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Abstract

Let Q c C" be a bounded domain and K : Q x Q — C be a sesqui-analytic function. We show
that if a, 8 > 0 be such that the functions K* and K?, defined on Q x Q, are non-negative
definite kernels, then the .4, (C) valued function

K@P (2, w):= K*P(z, w)((ai(_?j logK)(z, w)) ,Z, WeQ,

m
i,j=1
is also a non-negative definite kernel on Q x Q. Then a realization of the Hilbert space
(A, K Py determined by the kernel IK@P) in terms of the tensor product (#,K%) ® (#, K )
is obtained. For two reproducing kernel Hilbert modules (#, K1) and (A, K»), let «f,,, n =0, be
the submodule of the Hilbert module (#, K7) ® (#, K») consisting of functions vanishing to
order n on the diagonal set A := {(z, z) : z € Q}. Setting % = doi, S =y 199, n=1,leads
to a natural decomposition of (#, K1) ® (#, K») into infinite direct sum @9, /. A theorem
of Aronszajn shows that the module % is isomorphic to the push-forward of the module
(A, K1 K3) under the map ¢ : Q — Q x Q, where ((z) = (2, z), z € Q. We prove that if K; = K¢
and K, = K P then the module S is isomorphic to the push-forward of the module (A, I (@h)y
under the map t.

Let Mo6b denote the group of all biholomorphic automorphisms of the unit disc D. An
operator T in B(#) is said to be weakly homogeneous if o(T) < D and @(T) is similar to T
for each ¢ in M6b. For a sharp non-negative definite kernel K : D x D — .#(C), we show that
the multiplication operator M, on (#, K) is weakly homogeneous if and only if for each ¢ in
Mob, there exists a g, € Hol(D, GL(C)) such that the weighted composition operator Mg, C,,-1
is bounded and invertible on (A, K). We also obtain various examples and nonexamples of
weakly homogeneous operators in the class & B, (D). Finally, it is shown that there exists a
Mobius bounded weakly homogeneous operator which is not similar to any homogeneous
operator.

We also show that if K7 and K, are two positive definite kernels on D x D such that the
multiplication operators M, on the corresponding reproducing kernel Hilbert spaces are
subnormal, then the multiplication operator M, on the Hilbert space determined by the sum
Kj + K, need not be subnormal. This settles a recent conjecture of Gregory T. Adams, Nathan S.
Feldman and Paul J. McGuire in the negative.
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Chapter 1

Introduction

(Reproducing kernel Hilbert spaces): Let Q < C" be a bounded domain and .7 be a Hilbert
space consisting of C¥ valued holomorphic functions on Q. Assume that the evaluation map
E, : # — Ck, defined by E,(f) = f(w), f € #, is bounded for each w € Q. The function
K:QxQ— i (C), defined by

K(z,w):=E,E,;, z,weQ,

is called the reproducing kernel of #, and . is called the reproducing kernel Hilbert space
with the reproducing kernel K. The kernel function K satisfies the following two properties.
For all w in Q and 7 in C¥,

(i) the function K(-, w)n isin A&,

(i) (f, K¢ wn) ;= (f(w),n)c forall fin A2

Every reproducing kernel K is a non-negative definite kernel in the following sense.
A function K : Q x Q — #;(C) is said to be a non-negative definite kernel if for any subset
fwi,..., w,} of Q, the n x n block matrix (K(w,-, wj))?].:1 is non-negative definite, that is,

n
Y (K(w;, w)n;ni)=0, n,...,n, €CF.
i=1

Analogously, a function K : Q x Q — #;(C) is said to be a positive definite kernel if for any
subset {wy, ..., w,} of Q, the n x n block matrix (K (w;, wj))ijl is positive definite, that is, it
is non-negative definite and invertible. We always assume that the kernel K(z, w) is sesqui-
analytic, that is, it is holomorphic in z and anti-holomorphic in w. If K is the reproducing

kernel of a reproducing kernel Hilbert space .7, then for any subset {w;,..., w,} of Q and
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N1,...,Mn in Ck, we have

n n

_ZI<K(wi, wpnj,ni) = ‘ZI<K(-, wi)n j, K¢, win;)
i,j= iL,j=

n
1Y K win:|* =o.
i=1

Thus every reproducing kernel is a non-negative definite kernel.

Conversely, given any non-negative definite kernel K : Q x Q — #;(C), let # be the vector
space consisting of functions of the form Z:?ZIK(-, wini, w; € Q, n; € cki=1,..nn=1.
Define an inner product on /5 by the following formula:

n n n
<i:ZiK(-, w,-)n,-,jZﬂK(-, w})n'j> = i;1 <K(w;, wi)m,n’j>, wi, w)eQ, n;,1m; e Ck. (1.1)
Using the non-negative definiteness of K, it is easily verified that (1.1) indeed defines an inner
product on 5. Let A be the completion of .#;. Then .# is a Hilbert space consisting of
functions on Q and K is the reproducing kernel of /. Note that if the kernel K is sesqui-
analytic, then the Hilbert space . consists of holomorphic functions on Q taking values in CF.
This completes the proof of the Theorem due to Moore stated below.

Theorem 1.1.1 (Moore). IfK:Q x Q — . (C) is a sesqui-analytic non-negative definite kernel,
then there exists a unique Hilbert space # consisting of C* valued holomorphic functions on

such that the evaluation map E,, is bounded for each w € Q) and K is the reproducing kernel of
S .

We let (#£, K) denote the unique reproducing kernel Hilbert space # determined by the
non-negative definite kernel K. Also for K: Q x Q — 4 (C), we write K > 0 to denote that K is
non-negative definite. For two functions K, K> : Q x Q — #;(C), we write K; = K, if K; — K, = 0.
Analogously, we write K < 0 if —K is non-negative definite and K; < K; if K3 — K, < 0.

We refer to [4] and [47] for the relationship between non-negative definite kernels and
Hilbert spaces with the reproducing property as above.

Let Q c C" be abounded domain and K : Q xQ — C be a non-zero sesqui-analytic function.
Let ¢ > 0 be any arbitrary positive real number. The function K is defined in the usual manner,
namely K(z, w) = exp(tlogK(z, w)), z, w € Q, assuming that a continuous branch of the
logarithm of K exists on Q x Q. Clearly, K is also sesqui-analytic. However, if K is non-negative
definite, then K’ need not be non-negative definite unless ¢ is a natural number. A direct
computation, assuming the existence of a continuous branch of logarithm of K on Q x Q,
shows thatfor1<i,j<m,

K(z,w)08;0;K(z, w) —0;K(z, w)0;K(z, w)

6i5jlogK(z, w) = Kz )

, Z, WeEQ,



where d; and 0 j denote O%i and aiwj’ respectively.

For any positive integer s = 2, define (Ksal-éj logK(z, w))Tj=1 to be

K(z, w)*"*(K (2, w)3;0K (2, w) ~ 0;K (2, w)3,;K(z, )",

where we have not assumed that a continuous branch of the logarithm of K(z, w) exists on
Q x Q. Also, unless 7 is a positive integer, we write K’ with the understanding that a continuous
branch of logarithm of K exists on Q2 x Q. Similarly, with the same hypothesis on K, we write
(0:0;logK(z, w));";_;-

For a sesqui-analytic function K : Q x Q — C satisfying K(z, z) > 0, an alternative interpreta-
tion of K(z, w)? (resp. logK(z, w)) is possible using the notion of polarization. The real analytic
function K(z,z)" (resp. logK(z, z)) defined on Q extends to a unique sesqui-analytic function
in some neighbourhood U of the diagonal set {(z, z) : z € Q} in Q x Q. If the principal branch of
logarithm of K exists on Q x Q, then it is easy to verify that these two definitions of K(z, w)’
(resp. log K (z, w)) agree on the open set U.

(Hilbert Modules): We will find it useful to state many of our results in the language of
Hilbert modules. The notion of a Hilbert module was introduced by R. G. Douglas (cf. [29]),
which we recall below. We point out that in the original definition, the module multiplication
was assumed to be continuous in both the variables. However, for our purposes, it would be
convenient to assume that it is continuous only in the second variable.

Definition (Hilbert module). A Hilbert module .4 over a unital, complex algebra A consists of
a complex Hilbert space 4 and a map (a,h) — a-h, a€ A, he 4, such that

i) 1-h=h
(ii) (ab)-h=a-(b-h)
(iii) (a+b)-h=a-h+b-h

(iv) foreach a in A, the mapmy, : M — M, defined bym,(h) = a-h, he 4, is a bounded
linear operator on ./ .

A closed subspace . of ./ is said to be a submodule of .# if m,h € & for all h € &
and a € A. The quotient module 2 := # /% is the Hilbert space #*, where the module
multiplication is defined to be the compression of the module multiplication on /# to the
subspace #7, that is, the module action on 2 is given by m,(h) = P, (m,h), he #*.

Two Hilbert modules .#; and .4, over A are said to be isomorphic if there exists a unitary
operator U : 4 — > suchthatU(a-h)=a-Uh,ac€ A, he /.

Now, if 4y, A1, with 4, < 4, are a pair of nested submodules of .#, then the quotient
My [ 4, inherits a module multiplication from .. Notice that the two projection operators
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Py: My — Moo M and P : M — My S A agree on the subspace 4. Thus m,(f) = P(ah),
he tye A, ac A, defines a module multiplication on .4, © .#,. Note that, in general, the
module .4, © 4 is neither a submodule nor a quotient module of .#. Indeed, one may say it
is a semi-invariant module of the Hilbert module ..

Let K: Q x Q — 4} (C) be a non-negative definite kernel. Assume that the multiplication
operator M, by the ith coordinate function z; is bounded on (#,K) for i = 1,...,m. Then
(/€,K) may be realized as a Hilbert module over the polynomial ring Clz,,..., z,,] with the
module action given by the point-wise multiplication:

my,(h) = ph, he (#,K), peClz,...,znl.

(Tensor products): Let Kj and K; be two scalar valued non-negative definite kernels defined
on Q x Q. We identify the tensor product (#, K;) ® (#, K>) as a Hilbert space of holomorphic
functions defined on Q2 xQ. Then it is the reproducing kernel Hilbert space with the reproducing
kernel K; ® K, where K; ® K> : (2 x Q) x (Q x Q) — C is given by

(K1 ® K2)(z,(;w,p) = Ki(z, w)K2(C, p), z,¢, w,p €.

We also make the standing assumption that the multiplication operators M, i = 1,...,m, are
bounded on (A7, K7) as well as on (#, K»). Thus the map

m:Clzy,..., Zoml x ((H#, K1) ® (H#,K2)) = (A, K1) ® (A, K3)

defined by
my(h) = ph, he (#,K) ® (#,K3), p€Clz,..., z22ml,

provides a module multiplication on (#7, K1) ® (#, K) over the polynomial ring C[zy, ..., Z2m].
The module (A, K;) ® (4, K») admits a natural direct sum decomposition as follows. First, we
recall some multi-index notations.

Let Z, denote the set of all non-negative integers. For i = (iy,...,i,) € Z}, let|[i| =i} +--- +

im. For a holomorphic function f: Q xQ — C, let ((%)if(z,() be the function ﬁf(z,()
fagi

and (((%)'f(z,())IA be the restriction of (a%)if(z,() to the set A, where A is the diagonal set
{(z,2): z€ Q}. Also if K : Q x Q) — C is non-negative definite, then 6° K (-, w) denotes the function
dwlowim

For a non-negative integer k, let o} be the subspace of (#, K;) ® (#, K>) defined by
di={f e (#,K) & (#,K): (£) f(2,0),,=0, i€ Z,lil < k}. (1.2)

It is verified that the subspaces <k, k = 0, are closed and also invariant under the multipli-
cation by any polynomial in C|zy, ..., Z2,,], therefore, they are submodules of (#, K1) ® (A, K3).



Setting A = dOJ' and % := _1 © A, k = 1, we obtain a direct sum decomposition of the
Hilbert space

(H, K1) ® (#,K) = P Fx.
k=0

In this decomposition, the subspaces .# < (#, K1) ® (A, K>3), k = 0, are not necessarily
submodules. As we have already mentioned, these are called semi-invariant modules following
the terminology commonly used in operator theory. We aim to study the compression of the
module action to these subspaces analogous to the ones studied in operator theory. Also,
such a decomposition is similar to the Clebsch-Gordan decomposition, which describes the
decomposition of the tensor product of two irreducible representations, say p; and p, of a
group G when restricted to the diagonal subgroup in G x G:

01(8) ® 02(8) = P dimi(g),
k

where g, k € Z,, are irreducible representation of the group G and dy, k € Z,, are natural
numbers. However, the decomposition of the tensor product of two Hilbert modules cannot be
expressed as the direct sum of submodules. Noting that .% is a quotient module, describing all
the semi-invariant modules %, k = 1, would appear to be a natural question. To describe the
equivalence classes of %, .4, ... etc., it would be useful to recall the notion of the push-forward
of a module.

Lett: Q — QxQbe the map ((z) = (2, z), z € Q. Any Hilbert module .4 over the polynomial
ring C[zy, ..., Z;] may be thought of as a module ¢, .# over the ring C[z, ..., z2;,] by re-defining
the multiplication: my,(h) = (pon)h, h€ 4 and p € Clz,,..., zoml.

Definition (push-forward module under t). The module i, 4 overClz,,...,z2n] is defined to
be the push-forward of the module 4 overCl|z,,..., z;,] under the inclusion map .

In [4], Aronszajn proved that the Hilbert space (#, K; K») corresponding to the point-wise
product K; K> of two non-negative definite kernels K; and Kj is obtained by the restriction of
the functions in the tensor product (#, K1) ® (#, K») to the diagonal set A.

Theorem 1.1.2 (Aronszajn, [4]). Let K1, K> : Q x Q — C be two non-negative definite kernels.
Then K1 K> is a non-negative kernel and the Hilbert space determined by K, K> is given by

(A, K1K2) = {hja : h e (#,K)) ® (H,K2)},

with
1f1IE 2 k, k) = min{ll R : h € (7, K1) ® (€, K2) and ha = f}.

Building on his work, it was shown in [28] that the restriction map is isometric on the
subspace .4 onto (A, K K>) intertwining the module actions on ¢, (#, K1 K») and .%,. However,
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using the jet construction given below, it is possible to describe the quotient modules <7;-, k = 0.
Here we address the question of describing the semi-invariant modules, namely, %, %,....
Unfortunately, we have been able to succeed in describing only .4 assuming that K; = K* and
K, = KP for some sesqui-analytic function K : Qx Q2 — C and a pair of positive real numbers a, f.
In the particular case, when K1 = (1-zw) % and K, = (1 — z) 7P a, B >0, the semi-invariant
modules %, k = 0, were described by Ferguson and Rochberg.

Theorem 1.1.3 (Ferguson-Rochberg, [31]). IfK;(z, w) = m and K, (z, w) = m onDxD

for some a, B > 0, then the Hilbert modules %, and 1,(#, (1 — ziv)~@*F+2M) are isomorphic.

(The jet construction): For a bounded domain Q < C™, let K; and K5 be two scalar valued
non-negative kernels defined on Q x Q. Assume that the multiplication operators M, i =
1,...,m, are bounded on (#, K}) as well as on (#, K3). For a non-negative integer k, let </} be
the subspace defined in (1.2).

Let d be the cardinality of the set {i € Z",|i| < k}, which is (m,;:k) Define the linear map
Ji: (A,Ky) ® (A, Kz) — Hol(Q x Q,CY) by

U (z,0) = Z ((%)if(z,()®ei, fe(#,K) e (A, Ky), (1.3)
lil<k
where {ei}iez’”,lilsk is the standard orthonormal basis of C%. Let R : ran J; — Hol(Q,CY) be
the restriction map, that is, R(h) = hja, h € ran Ji. Clearly, ker RJ; = «/,. Hence the map
RJ: dkL — Hol(Q,CY) is one to one. Therefore we can give a natural inner product on ran R Ji,
namely,

(RJk(f), RIk(8) =Py [, Pey18), f,8 € (H, K1) ® (A, K7).

In what follows, we think of ran RJ as a Hilbert space equipped with this inner product. The
theorem stated below is a straightforward generalization of one of the main results from [28].

Theorem 1.1.4. ([28, Proposition 2.3]) Let K1, K> : Q x Q — C be two non-negative definite
kernels. Then ran RJj is a reproducing kernel Hilbert space and its reproducing kernel
Jx (K1, K2)resa is given by the formula

Jk (K, Kiresa (2, W) 1= (Kq (2, 0)0'07 Ky (2, w) ) 10 2 WEQ.

Now for any polynomial p in z,{, define the operator 7, onran RJ as

TPRI) =Y (Z (‘li)((%)qp(z,C))m((a%)l_qf(z,())lA)®el,f€(J€,K1)®(%,K2),
[ll<k q<l

where 1 = (Iy,..., L), q = (q1,...,qm) € Z™, and q < | means g; < l;, i = 1,...,m and (fi) =

(01711) e (fl’;‘l ). The proof of the Proposition below follows from a straightforward computation

using the Leibniz rule, see [28].



Proposition 1.1.5. For any polynomial p inClz,...,z2;,], the operator Pdkl My, 1 is unitarily
k
equivalent to the operator 5, on (ran RJy).

(The Cowen-Douglas class): We now discuss an important class of operators introduced by
Cowen and Douglas in the very influential paper [21]. The case of 2 variables was discussed
in [22], while a detailed study in the general case appeared later in [26]. The definition below is
taken from [26]. Let T := (T3, ..., T),) be a m-tuple of commuting bounded linear operators on
a separable Hilbert space 4. Let D : A — S & --- & / be the operator defined by D (x) =
(Tix,..., Tmx), xe€ A.

Definition 1.1.6 (Cowen-Douglas class operator). Let Q < C" be a bounded domain. The oper-
ator T is said to be in the Cowen-Douglas class B,,(Q2) if T satisfies the following requirements:

() dimkerDr_,, =n, we
(i) ran Dt_,, is closed for all w e Q
(iti) V{kerDr_,:weQ}=7.

If T € B,,(QQ), then for each w € Q, there exist functions y1,...,y, holomorphic in a neigh-
bourhood Q € Q containing w such that ker Dy_,,» = \/{y1(w'),...,y,(w")} for all w' € Qg
(cf. [22]). Consequently, every T € B,(Q) corresponds to a rank n holomorphic hermitian
vector bundle Er defined by

Er={(w,x)eQx A :xekerDr_,}

and n(w, x) = w, (w, x) € Et.

For a bounded domain Q in C™”, let Q* = {z: z € Q}. It is known that if T is an operator
in B, (Q%), then for each w € Q, T is unitarily equivalent to the adjoint of the multiplication
tuple (M,,,..., M, ) on some reproducing kernel Hilbert space (#, K) < Hol(Qo, C") for some
open subset Q < Q containing w. Here the kernel K can be described explicitly as follows. Let
I'={y1,...,Yn} be a holomorphic frame of the vector bundle E7 on a neighbourhood Q(’)k cQ*
containing w. Define Kt : Qy x Qo — #,,(C) by Kr(z, w) = (<7’j(w)’7’i(2)>)z]'=p z,w € Q.
Setting K = Kt, one may verify that the operator T is unitarily equivalent to the adjoint of the
m-tuple of multiplication operators (M,,, ..., M) on the Hilbert space (#, K).

If T € B;(Q%), the curvature matrix £ (i) at a fixed but arbitrary point w € Q* is defined
by

Hr(w) = (0;0;logly@)1%)]",_,,

where y is a holomorphic frame of E7 defined on some open subset Q5 € Q* containing w.
If T is realized as the adjoint of the multiplication tuple (M,,,..., M, ) on some reproducing
kernel Hilbert space (#, K) < Hol(Q), where w € Q, the curvature £7(w) is then equal to

m

(0;0;logK (w, w)); ioy-
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The study of operators in the Cowen-Douglass class using the properties of the kernel
functions was initiated by Curto and Salinas in [26]. The following definition is taken from [49].

Definition 1.1.7 (Sharp kernel and generalized Bergman kernel). A positive definite kernel
K:Q xQ — M (C) is said to be sharp if

(i) the multiplication operator My, is bounded on (/¢,K) fori=1,...,m,
(i) kerD,—w)* =ran K(-, w), w e,

where M, denotes the m-tuple (M,,, M,,,...,M;,) on (#,K). Moreover, if ran D, )+ IS
closed for all w € Q, then K is said to be a generalized Bergman kernel.

Some of the results in this thesis generalize, among other things, one of the main results
of [49], which is reproduced below.

Theorem 1.1.8 (Salinas, [49, Theorem 2.6]). Let Q < C™ be a bounded domain. If Ki,K; :
Q x Q — C are two sharp kernels (resp. generalized Bergman kernels), then K1 ® K» and Ky K, are
also sharp kernels (resp. generalized Bergman kernels).

(Homogeneous and weakly homogeneous operators): Let Mob denote the group of all
biholomorphic automorphisms of the unit disc D. Recall that an operator T in B(/) is said to
be homogeneous if o(T) € D and ¢(T) is unitarily equivalent to T for all ¢ in M6b, where ¢(T)
is defined by using the usual Riesz functional calculus. It follows from the spectral mapping
theorem that the spectrum of a homogeneous operator is invariant under the action of Mob
and therefore, it is either the unit circle T or the closed unit disc D.

For A > 0, let KV denote the positive definite kernel (1 — zi)™* on D x D and let AW
denote the Hilbert space determined by the kernel KV, It known that the adjoint M} of the
multiplication operator by the coordinate function z on .#W, A > 0, is homogeneous and upto
unitary equivalence, every homogeneous operator in B; (D) is of this form, see [44].

An operator T in B(#) is said to be weakly homogeneous if o(T) <D and ¢(T) is similar
to T for all ¢ in M06b, see [16], [10]. As in the case of homogeneous operators, the spectrum of
a weakly homogeneous operator is also T or D. It is easy to verify that every operator T which
is similar to a homogeneous operator is weakly homogeneous. But the converse of this is not
true. To see this, it would be useful to recall the definition of a M6bius bounded operator.

Mobius bounded operators were introduced in [51] by Shields. An operator T on a Banach
space 28 is said to be Mobius bounded if o (T) < D and SUpP,c Mob lo(T)| < co. We will only
discuss Mobius bounded operators on Hilbert spaces. By the von Neumann’s inequality, every
contraction on a Hilbert space is M6bius bounded. Also, if T is an operator which is similar
to a homogeneous operator, then it is easily verified that T is Mobius bounded. In [10], the
existence of a weakly homogeneous operator which is not Mébius bounded was given. Hence



it cannot be similar to any homogeneous operator. In the same paper, the following question
was raised.

Question 1.1.9 (Bagchi-Misra, [10, Question 10]). Is it true that every Mobius bounded weakly
homogeneous operator is similar to a homogeneous operator?

In [51], it was shown that every power bounded operator is Mébius bounded. An example
of an operator on a Banach space which is Mdbius bounded but not power bounded was also
given in that paper. The multiplication operator M, on the Hilbert space (#, K™W),0< A <1, is
homogeneous, therefore, M6bius bounded, however, it is not power bounded. This was noted
in [10]. Although a M6bius bounded operator need not be power bounded, Shields proved that
if T is a MGbius bounded operator on a Banach space, then || T"| < c(n+ 1), n€ Z,, for some
constant ¢ > 0. But for operators on Hilbert spaces, he made the following conjecture.

Conjecture 1.1.10 (Shields, [52]). If T is a Mdbius bounded operator on a Hilbert space, then
1T <c(n+ 1)%, neZ., for some constant c > 0.

This conjecture is verified for the class of quasi-homogeneous operators introduced re-
cently in the paper [38].

(subnormal operators on reproducing kernel Hilbert spaces): Recall that an operator T in
B(A) is said to be subnormal if there exists a Hilbert space £ > # and a normal operator N
in B(£) such that N(#) c # and Nz = T. For the basic theory of subnormal operators, we
refer to [18].

Completely hyperexpansive operators were introduced in [6]. An operator T € B(#) is said
to be completely hyperexpansive if

Z( 1)1() T*T/<0  (n21).

The theory of subnormal and completely hyperexpansive operators is closely related with
the theory of completely monotone and completely alternating sequences (cf. [5], [6] ). A
sequence {ai}kez, of positive real numbers is said to be completely monotone if

Z( D/ (§)am+j =0 (m,n=0). (1.4)

It is known that a sequence {ay}kez, is completely monotone if and only if it is a Hausdorff
moment sequence, that is, there exists a positive measure v supported in [0, 1] such that
a = f[0,1] x*dv(x) forall k € Z 4 (see [12]). The measure v is called the representing measure of
the sequence {ay} ez, .
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Similarly, a sequence {aj}icz, of positive real numbers is said to be completely alternating
if
n .
2 D(Famjs0 (mz0,nz1). (1.5)
j=0

Note that {ai} ez, is completely alternating if and only if the sequence {Aay} ez, is completely
monotone, where Aay := ay41 — ak.

Let (#, K) be a reproducing kernel Hilbert space consisting of holomorphic functions
on the unit disc D where K has the diagonal expansion Y ez, ar(z)*, a; > 0. Consider
the operator M, of multiplication by the coordinate function z on (#, K). As is well-known,
such a multiplication operator is unitarily equivalent to a weighted shift operator W with the
weight sequence {(;*-)"/?}, _, . The operator M; on (#, K) is contractive subnormal if and
only if {aik} ez, is a Hausdorff moment sequence (cf. [18, Theorem 6.10]). We will often call
the representing measure of the Hausdorff moment sequence {aLk}kez+ as the representing
measure of the subnormal operator M,. On the other hand, the operator M, on (#,K) is
completely hyperexpansive if and only if the sequence {aik} kez, is completely alternating
(see [6, Proposition 3]).

For any two positive definite kernels K; and K, defined on D x D, their sum K; + K> is again
a positive definite kernel on D x D and therefore determines a Hilbert space (/#, K; + K») of
functions on D. It was shown in [4] that

(%)KI_FKZ) = {f:fl +f2 :fl € (%)KI))JCZ € (ﬂrKZ)}y

and the norm is given by

0 kv = inf{uflu%ﬁ,m 1 foll iy : f = fi+ for fLe (H,K0), fo€ (F, Kz)}-

The sum of two kernel functions is also discussed by Salinas in [49]. He proved that if K; and K»
are generalized Bergman kernels, then so is K; + K». Although not explicitly stated in [4], it is not
hard to verify that the multiplication operator M, on (#, K} + K>) is unitarily equivalent to the
operator P_,. (MY @M (2))| 1, where M is the operator of multiplication by the coordinate
function z on (4, K;), i = 1,2 and

N ={(g -8 € (H, K1) ® (H,Kp) : g € (H,K)) N (A, K2)}.

Evidently, if M M and M® are subnormal, then so is MY & M@, In chapter 5, we discuss
the subnormality of the compression P . (MY @ M (2))| v+ foraclass of kernels. In particular,
we show that the subnormality of M® and M need not imply that P . (M) & M®), ;. is
subnormal.

A similar question on subnormality involving the point-wise product of two positive
definite kernels was raised in [49]. Recently, a counterexample of the conjecture has been
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found, see [2, Theorem 1.5]. The conjecture below is similar except that it involves the sum of
two kernels.

Conjecture 1.1.11 (Adams-Feldman-McGuire, [1, page 22]). Let Ki(z, w) =Y ez, ak(ZLD)k and
K> (z, w) = Ykez, br(z )* be any two reproducing kernels satisfying:
b _

im 2k — Jim 2k
(a) lim Ao lim Dt

(b) limay =1lim by = oo

(c) alk = f[o,l] tkdvi(t) and bik = f[o,l] t*dv, (1) forallk € 7., where v, and v, are two positive
measures supported in [0, 1].

Then the multiplication operator M, on (€, Ky + K>) is a subnormal operator.

An equivalent formulation, in terms of the moment sequence criterion, of the conjecture
is the following. If { aik} kez, and {bik} kez, are Hausdorff moment sequences, does it necessarily

follow that { is also a Hausdorff moment sequence?

ao
ay+bi S keZy

1.1.1 Main results of the thesis

In this section, we present the main results of this thesis.
In Chapter 2, a decomposition of the tensor product of Hilbert modules via the jet con-
struction is discussed. First, the following proposition is proved.

Proposition. 2.1.4. LetQ be a bounded domain inC'™ and K : QO x Q — C be a sesqui-analytic
function. Suppose that K* and KP, defined on Q) x Q, are non-negative definite for some a, 8 > 0.
Then the function K*P : Q x Q — ., (C) defined by

K P (z,w) = K**P(z, w)((0:9;l0gK) (2 w) ), z,weQ,

m
i,j
is a non-negative definite kernel.
The following corollary is an immediate consequence.

Corollary. 2.1.5. LetQ be a bounded domain in C". IfK : Q x Q — C is a non-negative definite

kernel, then

m

K(z, w) := K(2,w)((0:0;10gK) (2, w) )}, (1.6)

is also a non-negative definite kernel, defined on Q) x Q, taking values in 4, (C).
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Next, a realization of the Hilbert space determined by the non-negative definite kernel
K @P) is obtained. For this, first define a linear map % : (#,K%) ® (#, KP) — Hol(Q,C™) by

. (P01 f —adm+1f)ia
R (f) = —— : , f€(#,K% o (H,KP). (1.7)

aB(a+p)
(BOm [ — adamf)ia

We have shown that (ker 2,)* = o © o}, where <, and <7 are defined by (1.2). Therefore, the
map X1 |6 — Fan £, is one-to-one and onto. Require this map to be unitary by defining
an appropriate inner-product on ran %, that is, define

(R1(f), %1(8)) = (Pogyosst, [» Potyost, 8) [ 8 € (J6,K™) & (F,KP), (1.8)
where P ., is the orthogonal projection of (/#, K%) ® (A, KP) onto the subspace <) © <.

Theorem. 2.2.3. Let Q < C" be a bounded domain and K : Q x Q — C be a sesqui-analytic
function. Suppose that the functions K® and K, defined on Q x Q, are non-negative definite
for some a, B > 0. Then the Hilbert space determined by the non-negative definite kernel K ®F)
coincides with the spaceran %, and the inner product given by (1.8) onran %, agrees with the
one induced by the kernel K(®P,

Then a description of the Hilbert module .#] is given using Theorem 2.2.3.

