 0. Hence they
cannot be unitarily equivalent . It follows that the eigenvalues of the curvature alone cannot
determine the unitary equivalence class of the bundle. However, in this example, the covariant

derivative of order (0,1) suffices to distinguish the equivalence class of the operators M* and
M.

Before we construct the next example, let us recall that for any reproducing kernel K on D,
the normalized kernel K (z,w) at 0 (in the sense of Curto-Salinas [21, Remark 4.7 (b) ]) is defined
to be the kernel K (0,0)"/2K(z,0)" K (z,w)K (0, w)~' K (0,0)"/2, see Notation 2.3.5.
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Let ‘H be a Hilbert space of holomorphic functions on D possessing the reproducing kernel
K. To emphasize the role of the reproducing kernel, we sometimes write (H, K) for this Hilbert
space. If we assume that the adjoint M™* of the multiplication operator M on the Hilbert space
(H, K) is in By (ID), then it follows from [21, Lemma 4.8, page. 474] that the operator M* on the
Hilbert space H determined by the normalized kernel K is unitarily equivalent to M* on the
Hilbert space (H, K). Hence the adjoint of the multiplication operator M on (H, K) lies in By, (ID)
as well. Let (E,h) be the corresponding bundle, where h(z) = K(z, 2)*, z € D. The curvature of
this bundle is K(z) = 8z(h_1 9 h)( ) for z € D.

Lemma 4.1.2. Let h(2)" = K(2,2) = 3, 050 arez"zt. In this notation, we have
(a) 8"h(0) = 8"h(0) = 0 = 8"h~1(0) = d"h=1(0) for m, n > 1 and
(b) DOK(0) = affy, DOh=1(0) = —alfy, 3%9h(0) = 4ak.

Proof. Since K (z,w) is a real analytic function with K(z,0) = I for z € D and h(z) = K(z, 2)",
it follows that &h(0) = mla®, = 0 and 9"h(0) = nlafl = 0. By the same token, for h~'(z) =
K=Yz, 2), we have 8™h~1(0) = 0 and 9"h~'(0) = 0 since K~'(z,0) = I as well for all z € . This
completes the proof of part (a). To prove part (b), we note that d9h(0) = @t and 929%h(0) = 4at,
Also, h(z)h~'(z) = I implies 99h~1(0) = —at}. O

Lemma 4.1.3. The curvature K and the covariant derivative of the curvature Kzn at 0 are given
by the formulae:

K(0) = al} and K:n(0) = (n+ 1)lal’, ;.

Proof. Since K(z) = & (h™1 L h)(2), it follows that K£(0) = 0h~'(0)0R(0) + h~(0)00h(0) = at,
by the previous Lemma. Also, Kzn(0) = 9"K(0) = 9™t (h='0h)(0) (see [18, Proposition 2.17,
page 211]). From Lemma 4.1.2, we have 8‘h~'(0) = 0 for £ > 1. Therefore, using the Leibnitz

rule,

n+1
Kz (0) =Y ("1™ R 1(0)0 01(0) = 0" 0R(0) = (n + 1)1l
k=0
This proves the second assertion. [l

Lemma 4.1.4. If K is the curvature of the bundle (E,h), then K.z(0) = 2(2ag2 — a3,)".

Proof. We know from [18, Proposition 2.17, page 211] that for a bundle map © of a Hermitian
holomorphic vector bundle (E, il), the covariant derivatives ©, and ©z with respect to a holo-
morphic frame f are given by ©.(f) = 90(f) + [A=19h,0(f)] and O(f) = dO(f). Since the
curvature K is a bundle map, it follows that

K.z(2) = 0(9K(2) + [h~'0h, K](2))
C(z
(2

I
Qi
S5

)+ [( 1ah),/€](z) [~ 0h, 9K](2)
)+ [h”

Il

Qi
S5
:w

Oh, OK](2).
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Since dh(0) = 0 by Lemma 4.1.2, we have K,:(0) = 90K(0). Consequently, K.s(z)|:—o =
dD(Dh~'0h)(2)|.—o. This simplifies considerably since dh(0) = 8?h(0) = AL~ (0) = 0, again
by Lemma 4.1.2. Thus we obtain

K.z(0) = 200h1(0)d0h(0) + 620%h(0) = —2athath + 4al, = 2(2agy — a2,)".

Lemma 4.1.5. The coefficient of zFt1 w1 in the power series expansion of f((z,w) i

¢
_ 1/2
Akt1,041 = agp ( E E bs0Qk+1—s,041—tbot+
s=1 t=1
k ¢

1/2
Z bso@k+1—s,0+1bo0 + Z bo0@k+1,641—tbot + boo@r+1,041000 — bk41,0000b0,641) ag)
s=1 t=1

for k, 0> 0.

Proof. From the definition of K (z,w) we see that for k,£ > 0

k41 041
Afog 1,041 = a(l](/)z ( Z Z bsoak+1—s,e+1—t50t)a(1](/)2
s=0 t=0
k41 041 k+1
1/2
= ag) ( Z Z bs0@k+1—s,0+1—tbot + Z bs0@k+1—s,0+1b00
s=1 t=1 s=1
0+1
1/2
+ Z bo0@k+1,64+1—tbot + boo@rt1,e+1b00) agh
=1
kot k+1 ¢
= a(l)é2 ( Z Z bs0@k+1—s,041—tbor + Z bs0@k+1—s5,000,04+1 + Z br+1,000,0+1—tbot
s=1 t=1 s=1 t=1
k+1 0+1
+ Z bs0Qk+1—s,0+1b00 + Z boo@k+1,0+1—tbot + booak+1,z+1boo)a(1)62
s=1 t=1
kot k+1 0+1
= a(l)é2 ( Z Z bs0@k+1—s,6+1—tbor + (Z bso@kt1-5,0)00,041 + bk-i—l,O(Z ao,¢+1—tbot)
s=1 t=1 s=0 t=0
k ¢
+ Z bs0@k+1—s,0+1b00 + Z booa+1,6+1—tbot + booar+1,6+1b00 — bk+1,0a0050,£+1)a(1)é2
s=1 t=1
kot k ¢
1/2
= ag) ( Z Z bso@k+1—s,041—tbor + Z bs0@k+1—s,0+1bo0 + Z boo@k+1,6+1—tbot
s=1t=1 s=1 t=1

1/2
+b00@k+1,0+1000 — brk+1,0@00b0,041) Ag) 5

as the coefficient of 2**1 in K (z,w) 1K (z,w) = Egi& bsoak+1—s,0 = 0 and the coefficient of w*+?
in K(z,w)K(z,w)™! = Zfié ao e+1-tbor = 0 for k,¢ > 0. O
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The following Theorem will be useful in the sequel. For T in B, (), recall that Kp denotes

the curvature of the bundle Er corresponding to 7.

Theorem 4.1.6. Suppose that Ty and T> are homogeneous operators in B, (D). Then Kz, (0) and
(K7,)z(0) are simultaneously unitarily equivalent — to Kp,(0) and (Kr,)z(0) respectively if and
only if Kr,(z) and (K1,)z(z) are simultaneously unitarily equivalent to Kr,(z) and (Kp,)z(2)

respectively for all z in D.

Recall that ¢ : MobxID — C is defined by the formula

(el 2) = (07 (2),

where the prime stands for differentiation with respect to z. See Notation 2.2.3. The cocycle

property of ¢ was verified in Lemma 2.2.4.

The following Lemma will be useful to prove Theorem 4.1.6.
Lemma 4.1.7. Suppose that T in B, (D) is homogeneous . Then
(a) Kr(p™1(0)) = le(¢™",0)| 72U, ' Kr(0)U, and
(b) (K7):(p™(0)) = le(e™.0)[2ele,0) U5 (Kr)=(0)~e(e .0 (e NP (O0)Kr (0) ) Uy

for some unitary operator U,, ¢ € Mob.

Proof. Following [18], using the homogeneity of the operator T', we find that there is a unitary

operator U, ., such that
Ko (2) = USD_;ICT(Z)U%Z, ¢ € M6b and z € D. (4.1.2)
On the other hand, an application of the chain rule gives the formula
Koy (2) = (™Y (2)PKr((¢™1)(2)), for o € M6b and z € D. (4.1.3)
Putting both of these together, we clearly have
Up K (2)Us,z = le(0 ™", 2) K1 ((p71)(2))-
In particular, if z = 0, then
UgoKr (™ (0))Ug0 = le(¢™ " 0)PEr((¢71)(0)).

Set Uy := U,. Then
Kr(e™(0)) = le(e™", 0)| 72U K (0)U,
for ¢ € Mob, z € D. This proves part (a).
To prove part (b), we differentiate ICy, (1 respect to z using (4.1.3) to see that

OKp(ry(2) = (¢71) () )P (2)Cr(e™! () + (0™ ()P (¢~ 1) (2)0Kr (9™ (2))
= oo 2) (e )P ()Kr(07H(2) + el ™, 2)Pe(p™!, 2)0Kr (971 (2). (4.1.4)
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Using (4.1.4) and (a), putting z = 0 and U, o = U, we see that

U 0Kr(0)U, = c(¢™1,0) ()@ (0)Kr(71(0)) + [e(e™,0) e, 0)0Kr (o (0))
= e, 0) ()P (0)]e(e™ 1, 0)[2UL Kr(0)U, + [e(0™ 1, 0)[Pe(0~1, 000K (¢~ (0))
= c(p1,0) (e )@ (0)US K1 (0)U, + |c(p7 1, 0)*c(p L, 0)0K 7 (01 (0)). (4.1.5)

(
Uy

So,

Fr (o™ (0)) = lele™ " 0)| el L0710 (K7 (0) — el T.0) 1 NOO)Kr (0)) Uy
The proof of part (b) is complete since (K7)z = 0K (cf. [18]). O
Corollary 4.1.8. Suppose that Ty, T> are homogeneous operators in By, (D). Then

(1) UK (0U = K7, (0),  (2) UTH(Kn):(0)U = (K1)2(0)
for some unitary operator U if and only if

(D) Vo 'Kny(2)Vp = Kry(2), (i) Vi (Kmy)z(2)V = (K1y)2(2)
for some unitary operator V,, ¢ in Mob and z € D.

w—a
l—aw’

Proof. The “if” part is obvious. To prove the “only if” part, take ¢ = ¢y ., where ¢ o (w) =t
for a,w € D and ¢t € T. Pick a unitary operator such that (a) and (b) of Lemma 4.1.7 are satisfied.
We get from (1) and Lemma 4.1.7(a) that

le(o™, 0)| U K, (0) Uy

= |e(e™,0)| U, U Kr, (0)UU,

= e(e™",0)| 72U U ele ™", 0)PUpKr, (2)U, T U U,
= U 'U UKy (2)U, ' UU,.