Theorem. 2.2.5. Let QO < C" be a bounded domain and K : Q x Q — C be a sesqui-analytic
function. Suppose that the functions K® and K, defined on Q x Q, are non-negative definite
for some a, p > 0, and the multiplication operators M;,i = 1,2,...,m, are bounded on both
(A, K% and (#,KP). Then the Hilbert modules %, and 1 (Jﬁ, K(“'ﬁ)) are isomorphic via the
module map %, -

The jet construction gives rise to a family of non-negative definite kernels Ji(Ki, K2)resa,
k = 0. In case k =0, it is the point-wise product K; K»>. The next two results are generalization
of Theorem 1.1.8 for all kernels of the form Ji (K3, K2)resa-

Theorem. 2.3.14. Let Q < C™ be a bounded domain. If Ki,K, : Q x Q — C are two sharp
kernels, then so is the kernel Ji.(Ki, K2)resa, k = 0.

Theorem. 2.3.16. Let Q < C™ be a bounded domain. If Ki,K, : Q x Q — C are generalized
Bergman kernels, then so is the kernel Ji.(Ky, K2)resa, k = 0.

In Chapter 3, we discuss the generalized Bergman metrics and the generalized Wallach set.
The notion of a generalized Bergman metric was introduced in [26], however, it has a
different meaning in what follows. Let Q) < C" be a bounded domain and let Bg denote the
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Bergman kernel of Q. Assume that a continuous branch of logarithm of B, exists. Then Bgz
is well defined for all ¢ € R. A function of the form (B (w, w)9;0;l0gBq(w, w));f’j:l, teR,
w € (), is said to be a generalized Bergman metric. Note that a generalized Bergman metric is
non-negative definite at each w € Q and for all ¢ e R.

The ordinary Wallach set associated with the Bergman kernel of a bounded symmetric
domain Q is the set {t > 0: B, is non-negative definite}. It has been determined explicitly in
this case, see [30]. Replacing the Bergman kernel in the definition of the Wallach set by an
arbitrary non-negative definite kernel, we define the ordinary Wallach set #(, (K) for K to be
the set

{t>0:K" is non-negative definite}.

More importantly, we introduce the generalized Wallach set for any kernel K as follows:
G#a(K):={teR: K" %K is non-negative definite}, (1.9)

where we have assumed that K? is well defined for all ¢ € R and K is the function defined
in (1.6). In the particular case of the Euclidean unit ball in C"”* and the Bergman kernel, the
generalized Wallach set G#g,,(Bg,,), m > 1, is shown to be the set {feR : £ = 0}. If m =1, then
itistheset {reR: r=—1}.

Let Q c C™ be a bounded domain and Aut(Q2) denote the group of all biholomorphic
automorphisms of Q. Let J : Aut(Q2) x Q — GLk(C) be a function such that J(¢, ) is holomorphic
for each ¢ in Aut(Q2), where GL(C) is the set of all invertible matrices in .4 (C).

A non-negative definite kernel K : Q x Q — #(C) is said to be quasi-invariant with respect
to J if K satisfies the following transformation rule:

J (@, 2)K(p(2), p(w) J(p, w)* = K(z, w), z, w € Q, ¢ € Aut(Q). (1.10)

In this chapter, we show that if K: Q x Q — 4} (C) is a quasi-invariant kernel, then K =21
is also a quasi-invariant kernel whenever ¢ is in G#q (K).

In Chapter 4, we study weakly homogeneous operators.

It is shown that if K : D x D — 4 (C) is a sharp kernel, then the following conditions are
equivalent.

(i) The multiplication operator M on (#, K) is weakly homogeneous.

(ii) For each ¢ € Mob, there exists a g, € Hol(D, GL (C)) such that the weighted composition
operator M, g C(p—l on (A, K) is bounded and invertible.

Thus, if K is a sharp kernel such that multiplication operator M on (#, K) is not weakly
homogeneous, then there exists a ¢ € Mob such that the weighted composition operator
Mg,Cy,-1 on (A, K) is not simultaneously bounded and invertible for any choice of g, in
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Hol(D, GLk(C)). In particular, there must exist a ¢ € M6b such that the composition operator
Cy is not bounded.

Although there are examples, see [41, Theorem (1.1)'] and [43, Theorem 3.3]), of scalar
valued sharp kernels K such that the composition operators C, ¢ € Mob, are not bounded
on (A, K) , it does not necessarily follow that the multiplication operator M, on (#, K) fails
to be weakly homogeneous. In many other examples excluding the ones in [41] and [43],
the operator C, is bounded for all ¢ in M6b showing that the corresponding multiplication
operator M, is weakly homogeneous. While the question of the existence of an operator M,
which is not weakly homogeneous on a Hilbert space (#, K), where K is a scalar valued sharp
kernel, remains unanswered, in this chapter, we find such examples where the kernel K takes
values in .4, (C). Indeed, the theorem given below provides many examples and nonexamples
of weakly homogeneous operators in the class % B> (D) < B>(D), see [37].

Theorem. 4.3.16. Let1 <A <u<A+2andy beanon-zero function in C(D) nHol(D). Then
M; M{;,
0 M;

the operator T = on AN & #W is weakly homogeneous if and only if v is non-

vanishing onD.

In this chapter, we also study Mobius bounded operators. Some necessary conditions for a
weighted shift to be M6bius bounded are obtained. As a result, it is shown that the Dirichlet

n+2
n+l1

quasi-homogeneous operators, recently introduced by Ji, Jiang and Misra, see [38], the M6bius

1
shift, which has the weight sequence {(%:7)?} .., is not Mébius bounded. In the class of

bounded operators have been identified.
Theorem. 4.4.11. A quasi-homogeneous operator T is M6bius bounded if and only if A(T) = 2.

As a consequence of this theorem, it is shown that the Shields’ conjecture has an affirmative
answer for the class of quasi homogeneous operators. Finally, we show that there exists a
Mobius bounded weakly homogeneous operator which is not not similar to any homogeneous
operator. This answers Question 1.1.9 in the negative.

Theorem. 4.5.3. Let K(z,w) = Y7 a,(zw)", z,w € D, be a positive definite kernel such
that for each y € R, lim ;1 (1 — |z|>)YK(z, z) is either 0 or co. Assume that the adjoint M} of
the multiplication operator by the coordinate function z on (A, K) is in By (D) and is weakly
homogeneous. Then the multiplication operator M, on (#,KK™), A > 0, is a Mébius bounded
weakly homogeneous operator which is not similar to any homogeneous operator.

In Chapter 5, we discuss the subnormality of the multiplication operator on the Hilbert
space determined by the sum of two positive definite kernels. It is shown that if K; and
K> are two positive definite kernels on D x D such that the multiplication operators M, on
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the corresponding Hilbert spaces are subnormal, then the multiplication operator M, on
the Hilbert space determined by the sum Kj + K> need not be subnormal. This settles the
Conjecture 1.1.11 of Gregory T. Adams, Nathan S. Feldman and Paul J. McGuire in the negative.
We also discuss some cases for which the answer to this conjecture is affirmative.
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Chapter 2

Decomposition of the tensor product of
two Hilbert modules

Given a pair of positive real numbers «a, f and a sesqui-analytic function K on a bounded
domain Q c C™, in this chapter, we investigate the properties of the sesqui-analytic function
K@P) := K¥F(9,0; 1ogK):.'7j:1, taking values in m x m matrices. One of the key findings is
that K@ is non-negative definite whenever K* and K” are non-negative definite. In this
case, a realization of the Hilbert space determined by the kernel K@P is obtained. Let M,
i = 1,2, be two Hilbert modules over the polynomial ring C|z,..., z,;]. The polynomial ring
Clz,...,2z2m] then naturally acts on the tensor product .#; ® .4>. The restriction of this action
to the polynomial ring Clz,...,z;] obtained using the restriction map p — pja leads to a
natural decomposition of the tensor product .4, ® 4>, which is investigated in this chapter.
Two of the initial pieces in this decomposition are identified. The first one is the push-forward
of the module corresponding to the non-negative definite kernel K**# while the second one is
the push-forward of the Hilbert module determined by the kernel K @A In the section 2.3, a
class of matrix valued kernels arising out of the jet construction are studied and are shown to
be generalized Bergman kernels. Various other properties, which is preserved by the kernel
K@P s also discussed.

2.1 Anew non-negative definite kernel

The following lemma is undoubtedly well-known, however, we provide the easy proof here.

Lemma 2.1.1. LetQ < C™ be a bounded domain and # be a Hilbert space. If g1, ¢, ..., by are
anti-holomorphic functions from Q into S, then the function K : Q x Q — 4.(C) defined by
K(z,w) = (((pj(w),(,bi(z)>]€)§j=1, z, w € Q, is a sesqui-analytic non-negative definite kernel.

Proof. Let zy,zy,...,z, be n arbitrary points in Q and 11,73, ...,1n, be n arbitrary vectors in ck,
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Where np = (T’p,l)np,Z)---)np,k)’ np’j e C. Then

n n k
Y. (K(zpzggnp)ee= 2. X (Dj(2q)di(2p)) 1o q,ilp.i
p,q=1 p.g=1i,j=1

n k
= > 2 (nqj9iznpidi(zp)) 4

p,q=1i,j=1
n k 2
=| X Xnpititzn)|, =0

p= l1i=1
proving that K is non-negative definite. Also since ¢, ¢, ..., ¢y are anti-holomorphic, it follows

easily that K is sesqui-analytic. O

Remark 2.1.2. It is clear from the proof that if the vectors ¢1(z),2(2),...,¢r(2) are linearly
independent in /€, then the matrix K (z, z) is positive definite.

For any reproducing kernel Hilbert space (#, K) the following proposition from [26,
Lemma 4.1] is a basic tool in what follows. While the proof is not difficult, we provide the
details for the sake of completeness.

In what follows, the symbol a%}j denotes differentiation with respect to the complex
conjugate of the variable w;. We will often write 0 j instead of a%j' Also, for any non-

negatjve deﬁnitg kernel K: Q x Q — #;(C) and n € ck, let .(_3"1( (-, w)n denote the function
(%)% (%) K(, wn and (' f)(2) be the function (3Z-)" -+ (32)" f(2),i = (i1, ..., im) €

0w,
znm.

Proposition 2.1.3. Let K : Q x Q — . (C) be a non-negative definite kernel. For everyi e 7',
ne C* and w € Q, we have

(i) 0'K(, w)n isin (A, K),

(@) (f,0°KC, w)n) s 1 = (@ )Hw),n)ex, f € (H,K).

Proof. Forany 1< j < m, we prove that the function 0 K (-, w)n belongs to (4, K). Then the
proof, by induction, showing that 8°K (-, w)n is in (#, K) for any i € Z'" is omitted.

First, choose a sequence {hy} ez, of complex numbers such that w + hye; € Q and h, — 0,
where e; is the jth standard basis vector of C"'. Define
K(,w+ hpej)n—K(, w)n

I
Since S(h,) belongs to (#, K) and f is holomorphic, it follows that

(w+ hpej) — f(w)
fim (1S = fim (Z L) <@, @)

S(hn) =

JNEZ,.
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for all f in (A, K). Therefore the sequence {S(h,)},ez, is weakly bounded. Consequently,
using the uniform boundedness principle, we conclude that {S(h,)},cz, is bounded. Hence

(0; £ ) )il = lim | £,8(1m) x| = sup IS
nez.,

Thus the linear functional f — (9; f (w),n) is bounded on (#, K). By the Riesz representation
theorem, there exists a vector Ly, in (#, K) such that <0jf(w),n>ck = (f,Lw,,,>(J£ o for fin
(#,K). From (2.1), we see that {S(h,)} ez, converges to L,,; weakly. Moreover, since

<Lw,n(z)’n/>ck = <Lw,17; K, 2)77/>a:’€
:’}1_1’];.10<S(hn)yK(!Z)n,>(Jf,K)
= lim (S(ha)(2), ')k
=(0;K(z, w0 )ex,

forall ze Q and 7’ € C¥, it follows that 0; K (-, w)n = Ly,. Hence 0K (-, w)n is in (2, K).

The proof of part (ii) is implicit in the proof of part (i) given above. O
Proposition 2.1.4. Let Q) be a bounded domain in C™ and K : Q x Q — C be a sesqui-analytic
function. Suppose that K® and KP, defined on Q x Q, are non-negative definite for some a, > 0.

Then the function

K*P(z, w)((a,-éj logK)(z, w));nj:l, zZ,weQ,

is a non-negative definite kernel on Q x Q taking values in 4, (C).
Proof. For1<i<m,set;(z)=po;K%:,2)®KP(-,z) —aK*(,z) ®9;KP (-, z). From Proposition

2.1.3, it follows that each ¢); is a function from Q into the Hilbert space (#, K%) ® (A, Kh.
Then we have

(¢ (W), pi(2)) = 20,0, K%(z, w)KP (2, w) + a* K (z, w)9;0; KP (z, w)
~af(0;K%(z, w)d;KP (z,w) +8;K* (z, w)3; KP (z, w))
= B (ala - DK P2(z,w)d;K (z, w)d ;K (z, w) + aK* P~ (2, w)8;0 K (z, w))
+a?(B(B-DK*P~2(z,w)d;K (z, w)d ;K (z, w) + BK* P~ (2, 0)0;0 K (2, w))
—2a?B2KP2(2, w)0; K (2, w)d ;K (2, w)
= (@®B+afHKYF2(z, w) (K (z, w)9;0;K(z, w) - 0;K(z, w)d; K (z, w))
= aBla+ B K F(z,w)d,0;logK (z, w).

An application of Lemma 2.1.1 now completes the proof. O

The particular case, when @ = 1 = § occurs repeatedly in the following. We therefore record
it separately as a corollary.
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Corollary 2.1.5. LetQ be a bounded domain inC™. IfK : Q x Q — C is a non-negative definite
kernel, then

K%(z,w)((0;0; jlogK)(z, W))l] 1

is also a non-negative definite kernel, defined on Q x Q, taking values in 4, (C).

A more substantial corollary is the following taken from [13]. Here we provide a slightly
different proof. Recall that a non-negative definite kernel K : Q x Q — C is said to be infinitely
divisibleif for all ¢ > 0, the function K’ is also non-negative definite.

Corollary 2.1.6. Let Q be a bounded domain in C"™. Suppose that K : Q x Q — C is an infinitely
divisible kernel. Then the function ((3;0;10gK)(z,w) )]';_, is a non-negative definite kernel
taking values in M, (C).

Proof. For t >0, the function K’ (z, w) is non-negative definite by hypothesis. It follows, from
Corollary 2.1.5, that (K*0;0;logK'(z, w))";_,
(K?'8;0;logK(z, w))}" j=1 is non-negative definite for all ¢ > 0. Taking the limit as £ — 0, we
conclude that (3;0;logK(z, w));";_,
the non-negative definite kernels (K?/0,0;logK(z, w));"

is non-negative definite. Hence the function

is non-negative definite since it is the point-wise limit of

i,j=1° B

The kernel K (z, w)**P (0 0 jlogK(z, w)) _, is going to appear repeatedly in our study of

the Hilbert module (7, (K (z, w)“*ﬁa 0; logK (z,w));;-,) in this chapter. We begin by setting
up some helpful notations.

Notation 2.1.7. Let K*P) denote the kernel K¢*F(z, w)( (0;0;logK)(z, w) )m r Ifa=1=p,
i,j=

then we write K instead of KV,

Remark 2.1.8. It is known that even if K is a positive definite kernel, ( (8;0;10gK)(z, w) )" =1
need not be a non-negative definite kernel. In fact, ((0;0;10gK)(z, w) )l.’ j=1 is non-negative
definite if and only if K is infinitely divisible (see [13, Theorem 3.3]).
Let K : D x D — C be the positive definite kernel given by K(z, w) =1+ Z‘i’zl aizi wl, z,weD,
a; > 0. For any t > 0, a direct computation gives
(X2, aiz' w')?

(KtaélogK)(z,w):(1+Zaiziw a0( Z“t it — 2= . .
i=1

=(1+tajzw+---)(ag +2(2a2—a1)zw+---)

=a; +(4ay + (t—2)a})zw +---

Thus, if t <2, one may choose a1, az > 0 such that 4a, + (t —2)a? < 0. Hence (K'0010ogK)(z, w)

cannot be a non-negative definite kernel. Therefore, in general, for ((K'8;0;logK)(z, w))}" -1

to be non-negative definite, it is necessary that t = 2.
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Remark 2.1.9. Let Q c C be open and p : Q — R, be a C?-smooth function. The Gaussian
curvature of the metric p is given by the formula

(00logp)(2)

H(z,0) =— 27

,Z€ Q. (2.2)

IfK:Q x Q — C is a non-negative definite kernel with K(z, z) > 0, then the function % defines a
metric on Q and its Gaussian curvature is given by the formula

Hi(z, %) = K(z,2)*(0010gK)(z,2), z€ Q.

2.1.1 Boundedness of the multiplication operator on (7, K)

For a holomorphic function f : Q — C, the operator M of multiplication by f on the linear
space Hol(Q,C¥) is defined by the rule Mgh=fh,he Hol(Q, CF), where (f h)(2) = f(2)h(z),
z € Q. The boundedness criterion for the multiplication operator My restricted to the Hilbert
space (A, K) is well-known for the case of positive definite kernels. In what follows, often
we have to work with a kernel which is merely non-negative definite. A verification of the
boundedness criterion is therefore given below assuming only that the kernel K is non-negative
definite.

Lemma 2.1.10. Let Q c C™ be a bounded domain and K : Q x Q — ;. (C) be a non-negative
definite kernel. Let f : Q — C be an arbitrary holomorphic function. Then the operator My of
multiplication by f is bounded on (A, K) if and only if there exists a constant ¢ > 0 such that
((:2 - f(z)m)K(z, w) is non-negative definite on Q x Q. In case My is bounded, | M¢| is the
infimum of all ¢ > 0 such that (c* — f(z)m)K(z, w) is non-negative definite.

Proof. Suppose that the multiplication operator My is bounded on (#,K). Then for any
he (#,K), w e Q,n € C*, we see that

(M¢h,K(,w)n) = ((Mgh)(w),n)
= (f(w)h(w),n)
= {n(w), Fwin)
= <h,m1(’(-, w)17>.

Therefore
MK, w)n= fw)K(, wn, weQ,neck, 2.3)

Since My is bounded, for any points zj,..., 2z, in Q and vectors 7y, ...,1, in Ck, we have

M5 (X K6 2pm) I < 7 ] X K zmy 2
j= j=
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A straightforward computation using (2.3), shows that (2.4) is equivalent to

n n
.;lf(zl)f(zj) (K(z1,z))nj,m1) < | Myl® _121<K(Zl,21)m,m>-
Iit= it=

Therefore we conclude that (¢ — f (z)m)K (z, w) is non-negative definite on QO x ) where
¢ = Mgl

Conversely, suppose that there exists a constant ¢ > 0 such that (¢? - f(2) f(w))K(z, w)
is non-negative definite on Q x Q. Let # be the linear subspace of (/#, K) spanned by the

elements K (-, w)n, w € Q,n € C*. Define an operator Tr on #, by the following formula:
° n n
Tf( Z K, wi)ni) = Z f(wl)K(’ Wi)ﬂiy
i=1 i=1

where wy,..., w, €Q, N1,...,My € Ck, n > 1. First, we show that the operator T is well-defined
on /. From the assumption on K, it follows that

I ;f(Wi)K(-, woni?= Y <f(wl-)f(wj)K(wi, wj)nj,nl->

ij=1

n
<c* Y (Kwi, wjn;,n:)
ij=1
n 2
= | Y KCwimi|.
i=1

Therefore, ifz;l:l K (-, w;)n; =0 for some points wy,..., w, € Q and vectors ny,...,M, € Ck, then

Z?:l f(w)K(-, w;)n; must be 0. Consequently, the operator ZOFf is well-defined on /4. It is also
evident from the above computation that

ITr(WI = cllhl, he #.

Since A is a dense subspace of (#, K), it follows that %f can be extended to a unique bounded
linear operator Tr on (A, K) and || T¢|| < c. Finally, note that forweQ,ne Ckand he (#,K),

(xpma),n)= (T} h,KC,wn)
= (h, Tr(K(, w)n))
= (fw)h, K¢, w)n)
= (fw)h(w),n).

Therefore, we conclude that T}’: = My and |[My|l < c.

From the proof, it is also clear that if the operator My is bounded, then || M| is the infimum
of all ¢ > 0 such that (¢® - f(z) f(w))K(z, w) is non-negative definite on Q x Q. O
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The proof of the lemma stated below is not significantly different from the one we have
just proved. However, it would be useful for some of our later arguments, exactly in the form
given below.

Lemma 2.1.11. Let Q c C" be a bounded domain and K : Q x Q — #.(C) be a non-negative
definite kernel. Then the operator M, of multiplication by the ith coordinate function z;
is bounded on (/¢,K) for i = 1,...,m, if and only if there exists a constant ¢ > 0 such that
(¢* — (2, w))K(z, w) is non-negative definite on Q x Q.

Proof. Suppose that the operator M;, is bounded on (#,K) for i = 1,..., m. Then it follows
that the operator Dy : (#,K) — (A, K) D - (A, K) taking h to (M;‘1 he---® M;m h) is also
bounded. Now, set ¢ = | D m: |l For this c, following the proof of the first half of Lemma 2.1.10,
we conclude that (¢ — (z, w)) K (z, w) is non-negative definite.

Conversely, assume that there exists a constant ¢ > 0 such that (2 —(z,w))K(z, w) is non-
negative definite on Q x Q. Let # be the subspace of (#7, K) spanned by the vectors K (-, w)n,

we,ne Ck. Let lO)T 1 S — SHPD - - P H be given by the formula:

o n n
Dr( Y KCwini) = Y- (@31 KCwidni, .., i, mK G wi), (2.5)
i=1 i=1
where w; = (w; 1,..., Wi,m) €EQandn; € Cck i=1,...,n, n>1.Asin Lemma2.1.10, the following

computation
‘2

n
= Z <(wi,1K('! wl'),r’l'"--) wi,mK('» wi)ni)) (wj,lK(') w])n])) w],mK(y w])n])>

m
| - (@i, wimi, .., @1, mK G wims)
i=1

ij=1
n m
=Y Y wjpwip (K wdn, K w)n;)
i,j=1p=1
n
= ) (wj, w;)(KQwj, wn;,mn;)
i,j=1
! n
<c® ) (KGwj,wini,n;)
ij=1

n
= CZ || Z K() wi)ninzy
i=1

shows that lo)T is well defined and IIIODT(h) | < cllhll, h € #,. Consequently, for 1 < j < m, the
operator DTj is well-defined and IIDT]. (R < clhll, h € A, where

° n n
DT].(ZK(-, wi)ni) = Z w;, i K(, win;, w;€Q,n; eck i=1,...,n n=1.
i=1 i=1
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Therefore each Dr; can be extended to a bounded linear operator Dr; on (A, K) with | Dr; | <
c. Now a similar argument used towards the end of the proof of Lemma 2.1.10 shows that
DTj* = sz on (/,K), j =1,...,m, completing the proof. O

As we have pointed out, the distinction between the non-negative definite kernels and the
positive definite ones is very significant. Indeed, as shown in [26, Lemma 3.6], it is interesting
that if the operator M, := (M_,,..., M_,) is bounded on (#, K) for some non-negative definite
kernel K such that K(z, z), z € Q, is invertible, then K is positive definite. We give a proof of this
statement which is different from the inductive proof of Curto and Salinas. First, let us recall
a generalization of the Openheim inequality for the block Hadamard product of two block
matrices.

Let A= (A;j)} ;-;, B=(Bij); -, be two nx n block matrices where each block is of size
k x k. The block Hadamard product ACB of A and B is defined by AOB = (A,-jB,-j)ijl, where
A;jB;j denotes the usual matrix product. If each block A; ; of A commutes with every block
Bpq of B, then A and B are said to be block commuting. The statement in the lemma given
below combines [34, Corollary 3.3] and [34, Proposition 3.8].

Lemma2.1.12. Ler A= (Aif);l,jzl’ B= (B,-j);?yj:1 be two n x n block matrices where each block
is of size k x k. Suppose that A and B are non-negative definite and block commuting. Then the
block Hadamard product AOB is non-negative definite and

n
det(ADIB) = det A ([ | detBi).
i=1

The addendum at the end of [26, Lemma 3.6] follows immediately from the following
lemma.

Lemma 2.1.13. Let X be an arbitrary set. Let k; : X x X — C be a positive definite kernel and
K : X x X — M (C) be a non-negative definite kernel. Suppose that K»(x, x) is invertible for all
x € X. Then the product k, K> is positive definite on X x X.

Proof. Let xy,...,x, be a set of n arbitrary points from X and let C be the n x n block matrix

(k1 (xi, x) Ko (x5, xj))ijl’ which is of the form AOB, where

n

A= (kl (xi»xj)Ik) j=1

n

" and B= (Kg(xi,xj)) -
i, ij=

Since K> is non-negative definite on X x X, we have that B is non-negative definite. Further-
more, since k is positive definite and

n
iv

(axpn); = (k) & (26
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it follows that A is positive definite. It is easily verified that A and B are block commuting.
Hence by Lemma 2.1.12, we have that C is non-negative definite and

n
detC = det A ([ | detKo(x;, x,)). 2.7)
i=1

n

From (2.6), we see that det A = det (k; (x;, xj))i,j:1 > 0. Also, by hypothesis, det K» (x;, x;) > 0 for
i=1,...,n. Hence, from (2.7), it follows that C is positive definite, completing the proof of the
lemma. O

Proposition 2.1.14. LetQ c C™ be a bounded domain and K : QxQ — 4 (C) be a non-negative
definite kernel. Suppose that K (z, z) is invertible for all z € Q and the multiplication operator
M, on (#,K) is bounded fori =1,...,m. Then K is positive definite on Q2 x Q2.

Proof. Since the m-tuple of operators (M;,,..., M, ) on (/, K) is bounded, by Corollary 2.1.11,
there exists a constant ¢ > 0 such that K(z, w) := (¢? — (z, w))K(z, w), z, w € Q, is non-negative
definite on Q x Q. Therefore, using the positive definiteness of K(z, z), we find that | z|» < c,
z € Q. Since Q is an open subset of C, it follows that ||z]» < ¢, z € Q. Thus |{z, w)| < c? for
z, w € Q. Consequently, (2= (z,w)) is non-vanishing on Q x Q, and K can be written as the
product

K(z,w) = (62 —{z, w))_lfqz, w), z,weQ.

Note that
(—(zw) T =c2(1-(59)7, zweQ. (2.8)

Since (1 - {z, w)) ! is a positive definite kernel on B,, x B,, (where B,, is the Euclidean unit
ball in C™) and ||zll2 < ¢ on Q, by (2.8), we conclude that the function (¢? - (z, w))_1 is positive
definite on Q x Q. Also, since K(z, z) is invertible, we see that K(z, z) is also invertible for all
z € Q). Hence, by Lemma 2.1.13, it follows that K is positive definite. O

Lemma 2.1.15. Let Q < C™ be a bounded domain and K : Q x Q — C be a non-negative definite
kernel. Let f : Q — C be an arbitrary holomorphic function. Suppose that there exists a constant
¢ > 0 such that (¢* — f(z)m)K(z, w) is non-negative definite on Q0 x Q. Then the function
(c* - f(z)m)zk(z, w) is non-negative definite on Q x Q.

Proof. Without loss of generality, we assume that f is non-constant and K is non-zero. The
function G(z, w) := (02 - f (z)m)K (z, w) is non-negative definite on Q x Q by hypothesis.
We claim that |f(z)| < ¢ for all z in Q. If not, then by the open mapping theorem, there
exists an open set Qp < Q such that | f(2)| > ¢, z € Qp. Since (¢* - | f(2)|*)K(z, z) = 0, it follows
that K(z,z) = 0 for all z € Qy. Now, let & be an arbitrary vector in (#, K). Clearly, |h(z)| =
[<h, K,z | < | hIIKG,2) ] = 1hIK(z, z)% =0 for all z € Q. Consequently, /2(z) =0 on Q. Since
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Q is connected and h is holomorphic, it follows that /2 = 0. This contradicts the assumption
that K is non-zero verifying the validity of our claim.

From the claim, we have that the function ¢? — f(z) f (w) is non-vanishing on Q x Q. There-
fore, the kernel K can be written as the product

K(z,w) = —Gl(z,w), z, we Q.

(2= f(a) f(w))

Since |f(z)| < ¢ on Q, the function m has a convergent power series expansion,
cc—J1(Z w

namely,
1

(c2- f(2a) f(w))

Therefore it defines a non-negative definite kernel on Q x Q. Note that

= 1 -
=2 mf(z)nf(ww, zZ,weQ.

(K(z, w)?*0;0;l0gK (2, w))}"

i,j=1
_ 1 m _ m
= (K(z, w)zaia-lo — +| K(z, w)26i6-lo G(z, w)
( J g(cz—f(z)f(w)) )i,j:l ( j708 )i,j:l
1 ( 2 — \m 9 - m )
= Kz, w)*|0;i f(2)o;i f(w)| = +G(z,w)°|0;0;logG(z,w)| . |,
(62 —f(Z)f(LU))Z ( f ]f )z,]zl ( j1o8 )z,]zl

where for the second equality, we have used that

_ 1 0if(2)0; f(w)
0;0;log _ _0i/@0;1 5 LWEQ, 1<i,j<m.

(- f@fw) (- f)fw)

Thus

(%= f(@) fw))’K(z, w)
=K(z, w)z(aif(z)djf(w)) . + (G(z, w)zdiaj logGl(z, w))

m m
i,j= i,j=1

(2.9)

By Lemma 2.1.1, the function (6l~f(z)0jf(w) )qu:1 is non-negative definite on Q x Q. Thus the

product K (z, w)?(0; f (2)0; f (w) )?jzl is also non-negative definite on Q x Q. Since G is non-
negative definite on Q xQ, by Corollary 2.1.5, the function ( G(z, w)?8;0,10g G(z, w) )szl is also
non-negative definite on Q x Q. The proof is now complete since the sum of two non-negative

definite kernels remains non-negative definite. O

We use the lemma we have just proved in the proof of the following theorem giving a
sufficient condition for the boundedness of the multiplication operator on the Hilbert space
(#,K).
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Theorem 2.1.16. LetQ < C'™ be a bounded domain and K : QxQ — C be a non-negative definite
kernel. Let f : Q — C be a holomorphic function. Suppose that the multiplication operator My
on (#,K) is bounded. Then the multiplication operator My is also bounded on (#,K).

Proof. Since the operator M is bounded on (#, K), by Lemma 2.1.10, we find a constant ¢ > 0
such that (¢* - f (z)m)K (z, w) is non-negative definite on Q x Q. Then, by Lemma 2.1.15,
it follows that (¢* - f (2) f(w))°K (2, w) is non-negative definite on Q x Q. Also, from the proof
of Lemma 2.1.15, we have that (c2 -f (Z)m)_l is non-negative definite on Q x Q (assuming
that f is non-constant). Hence (¢ - f (Z)W)K(Z, w), being the product of two non-negative
definite kernels, is non-negative definite on Q x Q. An application of Lemma 2.1.10, a second
time, completes the proof. O

The corollary given below provides a sufficient condition for the positive definiteness of
the kernel K.

Corollary 2.1.17. Let Q < C™ be a bounded domain and K : Q x Q — C be a non-negative
definite kernel satisfying K(w, w) > 0, w € Q. Suppose that the multiplication operator M, on
(#€,K) is bounded fori =1,..., m. Then the kernel K is positive definite on Q x Q.

Proof. By Corollary 2.1.5, we already have that K is non-negative definite. Moreover, since
M, on (#,K) is bounded for i = 1,..., m, it follows from Theorem 2.1.16 that M, is bounded
on (A,K) also. Therefore, in view of Proposition 2.1.14, KK is positive definite if K(w, w) is
invertible for all w € Q. To verify this, set

¢i(w) =0;K(-,w)® K(-,w)—K(,w)®0;K(-,w), L <i<m.

From the proof of Proposition 2.1.4, we see that K(w, w) = %((gbj(w), $i(w))) ?,1]':1- Therefore,
in view of Remark 2.1.2, K(w, w) is invertible if the vectors ¢, (w), ..., ¢, (w) are linearly inde-
pendent. Note that for w = (w,...,w,)inQand j =1,...,m, we have (sz - w;)*K(,w)=0.
Differentiating this equation with respect to w;, we obtain

(Mg, —w)*0;K(-,w) =8;;K(-,w), 1 <1i,j<m.

Thus
(Mg, —wp)* e I)(pi(w)) =6;;K(,w) @ K(, w), 1 <i,j<m. (2.10)

Now assume that Z;?il ci¢i(w) = 0 for some scalars cy, ..., cp. Then, for 1 < j < m, we have
that Y ((M; — wj)* ® I)(¢;(w)) = 0. Thus, using (2.10), we see that ¢;K(-, w) ® K(-, w) = 0.
Since K(w, w) > 0, we conclude that ¢; = 0. Hence the vectors ¢ (w),..., ¢, (w) are linearly
independent. This completes the proof. O
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Remark 2.1.18. Recall that any operator T in By (D) is unitarily equivalent to the adjoint M of
the multiplication operator by the coordinate function z on some reproducing kernel Hilbert
space (A€, K) < Hol(D). In particular, any contraction T in By (D), modulo unitary equivalence, is
of this form. For such a contractive operator M in By (D), the curvature inequality [45, Corollary
1.2] takes the form (see [13]):

—OélogK(z, z) < —6510g§ﬂ)(z, z), z€D, (2.11)

where Sp(z, w) = l—lzu'/’ z,w €D, is the Szego kernel of the unit disc D. Since M on (A, K)

is a contraction, by Lemma 2.1.10, it follows that the function G(z, w) := (1 — zw)K(z, w) is
non-negative definite on D x D. Hence, from (2.9), we have that

— G(z, w)?00log G(z, w)
= (1 - zw)*K(z, w)*( - 001og K (z, w) + 0dlog Sp(z, w)), z, w € D,

Therefore, applying Corollary 2.1.5 for G(z, w), we obtain that
(1 - zi)*K (z, w)?*(— 00log K (z, w) + 8d1og Sp (2, w)) < 0. (2.12)

In particular, evaluating (2.12) at a fixed but arbitrary point, the inequality (2.11) is evident.
However, for any contraction in B,(D), (2.12) gives a much stronger (curvature) inequality.
Conversely, whether it is strong enough to force contractivity of the operator is not clear.

Let Q be a finitely connected bounded planar domain and Rat(Q)) be the ring of rational
functions with poles off Q. Let T be an operator in By (Q) with o(T) = Q. Suppose that the
homomorphism qr : Rat(Q)) — B(A) given by

qr(f) = f(T), fe€Rat(Q),

is contractive, that is, | f(T)|| < || fllaco, f € Rat(Q). Setting Gr(z, w) = (1 - f(2) f(w))K(z, w)
and using (2.9), as before, we have

0=G(z, w)*00log G (z, w)

_ 2( _ _f@f w) =
=Gylz, w)?( - LALY B 1 6logK =, w))

=—K(z,w)*f'(2) f'(w) + (1 - f(2) f(w))*K (2, w)*0dlog K (z, w)

for any rational function f with poles off Q and |f(2)| < 1, z € Q. As in the case of the disc, in
particular, evaluating this inequality at a fixed but arbitrary point z € Q), we have

- ! 2
00log K (z,2) = sup{(ll_jlcf(%  f €Rat(Q), | floeo <1} =Sa(z,2?

where Sq, is the Szego kernel of the domain Q). This is the curvature inequality for contractive
homomorphisms (cf. [45, Corollary 1.2]).
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2.2 Realization of (7, K@)

Let Q c C" be abounded domain and K : Q x Q — C be a sesqui-analytic function. Suppose
that the functions K* and K” are non-negative definite for some a, > 0. In this section, we
give a description of the Hilbert space (Jf, K(“’ﬁ)). As before, we set

pi(w) = PO;K*(, w) ® KP(-,w) —aK*(,w) ®0;KP(,w), 1< i<m, weQ. (2.13)
Let ./ be the subspace of (#, K%) ® (#, KP) which is the closed linear span of the vectors
{pi(w):weQ,1<i<m}.

From the definition of .4/, it is not easy to determine which vectors are in it. A useful alternative
description of the space .4 is given below.

Recall that K% ® KP is the reproducing kernel for the Hilbert space (A4, K%) ® (#,K Py,
where the kernel K% ® K on (Q x Q) x (Q x Q) is given by

K*®KP(2,(;72,0) = K%(2,2)KP((,{),

z=(21,..,2m), {=C1,..,{m), 2 = (@me1s - 22m), ' = C 1, ..., {2m) are in Q. We realize the
Hilbert space (#, K%) ® (#, KP) as a space consisting of holomorphic functions on Q x Q. Let
ap and <) be the subspaces defined by

oo ={f € (H#,K")® (#,KP): fin =0}

and
dh ={fe(H,K) & (H,KP): fin=Omi1a="= @2mf)ia =0},

where A is the diagonal set {(z,2) € Q x Q: z € Q}, 9; f is the derivative of f with respect to
the ith variable, and fja, (0; f)|a denote the restrictions to the set A of the functions f, 0; f,
respectively. It is easy to see that both </, and < are closed subspaces of the Hilbert space
(A, K% ® (A, KP) and o is a closed subspace of «.

Now observe that, for 1 < i < m, we have

0;(K* ® KP)(-,(2,{")) = 0;K*(,2) e KP(-,{), 2/,{' e Q

_ _ (2.14)
Om+i(KE®KP)(,(Z,(") = K%, 2) ®8;KP(-,{), 2,{ e Q.
Hence, taking z’ = {’ = w, we see that
¢i(w) = B0;(K* ® KP) (-, (w, ) — ad s i (K* ® KP) (-, (w, w)). (2.15)

We now prove a useful lemma on the Taylor coefficients of an analytic function.
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Lemma 2.2.1. Suppose that f : Q) x Q — C is a holomorphic function satisfying f, = 0. Then
@iflia+Om+iflin=0, 1=<si<sm.

Proof. Recall that the map ¢t: Q — Q x Q is defined by ((z) = (z,2), 2 € Q. Let g(z) = (fo1)(2),
z € Q. Clearly, the condition fjx = 0 is equivalent to saying that g is identically zero on Q. Thus,
if fia =0, then it follows that 9;g(z) =0 on Q, 1 < i < m. Setting 1j(z) = t;y+;(2) = zj, Z€ Q,
1 < j < m, and applying the chain rule (cf. [48, page 8]), we obtain

2m 2m
0i8(2) =) (0, /)t(2)0;tj(2) + Y_ (0 f)(1(2)0;;(2)
j=1 j=1

2m
= 0;)(2)0;t;(2)
j=1
=0if)(2,2) + (Om+if)(2,2), z€Q.
This completes the proof. O
An alternative description of the subspace A of (A, K%) ® (#, KP) is provided below.

Proposition 2.2.2. A = oo o).

Proof. For all z € Q, we see that
¢i(w)(z,2) = afK* P (z,w)0,;K(z, w) — aBK* P~ (2, w)3; K (2, w) = 0.

Hence each ¢;(w), w € Q,1 <i < m, belongs to & and consequently, A c «,. Therefore, to
complete the proof of the proposition, it is enough to show that oy 6 N = .

To verify this, note that f € A+ if and only if { f,¢;(w)) =0, 1 < i < m, w € Q. Now, in view
of (2.15) and Proposition 2.1.3, we have that

(Frpiw) = (£, 535K ® KP)C, (1, w)) - @B 4 (K @ KP)C, (0, w)))
=0 H(w,w) —a@m+iH(w,w), 1<i<m, wel.

(2.16)

Thus f € A1 ifand only if the function §(8; f)|a — @ @m+i f)ja =0, 1 < i < m. Combining this
with Lemma 2.2.1, we see that any f € oy 6 A/, satisfies

BO;Hia—a@m+iflia=0,
@ifla+Om+iflia=0,

for 1 < i < m. Therefore, we have (9; f)|ao = (Om+if)ia =0, 1< i< m. Hence f belongs to <.
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Conversely, let f € /). In particular, f € o). Hence invoking Lemma 2.2.1 once again, we
see that

Oiflia+Om+iflin=0,1<i<m.
Since fisin &1, (Om+if)ia =0, 1 < i < m, by definition. Therefore, (0; f)ja = Om+if)a=0, 1=
i < m, which implies
BOiHia—a@m+iHin=0,1<i<m.
Hence f € &« e A, completing the proof. O

We now give a description of the Hilbert space (]ﬁ, K(“'ﬁ)). For this, first define a linear
map Z, : (#,K% ® (A, KP) — Hol(Q,C™) by

(BO1f — a0m+1f)A

%l(f):; : ,fE(ff,Ka)Q?(Jf,Kﬁ)- (2.17)
afla+p)
(BOmf — al2mf)ia
Note that
<f»(bl(w)>
Z1(f)(w) = ; : ,weQ, fe (%”,K“)@(%,Kﬁ). (2.18)
af(a+p)

From the above equality, it is easy to see that ker2;, = A4 *. Since A = o © o from
Proposition 2.2.2, it follows that kerz%’lL = © of). Therefore, the map 2,0, — ran %
is one-to-one and onto. Require this map to be a unitary by defining an appropriate inner
product on ran £, that is, define

(21(f), 21(8)) = (Pupyost, > Patyost, §)> 8 € (F6,K¥) ® (A, KP), (2.19)
where P .y, is the orthogonal projection of (/#, K%) ® (A, K #) onto the subspace <) © o).

Theorem 2.2.3. Let Q < C™ be a bounded domain and K : Q x Q — C be a sesqui-analytic
function. Suppose that the functions K% and KP are non-negative definite for some a, > 0. Let
%1 be the map defined by (2.17). Then the Hilbert space determined by the non-negative definite
kernel K'“P) coincides with the spaceran %, and the inner product given by (2.19) onran %,
agrees with the one induced by the kernel K@),

Proof. Let{ey,..., e} be the standard orthonormal basis of C"*. For 1 < i, j < m, from the proof
of Proposition 2.1.4, we have

(¢ (W), pi(2)) = afla+PK**P(z,w)d;0;logK (z, w) (2.20)
:aﬁ(a+ﬁ)<K(“’ﬁ)(z, w)ej,ei>cm, z,w e Q. (2.21)
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Therefore, from (2.18), it follows thatforall we Qand 1< j <m,

R1(;(w) =/ aPla+PKCP(, we;.

Hence, for all w € Q and n € C™, K@P (. w)n belongs to ran %£,. Let Z;(f) be an arbitrary
element in ran %, where f € oy © /). Then

(B (LK P (wye; ) = - (1 (f), %1 (;(w)))

1
vapla+

1
:m<ﬁ¢j(“’)>

1
= m(ﬂa]f(w, LU) - aam+jf(wy LU))

= (21w, ej)em

where the second equality follows since both f and ¢ ;(w) belong to </ © <.
This completes the proof. O

Let z = (z1,...,2;) and let C[z] := Clz,,..., z;;] denote the ring of polynomials in m-
variables. The following proposition gives a sufficient condition for density of C[z] ® C""
in the Hilbert space (7, K@#).

Proposition 2.2.4. Let Q) < C™ be a bounded domain and K : Q x Q — C be a sesqui-analytic
function such that the functions K® and KP are non-negative definite on Q x Q for some a, > 0.
Suppose that both the Hilbert spaces (7, K®) and (#, KP) contain the polynomial ring C[z] as
a dense subset. Then the Hilbert space (]5, K(“’ﬁ)) contains the ring C[z] ® C'™ as a dense subset.

Proof. Since C|z] is dense in both the Hilbert spaces (#,K%) and (#, K P), it follows that
Clz] ® C[z], which is C[zy, ..., Z2], is contained in the Hilbert space (#,K%) ® (A, KP) and is
densein it. Since %, maps (#, K% ® (A, KP) onto (7, [K(“'ﬁ)), to complete the proof, it suffices
to show that Z,(Clz1,...,22m]) = Clz] ® C"". It is easy to see that Z; (C|zy, ..., 22m]) € Clz] ® C™.
Conversely, if Z;.”’i 1 Pi(z1,...,z2m) ®e; is an arbitrary element of C[z] ®C™, then it s easily verified

that the function p(zi,...,22;) := cf”—& Zi:l(zi - Zm+i)pi(z1,...,2m) belongs to Clzy, ..., Zom]
and %, (p) = Z;’il pi(z1,...,2m) ® e; . Therefore #,(Clzy,...,z2m]) = Clz] ® C"", completing the
proof. O

2.2.1 Hilbert modules

In this section, we study certain decomposition of the tensor product of two Hilbert modules.
For the basic definitions and properties related to Hilbert module, the reader is referred to
chapter 1.
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Let Q c C™ be a bounded domain. Let K; and K, are two scalar valued non-negative
definite kernels defined on Q x Q. We identify the tensor product (A, K;) ® (#, K>) as a spaces
of holomorphic functions defined on Q x ). We assume that the multiplication operators M,
i=1,...,m, are bounded on (A, K;) as well as on (/#, K»). Thus the map

mi(]:[zly---,ZZm] X ((%vK1)®(']51K2)) - (%)KI)®(%1K2)

defined by
my,(h) = ph, he (#,K1) ® (#,Kz), p€Clzy,..., 22ml,

provides a module multiplication on (#, K;7) ® (#, K>) over the polynomial ring C[zy, ..., Zaml.
The Hilbert space (A, K;) ® (#, K,) admits a natural direct sum decomposition as follows.
For a non-negative integer k, let of; be the subspace of (#, K7) ® (#, K») defined by

dy:={f € (H,K)®(H,K): ((g—()"f(z, 0)a=0, i€z, il <k}. (2.22)

By Proposition 2.1.3, the vector K; (-, w) ® Ky (-, w), i€ Z'*, belongs to (A, K1) ® (S, K»)
and
((%)if(z;(:)lz:(:w =(f, K1 (-, w) ®0'Ka (-, w)), fe(H#,K)e (A, Ky). (2.23)
Thus
2t =\/{Ki(,w) 8 Ko (- w): weQ, i€ 27, |i| < k}. (2.24)

From (2.23), it also follows that these subspaces </, k = 0, are closed. Moreover, using
the Leibniz rule, it is verified that the closed subspaces <, k = 0, are invariant under the
multiplication by any polynomial p in Clz,,..., 22,;] and therefore they are sub-modules of
(A, K1) ® (S, K>).

Setting A = ,szfoj‘, S =104, k=1,2,..., we obtain the direct sum decomposition of
the Hilbert module

(A, K1) ® (#,K2) = P Fx.
k=0

As we have discussed in chapter 1, each %, k = 0, is a semi-invariant module of (#, K;) ®
(#, K3) with the module multiplication given by m,(f) = P« (pf), p€ Clz,...,z22ml, f € .
The following theorem gives a description of the Hilbert module .% in the particular case
when K; = K% and K; = K” for some sesqui-analytic function K defined on Q x Q and a pair of
positive real numbers «, .

Recall that the map (: Q — Q x Q is defined by ((z) = (z, z), z € Q. For the definition of
push-forward of a module over C|zy, ..., z,,], the reader is referred to chapter 1.

Theorem 2.2.5. Let K : Q x Q — C be a sesqui-analytic function such that the functions K* and
KP, defined on Qx ), are non-negative definite for some a, f > 0. Suppose that the multiplication
operators M,,i = 1,2,...,m, are bounded on both (#,K%) and (F, KP). Then the Hilbert
module A is isomorphic to the push-forward module 1, (7, K(“'ﬁ)) via the module map %, .
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Proof. From Theorem 2.2.3, it follows that the map %, defined in (2.17) is a unitary map from
F onto (A, K@P). Now we will show that R1Po (ph)=(po)R1h, he #A,peClz,...,z2ml.
Let h be an arbitrary element of .#]. Since ker %, = ESWIL (see the discussion before Theorem
2.2.3), it follows that 21 P (ph) = Z1(ph), p € Clz,...,22m]. Hence

R1Py (ph)=Z%1(ph)

1
= Z(ﬁd (ph) — aam+](ph))|A®e]

\/aﬁ(a+,6) j=

= me(ﬁah a6m+]h)|A®e]+Zh|A(,66]p A0+ jP)a ® €]

\/r 2
= \/W Z pia(BOjh—ady,,jh)a®e;j (since h e A)

=(po)Z%1h,
completing the proof. O

Notation 2.2.6. For1<i<m, let Mlgl) and Ml@ denote the operators of multiplication by the
coordinate function z; on the Hilbert spaces (¢, K1) and (/€, K>), respectively. If m = 1, we let
MW and M denote the operators M\" and M\, respectively.

Incase Ky = K* and K, = KP, let Ml@, Mlgﬁ) and M;Mﬁ) denote the operators of multipli-
cation by the coordinate function z; on the Hilbert spaces (#,K®%), (#,KP) and (#,K%*P),
respectively. If m = 1, we write M, M® and M**P instead of M\, Miﬁ ) and Miwﬁ ), respec-
tively.

Finally, let Mga’ﬁ ) denote the operator of multiplication by the coordinate function z; on
(7, K @B, Also let M'®P) denote the operatorl\/ﬂ(la’ﬁ ) whenever m = 1.

Remark 2.2.7. It is verified that (M;“) ® D*(¢pj(w)) = wipj(w) + pé; i K*(-, w) ® KP(-,w) and
Te MP)* (@ (w) = i (w) — ad; ;K (., w) ® KP(, w), 1 i, j < m, w € Q. Therefore,

Py (M@ @ D)y = P (Te M), i=1,2,...,m.

Corollary 2.2.8. The m-tuple of operators (P, (M\* ® Dy P MY e D)) is unitarily
equivalent to the m-tuple of operators (M(la’ﬁ), o M9P on (72, K@),

In particular, if either the m-tuple of operators (M(“), o) M,(ﬁ)) on (#,K%) or the m-tuple
of operators (M(ﬁ) Mﬁ,/f)) on (A, KP) is bounded, then the m-tuple (Mia'ﬁ), . ..,M%’ﬁ)) is also

@’
bounded on (7, [K(“ P,

Proof. The proof of the first statement follows from Theorem 2.2.5 and the proof of the second
statement follows from the first together with Remark 2.2.7. O



2.2. Realization of (7¢,K®P)) 35

2.2.2 Description of the quotient module </"

In this subsection, we give a description of the quotient module dﬁ. Let (A, K%*P)& (2, K @P))
be the Hilbert module, which is the Hilbert space (#, K**P)&(#, K *P), equipped with the
multiplication (distinct from the natural multiplication on it induced by the direct sum of the
multiplication operators on (A, K a+f) and (A4, K @P))) over the polynomial ring Clz,..., Z2 /]
induced by the 2m-tuple of operators (T1,..., T, Tm+1,--., T2m) described below. First, for any
polynomial p € Clz,...,22m], let p*(z) := (po1)(2) = p(z,2z), z€ Q and let Sy : (A, K4Py —
(A, K @P) be the operator given by

1 *
Sp(fo) = Japaip & S (60;9)" - @Oms V) fo @ ). fo € (H6,KP).
a+
0 M, 0 )
On the Hilbert space (#, K F) & (A, K@P), let T; = (s M, ) and Ty,4; = (Sz i Mz.)’ l<is<

m. Now, a straightforward verification shows that the module multiplication induced by these
2m-tuple of operators is given by the formula:

Mp*fo

oM f),fo@ﬁE(Jf,K"‘*ﬁ)ea(Jf,K(“'ﬁ’). (2.25)
pJo prJ1

my(fo® f1) = (
Theorem 2.2.9. Let K : Q x Q — C be a sesqui-analytic function such that the functions K* and
KP, defined on Qx Q, are non-negative definite for some a, B > 0. Suppose that the multiplication
operators M,,i = 1,2,...,m, are bounded on both (#,K%) and (¢, KP). Then the quotient
module /i and the Hilbert module (7€, K®*P)& (7€, K*P)) are isomorphic.

Proof. The proof is accomplished by showing that the compression operator P o Mp, 1 is
1

unitarily equivalent to the operator (Né’: ’ M(; . ) on (A, K%*P) @ (#,K@P) for any polynomial
pinClzy,...,zom].

We recall that the map % : (#,K%) ® (A, KP) — (A, K*P) given by Zo(f) = fia, f in
(A, K% ® (A, KP) defines a unitary map from %4 onto (A, K a+h) and it intertwines the
operators PyOMp% on % and M+ on (A, K%*h) that is, My R0\, = %OI%P%MP%- Com-

. o % 0 V. .
bining this with Theorem 2.2.3, we conclude that the map % = ( 50 A ) is unitary from
1

D F (which is .QflL) to (A, K¥*P) @ (A4, K @P). Since . is invariant under M p» it follows

* —
that Ps M, , =0. Hence

. RoP, ply% ‘%OpyoMpLy‘%*
%Pg{l_ pldl% = .
0 Z1P, ply%
on %@ .. We have ,%opyo PLS” = (M,+)*, already, on (#, K**P). From Theorem 2.2.5,

we see that 21 P M Ply = (Mp~ ) on (A, K@P). Thus we will be done if we can show that

RoP, ply%* S*
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To verify this, we claim that

M, (¢j(w)) = p(w, w)p;(w) + (BO;p) (w, w) — &(@m+;p) (w, w)) K*(-, w) ® KP(, w),

where ¢ (w) is defined in (2.13), 1 < j < m, w € Q. If h is an arbitrary element of (/#,K%) ®
(A, KP), then

(M (pj w))) = (M, b (w))
=(ph,¢jw))
=B(0j(ph)(w, w) — a(0m+j(ph))(w, w) (by (2.16))
= B(0;p)(w, w)h(w, w) + p(w, w) (0 h) (w, w))
— a((Om+jp) (W, w)h(w, w) + p(w, w) (O p+j 1) (w, w))
=(B0O;p)(w, w) — a@m+;p)(w, w)) h(w, w)
+ (B0 1) (w, w) — A(0m+jh) (w, w)) p(w, w)
= (1, (B@; P)(w, ) = @@ ;) W, DK (, w) @ KP (-, w))

+<h,p(w—,w)([)j(w)>.

Hence our claim is verified. Since ¢ (w) € </ (which is ;S”Oi), in the computation below, the
third equality follows:

RoPs M, B KD w)e))

1
= RPy M _ ()
apa+p Pl (P00
1 -
=—RoP ) i + 0; y - am i ) Ka ) ®Kﬁ )
eI yo(p(w w)pj(w) + (B0 p)(w, w) — a@m+jp)(w, w))K(:, w) ( W))
1
= ———— P ((B@; P W, w) — @@y P) w0, w)) K, w) © KP (-, w))

vapla+p)

1
=———(BO;p)(w, w) — a@m+ip) (W, w)Ro(K*(,, W)®Kﬁ(', w))
aBa+p i ip +jP 0

1
=———— (B0, p)(w, W) — A@m+jp) (W, W)K*F(, w).

vapla+p)

Set Sg, = R1P5 Mp, %‘%S' Then the above computation gives

(S5)* K @P(, wye)) = (BO;p)(w, w) — @@+ ;) (w, WK (-, w),

1
vapla+p)
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for 1 < j <mand w e Q. If f is an arbitrary element in (%, K%*F), then we see that
(Shf(2),e/) = (S, £, K@D, 2)e))
= (f,(SH) K ®P (., 2)ep)

1
=————(B0;P)(2,2) — a@m+;P) (2, 2D, KTP (-, 2))

vapla+p)

1
= m(ﬁ(aﬂﬂ)(z, 2)— a(0m+jp)(2,2) f (2).

Hence Sg, = §,, completing the proof of the theorem. O

Corollary 2.2.10. LetQ c C be a bounded domain. The operator P gt (M@P g P is unitarily

equivalent to the operator (Z‘/g?nlﬁ] M(gﬁ))) on (A, K P) @ (A4, K *P), where s = \/‘xﬁ%ﬂi) and

inc is the inclusion operator from (A€, K**P) into (A, K@P)y,

2.3 Generalized Bergman Kernels

In this section, we study the generalized Bergman kernels introduced by Curto and Salinas [26].
We refer the reader to chapter 1 for the definitions and motivation related to generalized
Bergman kernels. We start with the following lemma (cf. [27, page 285]) which provides a
sufficient condition for the sharpness of a non-negative definite kernel K.

Lemma 2.3.1. Let Q < C" be a bounded domain and K : Q x Q — ;. (C) be a non-negative
definite kernel. Assume that the multiplication operator M, on (A, K) is bounded for1 < i < m.
If the vector valued polynomial ring Clzy, ..., 2] ® Ck is contained in (#,K) as a dense subset,
then K is a sharp kernel.

Corollary 2.3.2. Let Q < C™ be a bounded domain and K : Q x Q — C be a sesqui-analytic
function such that the functions K* and KP are non-negative definite on Q x Q for some a, > 0.
Suppose that either the m-tuple of operators (MY, ..., MP) on (#,K%) or the m-tuple of
operators (Miﬁ), cee) M,(f)) on (A, KP) is bounded. Ifboth the Hilbert spaces (A, K*) and (A, K5
contain the polynomial ringClzi, ..., 2] as a dense subset, then the kernel K%P is sharp.

Proof. By Corollary 2.2.8, we have that the m-tuple of operators (M(la'ﬁ ), ety M%’ﬁ )) is bounded
on (%, K(“'ﬁ)). If both the Hilbert spaces (#, K%) and (#, K P) contain the polynomial ring
Clzy,...,2m] as a dense subset, then by Proposition 2.2.4, we see that the ring C[z,..., z,] ® C™
is contained in (#,K@8)) and is dense in it. An application of Lemma 2.3.1 now completes
the proof. O
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2.3.1 Jet Construction

For two scalar valued non-negative definite kernels K; and K3, defined on Q x Q, the jet
construction (Theorem 1.1.4) gives rise to a family of non-negative kernels Ji(Kj, K2)resa,
k =0, where

k

Je(Ki, Kjresa (2, w) := (Ki (2, w)3' 0T Ko (2, w) 5

—o’ z,w e Q.

In the particular case when k = 0, it coincides with the point-wise product K; K>. In this section,
we generalize Theorem 1.1.8 for all kernels of the form Ji(Kj, K2)resa- First, we discuss two
important corollaries of the jet construction which will be used later in this chapter.
For1 < i< m, let J, M; denote the operator of multiplication by the ith coordinate function
z; on the Hilbert space (Jf, Ji (K7, Kg)|resA). In case m =1, we write Ji; M instead of Ji M, .
Taking p(z,{) to be the ith coordinate function z; in Proposition 1.1.5, we obtain the
following corollary.

Corollary 2.3.3. Let K;,K, : Q x Q — C be two non-negative definite kernels. Then the m-
tuple of operators (Pdkl (M{D ® I)Mkl,...,Pdkl MY & I)Mkl) is unitarily equivalent to the m-
tuple (JiM, ..., JkMy,) on the Hilbert space (€, Ji(Ky, K2) resa) -

Combining this with Corollary 2.2.10 we obtain the following result.

Corollary 2.3.4. LetQ c C be a bounded domain and K : QxQ — C be a sesqui-analytic function
such that the functions K% and KP are non-negative definite on Q x Q for some a, > 0. The
following operators are unitarily equivalent:

(i) the operator P . (MP g D)ot

(i) the multiplication operator JyM on (7, J1 (K%, KP)|resa)

M@h o
iii) the operator on (A, K**P A0,IK@P)) wheres = P andincis
(iii) p Sine @ ( ) D( ) aah

the inclusion operator from (A, K®*P) into (A, K@),
We need the following lemmas for the generalization of Theorem 1.1.8.

Lemma 2.3.5. Let A4 and /¢, be two Hilbert spaces and T be a bounded linear operator on
F0,. Then
ker(T ® Lz,) =ker T ® A,.