ICTI (Z)

Since V, := UQIUUHD is unitary, the proof of (i) is complete.
From (1), (2) and Lemma 4.1.7(b)

= Jelg™ 012 ele L0 U U (K5 (0) — (o, 0 (e )P (00K, (0) ) UT,
= Jelg™ 0 2ele L0 U U ()P 0)el(p 1, 0) Ky (0)

Hel(e™ 0)Pelp™h 0)Up(K,):(2)Us ' = (97 1)@ (0)e(p~1,0) 71K, (0)> UU,

Taking V,, = U;'UU,, as before, we have (ii). O
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Proof of Theorem 4.1.6. Combining Lemma 4.1.7 and Corollary 4.1.8, we have a proof of the
Theorem 4.1.6. [l

Corollary 4.1.9. Suppose that T € B,,(D) is homogeneous . Then the eigenvalues of Kr(a) are
(1 —1a)®>)72}_, a €D, Ny > 0; Mi(1 — [a?)™2 has multiplicity m;, 1 <1i < k.

Proof. We have from Lemma 4.1.7(a) that

Kr(a) = (1 - |a|*)"?U;'Kr(0)U, (4.1.7)

z—a
l1—-az"

for some unitary operator U,, ¢ € Méb, where ¢ = ¢, for (t,a) € T x D, prq(2) =t
Without loss of generality [18, Proposition 2.20] one can assume that Kr(0) is diagonal. Let
{\i}E_, be the distinct diagonal entries of Kz (0) with multiplicity m;, 1 < i < k. We know from
[18, Proposition 2.20] that A; > 0, 1 <14 < k. Without loss of generality we assume that \;11 > \;
for 1 <i < k—1. Let {A;(a)}]~; be the eigenvalues of K7 (a). Since K7 (0) has distinct eigenvalues
{\}E_, with )\; having multiplicity m; for 1 < i < k, {A;(0)}¥_, are the distinct eigenvalues of
Kr(0) with A;(0) having multiplicity m; and A;(0) = A\; for 1 < i < k. Now, connectedness
of D implies that m; is a constant function for 1 < ¢ < k. So, A; has multiplicity m; on D.
By real-analyticity of the function Cp on I it follows that the function A; is also real-analytic
on D for 1 <4 < k. Since A\jz1 > A; for 1 < i < k — 1, by continuity of A;’s there exist a
neighborhood W of 0 such that A;1q1(a) > Aj(a) for a € W, 1 < i < k — 1. Therefore, we have
from (4.1.7), Ai(a) = X\i(1 — |a|?)72 for a € W, 1 < i < k. Now, we have the desired conclusion
by real-analiticity of A;’s. O

Corollary 4.1.10. Suppose that T € By(D) is homogeneous and T =Ty & Ty for Ty, Ty € B1(D).

Then the operators Ty and Ty are homogeneous.

Proof. Let Er be Hermitian holomorphic vector bundle the associated with T € Bo(D). By [18,
Proposition 1.18] the hypothesis is equivalent to E7 = Er, ® Er,, E7, being the bundle associated
with 7; € B1(D) for i = 1,2. So, the metric h for the bundle Er is of the form h = (%1 h02>=
where h; is the metric for Eq,,i = 1,2. Now, it follows from Lemma 4.1.7(a) that
Kny(a) 0 o
Kr(a) = ( " ,%(a)) — (1—|a?)2U; 'K (0)U, (4.1.8)

zZ—a

1-az and

for some unitary operator Uy, ¢ € Méb, where ¢ = ¢y, for (t,a) € T x D, ¢rq(2) =t
K, is the curvature of the line bundle E7, with respect to the metric h; for i = 1,2.

Without loss of generality [18, Proposition 2.20] one can assume that Kp(0) is diagonal, that is,
Kr(0) = diag(A1, A2). We know from [18, Proposition 2.20] that A\;, Ay > 0. The case A\ = A\g is

trivial, so we may assume that A\; > \g. Since KCr(a) is similar with (1 — |a|?)~2 (Aol )?2> putting
a = 0 we see that Krp(0) = <Kh6(0) K, 0(0)) is similar with (%1 /\02 ) Without loss of generality one
12

can assume that Cp, (0) = A; for ¢ = 1,2. By continuity of K, there exist neighborhoods V' of 0
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such that Ky, > Kp, on V as Ay > Ag. It follows that Kp,(a) = X\i(1 — |a|?) 72 for a € V,i = 1,2.
Hence by real analyticity of Kj, one concludes that Ky, (a) = \i(1 — |a]?)2 for a € D,i = 1,2.

This is same as saying that the operators 77 and T3 are homogeneous [32, 51]. O

Remark 4.1.11. It is pointed out that atomic homogeneous need not always be irreducible.
Multiplication operators by the respective co-ordinate functions on the Hilbert spaces L?(T) and
L?(D) are examples of atomic homogeneous operators which are not irreducible. The Corollary
4.1.10 shows that the atomic homogeneous operators in Bo(D) are irreducible.

Moreover, one can show the following: If 7' € B, (D) is homogeneous and T' = @ ,T; for T; €
Bi(D),i =1,...,n; then T; is homogeneous for i = 1,...,n.

The proof of this fact is similar to the proof of Corollary 4.1.10.

Notation 4.1.12. For a positive integer m, let S(cy,...,cn) denote the forward shift on C™F1

with weight sequence (ci,...,¢n), ¢; € C, that is,
S(Cb s acm)(£>p) = Cfép-i—l,é fOT’ 0< p7£ <m.

We set Sy, == S(1,...,m). For A in M,,,, we let A(i,j) denote the (i,j)-th entry of the matrix
Afor1<i<p,1<j<gq. Forawvectorv in CF, let v(i) denote the i-th component of the vector
v,1<i<k.

Example 4.1.13. From (4.1.1), we get

)2 (1

B§“’5')(z,w)=< (1=zw)”  Ba(l-z0) )(1—zw)—a—ﬁ’—2
Bw(l—zw) B'(1+ F2w)

and

(@.8) (1—zw)* B(1—zw)3z B(B+1)(1—zw)? 22
By (z,w) = B(1—2w)3w B(1482w)(1—zw)2 B(8+1)(2+82w)(1—2w)z (1—zip)— B4
B(B+1)(1—zw)2w? B(B+1)(2+B82w)(1—2w)w B(B+1)(2+(B+1)(4+B2w)zw)

for a, 8,3 > 0 and (z,w) € D x D. Let
Ki(z,w) :=(1—2w)"*& B{a’ﬁl)(z,w) and Ks(z,w) = Béa’ﬁ)(z,w) for (z,w) € D x D.

Let M7 and M> be the multiplication operators on the Hilbert spaces H; and Hy with reproducing
kernels K and Ky respectively. Clearly, M; is the direct sum M@ & Ml(a’ﬁ ) acting on the
Hilbert space A (D)@ J (1)A(aﬂ/)(D2)|res A and My is the multiplication operator on the Hilbert
space JZA@H) (]D)2)‘res ~. Wilkins [51] has shown that the adjoint of the operator Ml(a’ﬁl) on
J (1)A(aﬂ')(D2)‘reS A is in Bo(D). This operator is also homogeneous . It is easy to see that the
operator M(®) is homogeneous and its adjoint is in the class By (D). Consequently, the direct sum,
namely, M7 is homogeneous and lies in the class B3(ID). The operator M5 is in B3(D) by [24,
Proposition 3.6] and is homogeneous by [9, Page. 428] and [37, Theorem 5.1]. Let

hi(z) = Ki(z,2)" and ha(2) = Ka(z,2)". (4.1.9)
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Thus hy; and hy are the metrics for the bundles £y and Ey corresponding to the operators M7

and M; respectively.

Lemma 4.1.14. The curvature at zero and the covariant derivatives of curvature at zero of order
(0,1) and (1,1) for the bundles Ey and Eo are

(a) K1(0) = diag(e, @, a+26'+2), (K1)z(0) = (0, ~2y/F (3'+1))" and (K1).2(0) = 2diag(e, a+
BB +1),a+p(=F +1)+2);

(b) 162(0) = diag (a,, @ + 306 + 6), (’62)5(0) = 5(0,—3 208+ 1)(B+ 2))tr and (’62)'25(0) =
diag(a,a +3(8 +1)(8 +2),a — 36(5 + 2)),

respectively. Here /€,~, (I@,)g and (l&z)zg are computed with respect to the metrics }N‘LZ fori=1,2

obtained from the corresponding reproducing kernels normalized at 0.

(If h is a metric corresponding to a normalized reproducing kernel at 0, then B(O) = I, that

is, the basis for the fibre at 0 with respect to which A(0) is computed is orthonormal.)