Proof. Itis easily seen that ker T ® #» c ker(T ® 1 #,). To establish the opposite inclusion, let x
be an arbitrary element in ker(T ® I ,). Fix an orthonormal basis {f;} of /. Note that x is of
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the form }_ v; ® f; for some v;’s in ;. Since x € ker(T ® I #,), we have }_ Tv; ® f; = 0. Moreover,
since {f;} is an orthonormal basis of #%, it follows that Tv; = 0 for all i. Hence x belongs to
ker(T) ® A, completing the proof of the lemma. O

Lemma 2.3.6. Let /0, and /¢, be two Hilbert spaces. If By, ..., By, are closed subspaces of 76,
then

N (B, & 7) = (ﬂB,) ® Hy.
=1 I=1

Proof. We only prove the non-trivial inclusion, namely, ﬂ;’i L (Bi® Jb) C (ﬂ?i 1Bl) Q S5,

Let {f;}; be an orthonormal basis of #> and x be an arbitrary element in #, ® #. Recall
that x can be written uniquely as }” x; ® f, x; € A.

Claim: If x belongs to B; ® />, then x; belongs to B; for all j.

To prove the claim, assume that {e;}; is an orthonormal basis of B;. Since {e; ® f;}; j is an
orthonormal basis of B; ® #> and x can be written as }_x;;je; ® f; =Y. ;(X; xije;) ® fj. Then,
the uniqueness of the representation x = }_ x; ® f;, ensures that x; = )_; x; je;. In particular, x;
belongs to B; for all j. Thus the claim is verified.

Now let y be any element in N} | (B; ® #%). Let ). y; ® f; be the unique representation of y
in A ® #. Then from the claim, it follows that y; € mﬁ \Bi- Consequently, y € (n;’i B ® T .
This completes the proof. O

The proof of the following lemma is straightforward and therefore it is omitted.

Lemma 2.3.7. Let /£, and # be two Hilbert spaces. Let A: # — J&, be a bounded linear
operator and B : /6 — #» be a unitary operator. Then

ker BAB* = B(ker A).

The lemma given below is a generalization of [21, Lemma 1.22 (i)] to commuting tuples.
Recall that for a commuting m-tuple T = (T, ..., T)), the operator T! is defined by Tll l... T,ﬁ;",
where i = (iy,..., 1) € Z.

Lemma 2.3.8. IfK:Q x Q — C is a positive definite kernel such that the m-tuple of multiplica-
tion operators M, = (My,, ..., M, ) on (S, K) is bounded, then for w € Q andi = (iy,...,im), j =
(jl)---yjm) ln ZT}

@) (M;- )oK, w) =0 iflil > ],
(i) M;-w)'0/K(,w) = jl6;;K(, w) iflil = |jI.

Proof. First, we claim that if i; > j; for some 1 < [ < m, then (M;‘l — lI}l)ilé{lK(-, w) = 0. The
claim is verified by induction on j;. The case j; = 0 holds trivially since (M7, — w)K(-, w) = 0.
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Now assume that the claim is valid for j; = p. We have to show that it is true for j; = p +1 also.
Suppose i; > p+1.Then i;—1 > p. Hence, by the induction hypothesis, (M — ;)" ~0) K (-, w) =
0. Differentiating this with respect to w;, we see that

(i1 = DM, - )= (= DAV K, w) + (M5, — w7107 K (-, w) = 0.
Applying (M7, — w;) to both sides of the equation above, we obtain
(i = (M3, = )™ =1V K (-, w) + (Mg, - )19V K (-, w) = 0.

Using the induction hypothesis once again, we conclude that (M7, - )" 5? K w) = 0.
Hence the claim is verified.

Now, to prove the first part of the lemma, assume that |i| > | j|. Then there exists a [ such
that i; > j;. Hence from the claim, we have (M ;‘l - wy) il(_3{ 'K(-, w) = 0. Differentiating with
respect to all other variables except w;, we get (M7, — w;)"0 K(-, w) = 0. Applying the operator
(M —w)"'""°, where e, is the /th standard unit vector of C", we see that (M; —w)"'0’ K (-, w) =0,
completing the proof of the first part.

For the second part, assume that |i| = |j| and i # j. Then there is atleast one [ such that i; >
ji1- Hence by the argument used in the last paragraph, we conclude that (M — ) I K (-, w) = 0.
Finally, if i = j, we use induction on i to proof the lemma. There is nothing to prove if i = 0. For
the proof by induction, now, assume that (M — )?6' K (-, w) = i!K (-, w) for some i € Z"". To
complete the induction step, we have to prove that (M} — w)itegita K w) =i+ e K (-, w).
By the first part of the lemma, we have (M} — W) etk (-, w) = 0. Differentiating with respect
to w;, we get that

(M — ) reai e K (., w) — (i + )M — ) 0' K (-, w) = 0.

Hence, by the induction hypothesis, (M? — ) *+¢8* "¢ K (-, w) = (i + e;)!K (-, w). This completes
the proof. O

Corollary 2.3.9. Let K : Q x Q — C be a positive definite kernel. Suppose that the m-tuple of
multiplication operators M ; on (A, K) is bounded. Then, for all w € Q, the set{ O K(,w):i€
Z''} is linearly independent. Consequently, the matrix (3°07 K (w, w)); jen 18 positive definite
for any finite subset A of 7.

Proof. Let w be an arbitrary point in Q. It is enough to show that the set { O'K(,w):iezZ™i|l<
k } is linearly independent for each non-negative integer k. Since K is positive definite, there
is nothing to prove if k = 0. To complete the proof by induction on k, assume that the set
{ O'K(,w):ieZMil<k } is linearly independent for some non-negative integer k. Suppose
that ) jj<k+1 a,-aiK(~, w) = 0 for some a;’s in C. Then (M} — )9 (¥ jjj<k+1 a,-éiK(-, w)) =0, for
all g € 72" with |q| < k+1. If |q| = k+ 1, by Lemma 2.3.8, we have that aq q'K(,w) = 0.
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Consequently, ag; =0 forall g € 7z with |q| = k + 1. Hence, by the induction hypothesis, we
conclude that a; = 0 for all i € Z", |i| < k+ 1 and the set { O'K(,w):ie€ ZM il < k+1 } is
linearly independent, completing the proof of the first part of the corollary.

If A is a finite subset of Z7", then it follows form the linear independence of the vectors
{0°K(-,w) : i € A} that the matrix ({6/K(-, w),0’K(, w)))ij€
proof is complete since (87 K (-, w),0' K (-, w) ) = 3'0 K (w, w) (see Proposition 2.1.3). O

A is positive definite. Now the

The following proposition is also a generalization to the multi-variate setting of [21, Lemma
1.22 (i))]( see also [22]).

Proposition 2.3.10. IfK :Q x Q — C is a sharp kernel, then for every w € Q

M ker (M} -w) =\/{0'K(, w):|jl < k}.
jl=k+1
Proof. The inclusion VIOV K (-, w) : ljl < k} < Njl=k+1 ker (M} - w)J follows from part (i) of
Lemma 2.3.8. We use induction on k for the opposite inclusion. From the definition of sharp
kernel, this inclusion is evident if k = 0. Assume that

M ker (M} -w) c\/{0'K(, w):|jl <k}
jl=k+1
for some non-negative integer k. To complete the proof by induction, we show that the
inclusion remains valid for k + 1 as well. Let f be an arbitrary element of (;j=x+2 ker(M} — w)t.
Fix a j € Z™ with |j| = k + 1. Then it follows that (M} — w)J f belongs to Nz, ker(M7 — wy).
Since K is sharp, we see that (M; — )/ f = ¢;K(-, w) for some constant cj depending on w.
Therefore

. Cq - C .-
M- (- Y 3IKC,w) =K w) - Y — M- @) STK(, w)

\qi=k+1 9* lql=k+1 9
=ciK(,w) = Y cq0jqLK( w)
lql=k+1
=0,

where the last equality follows from Lemma 2.3.8. Hence the element f =3 4-x+1 %5" K(,w)
belongs to M jj=x+1 ker(M7; — )7 Thus by the induction hypothesis, f — Ylgl=k+1 %5”]((-, w) =
¥ji<k dj07 K (-, w). Hence f belongs to \/{0/ K (-, w) : | j| < k+ 1}. This completes the proof. O

For a m-tuple of bounded operators T = (T,..., T);) on a Hilbert space #, we define an
operator DT : #@---@ A — A by

m
T
D" (x1,...,x,) = Z Tix;, X1,...,Xm € F.
i=1
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A routine verification shows that (Dy)* = DT . The following lemma is undoubtedly well
known, however, we provide a proof for the sake of completeness.

Lemma 2.3.11. Let K : Q x Q — C be a positive definite kernel such that the m-tuple of mul-
tiplication operators M, on (#,K) is bounded. Let w = (wy,..., Wy,) be a fixed but arbitrary
point in Q and letV,, be the subspace given by {f € (#€,K) : f(w) =0}. Then K is a generalized
Bergman kernel if and only if for every w € Q,

Vw= {Z;’;l(Zi— w;i)gi:&i € (Jf,K)}. (2.26)

Proof. First, observe that the right-hand side of (2.26) is equal to ran DM=~%_ Hence it suffices
to show that K is a generalized Bergman kernel if and only if 7;, = ran DM=~% In any case, we
have the following inclusions

ran DM="" = ran (Do, 1)) * S1an (D, —w)*)* = ker Dy, — )+~ (2.27)
c{cK(,w):ceC}t
= 'Vw-

Hence it follows that %, = ran DM="% if and only if equality is forced everywhere in these
inclusions, that is, ran (D, w)+)* = ran (D, —w)+)* and ker Doy, — )+ = {cK (-, w) : c € C}.
Now ran (Dy,—w)«)" = ran (Dm,—w)+)* if and only if ran (D, —y)+)* is closed. Recall that,
if A, /6, are two Hilbert spaces, and an operator T : #; — # has closed range, then T*
also has closed range. Therefore, ran (Dy,—,):)* is closed if and only if ran D, — )+ is
closed. Finally, note that ker Dz, — )+ L = {cK(, w): c e C}* holds if and only if ker Dipr, )+ =
{cK (-, w): c € C}. This completes the proof. O

Notation 2.3.12. Recall that for1 <i < m, Mlgl), M§2), JxM; denote the operators of multiplica-
tion by the coordinate function z; on the Hilbert spaces (¢, K1), (A€, Kz2) and (F€, Ji (K1, K2)|resa),
respectively. Set MV = (M,..., M), M® = (M?P,..., M%) and JxM = (JpM,..., JxMp).
Also, for the sake of brevity, let 7, and #» be the Hilbert spaces (A, K,) and (/€, K>), respec-
tively for the rest of this section.

The following lemma is the main tool to prove that the kernel Ji(Kj, K2)jresa is sharp
whenever K; and K> are sharp.

Lemma 2.3.13. IfKj, K5 : Q) x Q — C are two sharp kernels, then for all w = (wy, ..., wy) € Q,

m . .
quer(((MlgD —wp)" ® I)Iafkl) B |ir|]1ker (M7= w) e |i|£1]+1ker(M(2) - w) l

=\ K, w) ® ' Kz (-, w) : |i| < k}.
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Proof. Since K; and K> are sharp kernels, by Proposition 2.3.10, it follows that

NkerMV-w)'e ) kerM® - w)*’ =\/IKi(, w) 8 Ko, w): |jl<kl.  (2.28)
[i|=1 |i|=k+1

Therefore, if we can show that

m . .
N ker(((M]E,l)— wp)* ®1)Mkl) = NkerMV-—w)*'® (N kerM? -w)*’,  (2.29)
p=1 lil=1 lil=k+1

then we will be done. To prove this, first note that

ﬁlker(((M;” wp)* & 1)) = pﬁ(ker((M(” wy) ® 1))
= (rer(af) ~wy” 1) N

= () tkerth? — )" 0 72)) o5

= (( (Y rercon? ) o 72) Nyt

p=1
= (kerD(Mm_w)* ®<7f2)m=52¢]j'.

Here the third equality follows from Lemma 2.3.5 and the forth equality follows from Lemma
2.3.6. In view of the above computation, to verify (2.29), it is enough to show that

(ker Diygin_ e 8 76) Nott = (N kerMP = w)*'e ) kerM@-w)*’. (230
lil=1 lil=k+1
Since K is a sharp kernel, ker D 0+ is spanned by the vector K; (-, w). Hence, by (2.24), the

vector K; (-, w) ® 3/ K»(-, w) belongs to (kerD( MO+ ®@ sz) Nt forall j in 27 with | ] < k.
Therefore, by (2.28), we have the inclusion

NkerMV-w)*'o M kerM®-w)" < (kerDyg_,y @ 76|t @31
li|=1 li|l=k+1

Now to prove the opposite inclusion, note that an arbitrary vector of (ker D yu)_,,). 87 ) ;-
can be taken to be of the form K (-, w) ® g, where g € #% is such that Ki(-,w) ® g € ‘dkl' We
claim that such a vector g must be in (jj=x+1 ker (M? — w) +f

As before, we realize the vectors of /4 ® /5 as functions in z = (z1,...,2,),{ = ({1,...,{m)
in Q. Fixany i € Z7' with |i| = k+1. Then (-2)t= Cq—2q))Cqy—2g,) - (C gy, — Zqy,,) fOr some
1=q1,92,...,9k+1 < m. Since M;D and Ml@ are bounded for 1 < i < m, for any h € /0, ® A,
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we see that the function (( — z)¢h belongs to / ® #5. Then

(Kit, w)® g, (g, = 2¢)) C g, — 2g5) € g — 2 1)
= (M, KiCw)@8), U, ~ 20 Cgpn, ~ 2 )
- <(1®M§fl’* —Méll)* ®NKi(,w)® g, g —2¢) g, — qu+1)h>
= (ki) @ M2 g~ 0y, Ki(, w) ® 8, (g~ 2) Ly — 2 )N

= <K1(-, w) ® (Mo — wg)* 8 gy — 24+ U gy —zqk+1)h>.
Repeating this process, we get
(Kit,weg € -2'h)y= (K, w)eM®-w)*'g h).

Since |i| = k+ 1, it follows that the element ({ — 2)ih belongs to <. Furthermore, since
Ki(, w) ® g € o7, from the above equality, we have

<K1(-, w) e (M2 —w)*'g, h> =0

for any h € #, ® 7. Taking h = K (-, w) ® Kz (-, ), u € Q, we get Ki (w, w)((M? — w)*ig)(u) =0
for all u € Q. Since K; (w, w) > 0, it follows that (M® — w)*"g = 0. Since this is true for all i € Z"

with |i| = k + 1, it follows that g € (;)=+1 ker (M® — w)*". Hence K; (-, w) ® g belongs to

N ker (MY — w)*i® N ker (M@ — w)*i,
li|=1 lil=k+1

proving the opposite inclusion of the one appearing in (2.31). This completes the proof of
equality in (2.29). O

Theorem 2.3.14. Let Q c C™ be a bounded domain. If Ky, K, : Q x Q — C are two sharp kernels,
then so is the kernel Ji.(Ky, K2)|resa, k = 0.

Proof. Since the tuple MV is bounded, by Corollary 2.3.3, it follows that the tuple J;xM is
also bounded. Now we will show that the kernel J;(Kj, K2)resa is positive definite on Q x Q.
Since K is positive definite, by Corollary 2.3.9, we obtain that the matrix (aiai K> (w, w))|ki|,| jl=0
is positive definite for w € Q2. Moreover, since K is also positive definite, we conclude that
Jx (K1, K2)res A (w, w) is positive definite for w € Q. Hence, by Proposition 2.1.14, we conclude
that the kernel Ji (K7, K2)resa is positive definite.

To complete the proof, we need to show that

kerD(IkM—w)* =ran Ji(Ky, K2)resa (-, w), w € Q).
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Note that, by the definition of R and J (see the discussion before Theorem 1.1.4), we have
RJk (K (-, w) ®5iKz(', w)) = Ji(K1, K2 jresa (-, weg, i € 21, |i| < k. (2.32)

In the computation below, the third equality follows from Lemma 2.3.7, the injectivity of the
map RJk, it implies the fourth equality, the fifth equality follows from Lemma 2.3.13 and
finally the last equality follows from (2.32):

m
ker Dy, m-w)* = [ ker(JxMp — w,)*
p=1

m
_ 1) * *
_plker((R]k)PdkL((Mpl —~wp)' 8 1) (R]) )

1
IDE

I(R]k)(ker(PdkL((MS) —wy)* ®1)M¢))

p
:(R]k)(polker(Pdkl((Mé” —wp)* e I)w,f))
=®ID(V{Kit,w) 08 Ko, w) 1|l < K}

=ran Ji(Ky, K2)resa (-, w).
This completes the proof. O

The lemma given below is the main tool to prove Theorem 2.3.16.

Lemma 2.3.15. Let Kj,K; : Q x Q — C be two generalized Bergman kernels, and let w =
(wy,...,wn) be an arbitrary point in Q. Suppose that f is a function in /6, ® /&, satisfying
(%)'f(20) =, =0 foralli € Z'7, |i| < k. Then

fE0=Y G -w)fiz0+ Y z-07fi=0
j=1

lql=k+1
forsomefunctionsfj,fg infO®5,j=1,....m, qeZ',|1ql = k+1.

Proof. Since K; and K; are generalized Bergman kernels, by Theorem 1.1.8, we have that
Kj ® K5 is also a generalized Bergman kernel. Therefore, if f is a function in /4 ® 4 vanishing
at (w, w), then using Lemma 2.3.11, we find functions fi,..., fi,, and g1,...,8n in /6, @ /&,
such that

m

fEO=Y (zj—wpfi+Y (;-w)g;.
=1

j=1 J
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Equivalently, we have
m m
f@0 =) zj-wp(fi+g)+ ) (z;-(N(=g).
j=1 j=1
Thus the statement of the lemma is verified for k = 0. To complete the proof by induction
on k, assume that the statement is valid for some non-negative integer k. Let f be a function in
S0, ® 65 such that ((a%)lf(z’())m:(:w =0foralli € Z™, |i| < k+ 1. By induction hypothesis,
we can write m
F@0=Y GE-wpfied+ Y -0fiz0 (2.33)
j=1 lql=k+1
for some fj,fg e, j=1,....m, qeZ, |q| = k+1. Fixaie 7" with |i| = k+1. Applying

(a%)i to both sides of (2.33), we see that

G re0=Le-w@) e+ T @) (-07fe0)

J= lql=k+1

=Y G- wp(F) fia0+ ¥ Y () E-01(%) L.
j=1

lql=k+1p=<i

Putting z = { = w, we obtain
(2) (@ 0) oper = Dt frw, w),

where we have used the simple identity: ((%)p(z - C)") =8pq(-DP'pl.
w

lz=¢=

Since ((%)if(zro)m:(:w =0, we conclude that fiﬁ(w, w) = 0. Since the statement of the

lemma has been shown to be valid for k = 0, it follows that

Fe0=Y @-w)(f});@0+ Y @-)H(f)ieEo (2.34)
j=1 j=1

for some (fiﬁ)]., (flﬁ)u] € A0, ® #,, j=1,...,m. Since (2.34) is valid for any i € Z"", |i| = k + 1,

replacing the f;'s in (2.33) by 27’:1 (zj — wj) (fg)j(z,() + 277:1 (zj—(}) (fg)ﬁ] (z,{), we obtain the
desired conclusion after some straightforward algebraic manipulation. O

Theorem 2.3.16. Let Q < C™ be a bounded domain. If K1,K, : Q x Q — C are generalized
Bergman kernels, then so is the kernel Ji.(Kiy, K2)resa, kK = 0.

Proof. By Theorem 2.3.14, we will be done if we can show that ran D j, m— )+ is closed for every
; ; — ; — 1) 1)

w € Q. Fix a point w = (wy,..., wy,) in Q. Let X = (PbdkL.(M1 ®I)|%l,...,Pdkl(Mm -® I)Mkl).

By Corollary 2.3.3, we see that ran D, p-w)+ is closed if and only if ran Dx_ )+ is closed.
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Moreover, since (D(x_u)*)* = D&% we conclude that ran D(x_ )+ is closed if and only if
ran DX~% is closed. Note that X satisfies the following equality:

ker Dix_ )+ =Tan (D(x_y)*)* = ran DE-w),

Therefore, to prove ran DX =% is closed, it is enough to show that ker D(x_ )+ Sran DX~ %,
To prove this, note that

m
D(X—W)(gl@---@gm) :ngki(z(zi_ wi)gi), 8i €£¢kL,i: 1,...,m.
i=1

Thus m
ran DX~ W) = {Pdkl(Z(zi - Ww;i)gi: 81,---8mE€ ,sz{kL} (2.35)
i=1

Now, let f be an arbitrary element of ker D(x_ )+ . Then, by Lemma 2.3.13 and Proposition
2.1.3, we have ((£)"f(2,0)),,—,,, = 0 forall i € 27, |i| < k. By Lemma 2.3.15,

F@0=Y G-wpfid+ Y (=010
j=1

lql=k+1
for some functions fj,fg in/®H,j=1,...,mand q € Z"",|q| = k+ 1. Note that the element

Y 1gi=k+1(z =9 f} belongs to <. Hence f = P u(f) = Pdkl(zjzl(zj —wj) fj). Furthermore,

since the subspace < is invariant under (M](.D - wj), j=1,...,m, we see that

f =Py (E0 @ = wp i) = Py (E1 2= w) (P oy £+ Pesc )

=Py (X7 (2 — w) Py f)).

Therefore, from (2.35), we conclude that f € ran DX~W) This completes the proof. O

2.3.2 The class % B,(Q2)

In this subsection, first we will use Theorem 2.3.16 to prove that, if Q c C, and K%, K B, defined
on Q x Q, are generalized Bergman kernels, then so is the kernel K®) . The following propo-
sition, which is interesting on its own right, is an essential tool in proving this theorem. The
notation below is chosen to be close to that of [37].

Proposition 2.3.17. Let Q) < C be a bounded domain. Let T be a bounded linear operator of the

Tp

form on Hy@ H,. Suppose that T belongs to B, (Q)) and Ty belongs to B,(Q)). Then T;

0 N
belongs to B; (Q).
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Proof. First, note that, for w € Q,
(T-w)(xey)=(To—w)x+Sy)e (11 —w)y. (2.36)

Since T € B,(D), T — w is onto. Hence, from the above equality, it follows that (77 — w) is onto.

Now we claim that dimker(7; — w) = 1 for all w € Q. From (2.36), we see that (x& y) belongs
to ker(T —w) ifand only if (Tp — w)x+ Sy = 0 and y € ker(T; — w). Therefore, if dimker (7T, — w) is
0, it must follow that ker(T — w) = ker(Tp — w), which is a contradiction. Hence dimker(7; — w)
is atleast 1. Now assume that dimker(7; — w) > 1. Let v; (w) and v2(w) be two linearly inde-
pendent vectors in ker(7; — w). Since (Tp — w) is onto, there exist u; (w), u2(w) € Hy such that
(To—w)u;(w)+Sv;(w) =0, i =1,2. Hence the vectors (u; (w)® vy (w)), (uz2 (w) ® v2(w)) belong to
ker(T—w). Also, since dimker(Ty—w) = 1, there exists y(w) € Hy, such that (y(w)®0) belongs to
ker(T—w). Itis easy to verify that the vectors {(u; (w) ® v; (w)), (ux (w) @ v2 (W), (y(w)®0)} are lin-
early independent. This is a contradiction since dimker(7 — w) = 2. Therefore dimker (7, —w) <
1. In consequence, dimker(7; — w) = 1.

Finally, to show that \_/weg ker(T} — w) = Hj, let y be an arbitrary vector in H; which is
orthogonal to \_/wgg ker(T; — w). Then it follows that (0 @ y) is orthogonal to ker(T — w), w € Q.
Consequently, y = 0. This completes the proof. O

Theorem 2.3.18. Let Q) < C be a bounded domain and K : Q x Q — C be a sesqui-analytic
function such that the functions K® and KP are positive definite on Q x Q for some a, > 0.
Suppose that the operators M@™ on (7, K®) and MP" on (7€, KP) belong to B,(Q*). Then the
operator M@P™ on (7, K @P)) belongs to B (Q*). Equivalently, if K% and KP are generalized
Bergman kernels, then so is the kernel K@h),

Proof. Since the operators M@ and M®” belong to B, (Q*), by Theorem 2.3.16, the kernel
J1(K%, KP) resA 18 a generalized Bergman kernel. Therefore, from corollary 2.3.4, we deduce that

M@B* pinc* B
vapla+p)

the operator ( ) belongs to B»(Q2*), where n = and inc is the inclusion

M@ *
operator from (A2, KBy into (A, IK@P)), Also, by Theorem 1.1.8, the operator M@tP* on
(A, K**h) belongs to B; (Q2*). Proposition 2.3.17, therefore shows that the operator M@P* on
(A, K@P)) belongs to B; (Q*). O

A smaller class of operators & B, (Q2) from B, (Q2), n = 2, was introduced in [37]. A set of
tractable complete unitary invariants and concrete models were given for operators in this
class. We give below examples of a large class of operators in & B,((2). In case Q is the unit disc
D, these examples include the homogeneous operators of rank 2 in B, (D) which are known to
be in & B, (D).

To S
Definition 2.3.19. An operator T on Hy& H, is said to be in & B, (Q) if it is of the form [ ° ] ,
1

where Ty, T1 € B1(Q) and S is a non-zero operator satisfying ToS = ST;.
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Theorem 2.3.20. Let Q) c C be a bounded domain and K : QO x Q — C be a sesqui-analytic
function such that the functions K* and KP are positive definite on Q x Q for some a, > 0.
Suppose that the operators M'@™ on (7€, K®) and MP" on (7€, KP) belong to B,(Q*). Then the
operator (J1M)* on (S, (K“,Kﬁ)|resA) belongs to & B,(Q)").

Proof. By Theorem 2.3.16, the operator (J; M)* on (A, J; (K%, Kﬁ)|re5A) belongs to B,(Q2*), and

by Corollary 2.3.4, it is unitarily equivalent to (M(a(:ﬁ)* Nz(i;;: . ) on (#,K**P) @ (7,K*P). By

Theorem 1.1.8, the operator M@B* on (A, K**h) belongs to B; (Q2*) and by Theorem 2.3.18,
the operator M@P " on (7, K @A) belongs to B, (Q*). The adjoint of the inclusion operator inc
clearly intertwines M@*#™ and M®P”, Therefore the operator (J; M)* on (A, J1 (K% KP) resa)
belongs to & B,(Q"). O

Let Q c C be abounded domain and K : Q x Q — C be a sesqui-analytic function such that
the functions K%, K%, KA1 and K2 are positive definite on Q x Q) for some a;,5; >0,i=1,2.
Suppose that the operators M@?" on (#,K%) and M®)" on (#,KP), i = 1,2, belong to
B1(Q%). Let o/ (a;, B;) be the subspace «f; of the Hilbert space (#, K%) ® (A, KBi)fori=1,2.
Then we have the following corollary.

Corollary 2.3.21. The operators (M“V ® 1), . 51 and (M2 & 1), .. o\ are unitarily
equivalent if and only if a; = ay and B, = B».

Proof. 1If a; = @ and B, = B, then there is nothing to prove. For the converse, assume that

the operators (M@ & 1) Lfl(al Bt and (M%) @ I)Idl(az 5,

(a1 +BD* inc)*
Corollary 2.2.10, we see that the operators (M 10+ ' rgﬂl(a(inﬁ?)l*) on (A, K4 *P1y P (7, K @1.hD)

*

,L are unitarily equivalent. Then, by

( +ﬁ )* - * . . .
and (M azo ? N’Zﬂf;;nﬁc;f) on (A, K%*P2) (A, K@2F2) are unitarily equivalent, where n; =

\/% and (inc); is the inclusion operator from (A, K%+Piy into (A2, K@iy j=1,2.
a;pild; i
Since M@0 on (#, K%) and M®BI* on (A, KPi),i=1,2, belong to B, (2*), by Theorem 2.3.20,

a;+p)* - (i * ;
M@i*Pil™ ;i (inc); ) belongs to & B, (Q*) for i = 1,2. Therefore,

we conclude that the operator ( A
M @i Bi)

by [37, Theorem 2.10], we obtain that

m Ino)f (I 12 ll(in); ()17
1112 A

J(mem)* = eZ/M(Otgﬂig)* an , (2.37)

where Kyt 1= 1,2, s the curvature of the operator M(“i+'3i)*, and t; and t, are two
non-vanishing holomorphic sections of the vector bundles Ej ) ,6)* and E; ja, p,)*, respectively.
Note that, for i = 1,2, t;(w) = K*»$) (., w) is a holomorphic non-vanishing section of the vector
bundle Ej qa;8%» and also (inc);‘(K(“i'ﬁi)(-, w)) = K%*Pi(., w), w € Q. Therefore the second
equality in (2.37) implies that

MK P ww) gkt w)
Ko +P1 (w, w)ddlog K (w, w)  K*2*P2(w, w)ddlogK (w, w)’

€,
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or equivalently n; = n». Furthermore, it is easy to see that &« +p)* = A jay+p* if and only if
a1+ fB1 = az + 2. Hence, from (2.37), we see that

a1+,61:a2+,62 and n =n2. (2.38)

Then a simple calculation shows that (2.38) is equivalent to a; = a» and 8, = 82, completing
the proof. O

2.4 Some Applications

2.4.1 Alimit computation

In this subsection, we give an alternative computation for the curvature of an operator in the
Cowen - Douglas class B; (Q).

Let Q < C™ be a bounded domain and K : Q x Q — C be a sesqui-analytic function such
that the functions K and K? are non-negative definite on Q x Q for some a, 8 > 0. For a
non-negative integer p, let Kf}p be the reproducing kernel of «#,,, where <7, is defined in (2.22).

One way to prove both of the following two lemmas is to make the change of variables

ur =521 =40, =3 (@m—{m); V1 =321+, U = 5 (Zm + im).

We give the details for the proof of the first lemma. The proof for the second one follows by
similar arguments.