Proof. For any reproducing kernel K with

K(z,w) = Z amnz™ 0" and K(z,w)™! = Z bz w"

the identity K (z,w) 'K (z,w) = I implies that

k
bo() = ao_ol and Z bo’k_gaog = O, k > 1.
=0
For k = 1, we have by = —aaolaloagol, bo1 = (b1o)*. Also, by Lemma 4.1.5, we have
- 1/2 1/2 -1/2 _ -1/2
all = ao(/) (b00a11b00 — bloaoobm)aoé = aOO/ (all — aloaoolam)aoo/ . (4.1.10)
For k = 2, we have by = —(b01a01 + booaog)aaol = agol (amaaolam — aog)aaol. Now, Lemma 4.1.5

gives

_ 1/2 1/2
a12 = ao(/) (booa11bo1 + booai2boo — bloaooboz)aoé

—-1/2 -1 —1 —1 —1/2
= A (CL12 — (all — a10Qqy a01)a00 ap1 — a10Qqgg a02)a00 . (4.1.11)
Observing that byy = bgo™ = aaol (aloagolalo — 6120)61601, from Lemma 4.1.5, we have

(22 = a(l)éz (broar1bor + broai2boo + booaszibor + booazzboo — bzoaoobo2)aé(/)2
= 0601/2 (aloa501a110601a01 - aloa5016112 - azla&)lam + ag
—(a10agy @10 — a20)agg (a01agy ao1 — aoz))ao_ol/2
= 0601/2 (022 + (azoa&]lam — azl)a&)lam — azoa&)laoz

— — — — —-1/2
—aloaool (a12 — (CL11 — aloaoola()l)aoolam — aloaoolaog))aoo/ . (4.1.12)
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In particular, choosing K = K7, we have

apo = dla‘g(17 17/8/)7 apr = 5(07/8/)7
ain = diag(e,a + 3,8/ (a + 268 +2)), a2 =5(0,8(a+ 6 +1));

a(@+1) (a+ ) (a+p+1) flatf +2)(e+36 +3)

a2 = dlag( 2 5 9 ) 2

), and aqy = 0.

Thus, ay1 — aloagolam = diag(a, a, ' (a + 26" +2)). Hence from Lemma 4.1.3 and Equation
(4.1.10), we have K;(0) = a¥, = diag(c, a, o + 26" + 2).

From Equation (4.1.11), we get ajo = S(O,—\/F(ﬁ’ + 1)) So, from Lemma 4.1.3, we have
(K1)=(0) = 2a% = S(0, —2v/F (8" + 1))™.

Similarly, from Equation (4.1.12), ago = diag(a(a;_l), O‘(O‘H)—;ﬁ/(ﬁlﬂ), (a+5/+2)gx+35/+3))‘ Hence

(K1)22(0) = 2(2a90 — a2,)" = 2 diag(a,a + ' (3 +1),a+ (=8 +1)+2)

from Lemma 4.1.4. This completes the proof of (a).
To prove (b), choose K = Ky and observe that

ago = diag(1,3,26(8 + 1)), a0 = S(ﬂa 26(8 + 1))tr7

B(B+1) fori=3,j=1;

0 otherwise,

a1z = S(Bla+ B +1),8(6+1)(2a + 36 +6)), @mﬂhﬂZ{

a1 = diag (o + 3, B8(a + 28+ 2),28(8 + 1) (o + 38 +6))
and

(a4 Ba+p+1) Blat+B+2)(a+33+3)
2 ’ 2 ’
BB+ ((a+B+4)(a+B+5) +4(B+1)(a+B+4)+8(6+1)).

agy = diag(

Therefore, a;1 — aloagolam = diag(oz,ozﬁ, 2686+ 1)(a+ 308 + 6)) Hence from Lemma 4.1.3
and Equation (4.1.10), we have

K2(0) = a¥, = diag(a, a, a + 33 + 6).
Also, from Equation (4.1.11), we have
- 3
a2 = S(0, —ﬁ\/ B+1(8+2))

and from Lemma 4.1.3, we have

(K2)=(0) = 2ais = S(0,-3v/2(8 + 1)(5 +2))".
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Since

ala+1) ala+1)+3(B+1)(B+2) ala+1)

5 5 , 5 +3(6+2)(a+B+3))

= diag(
from Equation (4.1.12), using Lemma 4.1.4, we get
(K2).2(0) = 2(2a9y — a3, =2 diag (o, +3(8 + 1) (B +2),a — 33(8 + 2)).
O

By means of a sequence of lemmas proved below, we construct a unitary operator between
the vector spaces ((E1)o,h1(0)) and ((E2)o, h2(0)) which intertwines K1(0), K2(0) and (K1)5(0),
(K2):(0). Here (E1)o and (E3)o are the fibres over 0 of the corresponding bundles E; and Ej

respectively.

Lemma 4.1.15. A linear transformation Uy : (C3, ho(0)) — (C3,h1(0)) is diagonal and unitary
with Uy = diag(uy, ug,u3), u; € C fori =1,2,3, if and only if |u1|? = 1, jus|? = B, |uz|? = %

Proof. “only if” part: Since Up is a unitary operator we have Uy = U, ! where * denotes the
adjoint of Uy. Now, from [24, p. 395]

Us = ho(0)7! Ohl()
= d1ag(1 ,(26(8 + 1)) 7" diag(@1, Gg, u3)diag(1, 1, 5')
— disg(an, uy  usf sl
37 28(8+ 1)

= diag(u1 ,Usy ,ugl)

This implies the desired equalities.
“if” part: Taking u; = 1,us = /B,u3 = %, we see that Uy = diag(ui,ug,us) is a

unitary operator between the two given vector spaces. [l

The proof of the next lemma is just a routine verification.

Lemma 4.1.16. Suppose that T and T are in M3 such that

f :27:37 ~ . n f :2,:3,
TG =4 " 7 and  T(ij)=4 | "7
0 otherwise. 0 otherwise.

Then AT = T A for some invertible diagonal matriz A = diag(aq, az,as3) if and only zf% =22

a5
Lemma 4.1.17. If 8/ = 33 + 2, then Uy 'K1(0)Uy = K2(0) and Uy ' (K1):(0)Up = (K2)5(0),
where Uy : ((Cs,hg(())) — ((Cg,hl(O)), is a diagonal unitary with Uy = diag(uy,ue,us), u; € C
fori=1,23.
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Proof. Our the choice of 3 together with Lemma 4.1.14 ensures that K;(0) = K2(0). The first

equality is therefore evident.

Clearly, (K2)z(0) and (K1)z(0) are of the form T and T of the previous Lemma. Choose

ulzl,uQ:\/B,ugz %, with ﬁ/:gﬁ—l—z

To complete the proof of the second equality, by Lemma 4.1.16, we only have to verify
where n = —=31/2(8+ 1)(B8+2),71 = —-2VF(# +1). Now,

B $6+2 _ 3ﬂ+4
386+1)  \V23+1)

i /FE ) 2P H260+240) 335 74(B+2) 1 [35+4
=326+ 1)(B+2) 320+ 1)(B+2) 2BVB+HD(B+2) 2\ f+17

3
|

and

0

Since the operators M; and My are homogeneous , combining Lemma 4.1.17 with Theorem

4.1.6, we have the following Corollary.

Corollary 4.1.18. For ¢ in Méb, there is a unitary operator U, such that U, 1K1 (2)U, = Ka(2)
and Uy, (K1) :(2)U, = (K2)2(2).

Lemma 4.1.19. If 8/ = 23+ 2 then (K1)22(0) and (K3).2(0) are not unitarily equivalent .

Proof. By Lemma 4.1.14, (l@i)zg(O) = diag(p;, ¢;, ;) for i = 1,2, where p1 = o, 3 = a+ 5 (8 +1),
rm=a+3(-F +1)andpy=a, @ =a+3(8+1)(B+2), o =a—33(6+2). Clearly,

p1=p2,q1 > 71 and g2 > ra. (4.1.13)

If the diagonal matrices (K1),z(0) and (K3).:(0) are unitarily equivalent then {pi,qi,r} =
{p2,q2, 72}, as sets. From (4.1.13), we see that this can happen only if p; = p2, ¢1 = ¢2 and
r1 = r9. Since 3 = 3ﬁ +2, 1 =a+3 (ﬁ +2)(36 +4). We see that ¢; # g2 as § # 0. Hence
(K1)22(0) and (K3).z(0) are not unitarily equivalent . O

The following Theorem is now obvious.

Theorem 4.1.20. The simultaneous unitary equivalence class of the curvatures and the covariant
derivatives of the curvatures of order (0,1) for the operators M and M are the same for 3/ =
%ﬁ + 2. However, the covariant derivatives of the curvatures of order (1,1) are not unitarily

equivalent .
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4.2 lrreducible Examples and Permutation of Curvature Eigenvalues

In the Example 4.1.1, one of the two homogeneous operators M* is reducible while the other M’*
is irreducible. Similarly in the Example 4.1.13, one of the two operators M7 is reducible whereas
the other M is irreducible. Irreducibility of M’* and M;j follows from [37]. We are interested
in constructing such examples within the class of irreducible operators in B, (D). The class of
irreducible homogeneous operators in Bo(ID) cannot possibly possess such examples, since the
eigenvalues of the curvature at 0 is a complete invariant for these operators (cf. [51]). Therefore,
we consider a class of homogeneous operators in B3(ID) mentioned in Notation 2.3.12 and discussed
in [31]. However, we first show that for generic bundles EA#) the simultancous equivalence
class of the curvature and the covariant derivative of the curvature of order (0,1) determine the

equivalence class of the homogeneous Hermitian holomorphic vector bundle EXH#)

Recalling Notation 2.3.12, we have
Lemma 4.2.1. For the reproducing kernel BM | we have

(a) a1 = [B71S;,B, Sk + 2\ +m) i1 — 2Dy,

(b) a2 = BY2(3(B71S2,BS;,B~! +S;,B!S,,%) + B~ Dy, Sp) — B71S,,,BSE,B™LS,, ) BY2,
where Iy, denotes the identity matriz of order k and D,, = diag (m,...,1,0).

Proof. From Equation (4.1.10) in Lemma 4.1.14, we get a11 = agol/z (a11 —alga&]lam)aaolp. Form

the expansion of the reproducing kernel BM#) we see that
app = B, ajg = BS:W apgl = SmB, ayl = SmBS:n + (2)\ + m)B — 2DmB.

So, a1 — aloagolam = SuBSE, + (2A + m)B — 2D,,,B — BS;,B~!S,,B. The proof of (a) is now
complete since the matrices S,,BS?,, S,,B~!S¥,, B, BY/2 B=1/2 are diagonal.
From Lemma 4.1.5, we have a9 = aééZ (booallbm + bgoai2bgy — bloaoobog)aéé2. Again, from

the expansion of the reproducing kernel B2 it is easy to see that

1 1
ajp = 5S2mBS’:n + (2A +m)SyB — DpySiB — SinBD,, bog = B7L, b1g = =S5 B, by = 513—1Sm2.
The proof of (b) is now complete since the two diagonal matrices B and D,,, commute. O

Let KA#) denote the curvature of the bundle EXM#) | that is, KM#(2) = %(ﬁ_l%ﬁ)(z),
where h(z) = BO&#) (2, 2)" for z in D. Recall that BO#) is the normalized reproducing kernel ob-

tained from the reproducing kernel BOA#),

Lemma 4.2.2. The curvature at zero KM (0) and the covariant derivative of curvature — of
order (0,1) at zero (KM#);(0) are given by the formulae:

(a) ]6()‘7[") (0) = dlag ((2)\7» + Oy — a?“-i—l):nn:())7
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(b) (KOM)-(0) = 28 ((—v/ar(1 + oy — $(ar_1 + Ozr+1))’ﬂ:1)tr, where o, = r2d,_1d; ' for 0 <

r <m with ag = ame1 = 0.
Proof. We only write the nonzero entries of the matrices involved. Notice that
SmBSy, (r,1r) = r2d,_q for 1 <r <m,
B~!S,.,BSE, (r,7) = r2d,_1d; * for 1 < r < m,
SEBTIS(r,r) = (r+ 1), for 0<r <m—1
and

SEBT1S,B(r, 1) = (r + 1)2d,1dr_j1 for0<r<m-—1

Therefore, by Lemma 4.2.1(a), we see that KO (0) = @ = diag ((2\, + a — ayy1)™). This
proves part (a).
To prove part (b), we observe that

BSy(r+1,r) = (7”+1)dr__&1 for 0<r<m-—1,
SmBSy,(r, 1) = r?d,_; for 1<r <m,

B'S2BS:EB N (r+1,r) = r*(r+1)d,_1d;'d}, for 1<r<m-—1.
Equivalently,
B'S2BS;, B (r,r — 1) = r(r — 1)%d,_od '1d;t for 2 <r <m.
Since

S;,B'SE(r,r —1) = r(r+1)2%d7}, for 1<r<m-—1,

r4+1
DmSm(r,r—l) = (m—r)r for 1<r<m,
SmDp(r,r—1) = r(m—r+1) for 1<r <m,

it follows that
[Dp, Sy (ryr — 1) = —r, that is, [Du,,Sp] = —Sp.

Hence (B™[Dy, Sp)])(r,r — 1) = —rd; t for 1 < r < m. Now,
(B7'[Dy,Sm] — B7!S,,BS: B71S,, ) (r,r — 1) = —rd ' —r3d,_1d?
= —rd ' +r%d._1dY)

= —rd'(1+a)for 1 <r<m.
Also,
1
BUSLBSLBT S BTS)(r —1) = L~ DPdiad d (1)

= Slarad !+ 1%
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for 1 <r<m withay=0= dr_nlﬂ. From Lemma 4.2.1 (b), using d_; =0 = d,_nﬂ_l we get

dra(r,r —1) = %(dr_ldr)l/Q(ar_ld;l +(r 4+ 1)%d L) = r(dead) 2d7 N (1 + o)

- g(dr_ldgl)m(ar_l + (r 4 12ded ) = r(drad, DY (1 + o)

1
= 047»(1 + oy — §(ar—1 + ar—i—l))

for 1 <r < m. This proves part (b). O
The following Corollary follows immediately from Corollary 3.2.4.

Corollary 4.2.3. The operators M™™ and MXNH) ip Bin+1(D) are similar if and only if
tr KA#(0) = tr KA #)(0).

Notation 4.2.4. Let 6,11 = 2 A +ap—pg1 for0 <r < m and 8, = —\/a_g(1+ag—%(ag_1+ag+1))
for 1 < £ < m. In this notation,

KX (0) = diag ((6,41)7%0) and (KH)z(0) = 25((00)7,)™
As in the previous Lemma, we will let o, = 7‘2dr_1d;1 for 0 <r <m with ag = ams1 = 0.

Remark 4.2.5. We emphasize that the reproducing kernel BXH) is computed from a ordered

. . m+1
basis, that is, B (w,w) = ((i(w), v (w)) ",
sequently, the eigenvalues of K (0), which is diagonal, appear in a fixed order. If one con-

siders { 7o) (w)} 1 it will give rise to a different reproducing kernel P,BM#) PX | say B ),

where {v;(w)}" 1! is an ordered basis. Con-

where 0 € Sy11, Smt1 denotes the symmetric group of degree (m + 1) and Py (4,7) = 6, ;-
Hence KSVH (0) = diag((dp(r+1))70), Where K s the curvature with respect to the metric
ho(z) = B )(z, 2). It follows that the curvature of the corresponding bundle as a matrix
depends on the choice of the particular ordered basis. The set of eigenvalues of curvature at 0,
which is diagonal in our case, will be thought of as an ordered tuple, namely, the ordered set of

diagonal elements of K#)(0).

Definition 4.2.6. [18, Def. 3.18, pp. 226] A C* vector bundle E over an open subset Q) of C with
metric-preserving connection D is said to be generic if K has distinct eigenvalues of multiplicity

one at each point of €.

From Lemma 4.1.7 (a) and Lemma 4.2.2 (a), we note that EO#) is generic if and only if 8,4
are all distinct for 0 < r < m. Thus, using Corollary 4.1.9 the proof of the following Corollary is

complete.

Corollary 4.2.7. We have 6, = 6,41 if and only if 6, =0 for 1 < r < m with oy = @y = 0.
In particular, if E&P) s generic then 0, # 0 for 1 <r < m.
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Lemma 4.2.8. If (6,41)/% is an ordered tuple of positive numbers such that 16()‘7”)(0) = diag
((Or41)72), then

(i) Y Opsa > m(m+1)

k=0
m r—1

(i) 5 Opp1— Y Ok >r(m+1—7) for L<r <m.
k=0 k=0

Proof. By Lemma 4.2.2, Remark 4.2.5 and the hypothesis of the Lemma, we have
2\ + o — Qpy1 = Opyq1
for 0 < r < m. This is same as Ax = b, where

_17 J:Z+17
A, j) = 1, j=0o0ri=7j,

0, otherwise;

for 0 < 4,7 <m; x(0) = 2o, (i) = o for 1 <7 <m and b(r) = d,41 —2r for 0 <r < m.
We observe that det A = (™} ! 2,) = m + 1, where B is a column vector with B(i) = 1 for
1 <i<m and A’ is an upper-triangular matrix of size m with 1 as its diagonal entries. So, the

system Ax = b of linear equations admits a unique solution. One verifies that

1 m r m r—1
2/\0:m—+1kz_05k+1_m and ozT:m+1kz_05k+1—kz_()5k+1—r(m+l—r) for 1<r<m.

Recall that 2\g and o, = r2d,_1d ! (for 1 < r < m) are all positive. Therefore, a set of necessary
conditions for existence of the positive numbers {d,,1}7, such that K (0) = diag((5,41)™)

are the inequalities in the statement of the Lemma. O

As described in Notation 2.3.12, let p = (1, p1,...,pm)™ and p' = (1,4, ..., p1,)" with
pe, pp > 0 for 0 < £ < m; o = (0q,...,04,) and & = (&f,...,c),). For 0 < j < m, set
2v; = 2y —m + 2j, where y = Aor v = X. Set d = L(\)u?, d = L(N)p'?, where p? and p/*
denote the componentwise square of p and p’. Let 2\ = 2A—m, a; = i%d;_1d; 15 2Ny = 2\ —m,
al = izd;_ldi'_l for 0 < ¢ < m. In this notation, we have:

A ’
Lemma 4.2.9. <”> = (f)) if and only if (2o, ) = (2Xg, ).
Proof. We prove the “only if” part. Assuming (29, @) = (2)), @’) we have A = X and «o; = &/
for 1 <i<m. Thus d = d'. Now invertibility of L()\) implies that p2? = p'?, that is, p = p/. O

Corollary 4.2.10. Suppose B&*) and BN#) are such that KA (0) = KX #)(0).  Then

()= ()
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Proof. Let KM (0) = KN4 (0) = diag((6r41)"™). Consider the system of linear equations
Ax = b and Az’ = b, where A, x, b are as in Lemma 4.2.9 and «'(0) = 2\, «'(r) = o for
1 <r < m. Since det A = m + 1, A is invertible. Hence z = @’ that is, (2X, @) = (2}, @),

where a, ' as in Lemma 4.2.9. Now by Lemma 4.2.9, we have (:) = (ﬁi) [l

Recall that MM#) is the multiplication operator on the Hilbert space whose reproducing
kernel is BOH#) and EA#) denotes Hermitian holomorphic vector bundle associated with the

operator M#)*, We recall a theorem from [31].

Theorem 4.2.11. [31, Theorem 6.2] The reproducing kernels BWMA) gnd BAH) gre equivalent |
that is, the multiplication operators MWMB and MWN-#) are unitarily equivalent if and only if
)\ _ )\/
() = ().
The following Corollary is an easy consequence of Corollary 4.2.10 and Theorem 4.2.11.