Lemma 2.4.1. Suppose that f : Q x Q — C is a holomorphic function satisfying fix = 0. Then
for each z € Q, there exists a neighbourhood Qg < Q (independent of f) of zo and holomorphic
functions fi, fo,..., fm on Qo x Qo such that

m
[0 =) (zi—{)fi(z0), 2,{ € Q.
i=1
Lemma 2.4.2. Suppose that f : Q x Q — C is a holomorphic function satisfying fix = 0 and
((%)f(z,())IA =0, j=1,...,m. Then for each zj € Q, there exists a neighbourhood Qg < Q
(independent of f) of zo and holomorphic functions f;j, 1 <i < j < m, on Qg x Qg such that

f(Z)() = Z (Zi _(i)(Zj _(])_fl] (Z) C)» Z’( € QO'

l<isjsm

Note that the image of the diagonal set A € Q x Q under the map (u,v) : Q x Q — C>™,
where (u, v) = (uy,..., Um, V1,..., Vm), is the set {(0, v) : v € Q}. Therefore we may choose a neigh-
bourhood of (0, zp) which is a polydisc contained in Q:=(u,v)(Qx Q). Let f be a holomorphic
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function on Q x Q vanishing on the set A. Setting g := fo (u,v)"' on Q, we see that g is a
holomorphic function on €} vanishing on the set {(0, v) : v € Q}. Therefore g has a power series
representation around (0, zp) of the form }_; j a;;j ut (v —zp)J, where Yjaoj(v— z0)4 = 0 and
i, j € 7", on the chosen polydisc. Hence apj =0forall je Z'*, and the power series is of the
form 27:1 urge(u, v), where

gruv)=Y aijut " (w-z9), 1<l <m.
=
Here the sum is over all multi-indices i satisfying i; =0,...,iy—; = 0,i, = 1 while j remains

arbitrary. Pulling this expression back to Q x Q under the bi-holomorphic map (u, v), we obtain
the expansion of f in a neighbourhood of (z, zy) as prescribed in the Lemma 2.4.1.

Theorem 2.4.3. Forz inQ and1 <1, j < m, we have
_ K3 (2,(52,0)
lim — ‘ = (a+ﬁ)
Ci—zi\ (z; = () (Zj — () \Ci=al#i]

K(2,2)P0,0,10gK (z,2),

P —

iT%j

K% (2,0;2,) . L. . (2,652,0)
o is the restriction of the function d"— to the set

@i~CDE~C) )=z, 124, ] (zi—(1)(zj—())
{(z,()EQXQ:zl:{l,lzl,...,m,l;éi,j}.

where

Proof. Let K ot (z,(; w,v) be the reproducing kernels of <) © o/, . Fix a point zj in Q2. Choose
a nelghbourhood Qo of zy in Q such that the conclusions of Lemma 2.4.1 and Lemma 2.4.2 are
valid. Now we restrict the kernels K% and K to Qg x Q.

Let f be an arbitrary function in «;. Then, by definition, f satisfies the hypothesis of
Lemma 2.4.2, and therefore, it follows that

lim ( f(z,0)
(zi = (i)

=0, i=1,...,m. (2.39)

(i—zi

Zl=(“1,l7fi)

Let {h,}nez, be an orthonormal basis of <. Since the series Y57, h,(z,{) hy(2,{) converges
uniformly to Kzl (z,{; z,¢) on the compact subsets of Qg x Qp, using (2.39) we see that

[ KG=620 2 (hn(z,c) ) (hn(z,o )
lim — =) lim im | —2~
gi—’zi (zi = Ci)(Zj =) G=a,1#0,] n0Ci—zi \(2i =) 1z=¢,,1#1) (j—2;\ (2] — () V2=, 1%]
s
=0.
Since K® = K§ sty +K§l, the above equality leads to

. K5 (2,¢2,0) (Ko (8620
lim — = lim — ‘ .
(i—~zi \ (2 — (i) (zj — () \ =z 1#0,) giﬁzi (zi = ()(Zj =) W=al#i]

(j—zj JTZj
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Now let {e,} nez, be an orthonormal basis of o/ © «f;. Since each e, € <), by Lemma 2.4.1,
there exist holomorphic functions e, ;, 1 < i < m, on Qg x Qg such that

m

en(z» () = Z(Zi _(i)en,i(z;()» Z!( € QO'

i=1

Thus for 1 < i < m, we have

en(z,
lim (LO ) =e,,i(z2,2), z€y. (2.40)
(i—zi\(z2; — (i) 12;=(,,1#i
Since the series Y° e, (z,0)e,(z,{) converges to K® uniformly on compact subsets of
n=0 g S y

Qp x Qy, using (2.40), we see that

K? . (2,020) 0 -
Jim ( ' =Y enilz,2)en,(2,2), 2€Qy. (2.41)
i—Z

(zi {0z =) ‘fz:zz,l#ivf) n=0

(j—zj

Recall that by Theorem 2.2.3, the map £, : oy © &) — (S, KK (@A) given by

(BO1f — a0ms1f)a
%1}0:; : , fedhooh

af(a+p)
(BOm [ — adam[)ia

is unitary. Hence {Z%(e;)}, is an orthonormal basis for (A, K%P) and consequently
Y R1(en) (2% (en)(w)* = K@P (2, w), z,w e Q. (2.42)
n=0

A direct computation shows that

((ﬁal - aam+i)en(er))|A = (a+ﬁ)en,l‘(z)6)|Ar I<is< m, n= 0.

en,l(z; Z)
a+p

Kz

€n,m (z,2)

Therefore £ (e;;)(z) = . Thus using (2.42) we obtain

%
en1(z,2) || en1(z,2)

= %K(“’ﬁ) (z,2), z€Qy.

18

0
enm(z,2) ) \enm(z,2)

n

Now the proof is complete using (2.41). O
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The following corollary is immediate by choosing a =1 = . It also gives an alternative
for computing the Gaussian curvature defined in (2.2) whenever the metric is of the form
K(z,z)~! for some positive definite kernel K defined on Q x Q, where Q < C is a bounded
domain. Indeed, the assumption that T is in B; (Q2) is not necessary to arrive at the formula in
the corollary below.

Corollary 2.4.4. Let T be a commuting m-tuple in the Cowen-Douglas class B, (Q) realized as
the adjoint of the m-tuple of multiplication operators by coordinate functions on a Hilbert space
J€ < Hol(Qy), for some open subset Qg of Q possessing a reproducing kernel K. The curvature
AT (2) is then given by the formula

_ K3 (2,052,0)
2 (SE650
K(2,2)% ¢i=zi \ (2; = (1) (Zj — () Q=210

iTE

H1(2)ij=

,2€Q, 1<i,j=m.

2.4.2 Some additional results

Continuing our investigation of the behaviour of a non-negative definite kernel K and the non-
negative definite kernel (K?(z, w)d;0;10g K (z, w)) lezl obtained from it, we prove the following
monotonicity property.

Proposition 2.4.5. LetQ c C™ be a bounded domain. If Ky, K, : QO x Q — C are two non-negative
definite kernels satisfying Ky = K, then

m

(K70:0;logKi(z, w))";_, = (K30,0;10g Kz (2, w))]";_-

i,j=1=—

Proof. Set K3 = K; — K». By hypothesis, K3 is non-negative definiteon Q x Q. For1<i,j<m,a
straightforward computation shows that

Klzaiéj logK; = Kzzaiéj logK; + ngaiaj log K3

_ _ _ - (2.43)
+ Kgaiang + Kgaiasz - aiKzang - aiKgang.

Now set v, (w) = Kz (-, w) ® 0;K3(-, w) = 0; Kz (, w) ® K3(, w),1<i<m, weQ.Forl<i,j<m
and z, w € Q, then we have

(vj(w),yi(2))

- - _ _ (2.44)
= (K20;0K3)(z, w) + (K30;0, K2) (2, w) — (0; K20, K3) (2, w) — (0; K30 K2) (2, w).

Combining (2.43) and (2.44), we obtain
((K70;0l0gK1)(z, w))}"

i,j=1
= ((K20:0;10g K2) (2, w);;_, + ((K50:010g K3) (2, w));;_ + (v (w), i)}y
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It follows from Lemma 2.1.1 that ((y; (w),y,-(z)))?;:l is non-negative definite on Q x Q. The
proof is now complete since sum of two non-negative definite kernels remains non-negative
definite. O

The theorem given below shows that the differential operator is bounded from (#, K) to
(A, K).

Theorem 2.4.6. Let Q2 < C™ be a bounded domain. Let K : Q) x Q — C be a non-negative definite
kernel. Suppose that the Hilbert space (/€,K) contains the constant function 1. Then the
linear operator @ : (#,K) — (#,K), wheredf = (01 f,...,0m )Y, f € (#,K), is bounded with
01l < Il k0

Proof. ltis easily verified that the map 0 is unitary from kerd~ to (A, (615 jK);’szl), and there-
fore is contractive from (A, K) to (A, (0;0;K) :?fj:l). Hence, to complete the proof, it suffices
to show that (A, (0;0;K )lezl) is contained in (/7,K) and the inclusion map is bounded by
111,k -

Setc=|| III%J&K). Choose an orthonormal basis {e,,(2)},>¢ of (#, K) with ey(z) = % Then

1 X —
Kz, w) - = Y ei(2)ei(w), z,weQ.
i=1

Hence K(z, w) — % is non-negative definite on Q x Q, or equivalently cK — 1 is non-negative
definite on Q x Q. Therefore, by Corollary 2.1.5, it follows that ( (cK —1)%0;0;log(cK — 1) )21].:1
is non-negative definite on Q x Q. Note that, for z, w € 3, we have

((cK -1)%0;010g(cK — 1)) (2, w)
=(cK-1)(z,w)(8;0;(cK—1)(z,w) — (0; (cK - 1)) (2, w) (0 (cK - 1)) (2, w)
=c*K(z, w)0;0;K(z, w) — c0;0;K(z, w) — ¢*8;K(z, w)d ;K (z, w)
=c*K*?8;0;logK(z, w) — ¢0;0,;K(z, w).

Hence we conclude that

m

(9:0;K(z,w))j;_, = c( K*0:0,logK(z,w) )7}

The proof is now complete by using [47, Theorem 6.25]. O

Corollary 2.4.7. LetQ < C" be a bounded domain. Let K : QO x Q — C be a non-negative definite
kernel. Suppose that K is normalized at the point wy € Q, that is, K(-, wy) is the constant function
1. Then the linear operator 0 : (A, K) — (A/,K) is contractive.

2
(A,K)
now follows from Theorem 2.4.6. O

Proof. By hypothesis, we have ||1]| = (K (-, wp), K(-, wo)) 7,5y = K(wop, wp) = 1. The proof
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2.5 Relationship between the Jet construction and
the Gamma construction

The motivation for Theorem 2.5.1 in this section comes from two different constructions for
homogeneous operators. The homogeneous operators in the Cowen-Douglas class B; (D) are
easily described using the curvature invariant. However, to determine which operators in B, (D)
are homogeneous, the curvature is of very little use. From the beginning, two distinct methods
were available to answer this question. The first of these used the jet construction of [28] and
the second one used an intertwining operator called the Gamma map in [39]. It turns out
that both of these methods succeed in identifying all the homogeneous operators in By (D).
The answer for n > 2 is more complicated. In this section, we establish a correspondence
between the homogeneous operators obtained using the jet construction to those obtained via
the I - map. Indeed the theorem goes beyond the homogeneous operators and establishes a
relationship between these two constructions in much greater generality.

Let Q < C™ be a bounded domain and K : Q x Q — C be a sesqui-analytic function such
that the functions K% and K? are non-negative definite on Q x Q for some a, 8 > 0. The map
I':(#, K9P @ (7, K@P) — Hol (Q,C™*1) is defined by

0
Hees ( N ) ”‘( ) foge (KN DAKD), @)
a+p g

where @ f is the vector (0; f,...,0,, /)", and u > 0 is arbitrary. Note that the map I’ is one-to-one.
Define an inner product on the linear space ran I' by requiring the map I to be a unitary.
Pick any orthonormal basis {e’n :n >0} in (A, K**P) and {e;’1 :n =0} in (A, K@P), Setting
eqp:=e,®e,, n=0,weseethat Y°° (Te,)(2)(Te,) (W)Y, z, w € Q, which is

1 0 — m (1 0 o o
(alafK“ bz, w)). , ny : (2.46)
o -L.1, Li=0lo 1.1, 0 K@®h

a+p
is the reproducing kernel for the Hilbert space ran I
Since ran I € Hol(Q,C™*1), every vector in ran I' is of the form (]gc), where f € Hol(Q2,C)
and g € Hol(Q2,C™). Let U be the linear map from ran I' to Hol(Q, C"**!) given by
U(7)=(%). (§) eranr.
Note that U is also one-to-one. Therefore, as before, we identify ran U with ran I as a Hilbert
space using the map U. Then we see that ran U possesses a reproducing kernel which is of the

10 1 0 0 0
; (6’61 K*P(z, w))’.ﬂ_ + B2 .
0o L1, bi=o\o L1, 0 K@P

a+p a+p

form
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We recall that A4 = dOJ' and A = o © o1, and X is the map from (#K%) ® (A, K to
(A, K%"P) given by f — fia. The map Jj is defined in (1.3) and R is the map given by R(h) = hja,
h eran J;. Finally, set R = —R,, where R, is defined in (2.17).

Theorem 2.5.1. Ifu =, /W, then the following diagram of Hilbert modules is commutative:
ADA ——— W(AHDA) — = RIADA)

?/zoea%l l’d (2.47)
(8, KBy P (A4, K @P)y — I sranr —Y% s ranU

Proof. Let fy @ f1 be an arbitrary element in .4 @ ;. Note that

(fo+f)a (fo)a
(01 Fo+ ) (0mer S+ )
RN (foe fi) = : = : ) (2.48)
(62m(f0+f1))m (azm(f0+f1))IA

where the last equality follows since f; € .%. Computing Zo@® %, on f, ® fi, we see that

1 (@0m+1f1 = FOLfDia
(%0®%1)(f0@f1):((fo)m)@\/m .

(@02m fi — BOmf1)a

Therefore applying the map (U oTI) and using u = W, we obtain that

(fo)ia 0
) P 5 Ome1 fi — BO
UT (%@ %) (foo fi) =| “*F IF(fO)'A) PO b “fl. Pt | =y 49
: (a+p) :
%(M((fo)m) (@02m f1 = BOm f1)a

Thus, in view of (2.48) and (2.49), we will be done if we can show
aLjﬁai((fo)m) + 215 @Omei fi = BOi fi)ia = (Om+i(fo+ fi))pr E= 1,0
To verify this, it suffices to show that

aLj_[,eai((fO)lA) = (6m+if0)|A and #ﬁ(aamﬂ'fl - Boifi)ia= (0m+if1)|A, i=1,....m. (2.50)
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Since fy € S and % < ker %7, it follows that (@0 -+ fo — 0; fo)| A = 0. Therefore,

L50i((fo)a) = 225 (@i fodia + Orms i fo)ia)
= 245 Om+ifodia + aLj_ﬁ(am+i o)A

= (Om+i fo)in,

where, for the first equality, we have used 6,-((f0)|A) = (aifO)IA + (Om+i fo)a (see the proof of

Lemma 2.2.1). Finally, since fi € %, we have (0, fi)|a + (0m+; f1)|a = 0 by Lemma 2.2.1. There-
fore

ﬁ(aam+ifl = BOifi)ia = 735 Om+if)ia + aLiﬁ(amﬂfl)m
= (Om+if1)1a-

This completes the proof.






59

Chapter 3

The generalized Bergman metrics and the
generalized Wallach set

In this chapter, we study the Generalized Bergman metrics and the generalized Wallach set. It is
shown that if Q c C" is a bounded domain and K : Q x Q — C is a quasi-invariant kernel, then
K'(0;0;10gK) lezl is also a quasi-invariant kernel whenever ¢ is in the generalized Wallach set
G#q(K). The generalized Wallach set for the Bergman kernel of the open Euclidean unit ball in
C™ is determined.

3.1 Introduction and background

Let Q be a bounded domain in C". Recall that the Bergman space A?(Q) is the Hilbert space of
all square integrable analytic functions defined on Q. The inner product of A%(Q) is given by
the formula

<f,g>:=fﬂf(z)@ dV(z), f,ge A%(Q),

where dV(z) is the area measure on C". The evaluation linear functional f — f(w) is bounded
on A%(Q) for all w € Q. Consequently, the Bergman space is a reproducing kernel Hilbert space.
The reproducing kernel of the Bergman space A?(Q) is called the Bergman kernel of Q and is
denoted by Bq.

It is known that Bq(w, w) > 0 for all w € Q. The Bergman metric of Q is defined to be
(0;0jlog Bo(w, w)) :n]: » W € Q, which is evidently non-negative definite. Finally, let us define a
generalized Bergman metric of Q to be the bilinear form Bq (w, w)* (0,-5 ;ilogBo(w, w)) ;'7,1]':1’ we
Q, t € R. Clearly, such a generalized Bergman metric is also non-negative definite at each point
w in Q. It is important to note that the notion of generalized Bergman metric introduced here
is different from the one introduced in [26].

If Q < C™ is a bounded symmetric domain, then the ordinary Wallach set #g, is defined
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as {r>0: Bé is non-negative definite}. Here B!, ¢t > 0, makes sense since every bounded
symmetric domain € is simply connected and the Bergman kernel on it is non-vanishing. If Q
is the Euclidean unit ball B,,,, then the Bergman kernel is given by

Bg, (z,w) =1 —(z,w))" "V z weBg,, 3.1)

and the Wallach set #g, = {t € R: t > 0}. But, in general, there are examples of bounded
symmetric domains Q, like the open unit ball in the space of all m x n matrices, m, n > 1, with
respect to the operator norm, where the Wallach set #, is a proper subset of {f € R: ¢ > 0}. For
any bounded symmetric domain (2, an explicit description of #g, is given in [30].

Replacing the Bergman kernel in the definition of the Wallach set by an arbitrary scalar
valued non-negative definite kernel K, we define the ordinary Wallach set #( (K) to be the set

{(t>0:K" is non-negative definite}.

Here we have assumed that there exists a continuous branch of logarithm of K on Q x Q and
therefore K, t > 0, makes sense. Clearly, every natural number belongs to the Wallach set
#ao(K). In [13], itis shown that K* is non-negative definite for all ¢ > 0 if and only if the function
(6,-5 jlogK(z, w)):.?j:1 is non-negative definite. Therefore it follows from the discussion in
the previous paragraph that there are non-negative definite kernels K on Q x Q for which
(0;0jlogK (z, w))Tj=1 need not define a non-negative definite kernel on Q x Q. However, it
follows from Proposition 2.1.4 that K1*? (0,5]' logK(z, w))le:1 is a non-negative kernel on
Q x Q as soon as f; and £, are in the Wallach set #((K). Therefore it is natural to introduce the

generalized Wallach set for any scalar valued kernel K defined on Q x Q as follows:
G#a(K):={teR: K" %K is non-negative definite}, (3.2)

where, as before, we have assumed that K is well defined for all t € R and K is the function
K?(0;0;logK) lezl as in chapter 2. Clearly, we have the following inclusion

{l’l +bh:h,bE WQ(K)} c GWq(K).

3.2 Generalized Wallach set for the Bergman kernel of the
Euclidean unit ball in C™

In this section, we compute the generalized Wallach set for the Bergman kernel of the Euclidean
unit ball in C™. In the case of the unit disc D, the Bergman kernel Bp(z, w) = (1 — zw) "% and
dalogBD(z, w) =2(1 - zw) 2, z, w € D. Therefore ¢ is in G#f(Bp) if and onlyif (1 - zw) @12 jg
non-negative definite on D x D. Consequently,

GWp(Bp) ={teR:t=-1}.
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For the case of the Bergman kernel By, of the Euclidean unit ball B,,, m = 2, we have shown
that G#g,,(Bg,,) = {t € R: £ = 0}. We need some lemmas to prove this statement.

As before, we write K > 0 to denote that K is a non-negative definite kernel. For two non-
negative definite kernels K7, K5 : Q x Q — ;. (C), we write K; < K if K, — Kj is a non-negative
definite kernel on Q x Q. Analogously, we write K; > K; if K; — K, is non-negative definite.

Lemma 3.2.1. Let Q be a bounded domain in C™, and Ay > 0 be an arbitrary constant. Let
{Kata=a, be a family of non-negative definite kernels, defined on Q x Q, taking values in 4y (C)
such that the followings hold:

(i) ifA=A = A, thenKy <K,
(ii) forz,w e Q, K)(z, w) converges to K),(z, w) entrywise as A — Ay.

Suppose that f : Q — CF is a holomorphic function which is in (#,K}) for all A > . Then
fe(#,Ky,) ifand only if supyy, | fll e, k) < 0o

Proof. Recall that if K and K’ are two non-negative definite kernels satisfying K < K’, then
(#,K) < (#,K") and ||kl k) < Ikl k) for h e (#,K) (see [47, Theorem 6.25]). Therefore,
by the hypothesis, we have that

(A, Ky) < (A,Ky) and |kl k) < 1Al k) 3.3)

whenever A > A’ = Ag and h € (A, K)).

Now assume that f € (/, K),). Then, clearly | f ||z k,) < ”f”(e]fy[(/lo) for all A > Ay. Conse-
quently, sup; o | fll o,k < 11 fll k) < 00

For the converse, assume that sup, ., 2 | flle#z,xy < oo. Then, from (3.3), it follows that
limy_, I fll#,k,) exists and is equal to SUPA>2, Il fll#,k,)- Since f € (A, Ky) for all A > Ay,
by [47, Theorem 6.23], we have that

f@FW)* = f1 5.1, Kn (2 w).

Taking limit as A — Ay and using part (ii) of the hypothesis, we obtain

f@f)* < sup I fIit k) Ky (2, w).
/1>/10

Hence, using [47, Theorem 6.23] once again, we conclude that f € (A, K3,). O
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If m = 2, then from (3.1), we have

¢ - m
((B8,,0:310gBs,, )z, w))
m l,]:
1-Y 412 W; 2o Zm W1
B m+1 Z1W; 1-Yjrzjwj - Zm W2 (3.4)
T (1 =z, w)y)tm+1)+2 )
21 Wi, 2o W o 1= iamzjwj
Form=2,AeRand z, w € B,,, set
1—21'751.2]‘11/]' Zgl])l Zmbvl
1 FARTY) 1—2' 2ZiW; - Zm W
Kz w) = ——— #2505 " (3.5)
(1-(z, wn*
21 Wy, 2o W, o 1= iam 2w

In view (3.4) and (3.5), for A > 2, we have

L 24 = L m
(Bg,)%0:0,logBg |,

i,j=1

K‘:t(mﬂ)(

where = ﬁ > 0. Since B[é’rf is positive definite on B,, x B,, for ¢ > 0, it follows from Corollary

2.1.5 that K is non-negative definite on B,, x B,, for A > 2. Since K (z, w) — Ka(z, w), z, w €
B,,, entrywise as A — 2, we conclude that K is also non-negative definite on B,,;, x B,,.

Let {ey,..., e} be the standard basis of C"*. The lemma given below finds the norm of the
vector z; ® e; in (A,K ) when A > 2.

Lemma 3.2.2. For each A > 2, the vector z ® ey belongs to (/€,K,) and ||z2 ® e1llzk,) =
A-1
AA-2)"
Proof. By a straight forward computation, we obtain

51[K;L(-,0)e2 =z®e1+(A-1z;®es

and
52[m(-,0)el =A-1Dzm®e;+z1®es.

Thus we have
(A—=1)02K,(-,0)e; — 01K (-, 0)ez = (A* —2A)zp ® e1. (3.6)
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By Proposition 2.1.3, the vectors (_32[K,1(-,0)el and 51K;L(-,0) e» belong to (#,K,). Since
A > 2, from (3.6), it follows that the vector z, ® e; belongs to (/#,K ). Now, taking norm in both
sides of (3.6) and using Proposition 2.1.3 a second time, we obtain

A2 =222z, ® e, |2
= (A—1)%(8202KK(0,0) e, e1) — (A —1)(0102KK 1 (0,0) e1, e2) (3.7)
— (A =1)(0102K(0,0) e, e1) + (101K (0,0) ez, e2)

By a routine computation, we obtain
0;0;K2(0,0)= (A—1)8;;In + Ej;,

where §;; is the Kronecker delta function, I, is the identity matrix of order m, and Ej; is the
matrix whose (j, /)th entry is 1 and all other entries are 0. Hence, from (3.7), we see that

(A2 =212z, ® ey |I?
—A-12A-1D-21-1D+(A-1)
=A-1)(A*-21).

Hence ||zz ® ;|| = 1/ %, completing the proof of the lemma. O

Lemma 3.2.3. The multiplication operator by the coordinate function z, on (/€,K3) is not
bounded.

Proof. Since K;(-,0)e; = e, we have that the constant function e; is in (#,K>). Hence, to prove
that M, is not bounded on (#,Ky), it suffices to show that the vector z, ® e; does not belong
to (A, IK,).

Consider the family of non-negative definite kernels {l<3},,. Observe that for A = 1’ = 2,

Kz, w) - Ky (z, w) = ((1 — (2, w)) AN - 1) Ky (2, w). (3.8)

It is easy to see that if A = A’, then (1 - (z, w))~**) —1 = 0. Thus the right hand side of
(3.8), being a product of a scalar valued non-negative definite kernel with a matrix valued
non-negative definite kernel, is non-negative definite. Consequently, K;; < K. Also since

Ka(z, w) — Ka(z, w) entry-wise as A — 2, by Lemma 3.2.1, it follows that zp ® e; € (A, K>) if
A-1
AA=-2)"
Thus sup,.., |1z2 ® e1]|7k,) = co. Hence the vector z, ® e; does not belong to (#,[K;) and the

and only if sup;., |z2 ® e1 ]l ,) < oo. By lemma 3.2.2, we have ||zz ® e1ll( 7Kk, =

operator M, on (#,KK,) is not bounded. O

The following theorem describes the generalized Wallach set for the Bergman kernel of the
Fuclidean unit ball in C™, m = 2.
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Theorem 3.2.4. If m = 2, then G#g,,(Bg,,) ={t €R: ¢ =0}.

Proof. In view of (3.4) and (3.5), we see that t € G#g,, (Bg,,) if and only if K(;+1)+2 is non-
negative definite on B,, x B,,. Hence we will be done if we can show that [ ; is non-negative if
and onlyif 1 = 2.

From the discussion preceding Lemma 3.2.2, we have that [ ; is non-negative definite on
B, x B, for 1 = 2.

To prove the converse, assume that K is non-negative definite for some A < 2. Note that
K2 can be written as the product

Ka(z, w) = (1 - (z, w))"® VK, (2, w), 2z, w € Byp,. (3.9)

Note that the multiplication operator M, on (J, (1—(z, w))~?=Y)

is bounded. Hence, by
Lemma 2.1.10, there exists a constant ¢ > 0 such that (¢2—z, ) (1—(z, w)) —2-Njg non-negative
definite. Consequently, the product (¢ — z,10,) (1 — (z, w))~? YK, which is (c? — zp 10) Ky,
is non-negative. Hence, again by Lemma 2.1.10, it follows that the operator M, is bounded
on (#,K>). This is a contradiction to the Lemma 3.2.3. Hence our assumption that K is
non-negative for some A < 2, is not valid. This completes the proof.

O

The theorem given below finds all A € R such that Kf{ is non-negative definite.
Theorem 3.2.5. For m =2, K" (z, w) is non-negative definite onB,, x B,,, if and only if A = 1.

Proof. Note that

m

Ka"(z,w) = (1= (2, w) M VL + A= (2 w) M zw))],, 2w €Bp.

It is easily verified that (z; w ]')?,qul is non-negative definite on B,, x B,,. Assume A = 1. Then
K1 is the sum of two non-negative definite kernels and therefore is non-negative definite
on B, x B,,. Conversely, assume that K, is non-negative definite on B,,, x B,,,. Then, by [13,
Lemma 3.2] , we see that (K3 (z, w)ey, 1), which is equal to

-y zjwp-<(zw)™,
Jj#1

is non-negative definite on B,, x B,,. Hence, by an argument similar to the proof of Lemma
2.1.11, it follows that

> MM <1

j#1
on the Hilbert space (A, (1—(z, w)) ™. In particular, we have M, M;Z <Ton (A, (1-(z,w)) ).
It is easily verified that || M, || - zwn)h =1 ifand only if A = 1. Hence A = 1, completing the
proof of the theorem. O
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3.3 Quasi-invariant kernels

Let Q < C™ be a bounded domain and let Aut(Q2) denote the group of all biholomorphic
automorphisms of Q. Let J : Aut(Q2) x Q — GLi(C) be a function such that J(¢p, -) is holomorphic
for each ¢ in Aut(Q2). A non-negative definite kernel K : Q x Q — .} (C) is said to be quasi-
invariant with respect to J if K satisfies the following transformation rule:

J (@, 2)K(p(2), p(w) J(p, w)* = K(z, w), z, w € Q, ¢ € Aut(Q). (3.10)

The following proposition is a basic tool in defining unitary representations of the automor-
phism group Aut(Q) and the straightforward proof for the case of unit disc D appears in [39].
The proof for the general domain Q follows in exactly the same way.

For a fixed but arbitrary ¢ € Aut(Q), let U, be the linear map on Hol((2, Ck) defined by

Up(f)=J(¢™",")fop™", feHol(Q,Ch.

Proposition 3.3.1. The linear map U,, is unitary on (#, K) for all ¢ in Aut(Q) if and only if the
kernel K is quasi-invariant with respect to J.

Remark 3.3.2. IfK:Q x Q — 4. (C) is a quasi-invariant kernel with respect to some ] and the
commuting tuple M, = (My,, ..., M;,) on (#,K) is bounded, then the commuting tuple M, :=
(My,,..., My, is unitarily equivalent to M, via the unitary map Uy, where ¢ = (¢1,...,Qn) is
in Aut(Q2).

The lemma given below, which will be used in the proof of the Proposition 3.3.4, follows
from applying the chain rule [48, page 8] twice.

Lemma 3.3.3. Let ¢ = (¢py,...,¢0m) : Q — C" be a holomorphic map and g : ran ¢ — C be a real
analytic function. If h = go ¢, then
- - m e
(@3;1) @), _, = e[ (0:38) =), _ D@,

m
ij=
where (D) (2)V is the transpose of the derivative of ¢ at z.

The following proposition shows that if K a is quasi-invariant kernel with respect to some
J, then K*~2K is also a quasi-invariant kernel with respect to some J whenever ¢ is in the
generalized Wallach set G#(K).