Corollary 4.2.12. Suppose B&*) and BN #) are such that KA (0) = 16()‘/’“,)(0). Then the

multiplication operators M® and M ot gre unitarily equivalent .

Now we state the main theorem of this section.

Theorem 4.2.13. Suppose that the Hermitian holomorphic vector bundles EOH and EX™ are
generic. Then the multiplication operators MME) and MM are unitarily equivalent if 16(’\’“)(0)
and (KM (0) are simultaneously unitarily equivalent to KW (0) and (KX'™);(0) respectively.

The proof of this Theorem will be completed after proving a sequence of Lemmas. We omit

the easy proof of the first of these lemmas.

Lemma 4.2.14. Suppose that A = ((kiéij))?j:y A, = ((kg(i)éij))?jzl, k; # k‘j if i# 7 and C in
M., is such that CA = A,C. Then C = ((C’Z-jég(i)d))?j:l for Ciyj € Candi,j=1,...,n, where o

is in Sy, S, denotes the permutation group of degree n.

Lemma 4.2.15. Suppose that B in M,1 is such that BS((ﬁk)Zzl)tr = S((ﬁk)zzl)trB for
O #0, 1 <k <n. Then B is upper-triangular.

Proof. Let B = ((B(Z,])))?j:ll The (i,1)-th entries of BS((ﬁk)Zzl)tr and S((ﬁk)zzl)trB are 0
and 3;B(i+1,1) for 1 < i < n, respectively. By hypothesis, B(i+1,1) = 0 for 1 < i < n. We want
to show that B(i+1,j) =0 for j <i<mn, 1 <j <n. We prove this by induction. We know that
the assertion is true for j = 1. Assume that B(i+ 1,7 —1)=0forj—1<i<n, 2<j<n+1,
equivalently, B(i,j —1) =0for j <i<n+1, 2<j<n+1. Equating (i,j)-th entries from

BS((ﬁk)Zzl)tr and S((ﬁk)zzl)trB we have
B(i,j —1)Bj—1 = BiB(i + 1,)) for 1<i<n,2<j<n+l1.

We note that the left hand side of the above equality is zero for j < i <n+1, 2<j<n+1,
by induction hypothesis. Hence B(i + 1,j) =0for j <i<n+1, 2<j<n+1asf #0 for
j<i<n+1. O
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Lemma 4.2.16. Suppose that C = ((C’ijég(i)d))?j:l for Ci; € C, 4,5 =1,...,n and o is in Sy,
where Sy, denotes the permutation group of degree n. Then |det C| = [[}L |C;, »()l-

Proof. We observe that the only possible nonzero entries of C' are the (i,0(7))-th entries for 1 < i <
n and C(i, o(i)) = C; 5(;)- Let C = diag ((Ci0())i=y)- Tt is easy to see that |det C| = |det C,

as C can be converted to C by interchanging its rows and columns. This proves the Lemma. [

The next corollary is immediate.

n

Corollary 4.2.17. If C' = ((Cijéa(i)vj))ijzl then C' is invertible if and only if C; ;) # 0 for

o €8Sy, 1 <i<n, where S, denotes the permutation group of degree n.

Lemma 4.2.18. If C is invertible and satisfies the hypothesis of Lemma 4.2.14 forid # o € Sy,

then C' cannot be a triangular matrix.

Proof. From Lemma 4.2.14 and Corollary 4.2.17, it follows that the only nonzero entries of C are
the (i,0(7))-th entries for 1 <4 <n and C(i, o(i)) = C; ;). Therefore, it suffices to show that
there is 1 < 4,j < n with ¢ # j such that ¢ > ¢(i) and j < o(j) for id # o € S,,. Since o # id,
there is 4, 1 < ¢ < n such that o(i) # i. Without loss of generality assume that i > o(i). Now,
if possible, let r > o(r) for 1 < r < n with strict inequalities for some r. Since o is a one-to-one
map of the finite set {1,...,n} onto itself, this is not possible by the pigeon hole principle. Hence
there is j, 1 < j < n such that j < o(j). O

Proof of Theorem 4.2.13: By hypothesis there is L € GL(m + 1,C) such that
(i) L7IKOH (0)L = KX (0)
(i) L7HEX)-(0)L = (KX")3(0).

Clearly, (i) implies that the sets of eigenvalues of KM (0) and KW' (0) are the same. Since
KX (0) and KA (0) are diagonal matrices it follows that either

(a) KO (0) = KX (0), or

(b) the set of diagonal entries of K(#)(0) equals the set of diagonal entries of KX (0) but
K1) (0) £ KA (0).

Now, (b) is equivalent to the statement that K™ (0) = diag ((5U(T+1))T:0) for id # o € Spaq,
where KAM(0) = diag ((6r4+1)"™)). This implies by Lemma 4.2.18 that L cannot be a triangular
matrix. Whereas (ii) implies by Corollary 4.2.7 and Lemma 4.2.15 that L is a upper-triangular
matrix. Hence (b) and (ii) cannot occur simultaneously. Having ruled out the possibility of (b),

we conclude that (a) must occur. Therefore, by Corollary 4.2.12, we have (:) = (?7 ) O
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4.3 Homogeneous bundles of rank 3

Now we specialize to the case m = 2. In this case, conclusions similar to those of Theorem 4.2.13
are true even if EH) is not assumed to be generic. Recall that the rank of the bundle EO#) ig

3 when m = 2.

Theorem 4.3.1. For m = 2, the multiplication operators M™H and MXN'M are unitarily
equivalent if KO (0) and (KO#);(0) are simultaneously unitarily equivalent to KX (0) and
(KXY (0) respectively.

Proof. By Theorem 4.2.13, we only need to consider the case when one of EM#) and EXNM g
not generic.

Let KA®) = diag(dy,ds,03) and KX = diag( 1,05,08), where d;11 = 2\ + a; — a1,
Oy = 2N ol — ol with 2); = 2\ — 2420, 2N, = 2\ — 2+ 2i, o; = i2di_d; L, of = i2d)_,d)”"
for i = 0,1,2; ag = az = afy = o4 = 0 and BMH(0,0) = diag(do, d1, ds), do = 1; BX™(0,0) =
diag(dj,, dy,d5), dy = 1. We observe that d3 — 91 = a1 + a2 +4 > 0 and 05 — 0] = o) + a5 +4 > 0.

Now assume that
(i) L'KAW(0)L = KA (0) for some L € GL(3,C).

It follows easily from (i) that if one of the two bundles is not generic then the other cannot
be generic. Noting that KX#)(0) and KX (0) are diagonal matrices we have the following

possibilities.

&4
~

(=%
iy

I

§o and &y =4, (b)dy =203 and & =d4
() 0y =082 and &, =05 (d) s =05 and &) = 6.

From (a) we have §; = d2 < 03 and &} = 0, < 5. As (i) implies that {01, 92,03} = {8}, 5,05},
as sets. Comparing order of magnitude we get §; = ¢}, do = 0} and d3 = 5. It follows that
KO = KA Therefore by Corollary 3.1.1, we have (2) = (:) So, MK and MX'M are
unitarily equivalent .

A similar argument shows that the assumptions in (b) lead to the same conclusion.

From (c), we have §; = dy < 3 and 8] < 5 = 5. From (i) we have {01, 2,03} = {07, 05,05},
as sets. Comparing order of magnitude we get 6; = do = ¢} and d3 = 9§, = 05. Comparing
multiplicities of ¢; and 65 we have §; = 05 and d3 = ¢]. All the equalities together imply that
01 = 63 and 0] = d5, which are impossible. Similarly we see that (d) is also impossible as d3 > d;

and 5 > ¢}. This completes the proof. O

If 61, 02, 63 are the eigenvalues KM (0) then we know from [18, Proposition 2.20] that §; > 0
for i = 1,2,3. Now, suppose (d1,02,03) is a fixed ordered triple of positive numbers. Then there
exists BM with X > 1 and g > 0 (¢ = 1,2) such that KA#)(0) = diag(dy, 02, 3) only if &;’s

satisfy the inequalities of Lemma 4.2.8.
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Suppose (d1,02,03), 0; > 0 for i = 1,2,3 is given satisfying the inequalities of Lemma 4.2.8.
Then let us find A > 1, uq, uo > 0 such that 1607“)(0) = diag(d1, b2, 03) with p = (1, 1, p2)®™. We

have L(A\)u? = d, which is the same as
1 1
2d
do dz_Tl—’_A(Z)l\fl)

B 1 1 1 20 —1) — g
200 —1) a1 20—1) 20q(A—1)
Recall from Lemma 4.2.8 that

100
2 _ “1g_ | —55ty 10
p =L\ d= < 20D X

Thus

81+ 62+ 6 8y + 63 — 26, —
g =2)—2=0TR2F0% o 4 g =208 20 6
3 3
50, we have 51406240 Sy + 63 — 201 — 6
dA—1)—ay = AF02F0% 5 02FB=2070_ o
3 3
Similarly,
2d 1 4 2 1 22X\ — a2)(2A — 1) + o a
2 1 2
:d _ = - —
Pe= 0= TN O T T aras ah | A@A—1) arasA(2h — 1) ’

where a1, a9 are as in Lemma 4.2.2. Consequently, we have the following Theorem by an appli-

cation of Lemma 4.2.8.

Theorem 4.3.2. There exists B& such that 16@7“)(0) = diag(dy, 02, 3) for some 01,0d2,63 >0
if
01 + 62 + 03 > 6,
09 + 03 — 201 > 6,
203 — 01 — b9 > 6;
22X — a2)(2A — 1) + e > 0,

where a1, s are as in Notation 4.2.4.

Notation 4.3.3. From now on, we will adhere to the following notational convention (here, (X, p)

is fixed but arbitrary).

()‘7 y’) : ’C(A’“) (0) = diag(61752763)7
W, @)+ KN (0) = diag(da, 61, 83);
M a) 2 KOP(0) = diag(dy, 63, 6).

Proposition 4.3.4. Suppose 6; > 0 for i =1,2,3 are such that §; # do and 2(61 + d2) > 93— 6 >
max{2d; — 02,209 — d1}. Then there exists reproducing kernels BAH and BNH) such that
KX (0) = diag(dy,d9,03) and KA #)(0) = diag(da, 61,03), where \, N > 1, p = (1, py, po)™,
w o= (1,1, o)™, pug, gy >0 for £=1,2.
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Proof. Consider (d1,8,83), &; > 0 for i = 1,2,3 such that there exists BO#) and KM#(0) =
diag(dy, d2,03) for some X\ > 1, p = (1, u1, po)™ with py,pe > 0. So, 81,082, 03 satisfy the in-
equalities of Lemma 4.2.8. We now produce X' > 1, p’ = (1, gy, pb)™ with pf, pfy > 0 such that
KXN#)(0) = diag(da, 01, 03). We recall that KA #) is the curvature of the metric BA#)(z, 2)tr
and B #) denotes the normalization of the reproducing kernel BA#). By Lemma 4.2.2 and

Remark 4.2.5, we need to consider the equations

2)\/—0/1—2:52,
2N 4+ o) — oy =4y,
2N + ah + 2 = 03,

-1 1 s
where o) = d| ™", aly = 4d|d},” . This is same as Az’ = b’, where

1-10 2>\’ 62+2
A:(11—1>,m’: b= 6 .
10 1 % 632
. . . . , 1 51+62+(53
This system of linear equations has only one solution, namely, " = 3 ( §1+85~ 262 . We observe
203 —01—

from Lemma 4.2.8 that A = X and ay = o but oy # o if §1 # &y From Lemma 4.2.8 and
Theorem 4.3.2, we know that there exists B #) such that KX #)(0 ) diag(de, d1,03) if

01+ 02 + 03 > 6,
01 + 03 — 269 > 6,
203 — 61 — 02 > 6;
202N — o) (2N — 1) + o, > 0.
Hence there exists BM#) and BA#) such that
KA (0) = diag(1, 82, 83) and KA #)(0) = diag(z, 81, 53)
if
01 + 02 + 03 > 6,
09 + 03 — 261 > 6,
01 + 03 — 269 > 6,
203 — 01 — 02 > 6;
22X — a2)(2A — 1) + ayae > 0,
202N — ah) (2N — 1) + f o, > 0.
Suppose §; > 0 for i = 1,2,3 are chosen such that §; # o and

(i) 2((51 + 52) > 03— 6> max{%l — 09,209 — 51}.

Then the last part of the inequality (i) is clearly seen to force the two inequalities dg 463 — 27 > 6
and 01 + 03 — 202 > 6. Adding these two inequalities, we have 203 — 1 — d5 > 12. This choice
of §;, i = 1,2,3, also implies d3 > 6. Consequently, the first four of the six inequalities listed
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above are valid. Since A = X and ag = o, 2\ —1 =2\ —1 > 0, it follows from the first part of
inequality (i) that 2\ — a}, = 2\ — ag = £(2(01 + J2) — d3) +2 > 0. Thus the last two inequalities
of the six inequalities listed above are valid with our choice of the §;, ¢ = 1,2,3. Hence all the
inequalities we need for the existence of B and BXN#) are verified by this choice of §; > 0
fori=1,2,3. O

Proposition 4.3.5. Suppose d; > 0 for i = 1,2,3 are such that d3 > 6o > 3 + %3 and 61 <
min{203 — 02,292 — 03} — 6. Then there exists reproducing kernels BOH and BOR such that
KO (0) = diag(d1,82,05) and KOB(0) = diag(81,05,82), where A\ > 1, p = (1, ur, o)™,
b= (1,71, fi2)™, pue, fie > 0 for £ =1,2.

Proof. We construct a reproducing kernel BOA such that KO (0) = diag(d1, d3, d2) for some
2> 1, o = (1,01,02)", fig > 0 for £ = 1,2. By Lemma 4.2.2 and Remark 4.2.5, we obtain

(2X7 a1, a) from the following set of equations

2N — Q1 — 2 =01,
2X+@1—a2=53,

2X+a2+2:527

where a; = dl_l, Oy = 4d1d2_1. This is same as AT = b, where

1-10 . 2\ ~ 5242
A:<1 1 —1>,ac: a |,b=1| & |.
10 1 o 53—2

51462433,
The vector T = % (525435%—22%13;6,> is the only solution of this system of equations. From Lemma
202—01—03—6

4.2.8 and Theorem 4.3.2, we know that there exists BM#) such that KO (0) = diag (61, d3, 02) if

61 + 69 + 03 > 6,

0o + 03 — 201 > 6,

2(52—51—(53>6;

2(2X — @2)(2X — 1) + ayay > 0.

If (81, 62,03), §; > 0 for i = 1,2,3 are such that there exists BW) and KO (0) = diag(d1, d2,03).
Then §;’s for ¢ = 1,2, 3 satisfies the inequalities of Lemma 4.2.8. So, by Theorem 4.3.2, there
exist BM® and BO®) such that
K(A’”)(O) = diag(dy, d2, 3) and KO (0) = diag(d1, d3,02)
if
01 + 92 + 03 > 6,
0o + 03 — 201 > 6,
209 — 01 — 03 > 0,
203 — 01 — 09 > 06;
22\ — a2)(2A — 1) + ajag > 0,
2(2X — @2)(2X — 1) + aya > 0.
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We observe that A = A and a1 = ap but ag # asp if do # d3. Suppose §; > 0 for i = 1,2,3 are
chosen satisfying

0
(a) 03 > 09 >3+ 53 and (b) 0 < min{253 — 09,209 — (53} — 6.

Then the inequality (a) implies that d3 > 6, hence the first of the set of six inequalities above holds.
The inequality (b) implies that 263 — 31 —d2 > 6 and 202 —d; —d3 > 6, adding these two inequalities
we have do + 03 — 267 > 12. Hence the first four inequalities, from the list of six inequalities given
above, are verified. The second, third and the second, fourth from the set of the six inequalities
respectively imply that do —d1 > 4 and d3—3J; > 4. An easy computation involving the expressions
for A\, aq, ag and X, a1, Qg in terms of §; for ¢ = 1,2, 3 shows that 2(2A—as)(2A—1)+ a1 > 0 and
2(2X — @2)(2X — 1)+ @1 8o > 0 together is equivalent to (81 -+ 2) (261 + 62) + 83(62 — 81) + 661 > 0
and (01 4 03)(2d1 + 03) + d2(d3 — 01) + 661 > 0. These are satisfied as do — d; > 4 and d3 — 61 > 4.
Hence all the required inequalities for the existence of BM#) and BOA) are met by this choice of
6; >0fori=1,2,3. O

Remark 4.3.6. The set {J; > 0 : ¢ = 1,2,3} satisfying the inequalities of Proposition 4.3.4 is
non-empty. For instance, take 6; = 1, d = 2 and any d3 in the open interval (9,12). Then
{01, 02,03} meets the requirement. Similarly, taking any d; in the open interval (0,1), dy = 7.5
and 03 = 8, we find that {01, d2, 03} satisfies the inequalities prescribed in Proposition 4.3.5. Thus,

the two sets which are obtained from Propositions 4.3.4 and 4.3.5 are not identical.

Corollary 4.3.7. In Proposition 4.3.4 and Proposition 4.3.5, (Z) =+ (;\Ll,) and (Z) =+ (é)

Proof. By Lemma 4.2.9, it suffices to show that (2\, a1, a2) # (2N, ), ) and (2A, a1, a2) #
(2X, @1, @i2). However, in Proposition 4.3.4, oy # o} since 01 # do. Similarly, in Proposition 4.3.5,
a9 # Qg since dy # 03. O

Recall that MK denotes the multiplication operator on the reproducing kernel Hilbert

spaces whose reproducing kernel is B,

Corollary 4.3.8. Suppose that BA#) BWH) gng BO#), BOA gre as in Proposition 4.5.4 and
Proposition 4.3.5 respectively. Then

(a) the multiplication operators M At gnd MXH) gre not unitarily equivalent .

(b) the multiplication operators M k) gnd MOB) gre not unitarily equivalent .

Proof. The proof is immediate from Theorem 4.2.11 and Corollary 4.3.7. O

Remark 4.3.9. In Proposition 4.3.4 and Proposition 4.3.5, we have shown the following: Given
a reproducing kernel BO#) such that KO#)(0) = diag(dy, d2, d3) there exists a reproducing ker-

’o . A / (N gy . .
nel BXM#) with <“> # </);’> such that KA#)(0) = diag(6p(1),0p(2)5 Op(3)) and given a re-
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producing kernel BM#) such that KM (0) = diag(dy,d2,03) there exists a reproducing ker-
nel BO® with (:) + <;> such that KO (0) = diag(d-(1), 07(2), 0r(3)), Where p,7 € S3 with
p(1) =2,p(2) =1,p(3) =3 and 7(1) = 1,7(2) = 3,7(3) = 2. In the next Proposition we prove
that if there exists a reproducing kernel BM#) such that KA#) (0) = diag(dy, d2,3) there does
not exist B4 with (2) #* (i) such that K78 (0) = diag(6,(1); 05(2)» 0(3)) unless o = p or
T, for o,p,7 € S3 . Obviously, there exists Bg)"“) = P,BMHWPF such that 169’“)(0) =diag
(05(1),90(2), 0(3)) for all o € S3, where P, is in M3 such that P,(i,j) = d,(;); and 16((7)"“) is
the curvature with respect to the metric hy(z) = B )(z, z)". The reproducing kernels B(\#)
and Bc(:"” ) are equivalent, that is, the multiplication operators on the reproducing kernel Hilbert
spaces with reproducing kernels B&#) and Bg)"“ ) are unitarily equivalent . Therefore, we do not

distinguish between the two reproducing kernels B&#) and B((,A’” ),

Notation 4.3.10. Let p,7 € S3 such that
p(1)=2,p(2) =1,p(3) =3 and 7(1) = 1,7(2) = 3,7(3) = 2.