Proposition 3.3.4. Let Q c C™ be a bounded domain. Let K : Q x Q — C be a non-negative
definite kernel and ] : Aut(Q) x Q — C\ {0} be a function such that J(¢,-) is holomorphic for
each ¢ in Aut(Q). Suppose that K is quasi-invariant with respect to J. Then the kernel K=K
is also quasi-invariant with respect to J whenever t € GWq(K), where J(@, z) = ] (¢, 2)'Dp(2)",
@ € Aut(Q), z€ Q.
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Proof. Since K is quasi-invariant with respect to J, we have
logK(z, z) =log|J (¢, 2P+ logK(p(2),p(2)), ¢ € Aut(Q2), z € Q.

Also, J(¢,-) is a non-vanishing holomorphic function on Q, therefore 6,~6_ jloglJ (e, 2)2 =0.
Hence

0:0;10gK(z,2) = 0;0;logK(p(2),9(2)), ¢ € Aut(Q), z€ Q. (3.11)

Any biholomorphic automorphism ¢ of Q is of the form (¢, ...,¢,,), where ¢; : Q — C
is holomorphic, i = 1,..., m. By setting g(z) =1logK(z, z), z € Q, and using Lemma 3.3.3, we
obtain

(0:0;10gK(9(2),9(2)]"_, = De(2)"((8:0,10gK)(@(2),9(2));",_, Dp(2).
)] P
Combining this with (3.11), we obtain
(0:0;108K(2,2)]"_; = Dp(2)"((3:0,,0gK) (9(2), @(2)))},_, D (2.

Multiplying K(z, z)" both sides and using the quasi-invariance of K, a second time, we
obtain

(K(2,2)'0:0l0gK(2,2) )i,
=J(9,2)'Dg(2)"K(9p(2), 9(2)'((0:0plog K) (¢ (2),9(2) );,_, ] (¢, 2) Dp(2).
Equivalently, we have

K'2(z,2)K(z,2) = J(g, Z)Kt_z(go(Z),w(Z))K(w(Z),w(Z))JJﬁp, z)", (3.12)

where J(¢, z) = J (¢, 2)' D (2)", ¢ € Aut(Q), z € Q. Therefore, polarizing both sides of the above
equation, we have the desired conclusion. O

Remark 3.3.5. The function ] in the definition of quasi-invariant kernel is said to be a projective
cocycle if it is a Borel map satisfying

Jpv,2) =m(p,v)](v,2)] (@, vz), ¢,y € Aut(Q)),z €, (3.13)

where m : Aut(Q)) x Aut(Q) — T is a multiplier, that is, m is Borel and satisfies the following
properties:

(i) m(e,p) = m(p,e) =1, where @ € Aut(Q) and e is the identity in Aut(Q)

(i) m(p1, p2)m(@192, 3) = m(@1, P203) m(P2,P3), P1,P2, 3 € Aut(Q2).
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] is said to be a cocycle if it is a projective cocycle with m(gp,y) =1 for all ¢,y in Aut(Q2).

If we assume that ] : Aut(QQ) x Q — C\ {0} in the Proposition 3.3.4 is a cocycle, then it is
verified that the function J is a projective co-cycle. Moreover, if t is a positive integer, then J is
also a cocycle. a.

For the preceding to be useful, one must exhibit non-negative definite kernels which are
quasi-invariant. It is known that the Bergman kernel Bq of any bounded domain  is quasi-
invariant with respect to J, where J(¢, z) = det D (z), ¢ € Aut(Q2),z € Q [40, Proposition 1.4.12].
We provide the easy proof here for the sake of completeness.

Lemma 3.3.6. Let Q) < C" be a bounded domain and ¢ : Q) — Q be a biholomorphic map. Then
Ba(z, w) = det Dg(z) Ba(¢(2), (w))det Do(w), z, w € Q.
Proof. For ¢ € Aut(Q2), consider the operator V, on A?(Q) given by
Vo (f)(2) = det Do(2)(f o ) (2), f € A%(QQ).

Using the change of variable formula, it follows that the operator V, is unitary on A*(Q).
Therefore, if { fn}zozo is an orthonormal basis of A?(Q), s0 is {V,( fn)}zozo. Hence

Ba(z, w) =Y V() (@) Vo (i) (w)
n=0

=Y detD@(2)(fno¢)(2) detDp(w)(fy o @) (w)

n=0
=detDp(2)( ), fu(@(2) falp(w))) det Dg(w)
n=0

=det Dg(z) Bq(g(z), p(w))det Dp(w),

completing the proof of the lemma. O

The following proposition follows from combining Proposition 3.3.4 and Lemma 3.3.6, and
therefore the proof is omitted.

Proposition 3.3.7. Let Q be a bounded domain C™. If t is in GWq(Bq), then the kernel

(B4 (7, w)aiaj log Ba (z, w) )i,jzl

is quasi-invariant with respect to (det D (z)) ID(p(z)tr, @ €Aut(Q), ze Q.

In case of the Bergman kernel Bg,, of the Euclidean unit ball in C"*, we have

m

ij=1 t>0.

_ L - L
(B, 00,108 Bg,,);;_, = #((Bg )*0i0;logBg )
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Since the multiplication tuple M, on (7, B[é/rf) is bounded, it follows from the above equation
together with Theorem 2.1.16 that the multiplication tuple M z on (A, ( B[émd ;0 jlogBg,, )Z’jzl )
is also bounded. Also, by Proposition 3.3.7, the kernel (B[émd i0jlogBg,,) ;.nj:l is quasi-invariant.
Hence, by Remark 3.3.2, it follows that the multiplication tuple M and the tuple M, are uni-
tarily equivalent on (#, (B 0;0;logBg,, 7'i_y ) forall € Aut(B,). T_herefore, in the language
of [46], we conclude that the multiplication tuple M on ( 7, (Bg 0:0;log By} ), t>0,is
homogeneous with respect to the group Aut(B,,).
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Chapter 4

Weakly homogeneous operators

In this chapter, we study weakly homogeneous operators. First, some elementary properties of
weakly homogeneous operators are discussed. In section 4.2, we show that the weak homo-
geneity of the multiplication operator M, on reproducing kernel Hilbert spaces is equivalent
to the existence of certain bounded and invertible weighted composition operators. We use
this to show that the weak homogeneity of M is preserved under the jet construction. Next,
in section 4.3, weakly homogeneous operators in the class & B, (D) are studied. In section 4.4,
we discuss Mobius bounded operators. It is shown that the Shields’ conjecture on this class of
operators has an affirmative answer in the class of quasi-homogeneous operators. Finally, in
section 4.5, we show that there exists a Mobius bounded weakly homogeneous operator which
is not similar to any homogeneous operator. This answers a question of Bagchi and Misra in
the negative.

4.1 Definition and elementary properties

Throughout this chapter, we let M6b denote the group of all biholomorphic automorphisms
{00,a:0 €10,27), a € D} of the unit disc D, where @p 4(2) = "/ 2%, z e D. It is a topological
group with the topology induced by T x D.

For an operator T € B(#) with o(T) € D, recall that the operator ¢(T), ¢ € MoDb, is defined
by using the Riesz functional calculus since ¢ is holomorphic in a neighbourhood of D. Such
an operator 7 is said to be homogeneous if ¢(T) is unitarily equivalent to T for all ¢ € Mob.
Weakly homogeneous operators are straightforward generalization of homogeneous operators,

see [16], [10].

Definition 4.1.1. An operator T € B(J€) is said to be weakly homogeneous if o (T) €D and ¢(T)
issimilarto T for all ¢ in Mob.

Suppose that T is an operator which is similar to a homogeneous operator, thatis, T =
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XSX~! for some homogeneous operator S and an invertible operator X. Clearly, o(T) = o(S).
Thus, using homogeneity of S, we have that o (T) is either T or D, and consequently the operator
¢(T) is well-defined for any ¢ € Méb. Note that ¢(T) = X¢(S) X~!. Using homogeneity of S a
second time, we have that ¢(S) = U, S U(; 1 for some unitary operator U,. Hence

@(T) = (XU,)S(XUp) ' = (XU, X HT(XU,X ™. 4.1)

Thus ¢(T) is similar to T for all ¢ € M6b and consequently, T is weakly homogeneous. Hence
every operator which is similar to a homogeneous operator is weakly homogeneous. The
converse of this is not true, that is, a weakly homogeneous operator need not be similar to any
homogeneous operator (see Corollary 4.3.9 and section 4.5).

The following lemma, which shows that the spectrum of a weakly homogeneous operator
is either T or D, is a straightforward generalization of [9, Lemma 2.2]. Therefore the proof is
omitted.

Lemma 4.1.2. Let T be an operator in B(F€). If the operators T and ¢(T) are similar for all ¢
in a neighbourhood of the identity in Mob, then o (T) is either T orD, and T is similar to ¢(T)
(which makes sense for all ¢ in Mob since o (T) is either DorT) forall  in Mob. In particular,
T is weakly homogeneous.

It is easy to see that an operator T is weakly homogeneous if and only if the operator T* is
weakly homogeneous.

Since two normal operators are similar if and only if they are unitarily equivalent, the proof
of the following proposition is evident.

Proposition 4.1.3. A normal operator N is homogeneous if and only if it is weakly homogeneous.

4.2 Jet construction and weak homogeneity

In this section, we show that the weak homogeneity of the multiplication operators M, on
reproducing kernel Hilbert spaces is preserved under the jet construction.

Throughout this section, we assume that Q2 c C is abounded domain. By Hol(Q2), we denote
the space of all holomorphic functions from Q to C. Let Q' denote one of the four domains: Q,
ck, GLy(C) and .44 (C). By Hol(Q,Q"), we denote the space of all holomorphic functions from
Qto Q. As before, Aut(Q) denotes the group of all biholomorphic automorphisms of Q.

Let K: Q x Q — .} (C) be a non-negative definite kernel. Let 1 be a holomorphic function
on  taking values in ./ (C). Let M, be the linear map on Hol(Q, C*) defined by point-wise
multiplication:

(My £)() =y () f(), f € Hol(Q,C").
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For a holomorphic self map ¢ of Q, let C,, be the linear map on Hol(<2, C*) defined by composi-
tion:

(Cp)O) = (Fo@)(), f € Hol(Q,C).

In general, neither My, nor C, maps (#, K) into (#, K). However, by the Closed graph theorem,
if they do, then they are bounded. Whenever the map M, C,, is bounded on (#, K), it is called
a weighted composition operator on (#,K). Fixawe Qandne€ Ck. Then, for h € (A, K), we
see that

{(MyCp)* K, w)n, h) = (K, w)n, w() (o))
= (n, ¥ (w)h(pw)))
= (y(w)*n, h(pw)))
=(K( o) (ww)*n), h).

Therefore,

(MyCp)*K (-, w)n = K, p(w)) (w(w)*n), weQ,neck. (4.2)

We now recall the jet construction from chapter 2. Suppose that K3, K : QO x Q — C are two
non-negative definite kernels. As before we realize the vectors of the Hilbert space (#, Kj) ®
(4, K») as holomorphic functions in z and {, z,{ € Q. Recall that the subspaces </, k = 0, of
(A, K1) ® (S, K,) are defined as following:

dy:={f € (A, K1) ®(H,K): ((%)if(z, 0))a=0,0<i<k}, 4.3)

where A is the diagonal set {(z, z) : z € Q}. Also recall that the map Ji : (A, K;) ® (A, K>) —
Hol(Q x Q,Ck*1) is given by the following formula

k ,
UeN@O =) (F) faOee, fe(#,K) e (K,

i=0
where {ei}fzo is the standard orthonormal basis of C¥*!, The map R :ran Ji — Hol(Q, ckly s
the restriction map, thatis, R(h) = hjs, heran Ji. By Theorem 1.1.4, we have thatran R Ji isare-
producing kernel Hilbert space determined by the non-negative definite kernel J (K3, K2)resa,
where

Tk (K1, Ka)press = (K1 (2, )00 Ko (2, )} ,_o, 2w € Q.

For any v € Hol(Q), let w(i) (2), i € Z4, denote the ith derivative of ¥ at the point z. Let
(Zrxy)(2), z€Q, be the (k+1) x (k+1) lower triangular matrix given by the following formula:
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v(2) 0 0 0

GvP®@ v 0 0
F@:=| By vV v 0
GBybe L e (B v

Recall that for any f € Hol(Q2) and ¢ € Hol(Q2,Q), the Faa di Bruno’s formula (cf. [17, page
139]) for the ith derivative of the composition function f o ¢ is the following:

Fop) @)=Y fPp@)Bi (9" (2),..0" 7 (2), zeQ, (4.4)
=1

]

where B; j(z1,...,zi-j+1), | = j = 1, are the Bell's polynomials. Furthermore, let (%) (z)
denote the (k + 1) x (k + 1) lower triangular matrix of the form

1 0

(Brp) (2) = N o |ee
0 (Boy(0V @,V @))E

where B; j, 1 <i < j<k,issettobeO0.

The main result of this subsection is the Theorem below identifying the compression of the
tensor product of two weighted composition operators with another weighted composition
operator.

Theorem 4.2.1. LetQ < C be a bounded domain, v,,v¥ € Hol(Q) and ¢ € Hol(Q2,Q). Suppose
that the weighted composition operators My, C, and My,C, are bounded on (#,K;) and
(A, Ky) respectively. Then the operator P o ! (My, Cp ® My, Cy), ot is unitarily equivalent to the
operator My, ( g,y @) Cp 01 (H, Ji(Ki, K2) resn).-

In particular, the operator My, ( g,y #.¢)Cy is bounded on ( A€, Jx(K1, K2)resa ) and

My, (i) @ip) Coll < 1My, CyllI| My, Cop |-

Before, we give the proof of Theorem 4.2.1, we state a second theorem refining some of the
statements in it. In this refined form, it will be a useful tool in finding new weakly homogeneous
operators.

Theorem 4.2.2. LetQ < C be a bounded domain, w1,y» € Hol(Q) and ¢ € Aut(Q). Then

(i) if the operators My, Cy, and My, C, are bounded and invertible on (#, Ky) and (#€, K3)
respectively, then so is the operator My, ( g,y,)(.p)Cyp 0N (A, T (K1, K2) resn) -
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(ii) if the operators My, C, and My, C, are unitary on (#, K1) and (#€, K;) respectively, then
50 is the operator My, ( g,y (#.¢)Cp 0N (H€, Jk(K1, K2) resn )

The following lemma will be an essential ingredient in the proof of Theorem 4.2.2.

Lemma 4.2.3. Let H be a Hilbert space and X : H — H be a bounded, invertible operator.
Suppose that Hy be a closed subspace of H which is invariant under both X and X~'. Then the
operators Xy, and Py XL are invertible. Moreover, if X is unitary, then Hy- is also invariant
under X, and the operators Xy, and X, HL are unitary.

Proof. Since Hj is invariant under both X and X ~1 we have

P Q
0 R

A

X= 4.5
0 (4.5)

and X !'= (

on Hy® Hy, for some A, B,C and P,Q, R. A routine calculation shows that AP = PA= I and
CR=RC =1I. Hence A and C are invertible. If X is unitary, using X X* = I, we see that

CB* ccr 0 I

AA* + BB BC*) ~ (I o)

Thus BC* = 0. By the first part of the lemma, we have that C is invertible. Therefore B = 0.
Hence AA* = CC* = I. Since A and C are also invertible, it follows that A and C are unitary. O

Proof of Theorem 4.2.1. First, set

(Y1®Y2)(2,0) :=y1(2w2) and @(z,0) := (p(2),9(()),z,{ € Q.

Then y; ® ¥» € Hol(Q x Q) and ¢ € Hol(Q2 x Q,Q x Q). Consequently, the operator My, gy, Cy
is a weighted composition operator on (A, K7) ® (A, K>).

Recall that (A, K;) ® (A, K>) is the reproducing kernel Hilbert space with the reproducing
kernel K; ® K> where K; ® Ky : (QQ x Q) x (A x Q) — C is given by

(K1 ® K2)(z,(;w, p) = Ki(z, w)K2((, p), z,¢, w,p e
By (4.2), we see that for w,p € Q,

(My, Cp ® My, Cyp)* (K1 (-, w) ® Kz (-, p)) = ¢1 (W) K1 (-, (W) @ 2 (p) Kz (-, ()
= (Y19 y2)(w, p)(Ky ® K2) (-, (@ (w), p(p)))
= (Mw1®u/2 C(p)* (Kl (') w) ® KZ(') p))-

Since \V {K1 (-, w) ® K2 (-, p) : w, p € Q} is dense in (A, K}) ® (#, Ky), it follows that

My, Cp ® My, Cyp = My, oy, Cop- (4.6)
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Recall that by Theorem 1.1.4, the operator (R]k-)ldlj_ s oA — (A, Ji(K1, K2)jresa) is unitary.
Therefore we will be done if we can show

(BRI 2 )Py (My, Cp @ My, Cop) gt (BT 1) = M iy a8 Cop- 4.7

To verify this, let (RJi)(f) be an arbitrary element in (A, Ji (K1, K2)jresa) Where f € ‘dki' Since
ker(RJy) = <) (see the discussion before Theorem 1.1.4), it follows that

((R]k)MkL)P&gkL (My, Cp ® My, C(p)Lngi ((R]k)LngL)* (RJxf) = ((R]k)(Mwl Cp® My, C(p)(f)- (4.8)
Using (4.6), we see that

((RT1) (My, C,p ® My, C,p)(f) = (RTD) (11 (@92) f(9(2), ()

ko (4.9)
=Y (@) i @w0 f@@.00) oe
i=0 A

Also a straightforward computation, noting that #;y, and %i¢ are lower triangular
matrices, shows that

(Mllfl(fkllfz)(%ktp) Ctp)((R]k)f) (2)
= (My, () @) Co) (21 ((a%)lf(z» 0)a®ei) (4.10)
= 1//1(2)226:0( j’:o ((]sz)(%k¢)),-,j(z)((a%)jf(z,(“))mup(z),(p(z))) ®e;.

Hence, in view of (4.8), (4.9) and (4.10), to verify (4.7), it suffices to show that

() W20 f0@,00)) 22

. . 4.11)
=Yl ((Zv2)(Be); ;D ((Z) [(2.0) @), 92), 0=i<k.

Since ((jklllz)(%k(p))oyo(z) =1, equality in both sides of (4.11) is easily verified for the case
i=0.Forl=<ic<k,wesee that

() w0 f 0@, 00))z 2
= (1O F 0@, + X, vy " OF) (f0@,00))z 2

= (VO F0@,0 + i, vy PO L (B0 O((F) £2.0)0@,00)(2,2)

= (@ f @@, 9@+ T, 27 (v (@B, () f(2.0) @), 9 (2)).
(4.12)
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Here the first equality follows from the Leibniz rule for derivative of product while the second
one follows from (4.4). Finally, we compute

o ((Zv2) (i), D () f(2.0) 0@, 9(2)
—Z’ OZ i Nyl p)(z)(@k(p)p](z)(((;() f(z,0)(@(2),p(2))
—w;”(z)f(w(z),w(zmz L (s P @Bk () £20) (02, 0(2)
0
oc

=95 @S @@, @) + L) X0 (v @B @ (%) [20) ), p2).
(4.13)

Here the second equality follows since (Br¢) 40 =040,0<g < k.
The equality in (4.11) is therefore verified, completing the proof of the theorem. O

Remark 4.2.4. From (4.12), we see that if the hypothesis of Theorem 4.2.1 is in force, then the
subspace <4y is invariant under the operator My, Cy, ® My, C,,.

Proof of Theorem 4.2.2 (i). By hypothesis the operators My, C, and My, C,, are bounded
and invertible on (#, K1) and (A, K3), respectively. It follows easily that (M, C(,,)‘1 = My, C,,-
where y; = —— Consequently, (My, Cp ® My, Cy)~ 1 = My, C(p—l ® My, Cq,_1 Therefore, by
Remark 4.2.4, g{k is invariant under both My, C,, ® My, C, and (My,, C, ® My, C,)~'. Hence, by
Lemma 4.2.3, the operator P ot (My, Cyp ® My, Cy), ot is invertible. An application of Theorem
4.2.1 now completes the proof . O

Proof of Theorem 4.2.2 (ii). If My, C, and My,C, are unitary, then so is the operator
My, Cy ® My, C,. Hence, by the argument used in part (i) of this theorem together with
Lemma 4.2.3, we see that </ is reducing under My, C, ® My,,C,. Consequently, the oper-
ator (My,, Cy ® My, Cq,))| ot is unitary. Hence, by Theorem 4.2.1, we conclude that the operator
My, (g @p) Cp oD (H, Tk (K1, K2) res a) s unitary. O

Recall that the compression of the operators M, ® I and I ® M, acting on (/, Ky) ® (A, K»)
to the subspace dOL are unitarily equivalent to the operator M, on the Hilbert space (A, K; K>).
The following corollary isolates the case of <, from the Theorem 4.2.1 and Theorem 4.2.2 pro-
viding a similar model for the compression of the tensor product of the weighted composition
operators on (/, K1) and (A, Kz) to ,QfOL. As a consequence, we obtain the boundedness and
invertibility of such weighted composition operators.

Corollary 4.2.5. Let Q) < C be a bounded domain, w1,y» € Hol(Q) and ¢ € Hol(Q2,Q). Let K;
and K, be two scalar valued non-negative definite kernels on Q x Q. Suppose that the weighted
composition operators My, C, and My, C, are bounded on (#€,Ky) and (#, K>), respectively.
Then the operator My, y,Cy is bounded on (A€, Ky K3) with

| My, Copll < | My, Coplll Miys, Cop Il
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Moreover, if the operators My, C, and My, C, are invertible (resp. unitary) on (#,Ky) and
(A, K3), respectively, ¢ € Aut(QY), then the operator My, ., Cy is also invertible (resp. unitary) on
(A, K1 K2).

4.2.1 Weighted composition operators and weakly homogeneous operators

In this subsection, we show that the multiplication by the coordinate function z acting on a
Hilbert space ./ possessing a sharp reproducing kernel K is weakly homogeneous if and only
if there exist bounded invertible weighted composition operators, one for each ¢ € Mob, on
the same Hilbert space . We begin with a useful Lemma. A version of this lemma, without
involving the composition by ¢, is in [26].

Lemma 4.2.6. Let K(z,w) : D x D — 4 (C) be a positive definite kernel. Suppose that the
multiplication operator M is bounded on (/€,K). Let ¢ be a fixed but arbitrary function in
Maob which is analytic in a neighbourhood of o (M;). If X is a bounded invertible operator on
(A, K) of the from Mg, C,,-1, where g, € Hol(D, GLi(C)), then X intertwines M and ¢(M_), that
is, M, X = X (M).

Moreover, if K is sharp and X is a bounded invertible operator on (€, K) intertwining M, and
(M), then X = Mg ,C,-1 for some g, € Hol(D, GLi(C)).

Proof. Suppose that X is a bounded invertible operator of the form Mg, C,-1. Then for f €
(A, K), we have

XpMz)(f) = (Mng(p_l)M(,,(f) = Mg(p(z(fO(p_l))
= (MZMg(pC(p—l)(f) (4.14)
= (M X)(f).

Therefore X intertwines M, and ¢(M,), i.e. X¢(M,) = M, X.
Conversely, assume that X is a bounded invertible operator on (/, K) such that M, X =
X@(M,). Taking adjoint and acting on the vector K(-, w)n, weD,n € C*, we obtain

PM)* X*K(, wn=X*M:K(, w)n=wX" K, w). (4.15)

Thus X*K(., w)n € ker (p(M)* — w).
claim: ker (¢(M,)* — w) = ker (M} — ¢! (w)).
To verify the claim, set ¢(z) := ¢(z), z € D. Clearly, ¢ € Mob. It is also easy to see that

®(M;)* = p(M3). Therefore ker (¢p(M,)* — w) = ker (p(M;) — w). Let f be an arbitrary vector
in ker (¢(M}) — w). Then we have ¢(M?) f = wf. Hence

M:f=(@ @M f=¢7 (W) f=9p L w)f.



4.2. Jet construction and weak homogeneity 77

Therefore f € ker (M} — ¢~ (w)). Consequently, ker (¢p(M}) — w) < ker (M} — ¢~ (w)). By the
same argument, it also follows that ker (M} — ¢! (w)) < ker (¢(M}) — w). Hence the claim is
verified.

Since K is sharp and the vector X* K (-, w)n € ker ((p(MZ)* - w), it follows from the claim
that there exists a unique vector h,(w)n € Ck such that

X*K(, w)n =K, ¢~ (W) hy(w)n. (4.16)

The invertibility of the matrix K (¢! (w), ¢! (w)) ensures the uniqueness of the vector hy(w)n.
It is easily verified that for each w € D, the map n — h,(w)n defines a linear map on Ck. Since
X is invertible, it follows from (4.16) that h,(w) is invertible. Now for any w e D, n € Ck and
f € (A,K), we see that

(X w),m) =(Xf,KC,w)n)
=(f, X"K(, w)n)
=(f,KC, o (W) hy(w)n)
=((fop™H(w), hy(w)n)
= (hy(W)*(fop M (w),n).

Hence X = Mg, C,-1 where g,(w) = hy(w)*, w € D. Since we have already shown that
8y(w), w € D, is invertible, to complete the proof, we only need to show that the map w —
8y (w) is holomorphic.

Let wy be a fixed but arbitrary point in D. Since K ((p_1 (wo), (p_l (wp)) is invertible, there
exists a neighbourhood Qg of wy such that K (@~ (wp), ! (w)) is invertible for all w in Q.
From (4.16), we have

(X*KC,wme™ (wo) = K@~ (wo), ¢~ (W) hy(w)n, w e Qy.

Therefore
hy(w)n = K(p~ (wo), 0 (w) 7 (X K, w)me ™~ (w), w e Q.

Since the right hand side of the above equality is anti-holomorphic on Qy, it follows that the
function h,(w) is anti-holomorphic on Qg and therefore g, is holomorphic on Qg. Since wy is
arbitrary, we conclude that g, is holomorphic on Q. This completes the proof. O

Proposition 4.2.7. Let K(z, w) : D xD — 4} (C) be a positive definite kernel. If for each ¢ € Mob,
there exists a function g, € Hol(D, GLi(C)) such that the operator Mg v C(pf
invertible on (#,K), then M, on (#,K) is weakly homogeneous. Moreover, if K is sharp
and the operator M, on (A, K) is weakly homogeneous, then for each ¢ in Mob, there exists
8y € Hol(D, GLi(C)) such that the weighted composition operator Mg(p C(p—l is bounded and

invertible on (A, K).

1 is bounded and
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Proof. Let U be a neighbourhood of the identity in Mob such that ¢(M,) is well-defined for
all ¢ € U. By hypothesis, there exists g, € Hol(D, GL(C)) such that the operator Mg, C,-1
on (#, K) is bounded and invertible. Then by Lemma 4.2.6, it follows that the operator M,
satisfies M, X = ¢(M_) X, ¢ € U. Hence M, is similar to ¢ (M) for all ¢ € U. Now an application
of Lemma 4.1.2 completes the proof in the forward direction.

For the proof in the other direction, suppose that M, on (#, K) is weakly homogeneous.
Then, by definition, o(M,) € D and ¢(M,) is similar to M, for all ¢ in Mob. Therefore, for
each ¢ € Mob, there exists a bounded invertible operator X, satisfying M, X, = X,¢(M;). By

Lemma 4.2.6, X, is of the form Mg " C(p—l, 8y € Hol(D, GLi(C)). This completes the proof. [

The theorem appearing below shows that the weak homogeneity of the multiplication
operator is preserved under the jet construction.

Theorem 4.2.8. Suppose that Ky and K, are two scalar valued sharp positive definite kernels
onD x D. If the multiplication operators M, on (A, K1) and (A, K3) are weakly homogeneous,
then M, on (€, Jx(K1, K2)resa) i also weakly homogeneous.

Proof. By hypothesis, the operator M, on (/#, K;) as well as on (7, K») is weakly homogeneous.
By Proposition 4.2.7, for each ¢ € Mob, there exist g, h, € Hol(D, C\{0}) such that the weighted
composition operators Mg, C,-1 and My, C,
(A, K>) respectively. Then by Theorem (4.2.2), it follows that the operator M o (Fchy) (B~ Cop?
is bounded and invertible on (Jf, Tk (K1, K2) res A). Again an application of Proposition 4.2.7

completes the proof. O

-1 are bounded and invertible on (/, K;) and

4.3 Weakly homogeneous operators in the class & B, (D)

In this section, we study weakly homogeneous operators in the class & B, (D). The reader is
referred to see section 2.3.2 for the definition of operators in & B> (D). The following proposition
will be an essential tool in this study.

Proposition 4.3.1. ( [37, Proposition 3.3]) Let T and T be any two operators in & B, (Q). If X is
a bounded invertible operator which intertwines T and T, then X and X' are upper triangular.
Ty
Corollary 4.3.2. Let T =
0 Ty
in FB»(Q). Then T is similar to T if and only if there exist bounded invertible operators X :
Hoy — Hy, Y 1 H, — ) and a bounded operator Z : /6, — Hby such that

S . (To S _
) onAAy® A and T = ( 00 7 ) on #y & A be two operators
1

) XTo=ToX, YT} =T,Y,

(i) XS+ZT,=TyZ+SY.
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VA

Proof. Suppose that T is similar to T. Let A = E Hy & FE, — Hy ® S, be an invertible

operator such that AT = T A. By Proposition 4.3.1, we have that W = 0. Further, we see that the
intertwining relation is equivalent to

XTo XS+ZT,
0 YT,

[ToX Toz+SYy
10 Ty

Again applying Proposition 4.3.1, we see that A™! is also upper triangular. Hence using Lemma
4.2.3, we conclude that X and Y are invertible.

Conversely, assume that there exist bounded invertible operators X : /£y — Ay, Y HO —
A6, and a linear operator Z : #, — J&, satisfying (i) and (ii) of this Corollary. Let A be the

X Z
operator ( 0 Y) .Since X and Y are invertible, it follows that A is invertible. The intertwining

requirement AT = T A is also easily verified. O

Lemma 4.3.3. Let T € B(#) be an operator in By (D) with o(T) = D. Then the operator ¢(T)
belongs to By (D) for all ¢ in M&6b.