Proposition 4.3.11. Giwen a reproducing kernel BO&® such that KO (0) = diag(6y, 02, 03)

there does not exist a reproducing kernel B8 such that K4 (0) = diag(dy(1); 0x(2)5 00(3)) with
A 9

( ) #+ (g) unless o =p or o =T.

M
Proof. Case 1. Pick o € S3 such that o(1) = 3,0(2) =2,0(3) = 1.

The existence of two reproducing kernels BA#) and B(?4) such that K(M#)(0) = diag(6, 62, d3)
and K74 (0) = diag(d,(1); 65(2)> 95(3)) Would imply, by an application of Lemma 4.2.8 to the
ordered triples (01, d2,d3) and (dg(1), 0e(2), r(3)) = (93,02, 01) that

01 + 92 + 03 > 6,

0o + 03 — 201 > 6,
203 — 01 — 09 > 6;
do(1) T 95(2) t 95(3) > 6,
d(2) T 05(3) — 205(1) > 6,
205(3) — 05(1) — 0o (2) > 6.

This set of inequalities are equivalent to

01 + 92 + 03 > 6,
do + 03 — 201 > 6,
203 — 61 — 02 > 6,
01 + 6y — 203 > 6,
201 — 9 — 03 > 6.

Adding the third and the fourth from these inequalities gives 0 > 12.
Case 2. Choose o € S3 such that o(1) =2,0(2) =3,0(3) = 1.
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As in the first case the existence of two reproducing kernels BM#) and B(4) such that
KA1 (0) = diag(d1, 02, 03) and K7€) (0) = diag(6,(1); 95(2)» 9(3)) Would imply, by an application
of Lemma 4.2.8 to the ordered triples (01, d2,d3) and (0o(1),05(2)> 95(3)) = (J2,03,01), that

01 + 92 + 03 > 6,
0o + 03 — 201 > 6,
203 — 01 — 09 > 0,
01 + 03 — 209 > 6,
261 — 69 — 03 > 6.

Adding second and fifth of these inequalities gives 0 > 12.

Case 3. Take o € S3 such that o(1) =3,0(2) = 1,0(3) = 2.

Finally, continuing in the same manner in the previous two cases, the existence of two
reproducing kernels BM#) and B4 such that KM#(0) = diag(dy, d2,d3) and KP4 (0) =
diag(d,(1); 65(2), 05(3)) wWould imply, by an application of Lemma 4.2.8 to the ordered triples
(01,02, 03) and (,(1),05(2), 90(3)) = (d3,01,02), that

01 + 6 + 03 > 6,
0o + 03 — 201 > 6,
203 — 01 — 09 > 0,
01 + 09 — 203 > 6,
209 — 03 — 61 > 6.

Adding third and fourth inequalities from this set of inequalities, we have 0 > 12. O
Corollary 4.3.12. There does not exist any multiplication operator M€ other than MW -H)

or MO such that the sets of eigenvalues of KW (0) and KA (0) are equal but K€ (0) #
16(/\’“)(0), where BO# BN B) BWE) gre as in Proposition 4.3.4 and Proposition 4.3.5.

Proof. Combining Corollary 4.3.8, Corollary 4.2.10, Theorem 4.2.11 and Proposition 4.3.11, we

obtain a proof of this corollary. O

Remark 4.3.13. We discuss the case m = 1. From Lemma 4.2.2, we see that
KM (0) = diag(2X — aq — 1,20 + aq + 1),

where A > 1/2, = (1, p11), i1 > 0, o = dy ™%, dy is defined as before. If KO#)(0) = diag(dy, ),
0; > 0 for ¢ = 1,2, for some A > 1/2 and p = (1, 1), g1 > 0. Then arguing as in Lemma 4.2.8,
one notes that 2\ = @, a1 = 62_6%. As 2\ > 1 and oy = d~! > 0 it follows that §; + dy > 2
and 8y — &; > 2 are necessary conditions for existence of a reproducing kernel BMsuch that
K1) (0) = diag(dy,d2). If §; > 0 for i = 1,2, proceeding as in Theorem 4.3.2, one observes that

6 — 01 > 2,601+ 02 > 2 and di > 2)\1_1 = 61+§2_2 are the sufficient conditions for existence of
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a reproducing kernel BM#) such that KM#) (0) = diag(dy,d). Conversely, if & > 0 for i = 1,2
and do — 01 > 2 then clearly d; + d > 2 and d; = 62_31_2 > 61+§2_2. So, d; >0 for i =1,2 and

83—081 > 2 are the necessary and sufficient conditions for the existence of reproducing kernel B(\#)
such that KM (0) = diag(6y, d2).

Remark 4.3.14. If §; > 0 for i = 1,2 such that K (0) = diag(d;, d2) there does not exist a
reproducing kernel B other than BO#) (up to equivalence as discussed in Remark 4.3.9) such
that (%8 (0) = diag(da, 61). If B(4) exists satisfying the above requirements then from Remark
4.3.13, we see that both of d5 — 1 > 2 and d; — 2 > 2 have to be simultaneously satisfied. This is
impossible. Hence there does not exist inequivalent multiplication operators M) and M (¥-€)
such that the set of eigenvalues of K("€)(0) equals those of K*#)(0) but K74 (0) # KLXH)(0).

Theorem 4.3.15. Suppose that BA&H | BN K gnd BO#) BAR are as in Proposition 4.3.4
and Proposition 4.3.5 respectively. Then

(i) the multiplication operators MH and MW H) are not unitarily equivalent although KO (2)

and KWNH) (2) are unitarily equivalent for z in D.

(ii) the multiplication operators MM and M AB) gre not unitarily equivalent although K (z)

and /65@(2) are unitarily equivalent for z in D.

Proof. From Proposition 4.3.4, we see that the curvatures of the associated bundles have the same
set of eigenvalues at zero namely, {01, d2, d3}. Since curvature is self-adjoint the set of eigenvalues is
the complete set of unitary invariants for the curvature. So, K*#)(0) and K #)(0) are unitarily
equivalent. Since the operators M®™#) and M®#) are homogeneous , by an application of
Theorem 4.1.6, we see that KX (z) and KA #)(2) are unitarily equivalent for z € D. Now, (i)
follows from part (a) of Corollary 4.3.8. The proof of part (ii) of this theorem is similar. O

The proof of the next Theorem will be completed after proving a sequence of Lemmas.

Theorem 4.3.16. Suppose that MNP and M) are not unitarily equivalent and the two cur-
vatures KO (2) and K8 (2) are unitarily equivalent — for z € D. Then there does not exist
any invertible matriz L in Mz satisfying LK (0) = K€ (0)L for which LIKM#);(0) =
(KW (0)L also. In other words, the covariant derivative of order (0,1) detects the inequiva-

lence.

Lemma 4.3.17. Suppose that there exists reproducing kernels BO#) | BOY K yyth Ié()‘v”)(O) =
diag(61,d2,03), KX #)(0) = diag(d,(1), 6,(2), 9,(3)), 61 # 62 and C' in My is such that CKOH (0) =
KXN#)(0)C. Then C = ((C’Z-j5p(i),j)) for Ci; € C, i,j = 1,2,3, where p € S3 is given by
p(1) =2,p(2) =1,p(3) = 3.

Proof. The proof of this Lemma is immediate from Lemma 4.2.14, once we ensure that 01, do, I3

are distinct. Recalling notations from Lemma 4.2.2, we write 01 = 2\ — a3 — 2, 09 = 2A+ a1 — ag,
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03 = 2A + ag + 2. Clearly, 63 — 61 = a1 + as + 4 > 0. Recalling notations from Proposition 4.3.4,
one has do = 2N — o) —2, 61 = 2N + o} — a), 65 =2N + o, + 2. So, 05 — s = & + o, +4 > 0.
We have d3 > §1, 3 > 02 and &1 # Jo by hypothesis. Hence the proof is complete. [l

The proof of the next Lemma is similar and is therefore omitted.

Lemma 4.3.18. Suppose that there exists reproducing kernels BXK) BOR) with KA (0) =
diag(61, 02, 83), KB (0) = diag(s, (1), 07(2), 0(3)), 02 # 03 and C' in Mg is such that CKM)(0) =
K B (0)C. Then C = ((C,-de(Z 7))3 _y for CZ] € C, i,j = 1,2,3, where T € Ss is given by
(1) =1,7(2) =3,7(3) = 2.

Lemma 4.3.19. Suppose that C' = ((C’ijég(i)d))?j:l foro=porTinSs. Then C is invertible if
and only if C(i,o(i)) #0 fori=1,2,3 and 0 = p or 7 in Ss.

Proof. We observe that the only possible nonzero entries of C' are the (i,0(i))-th entries for
1 <i<3and C(i,0(i)) = C; 5)- Since |det C| = |C ;1)C2,5(2)C5,0(3)|, it follows that det C' # 0
if and only if C(i,0(i)) # 0 fori = 1,2,3 and 0 = p or 7 in S3. The proof is therefore complete. [

The proof of the following Lemma is straight forward. We recall that S(cyi,...,cn ), p) =
ceopt1,0, 0 < p, L < m.

Lemma 4.3.20. Suppose that C = ((C,ﬁ (i).] ))” 1 Cioiy #0 fori=1,2,3 and 0 = p,7 in S3
is such that CS(cy,c2)™ = S(¢1,¢0)"C for ¢;,¢; inC, i =1,2. Thenc; =¢ =0 fori=1,2.

Lemma 4.3.21. (KMH);(0) is not the zero matriz.