Proof. Let ¢g 4, 0 € [0,27),a € D, be an arbitrary biholomorphic automorphism in Méb. A
routine calculation shows that

©0.a(T) —@g.a(w) = (T-a)(I-aD) ™" - (w-a)(1-aw)™")

. 4.17)
=1 -1a®1-aw) (T-w)(I-aT)™', weD.

Since T € B; (D), (T — w) is Fredholm for all w € D. Therefore, from (4.17), we see that the opera-
tor g 4(T) — g, 4(w) is the product of a Fredholm operator with an invertible operator. Hence
itis a Fredholm operator (see [19]). Consequently, ran (p(T) — ¢(w)) is closed. Furthermore,
since the operator (I — aT) ! is invertible and commutes with (T — w), using (4.17) once again,
it follows that ker (g, 4 (T) — ¢g,4(w)) = ker(T — w). Consequently,

dimker (pp,4(T) — g, o(w)) = dimker(T - w) =1, weD

and
\V weaker (9.4(T) = 9g.o(w)) = \ wea ker(T — w) = 7.

This completes the proof. O

To

Lemma4.3.4. Let T = be an operator in F B, (D) witho(T) = 0(Ty) = o(T1) =D. Then

1
the operator ¢(T) belongs to & B, (D) for all ¢ in Mob.
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Proof. Aroutine verification, using TS = ST;, shows that

p(T) = (7 0S), and p(To)g' (To)S = ¢/ (To) Sp(Th).

Also by Lemma 4.3.3, we have that ¢(Tp) and ¢(T7) belong to B; (D). Hence the operator ¢(7T)
belongs to & B, (D). O

The Corollary given below, which gives a necessary and sufficient condition for an operator
T in & B, (D) to be weakly homogeneous, is a consequence of Corollary 4.3.2 combined with
the Lemma we have just proved. Hence the proof is omitted.

To

Corollary 4.3.5. Let T = be an operator in & B,(D) with o(T) = o(Ty) = o(Ty) = D.

I
Then T is weakly homogeneous if and only if for each ¢ in Mob, there exist bounded invertible
operators X, : 7o — o, Yy : S0 — S and a bounded operator Z,, : 76, — ¢y such that the
following holds:

1) XpTo=@(To) Xy, YpT1 =@(T1)Y,

(i) XpS+ ZyTy = 9(To) Zy+ @' (To) SY,.

4.3.1 A useful Lemma

Let Ki,K, : D x D — C be two positive definite kernels. As in the previous chapter, let M
and M@ denote the operators of multiplication by the coordinate function z on (#, K;) and
(A, K3), respectively. The following lemma which is a generalization of Lemma 4.2.6 will be
used to construct operators in & B, (D) that are not weakly homogeneous.

Lemma 4.3.6. Let ¢ be a fixed but arbitrary function in Mob which is analytic in a neighbour-
hood of a(MW). Letvy be a function in Hol(D) such that the weighted composition operator
My Cy-1 is bounded from (#, K1) to (A, K). If X is a bounded linear operator from (#,Ky) to
(,K) such that X(f) =w(@ D' (flop™ D+ x(fop™), f e (#,Ky) for some y € Hol(D), then
X satisfies

XpMM) - MP X = My, C,. (4.18)

Moreover, if Ky is sharp and X : (/€,Ky) — (A, K>) is a bounded linear operator satisfying
(4.18), then there exists a function y € Hol(D) such that X(f) = w(@ D' (floe ™)+ x(foe™),
f € (%, Kl).

(Here v (¢~ !)" denotes the pointwise product of the two functions y and (¢~!)’. Similarly,
W@~ (f'op~!) denotes the pointwise product of (¢ ~1)" and (f' o ¢™!). Finally, y(fop™!) is
the pointwise product of y and f o ¢~!. This convention is adopted throughout this chapter.)
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Proof. Suppose that X is bounded linear operator taking f to (™)' (f'o@ ™) + y(fo ™),
f € (A#,K;). Then we see that
XeMD) -MPX) f =X (pf) - zXf
=@ ) (@ e N+ x9N ™) —zy@ ™) (flop ) —2x(fop™)
=y ) (@ o ) (fop )+ (@op )(f op™"))+2x(fop™)
—zy(@ ) (flop ) —zx(fop™)
=y(@ ) (@ o ) (foe N +ylp ™) a(flop ) —zylp™) (flop™)
=y(fop™.
Here for the last equality we have used the identity (¢~ 1)/(¢ 0 p™!) = 1.
For the converse, assume that K; is sharp and X : (A, K;) — (4, K>) is a bounded linear
operator satisfying (4.18). Then taking adjoint and acting on K3 (-, z), z € D, we obtain
PMM)* X* Ky (-, 2) = ZX*Ka (-, 2) = (My Cym1) * K2 (-, 2) @19)
=w(@K (9 2. ’

Here the last equality follows from exactly the same argument as in (4.2). Further, since
(pMD)* — p(w))K; (-, w) =0, w € D, differentiating with respect to w, we see that

(@MD)* — p(w))0K: (-, w) = @' (WK, (-, w), weD. (4.20)
Replacing w by ¢!z in the above equation and combining it with (4.19), we see that
¥(2)

0K (o t2)|. (4.21)
¢'(p~12)

((p(M(l))* _ Z)X*Kg(,Z) — ((p(M(l))* _ 2)

Consequently, the vector X* K (-, z) — f(“fi )5K1 (-, (p‘lz) € ker ((p(M(D) *— 2). Since K is sharp,
¢'p~lz
we have that ker (p(MW)* — z) = VV{K;1 (-, 2)} (see the proof of Lemma 4.2.6). Therefore

v(z2)
@' (p7'2)
for some y € Hol(D) (the holomorphicity of y can be proved by a similar argument used at the

X*Ko (-, 2) — 0K (o '2) = (DK, 91 2),

end of Lemma 4.2.6).
Finally, for f € (A, K;) and z € D, we see that

(Xf)(2) = (X[ Kz(-,2))
=(f, X"Ka(-,2))

- <f, Y9 ki la MKl(-,qflz)>
¢ (p~1z)
=@ Y (@ (f o H(2) + @) (fop (2.
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Here the identity (¢' o 1) (2) (¢ 1) (z) = 1, z € D, is used a second time for the last equality.

This completes the proof. O
Notation 4.3.7. For the rest of this section, let AN A >0, denote the Hilbert space determined
by the positive definite kernel KV where KW (z, w) := m, z, w € D. Note that
X (A
KYzw) =Y @ z,weD, (4.22)
n=0 T

I'(A+n)
ra -

Foranyy €R, let Ky be the positive definite kernel given by

where (1), is the Pochhammer symbol given by

o0
Ky (z,w):= ) (n+ 1) (zw)",z,weD. (4.23)
n=0
Note that Ky = KV (the Szego kernel of the unit discD) and K3y = K® (the Bergman kernel of
the unit disc D). The kernel K(_yy is known as the Dirichlet kernel of the unit discD.
For two sequences {a,} and {by,} of positive real numbers, we write a,, ~ by, if there ex-
ist constants c1,c, > 0 such that c1b, < a, < coby, n € Z,. From (4.22) and (4.23), it is

| _ T(n+DIA _ . . .
clear that ”Zn”,Z]ﬂM = (/f)n = % and IIZ”II(ij,K(Y)) =(n+1)77, neZ,. Using the identity
lim,, oo ?EZ;“H“J =1, acC, we see that

2 2
”zn”]f()t) ~ ”Zn” (J,Ka-1)’ A>0. (4.24)

Therefore, for A > 0, there exist constants c1,c> > 0 such that ¢ K-y = KW < c2K-1) and
consequently, #W = (#,K-1y).

Recall that a Hilbert space . consisting of holomorphic functions on the unit disc D is said
to be Mo6bius invariant if for each ¢ € Mob, f o ¢ € # whenever f € /. By an application of
the closed graph Theorem, it follows that . is M6bius invariant if and only if the composition
operator C, is bounded on .7 for each ¢ € Mob. If the multiplication operator M, is bounded
on some Mobius invariant Hilbert space ., then by Proposition 4.2.7, it follows that M, is
weakly homogeneous on /. It is known that the Hilbert spaces AN 1 >0, and (A, Ky,
Y € R, are Mobius invariant (see [54], [20]). We record this fact as a Lemma for our later use.

Lemma 4.3.8. The Hilbert spaces Y, A > 0 and (A, Ky, v € R, are Mobius invariant.
Consequently, the composition operator C,, ¢ € Mob, is bounded and invertible on #™, 1 >0,
as well as on (A, Ky)), y €R.

Corollary 4.3.9. For anyy € R, the operator M; on (#, K(y)) is a weakly homogeneous operator
in B1(D). Moreover, it is similar to a homogeneous operator if and only if y > —1. In particu-
lar, M} on the Dirichlet space is a weakly homogeneous operator which is not similar to any
homogeneous operator.
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Proof. Note that M, on (4, K(y)) is unitarily equivalent to the weighted shift with the weight

Y
2 . . .
sequence {Wy} ez, where w, = (Z—I;) , n€Z,. Since sup,z, Wy < oo, it follows that M, is

bounded on (#, K(y)). By Lemma 4.3.8, C,, is bounded and invertible on (#, K(y)). Hence by
Proposition 4.2.7, it follows that M, on (#, K(y)) is weakly homogeneous .

Recall that for an operator T, r;(T) is defined as lim,,_. (m(T”))% (which always exists,
see [51]), where m(T) =inf{| T f| : || Il = 1}. For the multiplication operator M on (#, Ky,
it is easily verified that r; (M;) = r (M) = 1, where r (M) is the spectral radius of M,. Hence by
a theorem of Seddighi (cf. [50]), we conclude that M, on (A, K(y)) belongs to B, (D).

Finally assume that M; on (#, K(y)) is similar to a homogeneous operator, say S. Since
B;(D) is closed under similarity, the operator S belongs to B; (D). Furthermore, since upto
unitary equivalence, every homogeneous operator in B; (D) is of the form M} on (#,K Ay,
A >0, it follows that M} on (A, K(y)) is similar to M; on N for some A > 0. Hence by [51,

: 2 2
Theorem 2'], y satisfies ||z" || ,Ky) ”IIJN). Then by (4.24), we see that | z"||
[ z" ”(ZJL”,KWD)' Hence y = A —1. Since A > 0, it follows that y > —1.
For the converse, let y > —1. Again using [51, Theorem 2'] and (4.24), it follows that M on

(A€, K(y)) is similar to the homogeneous operator M; on P+ .

2
Iz (7,Kiyp))

The lemma given below shows that the linear map f — f’ is bounded from .#W to A1+2),

Lemma 4.3.10. Let A >0 and f be an arbitrary holomorphic function on the unit disc D. Then
fe#W ifand only if f' € #12). Moreover, if f € #M, then || f'll zp02 < VAA+ DI fIl g
Consequently, the differential operator D, that maps f to f', is bounded from #W to 764**?)

with |D| = vAA+1).

Proof. Let Y32 ,a,z", z €D, be the power series representation of f. Then we have f'(z) =

Y (n+1Dap12", z€D. Recall that || 2"]|% ) =

n! ;
“p0 = D= - BY a straightforward computa-

tion we see that

+12
Mz"

2o < M+ D212 g0 < AA+ D", n=0.

AA+2) — B/AUK

Consequently,

o0 o0 (e.0)
2 +1)2 2 2 2 2 +12
AY a1 Pz o0 < Y lana P+ D225 00 AL+ D) Y lapa Pz 15,0,
n=0 n=0 n=0

(4.25)

From the above inequality, it follows that ¥°° ; |, |*[| 2" | 2}5[ » <ocoifand onlyif ¥ /|aty+11*(n+
1)2||Z"||2JN+2, < o0o. Therefore, f € AN if and onlyif f' € A2 From (4.25), it is also easy to

see that if f € #W, then || f'I%,,.,, < AA+ DI I, O
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The proof of the corollary given below follows from the Lemma 4.3.10 together with the
fact that the inclusion operator f — f is bounded from #**? to AW, u— A = 2.

Corollary 4.3.11. Let A, u be two positive real numbers such that p— A = 2. Then the linear map
f— [ is bounded from #M to 76",

Recall that for two Hilbert spaces 4 and .# consisting of holomorphic functions on the
unit disc D, the multiplier algebra Mult (#, #%) is defined as

Mult (A, #65) := {y € Hol(D) : w f € #5 whenever f € 7,}.

When 7 = A5, we write Mult (/#) instead of Mult (4, 7). By the closed graph theorem, it
is easy to see that ¥ € Mult (#7, /%) if and only if the multiplication operator M,, is bounded
from /A to S6.
For ;1= A > 0, since #WM c . #W it follows that v f € A" whenever f € #W and v €
Mult (#W). Hence
Mult (#V) € Mult (Y, 2W), 0< A < p. (4.26)

It is known that for A = 1, Mult (#WY) = H® (D), where H®(D) is the algebra of all bounded
holomorphic functions on the unit disc D. Thus, from (4.26), we conclude that

H®(D) < Mult(#W, "), 1< A< p. 4.27)

On the other hand, if A > y, then Mult(A#W, #") = {01, and hence we make the assump-
tion A < u without loss of generality.
The proposition given below describes a class a weakly homogeneous operators in & B, (D).

M* M*
Proposition 4.3.12. Let0 < A < u and v € Mult(#W, #W). Let T = OZ Mlif
Z

AW If My, is bounded and invertible on 7V as well as on 76W), then T is weakly homoge-
neous.

) on W o

Proof. Tt suffices to show that T* is weakly homogeneous. By a routine computation, we
obtain ¢(T*) = ( My O

Myy M,y
bounded and invertible on #Y as well as on 7). Also, by hypothesis, My, is bounded and
invertible on 7 as well as on #* . Thus My, C,-1 is bounded and invertible on 7. For
¢ € MoDb, set

) on AN ¢ W, By Lemma 4.3.8, the operator C(pfl, @ € M0Db, is

Ly:= (M(Wl)(wlwl)qpl O | onaWe s,
0 MWC(P_l

Using the equality M,, Cy-1 My Cyp, we see that the operator M,,,,-1 is bounded and

op~! = Yoy

invertible on AW, Consequently, Mwo(pfl C(p—l is bounded and invertible on #"W . Therefore,
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to prove that L, is bounded and invertible, it suffices to show that the operator M,.,-1) is
bounded and invertible on #™. Take ¢ to be ¢! and note that

_ 1 _ip(1—az)?
@y ) 0ppa)(z) = ———=e0— " zeD, (4.28)
(00,000 @) = G = T =1am
which is a polynomial. Hence M(((pg’la Yows,a) is bounded on AW,
From (4.28), we see that M(((p—l Vopg,o) 18 invertible on AW if and only if the operator
M_ 1 is bounded on #W. By the closed graph theorem, this is equivalent to 1=z )2 isin
(1-az)
Mult(#™W). To verify this, let f € #Y. Note that
1 / 1 ) 24
- R — + , z€D, 4.29
((1 - az)Zf) D= e Ot a2 (4.29)

Since f € #W and AW ¢ Jf(’“z) we have f € #M? | Also by Lemma 4.3.10, f' € A#£%+2),
= 1_ e and 1 < belong to H™(D) and Mult(#1+2)) = H®(D), it follows
that both of the functlons e f’ and 225 f belong to #**2). Thus, by (4.29), (mf)
belongs to #**?). Hence, again applying Lemma 4.3.10, we conclude that m f belongs to

AWM, Hence the operator M_ 1 is bounded on #W.

(1- az)
Finally, a straightforward calculation shows that

Since the functions

Mz(WO(p_l)(qD’O(P_l) Cw‘l 0 (4.30)
M

T*Ly=Lyp(T*) = :
w(l/lolp_l)((p’olp_l)ctp_l Mzwc(p—l

completing the proof. O

Lemma4.3.13. Let0<A<u<A+2andwy, y be two holomorphic functions on the unit disc D.
Let X be the linear map given by X(f) =y '+ x f, f € Hol(D). Suppose that X is bounded from
JWV to #W . Theny is identically zero.

Proof. Lety(z) = 0 & ]zf and y(z) = ‘]’.‘io Bj zJ be the power series representations of ¢ and
X, respectively. Then for n =1, we see that

IX (22,0 = In2" 1w (2) + 2"y (DI,

o0
-1 j+n—12
=nz" g+ ) (naj+ B0z I
j=1

(e 0]
2.2 12 2 i+n—1,2
=lapl“nllz" ||ﬁ(y)+2|naj+ﬁj—1| | z/*" 100
j=1

Since X is bounded from #™W to #", we have that || X (z™)|?
quently, forn =1,

2 2
“ew = IXI712"17,,- Conse-

o0
2.2 12 2 i+n—1,2 2 2
lao|“n”|1 2" IIJLD<H)+Z lna;+Bj-l°l12/™" 10 < 11Xl IIZ”IIJN)- (4.31)
j=1
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From (4.24), we have ||Zn||;g(1) ~ n~ 4D and ||Zn||§£(u) ~ n~®=Y_ Thus by (4.31), there
exists a constant ¢ > 0 such that |ag>n~#% < cn~A=D, Equivalently, |ay|*> < cn* *~2. Since
©—A—-2<0, taking limit as n — oo, we obtain a( = 0.

For j =1, using ||zj+”_1||2%)<u) ~(+n- 1)~ ® D < p=w-D in (4.31), we see that

2

Bj-1 CD)-(-1)- A

a].+f_ < dpWD-A-D-2 _ 4, (u-1-2)
n

for some constant d > 0. As before, since u— A -2 <0, taking n — oo, we obtain a; = 0 for j > 1.
Hence v is identically zero, completing the proof of the lemma. O

Combining Corollary 4.3.11 and Lemma 4.3.13, we obtain the following corollary.

Corollary 4.3.14. The linear map f — f', f € Hol(D), is bounded from #™ to #"W ifand only
ifu—1=2.

As a consequence of the lemma 4.3.13, we also obtain the following proposition which is a
strengthening of [38, Theorem 4.5 (2)] in the particular case of quasi-homogeneous operators
of rank 2. Recall that an operator T is said to be strongly irreducible if X T X! is irreducible for
all invertible operator X.

M* *
Proposition 4.3.15. LetO<A<u<A+2andy € Mult(#W, 7). Let T = ( OZ "’) on

HV & 7V Ify is non-zero, then T is strongly irreducible.

Proof. Since T € & B,(D), by [37, Proposition 2.22], it follows that T is strongly reducible if
and only if there exists a bounded operator X : %) — 7" satisfying ToX — X Ty = M, where
Ty = M} on #W and Ty = M} on 7",

Suppose that y is non-zero and T is strongly reducible. Then there exists a bounded
operator X : #® — #W such that X* Ty — T X* = My. Since the kernel K W is sharp, by
Lemma 4.3.6 (with ¢ to be the identity map), there exists a function y € Hol (D) such that
X*(f)=ywf +xf, f AN, Since X isbounded and 0 < A < 1 < A + 2, by Lemma 4.3.13, v is
identically zero on D. This is a contradiction to the assumption that ¥ is non-zero. Hence T
must be strongly irreducible, completing the proof. O

Let C(D) denote the space of all continuous functions on D. If y is an arbitrary function in
C(D) nHol(D), then it is easy to see that € H*°(D). Furthermore, if 1 < A < y, then by (4.27),
we see that ¢ € Mult (AW, 2W).

The theorem given below gives several examples and nonexamples of weakly homogeneous
operators in the class & B, (D).
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Theorem 4.3.16. Let1 < A < u < A+2 and v be a non-zero function in C(D) nHol(D). The oper-

M* *
ator T = ( OZ le‘/) on #N & #W is weakly homogeneous if and only ify is non-vanishing
Z

onD.

Proof. Suppose that ¥ is non-vanishing on D. Since v is continuous on D, 1 must be bounded
below. Therefore i is a bounded analytic function on D. Further, since A, 4 = 1, we have that

Mult (#WM) = Mult (#*) = H*(D). Hence the operator M ; is bounded on #™ as well as
v
on #W_ Consequently, the operator My, is bounded and invertible on AN as well as on AW,

Hence, by Proposition 4.3.12, T is weakly homogeneous.

Conversely, assume that T is weakly homogeneous. It is easily verified that T € & B, (D)
and T satisfies the hypothesis of Corollary 4.3.5. Therefore, for each ¢ in Mob, there exists
bounded operators X, : AN — 7N Yy, : AW — 71 and Zyp: A — 7N with Xy, Yy
invertible, such that the following holds:

XoTo=@(To) Xy, YpT1 = @p(T1) Y, 4.32)
XpMy, + Z Ty = @(T0) Zy + My @' (T1) Y, '

where T is M on AN and Ty is M; on AW Note that @(To)" = ¢(Ty) where ¢(z) := (ﬁ
Taking adjoint in the first equation of (4.32), we see that X, satisfies Ty X, = X, @(T). Since
KW is sharp, by Lemma 4.2.6 (or Lemma 4.3.6), we obtain Xy = Mg, Cy-1 for some non-
vanishing function g, in Hol(D). Furthermore, since Cy is bounded and invertible on AN
(see Lemma 4.3.8), it follows from the boundedness and invertibility of X, that the operator
Mg, is bounded and invertible on 7). Also, since Mult(#Y) = H*(D), A = 1, it follows that
gy must be bounded above as well as bounded below on D. By the same argument, we have
Y, = My, C;-1 for some non-vanishing function h,, in Hol(D) which is bounded above as well
as bounded below on D. Taking adjoint in the last equation of (4.32), we see that

My Xgy+ Ty Zy = Za@(Tg) + Y, @/ (T] ) My,
Equivalently,
ZapUTy) = Tf Zy = My Xy = Y ' (T} My,
= MWMggo C‘i)_l - Mh(p C@—l M&\,Mw
= M[(p C@—l,

where ¢, = wg,— h(p((ﬁ’ o H(wodph). Since the kernel KWV is sharp, by Lemma 4.3.6, it
follows that
Zof =@ (f1o@™ D +xp(fod™h), fe”, (4.33)
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for some y, € Hol(D). Furthermore, since the composition operator Cy is bounded on FEW
by Lemma 4.3.8, the operator C; Z is bounded from ™ to 7. Note that

CpZ,(f) =y PPV 0@V f +(pod)f, feAW,

Since A < u <A +2, by Lemma 4.3.13, it follows that that (£, o @) ((@‘1)' o) is identically
the zero function for each ¢ € M6b and therefore ¢, is identically the zero function for each
¢ € Mob. Equivalently,

V(2)8p(2) = hy(2) (@ 0P (D) (Wop™)(2), z€D,p e Mbb. (4.34)

Now we show that ¥ is non-vanishing on D. If possible let 1 (w) = 0 for some wp € D and w
be a fixed but arbitrary point in D. We will show that w(w) = 0. By transitivity of Mob, there
exists a function ¢, in M6b such that ¢y, ! (wp) = w. Putting z = wy and ¢ = ¢, in (4.34), we
see that

W (wo) gy, (Wo) = h(pw(wo)((;zuo(ﬁﬂ;_l)(wo)w(w). (4.35)

Since the functions A, and ((//)Z, o @y 1) are non-vanishing on D, it follows from (4.35) that
w(w) = 0. Since this holds for an arbitrary w € D, we conclude that ¥ vanishes on D. Conse-
quently, y vanishes on D, which contradicts that 1 is non-zero on D. Hence v is non-vanishing
onD.

Now we show that v is non-vanishing on the unit circle T. Replacing ¢ by ¢g ¢ (which is
the rotation map e’ z) in (4.35), we obtain

V(2)8pyo () = € P hy, (D)W (e 2), zED. (4.36)

Let {w,} be a sequence in D such that w, — 1 as n — oco. If possible let ¥ vanishes at some
point /% on T. Putting z = e/% w,, in (4.36), we obtain

i6o io i(60+0)

W w,)gp,, (€ wy) = e P hy, (e wy)w(e wy). (4.37)

Sincey e C (D) and 80000 h(pg,o are bounded above as well as bounded below on D, taking limit
as 1 — oo, it follows that y(e!@*9)) = 0. Since this is true for any 6 € R, we conclude that v
vanishes at all points on T. Consequently, v is identically zero on D. This contradicts our
hypothesis that ¥ is non-zero on D. O

As an immediate consequence of the above theorem, we obtain a class of operators in
& B, (D) which are not weakly homogeneous.

Corollary 4.3.17. Ler1 <A < u< A+2. Ify is a non-zero function in C(D) N Hol(D) with atleast

*

*
one zero inD, then the operator T = ( OZ lek’ on #N & 7MW is not weakly homogeneous.
z
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4.4 Mobius bounded operators

Recall that an operator T on a Hilbert space ./ is said to be power bounded if sup,,-, | T"|l < c,
for some constant ¢ > 0. The related notion of M6bius bounded operators was introduced by
Shields in [52].

Definition 4.4.1. An operator T on a Banach space 9 is said to be Mébius bounded if o (T) < D
and

sup (7)) < oo.
pe Mob

We will only discuss Mobius bounded operators on Hilbert spaces. By the von Neumann’s
inequality, every contraction on a Hilbert space is Mobius bounded. If T is an operator which
is similar to a homogeneous operator, then from (4.1), it follows that T is Mobius bounded. It is
also easily verified that an operator T is Mobius bounded if and only if T* is M6ébius bounded.

In this section, we find some necessary conditions for Mébius boundedness of the multi-
plication operator M, on the reproducing kernel Hilbert space (#, K), where K(z, w) is form
Yo obn(z)", by, >0, on D x D. As a consequence, we show that the multiplication operator
M, on the Dirichlet space is not Mébius bounded. We begin with a preparatory lemma.

First we recall that, for 0 € [0,27) and a € D, the biholomorphic automorphism ¢y , of the

unit disc D, is defined by ¢y 4(z) = el? %, z € D. Note that the power series representation of
$o,ai8 X0, anz", z €D, where
ao=-e%aand a,=e%0-1a®@" ", n>1. (4.38)

Lemma 4.4.2. Let K(z,w) =Y bu(zw)", by, >0, be a positive definite kernel onD x D. Sup-
pose that the multiplication operator M is bounded on (#¢,K) and o (M) = D. If the sequence
{nby}nez, is bounded, then there exists a constant ¢ > 0 such that

K(a,a)

l9g,a(M)Il = —lal, aeD, 0 €[0,2m).

Proof. Since {nb,} is bounded, there exists a constant ¢ > 0 such that nb,, < c for all n = 0. For
ac€D,0¢€[0,2n), setting @p,4(2) = Py, 4(2) — pg,4(0), z € D, we see that

$0,a(2)K(z,a) = ) ( akbn_k(d)"_k) z", zeD. (4.39)
n=1\k=1

Since M, on (#,K) is bounded and o(M,) = D, the operator ¥o,qa(M;) is bounded and
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hence the function ¢y ,(-)K(-, @) belongs to (#, K) for all a € D. Note that

17041, @ = 3 wer@" 12"
k=1
22 2| om-ny e 2 ]
=(-1a" ) lal " )(ij) . (4.40)
n= j=0
o0 n
=(1-1a®? ) lal*( Z
n=0 : b”H—l
Claim: For any a € D,
[e¢] n 1
> |a|2”(Z ) = —(1-lal)*K(a,a)°. (4.41)
n=0 j=0 bps1 ¢

Since (1—1|al®) 2= Y% (n+ Dlal*", a€D, setting B,, = 2720(j +1)by-j, n =0, we see that
2\—2 = 2
(1-lal®)*K(a,a)=)_ Palal”", acD.
n=0

Furthermore, setting y, = Z}?:o Bjbn-j, n=0, we see that

(1-la®)2K(a,@*= Y ynlal*", aeD. (4.42)
n=0
Note that . .
Brn=>) (j+Dbyj<n+1)()_ bj), n=0.
j=0 j=0
Therefore
n n J n )
Yn=2 Bjbnj =) G+D(Y bp)bnj=(n+D() b))
j=0 j=0 p=0 j=0

Consequently,

Zy lal*" < Z(n+1) Y bj)lal
j=0

o0 n 1
<cy laP"( ) by)
n=0 j=0

)
bn+1

where for the last inequality, we have used that nb, < ¢, n = 0. Hence, by (4.42), the claim is
verified.
Combining the claim with (4.40), it follows that

1
Ipo,a VK, @) = ~K(a, a)?.
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Since | K (-, a)||? = K(a, a), it follows that

Ifo.aOKCOI2 1,
IKGal2 ¢

1Po,a(M)I* =
Finally, note that for a € D,

1
l96,a(M N = 1Pg,a(Mz) = P6,a(0) Il = |Pg,a (M) || - lal = ZK(a’ a)—lal.
This completes the proof. O

We reproduce below the easy half of the statement of [15, Lemma 2] along with its proof,
which is all we need.

Lemma4.4.3. Let f(x) =Y janx",a,=0.If f(x) < c(1-x)"% 0=<x <1, for some constants
a,c >0, then there exists ¢’ > 0 such that

ag+ar+..+a,<cn+1% n=0.

Proof. For0<x<1andn=0, we have

n .
xMag+ar+..+ap) <) ajx! < f(x)scl-x"%
j=0

Taking x = e~ in the above inequality, we obtain
(o + @y +...+ ay) < ce(1—e )77, (4.43)
The proof is now complete since lim,,—.o, 1(1 — e_%) =1. O
The following lemma will be used in the proof of Theorem 4.4.5.

Lemma 4.4.4 (cf. [42]). If{bu}nez, is a sequence of positive real numbers such that}'9 by, < oo,
then

Theorem 4.4.5. LetK(z, w) =357, by(zw)", by, >0, be a positive definite kernel on D x D. If the
multiplication operator M, on (A, K) is Mébius bounded, then

an:oo.

n=0
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Proof. Note thatforany0 € [0,2n),aeDand je Z,,

pES
Po.a 2

lpg,a(2)2” 112

I fllz

|zJ||2 | Z anz" |’ (4.44)

o0
2 112 2\2 2(n—1 2
(lal” 12117+ A = 1al®? Y lal* ™ V)" )?)

n=1

127112

If M, on (/#, K) is M6bius bounded, then there exists a constant ¢ > 0 such that

zJ
pES
Po.a 2 i

2

sup
0€[0,2m),aeD, jeZ

Therefore, from (4.44), we see that

+]||2

~lal*? Z| vz

BiE <c¢ acD,jeZ,.