Proof. If possible let (K¥)z(0) = 0. Then it follows from Lemma 4.2.2 that —/a; (14+a1— %) =
—Vay(1+ ag — ) = 0. Equivalently, 1 + a3 — % =1+ az — %, as ag and ay are positive.
This implies that a1 = 3. So, (IC()‘ "))2( ) =20 1mplies by an application of Lemma 4.2.2 that
—Va; (1 + %) =0, which is impossible as oy is positive. O

Proof of Theorem 4.3.16: We observe by applying Proposition 4.3.4, Proposition 4.3.5 and Propo-
sition 4.3.11 that if M%) is a multiplication operator not unitarily equivalent to M*H) then
(9,6) = (N, ) or (X, ). We arrive at the desired conclusion by an straight forward application
of Lemma 4.3.17, Lemma 4.3.18, Lemma 4.3.19, Lemma 4.3.20 and Lemma 4.3.21. O

Remark 4.3.22. The calculations for all the homogeneous operators constructed in [31] are not
very different. However, we have not succeeded in completely answering the question raised in [20,
page. 39] using these calculations. Indeed, for generic bundles associated with the entire class of
operators from [31], we have shown 4.2.13 that the simultaneous unitary equivalence class of the
curvature at 0 along with the covariant derivative of curvature at 0 of order (0,1) is a complete

set of unitary invariants for these operators.



1]

[2]

BIBLIOGRAPHY

J. Arazy, S. Fisher and J. Peetre, Mdbius invariant function spaces. J. Reine Angew.
Math. 363 (1985), 110-145.

J. Arazy, S. Fisher and J. Peetre, Mdbius invariant spaces of analytic functions. Complex
analysis, I (College Park, Md., 1985-86), 1022, Lecture Notes in Math., 1275, Springer,
Berlin, 1987.

J. Arazy and H. Upmeier, Invariant inner product in spaces of holomorphic functions on
bounded symmetric domains. Doc. Math. 2 (1997), 213-261 (electronic).

J. Arazy and G. Zhang, Homogeneous multiplication operators on bounded symmetric do-
mains, J. Func. Anal. 202 (2003), 44 — 66.

N. Aronszajn, Theory of reproducing kernels, Trans. Amer.Math. Soc. 68 (1950), 337 — 404.

B. Bagchi and G. Misra, Homogeneous tuples of operators and systems of imprimitivity,
Contemporary Mathematics, 185 (1995), 67 — 76.

, Homogeneous tuples of multiplication operators on twisted Bergman space, J. Funct.
Anal. 136 (1996), 171 — 213.

, Constant characteristic functions and Homogeneous operators, J. Operator Theory,
37 (1997), 51 — 65.

, Homogeneous operators and the projective representations of the Mébius group: a
survey, Proc. Indian Acad. Sci. Math. Sci 111 (2001), no. 4, 415 — 437.

, The homogeneous shifts, J. Funct. Anal. 204 (2003), 293 — 319.

F. A. Berezin, General concept of quantization. Comm. Math. Phys. 40 (1975), 153-174.

I. Biswas and G. Misra, SL(2, R)-homogeneous vector bundles, preprint, 2006.

X. Chen and R. G. Douglas, Localization of Hilbert modules. Michigan Math. J. 39 (1992),
no. 3, 443-454.

X. Chen and K. Guo, Analytic Hilbert modules. Chapman and Hall/CRC Research Notes
in Mathematics, 433. Chapman and Hall/CRC, Boca Raton, FL, 2003.



Bibliography 88

[15]

[16]

[28]

[29]

D. N. Clark and G. Misra, On homogeneous contractions and unitary representations of
SU(1,1). J. Operator Theory 30 (1993), no. 1, 109-122.

L. A. Coburn, Deformation estimates for the Berezin-Toeplitz quantization. Comm. Math.
Phys. 149 (1992), no. 2, 415-424.

L. A. Coburn Berezin-Toeplitz quantization. Algebraic methods in operator theory, 101-108,
Birkhuser Boston, Boston, MA, 1994.

M. J. Cowen and R. G. Douglas, Complex geometry and Operator theory, Acta Math. 141
(1978), 187 — 261.

, On operators possessing an open set of eigenvalues, Memorial Conf. for Féjer-Riesz,
Collog. Math. Soc. J. Bolyai, 1980, pp. 323 — 341.

M. J. Cowen and R. G. Douglas, Equivalence of connections, Adv. in Math. 56 (1985),
no. 1, 39-91.

R. E. Curto and N. Salinas, Generalized Bergman kernels and the Cowen-Douglas theory,
Amer. J. Math. 106 (1984), 447 — 488.

K. R. Davidson and R. G. Douglas, The generalized Berezin transform and commutator
ideals. Pacific J. Math. 222 (2005), no. 1, 29-56.

, Bquivalence of quotient Hilbert modules — II, To appear, Trans. Amer. Math. Soc.

R. G. Douglas, G. Misra and C. Varughese, On quotient modules- the case of arbitrary
multiplicity, J. Funct. Anal. 174(2000), 364 — 398.

R. G. Douglas and V. 1. Paulsen, Hilbert modules over function algebras. Pitman Research
Notes in Mathematics Series, 217. Longman Scientific and Technical, Harlow; copublished in
the United States with John Wiley and Sons, Inc., New York, 1989.

J. Eschmeier and M. Putinar, Spectral decompositions and analytic sheaves. London Math-
ematical Society Monographs. New Series, 10. Oxford Science Publications. The Clarendon
Press, Oxford University Press, New York, 1996.

S. H. Ferguson and R. Rochberg, Higher order Hilbert-Schmidt Hankel forms and tensors
of analytic kernels. Math. Scand. 96 (2005), no. 1, 117-146.

S. H. Ferguson and R. Rochberg, Description of certain quotient Hilbert modules. Operator
theory 20, 93-109, Theta Ser. Adv. Math., 6, Theta, Bucharest, 2006.

H. P. Jakobsen, Tensor products, reproducing kernels, and power series, J. Funct. Anal. 31
(1979), no. 3, 293-305.



Bibliography 89

[30]

[31]

A. Koréanyi and G. Misra, New Constructions of Homogeneous operators, C. R. Acad. Sci.
Paris, ser. I 342 (2006), 933 — 936.

A. Kordnyi and G. Misra, Homogeneous operators on Hilbert spaces of holomorphic func-
tions, Preprint, 2006.

G. Misra, Curvature and the backward shift operators, Proc. Amer. Math. Soc. 91 (1984),
no. 1, 105 — 107.

G. W. Mackey, Mathematical foundations of quantum mechanics. With a foreword by A. S.
Wightman. Reprint of the 1963 original. Dover Publications, Inc., Mineola, NY, 2004.

G. Misra, Curvature and Discrete series representations of SLa(R), J. Int. Eqn. Oper. Th. 9
(1986), 452 — 459.

G. Misra and N. S. N. Sastry, Homogeneous tuples of operators and holomorphic discrete

series representation of some classical groups, J. Operator Theory 24 (1990), 23 — 32.

G. Misra and S. Shyam Roy, The curvature invariant for a class of homogeneous operators,

preprint, 2006.

G. Misra and S. Shyam Roy, On Irreducibility of a class of homogeneous  operators,
Operator Theory: Advances and Applications, Vol. 176, 165-198, 2007 Birkhauser Verlag
Basel/ Switzerland.

G. Olafsson and B. Orsted, The holomorphic discrete series of an affine symmetric space
and representations with reproducing kernels. Trans. Amer. Math. Soc. 326 (1991), no. 1,
385-405.

B. Orsted, Composition series for analytic continuations of holomorphic discrete series
representations of SU(n, n). Trans. Amer. Math. Soc. 260 (1980), no. 2, 563-573.

B. Orsted and G. Zhang, Reproducing kernels and composition series for spaces of vector-
valued holomorphic functions on tube domains. J. Funct. Anal. 124 (1994), no. 1, 181-204.

B. Orsted and G. Zhang, Reproducing kernels and composition series for spaces of vector-
valued holomorphic functions. Pacific J. Math. 171 (1995), no. 2, 493-510.

B. Orsted and G. Zhang, Tensor products of analytic continuations of holomorphic discrete
series. Canad. J. Math. 49 (1997), no. 6, 1224-1241.

J. Peetre, Invariant function spaces connected with the holomorphic discrete series. Anniver-
sary volume on approximation theory and functional analysis (Oberwolfach, 1983), 119-134,
Internat. Schriftenreihe Numer. Math., 65, Birkhuser, Basel, 1984.



Bibliography 90

[44]

[45]

J. Peetre, Moebius invariant function spaces—the case of hyperbolic space. Proc. Roy. Irish
Acad. Sect. A 92 (1992), no. 2, 243-265.

M. M. Peloso, Médbius invariant spaces on the unit ball. Michigan Math. J. 39 (1992), no.
3, 509-536.

L. Peng and G. Zhang, Tensor products of holomorphic representations and bilinear differ-
ential operators, J. Funct. Anal. 210 (2004), 171 — 192.

T. Steger and M. K. Vemuri, Inductive algebras for SL(2,R). Illinois J. Math. 49 (2005),
no. 1, 139-151 (electronic).

H. Upmeier, Jordan algebras in analysis, operator theory, and quantum mechanics. CBMS
Regional Conference Series in Mathematics, 67. Published for the Conference Board of the
Mathematical Sciences, Washington, DC; by the American Mathematical Society, Provi-
dence, RI, 1987.

H. Upmeier, Toeplitz operators and index theory in several complexr variables. Operator

Theory: Advances and Applications, 81. Birkhuser Verlag, Basel, 1996.
R. O. Wells, Differential analysis on complex manifolds, Springer, 1973.

D. R. Wilkins, Homogeneous vector bundles and Cowen-Douglas operators, Internat. J.
Math. 4 (1993), no. 3, 503 — 520.