Replacing | al? by x, we obtain

ch,x - x)2’ x€[0,1), (4.45)

n+j+1y2
” +;H2 I , n,j € Z,. Hence, applying Lemma 4.4.3, we see that there exists a

constant ¢’ > 0 such that forall n, j € Z,,

_ lz

where ¢, j =

(Coj+C1j+e+Cpj)<c(n+ 1>
Since b, = W, ne€ Z,, putting j =0 in the above inequality, we obtain

1 1 + L. C’( +1)? nez
< —(n , n .
by b bn+1)  bo ’

Therefore
&0 n+1 by 1
LTy

by -+ bn+1 c

P

= oo. Hence, by Lemma 4.4.4, we conclude that Y77 , b, =

n+1

Consequently, > 7° T

TR T
bl bn+1

oo. This completes the proof O

Theorem 4.4.6. Let K(z,w) =Y.5"  bp(zw)", b, > 0, be a positive definite kernel on D x D. If

the multiplication operator M, on (A€, K) is M6bius bounded, then the sequence {nbn} nez., is

unbounded.



4.4. Mobius bounded operators 93

Proof. Assume that M, on (/, K) is Mobius bounded. If possible, let the sequence {nbn}
is bounded. Then by Lemma (4.4.2), there exists a constant ¢ > 0 such that

nez.

sup( Ka,a) lal ) < oo.
aeD c

Therefore sup ,.p K(a, a) < oo. Since Abel summation method is totally regular, it follows that
Y > b, < oo (see [35, page 10]). By Theorem 4.4.5, this contradicts the assumption that M is
Mobius bounded. Hence the sequence {nb,} nez, 18 unbounded, completing the proof. O

Corollary 4.4.7. Let K(z,w) = Y77, b, (zw)", b, > 0, be a positive definite kernel on D x D.
Suppose that b, ~ (n+1)" for somey € R. Then the multiplication operator M, on (¢, K) is
Mobius bounded if and only if y > —1. In particular, the multiplication operator M, on the
Dirichlet space is not Mébius bounded.

Proof. By [51, Theorem 2'], it follows that the operator M, on (#, K) is similar to the operator
M on (A, K(y)). Since similarity preserves Mobius boundedness, it suffices to show that M,
on (A, K(y)) is Mobius bounded if and only if y > —1. If y > —1, then by Corollary 4.3.9, M, on
(#, K(y)) is similar to a homogeneous operator and therefore is M6bius bounded. If y < -1,
then note that the sequence {n.(n+1)"},cz, is bounded. Hence by Theorem 4.4.6, M, on
(#, K(y)) is not M6bius bounded. O

4.4.1 Shields’ Conjecture

We have already mentioned that a Mébius bounded operator need not be power bounded.
Shields proved that if T is a Mobius bounded operator on a Banach space, then || T"| < c(n+1),
n e Z.,, for some constant ¢ > 0. But in case of Hilbert spaces, he made the following conjecture.

Conjecture 4.4.8 (Shields, [52]). If T is a Mdobius bounded operator on a Hilbert space, then
there exists a constant ¢ > 0 such that

IT" <cn+1)?, nez,.

The following theorem shows that Shields conjecture has an affirmative answer in a small
class of weighted shifts containing the non-contractive homogeneous operators in B; (D).

Theorem 4.4.9. Let K(z, w) =357, bu(z w)" be a positive definite kernel on D x D. Assume that
the sequence {b,} is decreasing. If the multiplication operator M, on (A, K) is Mobius

nez.

. 1
bounded, then there exists a constant ¢ > 0 such that |M}|| < c(n+1)2, neZ,.

Proof. It suffices to show that || M g“ |<cn+ 1)%, n € Z.. By, a straightforward computation,

we see that 12
12"
IM2*1|% = sup

- , NEZ,. (4.46)
ez, 2712 ’
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From (4.45), we already have that

o0
Y cnjx s ——, x€10,1),
n=0 (1-x)
o ||Zn+j+l”2 . . . _
where ¢, ; = B Multiplying both sides by 1 — x, we see that
x c
coj+ Y (Cnj—cn1,)x" < ——, x€[0,1),j€Z,.
n=1 I-x
Since ||z"? = bin and {by}nez, is decreasing, the sequence {c,, j}nez, is increasing. Conse-

quently, (cn,j—cp-1,j) =0for n =1, j = 0. Therefore, using Lemma 4.4.3, we conclude that there
exists a constant ¢’ > 0 (independent of n and j) such that forall n, j€ Z,

/
co,j +(c1,j— o))+ +(cpj—cCn-1,j) sc(n+1l),

that is,
cnj=c(n+1).

Hence, in view of (4.46), we conclude that || Mg“ I12<c(n+l),nez,, completing the proof. [

4.4.2 Mobius bounded quasi-homogeneous operators

In this subsection we identify all quasi-homogeneous operators which are Mébius bounded.
We start with the following theorem which gives a necessary condition for a class of operators
in % B, (D) to be M6bius bounded.

Theorem 4.4.10. Let0 < A <y andy be a non-zero function in Mult(A#W, 7). Let T be the

*

M; M;

operator ( OZ M‘ﬁf) on AW e W If T is Mobius bounded, then yu— A = 2.
¥4

Proof. Note that T is Mobius bounded if and only if T* is Mobius bounded. Therefore, it

suffices to show that if T* is Mobius bounded, then - A = 2. Since o (M;) = D on both #W

and W, it is easily verified that o(T) = D. As before, for ¢ € M6b, we have

My 0 ) on W e W,

o(T™) =(
My M,

Observe that for an operator of the form (4 2), | B| < H (49) || < (IAll + I Bl + ICI}). Therefore,
we have

I My |z g < (TN < 1Ml e + I M Il 7o + | My | zo0 — o0 (4.47)



4.4. Mobius bounded operators 95

Since the multiplication operator M, on AW as well as on #® is Mébius bounded, in
view of (4.47), it follows that T* is Mobius bounded if and only if

sup | Myg | g o0 < oo.

peMO06b
Now for all w in D, we have
(M) * (K® (-, w)) ||?
2 _ * 2 L4
”Mll/(l)' ”Jﬁ@)—»Jﬂ#) - ”(Mll/(l)’) ”Jé’(ll)—»]ﬂ’l) = | KW (-, w)|?
1KV (., w)|?
= [y ()¢ (W) ————
A N T TaTE
= [y (w)e' (w)*(1 - lw?HH.
i _1-lal?

Note that (p'g Jw=e w € D. Thus, if T* is Mobius bounded, then there exists a

constant ¢ > 0 such that

(1-aw)?’

Iy (w)>(1 - |al®)?

———(1-lwP*=c
a,weD |1-aw|

Taking a = w, we obtain
W (w))? < el - w?) W12, (4.48)

If possible, assume that p— A —2 < 0. Then by an application of maximum modulus principle,
it follows from (4.48) that v is identically zero, which is a contradiction to our assumption that
¥ is non-zero. Hence u— 1 = 2. O

Quasi-homogeneous operators

Suppose that0 < g < A; <...< A,,_1, n =1, are n positive numbers such that the difference
Ais1—A;,0<i<n-2,isafixed number A. As before, let A i=0,1,---,n—2, be the Hilbert
space determined by the kernel K49 = (1—z1w) — 2w eD. Let T;, 0 < i < n—1, denote the
adjoint M} of the multiplication operator by the coordinate function z on #%?. Furthermore,

let S;;,0<i< j<n-1,be the linear map given by the formula
S, i (KW (., w)) = m; j0U~"VKM (w), m;;eC,0<i<j<sn-1.
Note that if S; ; defines a bounded linear operator from #*) to #™), then (S; ))*(f) =
mi,jf(j_i_l), fejf(/li).
A quasi-homogeneous operator T of rank 7 is a bounded operator of the form

To Soq1 So2 - So,n-1

0 T 812 - S1,n-1

: ) T : (4.49)
0 0 Tn—2 Sn—2,n—1

0 0 0 Th




96 4. Weakly homogeneous operators

on AW ¢ M @ | @ 7“1 For a quasi-homogeneous operator T, let A(T) denote the
fixed difference A. When A(T) =2, arepeated application of Lemma 4.3.10 shows that each
Si,j,0<i<j<n-1,isbounded from #"? to #*/) and consequently, an operator of the
form (4.49) is also bounded. In case of A(T) < 2, the boundedness criterion for T was obtained
in terms of A(T), n and m; ;’s in [38, Proposition 3.2].

It is easily verified that, a quasi-homogeneous operator T satisfies T;S; ;+1 = S;ii+1Ti+1,
0 <i < n-2. Therefore T belongs to the class & B,,;+1 (D) < B, (D) (see [37]).

The theorem given below describes all quasi-homogeneous operators which are Mébius
bounded.

Theorem 4.4.11. A quasi-homogeneous operator T is Mébius bounded if and only if A(T) = 2.

Proof. If A(T) =2, then by [38, Theorem 4.2 (1)], T is similar to the direct sum To® T1®---& T}, 1.
Hence T is Mobius bounded if and only if Top® T; & --- @ T,,—; is M6bius bounded. Note that
each T;,0<i < n-1, is homogeneous and therefore is Mobius bounded. Consequently, the
operator Tp® T & --- & Ty, is also Mobius bounded.

To prove the converse, assume that T is Mobius bounded. By a straightforward computa-
tion using the intertwining relation 7;S; ;+1 = Si,i+11i+1, 0 < i < n—2, we obtain

®(To) ¢'(So,1) * *
0 P(T1) ¢ (S12) *
om=| : ) : .
0 e 0 @©(Th-2) (P,(Sn—f-},n—z)

on AN ¢ M g . & AV Since

(D)l =

M

@(To) ¢'(So1)
0 @(T)

_ To Son
L 0 T

) is Mobius bounded. Note that this operator is of the

To S
it follows that the operator ( 00 01

1
*

*

form| ? le: on A1) @ M) where v is the constant function m ;. Hence, by Theorem
zZ

4.4.10, we conclude that 1; — Ay = 2. Consequently, A(T) =2, completing the proof. O

Corollary 4.4.12. The Shields’ conjecture has an affirmative answer for the class of quasi-
homogeneous operators.
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Proof. Firstnote that, by Theorem 4.4.11, a quasi-homogeneous operator T is Mobius bounded
if and only if A(T) = 2. Second, if A(T) = 2, then T is similarto Tp® T1 & --- ® Tj,—1, (see [38,
Theorem 4.2 (1)]). Shields’ conjecture is easily verified for these operators using the explicit
weights (see [10, section 7.2]). Therefore, its validity for T follows via the similarity. O

Corollary 4.4.13. A quasi-homogeneous operator T is Mébius bounded if and only if it is similar
to a homogeneous operator.

Proof. The proof in the forward direction is exactly the same as the proof given in the previous
corollary. In the other direction, an operator similar to a homogeneous operator is clearly
Mobius bounded. O

The corollary given below follows immediately from Proposition 4.3.12. Therefore the
proof is omitted.

Corollary 4.4.14. Every quasi-homogeneous operator T of rank 2 is weakly homogeneous.

4.5 A Mobius bounded weakly homogeneous operator not
similar to any homogeneous operator

We recall that every operator which is similar to a homogeneous operator is weakly homoge-
neous. Corollary 4.3.9 gives examples of a continuum of weakly homogeneous operators that
are not similar to any homogeneous operator. In [10], two more classes of examples, distinct
from the ones given in Corollary 4.3.9 have appeared. Among these two classes of examples,
we recall the one due to M. Ordower.

For an arbitrary homogeneous operator T on a Hilbert space , let T be the operator

T I
(0 T)' Let U,, be a unitary operator on # such that ¢(T) = U, TU,,. A routine verification

1 1 N N
taking L, to be the invertible operator ¢'(T)2U, @ ¢'(T) 2U, shows that L, TL;,1 = (7).

o(T) ¢'(T)

, it follows that || ()| = |l@'(T)].
0 w(T)) M

Thus T is weakly homogeneous. Since ¢(T) = (

Moreover,

g o (D) = (g ,(T)) = sup |y ,(2)] =suplepy ,(2)] = (4.50)

zeo(T) zeD (1- |a|2)2 ,
where r(¢} (T)) is the spectral radius of the operator ¢, (T). Note that o(T) is either D
or T, and hence by the maximum modulus principle, we see that sup ¢, 1, ¢, ,(2)| equals
SUpP,cf I(,oé9 a(z)l. From (4.50), it is clear that SUp,,cMob @' (T)|l = co. Consequently, T is not
Mobius bounded. Since an operator, which is similar to a homogeneous operator, is necessarily
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Mobius bounded, we conclude that T is not similar to any homogeneous operator. Therefore,
it is natural to ask the following question.

Question 4.5.1 (Bagchi-Misra, [10, Question 10]). Is it true that every Mébius bounded weakly
homogeneous operator is similar to a homogeneous operator?

The following lemma, which will be used for the proof of the main theorem of this section,
provides a sufficient condition on K to determine if the multiplication operator M, on (#, K)
is Mobius bounded.

Lemma4.5.2. Let K :D xD — C be a positive definite kernel. Suppose that there exists a constant
A > 0 such that (1 — zin)* K (z, w) is non-negative definite on D x D. Then the multiplication
operator M, on (A, K) is bounded and o (M) = D. Moreover, M, on (#,K) is Mébius bounded.

Proof. Let MY denote the multiplication operator M, on the Hilbert space (#, KW) and set
K(z,w) = (1 - zin)*"K(z, w), z, w € D. Then, by hypothesis, K is non-negative definite on D x D
and K can be written as the product KM K. Since the operator MY on (#, KV) is Mébius
bounded, by Lemma 2.1.10, there exists a constant ¢ > 0 such that (c? — ¢(2)¢(w)) KW is non-
negative definite on D x D for all ¢ in M6b. Hence (- (p(z)m)K , being a product of two
non-negative definite kernels (c®- (p(z)(m)K W and K, is non-negative definite. Therefore,
again by Lemma 2.1.10, it follows that M,,, ¢ € M&b, is uniformly bounded on (A, K).

To show that the spectrum of M, on (#, K) is D, let a be an arbitrary point in C \ D. Since
a(MW) =D, the operator M,_, is invertible on AW, Consequently, the operator M,_, -1
is bounded on .#W. Then, by the same argument used in the last paragraph, it follows that
M,_ -1 is bounded on (#,K) and therefore a ¢ o(M;). Since each K(-,w), w € D, is an
eigenvector of M} on (#, K), it follows that D € o (M,). Therefore we conclude that o (M) = D.

Since o(M;) = D and Myl < ¢, ¢ € M6D, for some constant ¢ > 0, it follows that M, on
(A, K) is Mobius bounded. O

The theorem given below answers Question 4.5.1 in the negative.

Theorem 4.5.3. Let K(z,w) =357 bu(z w)", by, >0, be a positive definite kernel on D x D such
that for each y € R, lim;—1(1 — |z|>)YK(z, z) is either 0 or co. Assume that the adjoint M} of
the multiplication operator by the coordinate function z on (A, K) is in By (D) and is weakly
homogeneous. Then the multiplication operator M, on (€, KKW), A > 0, is a Mobius bounded
weakly homogeneous operator which is not similar to any homogeneous operator.

Proof. Since the operator M} on (4, K) is weakly homogeneous, so is the operator M, on
(A, K). Furthermore, since the operator M, on (#, K W)y is homogeneous, by Theorem 4.2.8,
it follows that M, on (#, KK W)y is weakly homogeneous. Also, by Lemma 4.5.2, we see that
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M, on (#,KK M) has spectrum D and is Mébius bounded. Therefore, to complete the proof,
it remains to show that M, on (#, KK"W) is not similar to any homogeneous operator.

Suppose that M, on (#, KKY) is similar to a homogeneous operator, say T. Since the
operators M} on (A, KWy and M on (A, K) belong to B; (D), by Theorem 1.1.8, the opera-
tor M} on (#,KK Ay belongs to B; (D). Furthermore, since the class B; (D) is closed under
similarity, the operator T* belongs to B; (D). Also since T is homogeneous, the operator T* is
homogeneous. Recall that, upto unitary equivalence, every homogeneous operator in B; (D) is
of the form M} on (/, K ) for some 1> 0 (cf. [44]). Therefore, the operator T* is unitarily
equivalent to M} on (#, K™) for some p > 0. Consequently, M, on (#, KK™) is similar to
M, on (#,K™). Hence, by [51, Theorem 2'], there exist constants c;, ¢, > 0 such that

_Ke, 2)KMN(z, 2)
KW (z, z)

<cy, z€D.

Equivalently,
c1<(1-1z29**K(z,2) < cr,z€D.

This is a contradiction to our hypothesis that for each y € R, lim;—; (1 - 1z|2)YK (2, ) is either
0 or co. Hence the operator M, on (A, KK (’1)) is not similar to any homogeneous operator,
completing the proof of the theorem. O

Below we give one example which satisfy the hypothesis of the Theorem 4.5.3. Recall that
the Dirichlet kernel K_;) is defined by

K1) (2, w) f L (zi0)" = — log— €D
_nlz,w) = zw)" =—Ilo —, z,weD.
=D n—oh+1 zZw gl—zw

By corollary 4.3.9, the operator M, on (/, K-1)) is weakly homogeneous and belongs to
B;(D). Let y be a fixed but arbitrary real number. We will be done if we can show that

2
lim|z -1 (1_||Zz|2| A log 1_|1Z|2 is either 0 or co. To see that, we observe that
1-|z*)Y 1 . —x"logx
log 5> =lim .
lzl—1 |z|2 1-|z| x—0 1-—x
Since
fee) (ify<0)

lim —x"logx = { .
x=0 0 (ify>0),

we conclude that the kernel K1) satisfies the hypothesis of Theorem 4.5.3. Consequently, we
have the following corollary.

Corollary 4.5.4. The multiplication operator M, on (#,K._1)KM), A >0, is a Mébius bounded
weakly homogeneous operator which is not similar to any homogeneous operator.
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Chapter 5

On sum of two subnormal kernels

In this chapter, we study the subnormality of the multiplication operator M, on the Hilbert
space determined by the sum of two positive definite kernels. In section 5.1, several different
counter-examples settling a recent conjecture of Gregory T. Adams, Nathan S. Feldman and
Paul J. McGuire, in the negative, are given. Some examples, where the conjecture has an
affirmative answer, are also discussed. In section 5.2, we investigate these questions for a class
of weighted multi-shifts. Almost all of the material presented in this chapter is from [32].

5.1 Sum of two subnormal reproducing kernels need not be
subnormal

The reader is referred to chapter 1 for the basic definitions and preliminaries related to sub-
normal operators and completely monotone sequences. The following conjecture regarding
the subnormality of the multiplication operator M, on the Hilbert space determined by the
the sum of two positive definite kernels appeared in [1, page 22]. Although we have stated the
conjecture in chapter 1, it would be useful for the reader to recall it here once again.

Conjecture 5.1.1 (Adams-Feldman-McGuire, [1, page 22]). Let Ki(z, W) = Y kez, ar(z )k and
K> (z, w) = Ykez, br(z )k be any two reproducing kernels satisfying:

. ar 13 ﬂ _
(a) hmm =lim Dy = 1
(b) limay =1lim by = oo

(c) aik = f[o,l] tkdvi (1) and bik = f[o,l] tkdv,(t) forall k € Z.,, wherev, and v, are two positive
measures supported in [0, 1].

Then the multiplication operator M, on (€, Ky + K>) is a subnormal operator.
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For the construction of counter-examples to the conjecture, we make use of the following
result, borrowed from [3, Proposition 4.3].

Proposition 5.1.2. For distinct positive real numbers ay, ..., a, and non-zero real numbers
bo, ..., bn, consider the polynomial p(x) = I1}'_ (x + ay + iby) (x + ar — iby). Then the sequence
{ﬁ}l <z, 1s never a Hausdorff moment sequence.

For r > 0, let K; be a positive definite kernel given by

k+r

K (z,w):= Y. zw)*  (z,weD).

keZ.
The case r = 1 corresponds to the Bergman kernel. It is easy to see that the multiplication
operator M, on (#, K;) is contractive subnormal and the representing measure is rx" ' dx.
For s, t > 0, consider the multiplication operator M on (/#, K ;), where

(k+8)(k+1)

K i(z,w):= ) z)*  (z,weD).

keZ

The case s = 1 and ¢ = 2, corresponds to the kernel (1 — ziv) 3. Note that M, on (/, Ky is
contractive subnormal and the representing measure v is given by

v ~-s?x5logx dx ifs=1t
v(x) = s
spi—x 1:’; Ldx if s#t.

N

One easily verifies that K, and K ; both satisfy all the conditions (a), (b) and (c) of the
Conjecture 5.1.1. But the multiplication operator on their sum need not be subnormal for all
possible choices of 7, s, £ > 0. This follows from the following theorem.

Theorem 5.1.3. The multiplication operator M, on (A, K, + K ;) is subnormal if and only if
(rs+st+ tr)228rzst. (5.1)

Proof. Notice that

kK*+(s+ 1+ k+2st .
(zw) (z, weD).

(Kr + Ks,1) (2, w) = Z
keZ, st

The roots of the polynomial x* + (s + ¢ + %)x +2st are

(s t+ )+ (s 4 22 Bt

X = and
2
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(s =\ s+ 2 -85t

X =
2 2

Suppose that (rs+st+tr)? = 8r?st. Then the kernel K +Kj; is of the form 2Ky » where s’ = —x;
and ¢’ = —x,. Hence M, on (#, K, + K ;) is a subnormal operator.

Conversely, assume that (rs+ st + tr)? < 8r2st. Then it follows from Proposition 5.1.2 that
M on (A, K, + K ;) cannot be subnormal. O

Remark 5.1.4. Ifwe choose s =1, t =2 and r > 2, then the inequality (5.1) is not valid.

Recall that an operator T in B(#) is said to be hyponormal if 7* T — T T* = 0. It is not hard
to verify that a weighted shift T with weight sequence {w} <z, is hyponormal if and only if
{wn}nez, is increasing (cf. [51]). We point out that if K; and K, are two reproducing kernels
such that the multiplication operators M, on (/, K;) and (/, K») are hyponormal, then the
multiplication operator M, on (#, Kj + K3) need not be hyponormal. An example illustrating
this is given below.

Example 5.1.5. Forany s, t > 0, consider the reproducing kernel K>' given by

-\3
ZW
K%'z, w):= 1+ sz + s> (zi0)* + tl( )

Note that K>' defines a reproducing kernel on the unit disc D x D and the multiplication op-
erator M, on (#,K>") may be realized as a weighted shift operator with weight sequence

\/:, \/:, - 21, ). Hence M, on (#,K*") is hyponormal ifand only if s* < t < s°
Observe that M, on (7€, K +K*") may be realized as a weighted shift operator with weight
sequence (\/ ﬁ, \/ st5 \/ £+52 1,1,--+). For the hyponormality of this weighted shift operator,

52+s’2’ t+t'

s+s'

it is necessary that — S+s, S 2o

which is true only when s = s'.

We remark that this is different from the case of the product of two kernels, where, the
hyponormality of the multiplication operator on the Hilbert space (#, K; K») follows as soon
as we assume they are hyponormal on the two Hilbert spaces (#, K;) and (A, K>»), see [8].

If T € B(/) is left invertible, then the operator T, given by T’ = T(T* 7)1, is said to be the
operator Cauchy dualto T. The following result has been already recorded in [6, Proposition 6],
which may be paraphrased as follows:

Theorem 5.1.6. Let K(z, w) = ez, ax(z )* be a positive definite kernel on D x D and M, be
the multiplication operator on (€, K). Assume that M is left invertible. Then the followings are
equivalent:

(i) {ai}kez, is a completely alternating sequence.
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(ii) The Cauchy dual M., of M is completely hyperexpansive.

(iii) Forallt>0, { kez., is a completely monotone sequence.

1
t(ak—1)+1}

(iv) Forallt >0, the multiplication operator M, on (€, tK + (1 — t)Sp) is contractive subnor-
L_ js the Szego kernel of the unit discD.

mal, where Sp(z, w) = =20

Remark 5.1.7. If{ai}iez, is a completely alternating sequence, then putting t = 1 in part (iii) of
Theorem 5.1.6, it follows that {aik} kez, 1S a completely monotone sequence.

Corollary 5.1.8. Let Ki(z, w) =Y jcz, ar(z W) and Ky (z, w) = Ykez, br(z )* be any two repro-
ducing kernels such that{ay} ez, and{bi}recz, are completely alternating sequences, then the
multiplication operator M, on (A, K + K>) is subnormal.

Proof. Itis easy to verify that the sum of two completely alternating sequences is completely
alternating. The desired conclusion follows immediately from Remark 5.1.7. O

Remark 5.1.9. Note that {@} kez, IS a completely alternating sequence, but the sequence

{ (k+s)(k+1)
st

cussed in Theorem 5.1.3, does not satisfy the hypothesis of Corollary 5.1.8.

} kez, IS not completely alternating. Thus the reproducing kernels K, and K, dis-

Proposition 5.1.10. Let K(z, w) = Y iez, ar(z )k be a positive definite kernel such that the
multiplication operator M, on (#€,Sp + K) is subnormal. Then the multiplication operator M,
on (A€, K) is subnormal.

Proof. From the subnormality of M, on (/#,Sp + K), it follows that {ﬁ} kez, is a completely

monotone sequence. Thus the sequence {1 — ﬁ} rez, is completely alternating. Note that
-1 _ -1 1 -1
(ax) = (I+ap) (A- m)
(e.0)
= Z L
i (I+ag)! *

Observe that {m} rez, is a completely monotone sequence for all j = 1. Hence so is the

sequence of partial sums {3 1

J=1 (1+ay)]
monotone sequences, the sequence {a; '}ez, is completely monotone. O

} xez, for each n = 1. Now, being the limit of completely

Remark 5.1.11. We have the following remarks:

(i) The converse of the Proposition 5.1.10 is not true (see the example discussed in part (ii) of
the Remark 5.1.14).

(ii) If we replace the Szeg6 kernel Sp by the Bergman kernel Bp, then the conclusion of the
Proposition 5.1.10 need not be true. For example, by using Proposition 5.1.2, one may
choose a > 0 such that the sequence {m} kez, IS not completely monotone, but the
sequence {m} kez, 1S completely monotone.
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For A, u > 0, consider the positive definite kernel

Kz w)= Y Wi ok @we),

kez., (1

I'(x+k)
T'(x)

corresponds to the kernel (1 — zi) . Note that the multiplication operator M, on (A, K} ;)

where (x)j is the Pochhammer symbol given by . It is easy to see that the case u =1

may be realized as a weighted shift operator with weight sequence { %} kez, -
The first part of the following theorem is proved in [25] and the representing measure is
given in [23, Lemma 2.2]. Here, we provide a proof for the second part only.

Theorem 5.1.12. The multiplication operator M, on (#, K, ) is

(i) subnormal if and only if A = u. In the case of subnormality, the representing measure v of
M is given by

L) -1 A—p—-1 .
dv(x) = mxu A-x""*'dx ifA>p
01(x)dx ifA=u,

where 61 is the Dirac delta function.
(ii) completely hyperexpansive if and only if A< u< A +1.

Proof. The multiplication operator M on (#, K, ) is completely hyperexpansive if and only

Wi

if the sequence { I

} rez, is completely alternating. Here

((.U)k) Wk W _ Wik - WA+ k-1

M) WD D A k+1
_H-A (Wi
A A+
By the first part of this theorem, it follows that {”R—A i ;f’i)l’“)k }kez, is completely monotone if and
onlyif Asu<sA+1. O

The following proposition gives a sufficient condition for the subnormality of the multipli-
cation operator on Hilbert space determined by the sum of two kernels belonging to the class
Ka -

Proposition 5.1.13. Let 0 < u < A’ < A < A' + 1. Then the multiplication operator M, on
(A, Ky, + Ky ) is contractive subnormal.
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Proof. Observe that

D+ A
Z Mk MRk

(Kau+ Ky (2, w) = (zw)* (z, weD)

kezZ, (W
and
(W W 1
W+ AWk AWeq4+ A’

[

Since u < A/, it follows from part (i) of Theorem 5.1.12 that {(“ : }kez, is completely monotone.

If A’ <A <A’ +1, then by part (ii) of Theorem 5.1.12, the sequence {(m’C } kez, 1 completely

alternating. Thus so is the sequence {1 + &lf))’;} rez,- Hence, by Remark 5.1.7, we see that

{(1+ ((;;LL—,))’;)_I} kez, is @ completely monotone sequence. Therefore, being a product of two

completely monotone sequences, it follows that {m}keL is completely monotone. This
completes the proof. O

Remark 5.1.14. Here are some remarks:

(i) Letp <A and A= A"+ 1. The representing measure for the sequence {(1 + { J;LL’))I; )™ kez, 1S

A'x2N1dx. Also the representing measure for the sequence {m}k€Z+ is given in part (i) of

Theorem 5.1.12. Thus, using Remark 2.4 of [3], one may obtain the representing measure

for M on (A, K}, + Ky ) to be given by

AT ' 1-x , ’
dv(x) = —(,)x“ ! U A (L ‘ldt) dx.
Ll —pw 0
But in general, when A < ' + 1, we do not know the representing measure for the sequence
M1 (1)

{(1 + ) }keL as well as for the sequence {m}kez
(i) Note that (K11 +K31)(z, W) = Y ez, 5 k2+3k+4 (zw)¥ for all z, w € D. It follows from Propo-

sition 5.1.2 that the sequence {m} kez, IS not completely monotone. Consequently,
the multiplication operator M, on (#, Ky, + K3 1) is not subnormal. For A > 1, consider
the kernel Ky + K3 1. We claim that there exists a Ay > 1 such that { wn (D

Vet Bk
completely monotone. If not, assume that {%} rez, IS completely monotone for all
A>1. As A goes to 1, one may get that {——— Yy

+3k+4 }kez is completely monotone, which is a
contradiction. Therefore, we conclude that there exists a Ay > 1 such that the multipli-

}kez+ is not

cation operator M, on (A€, Ky, 1 + K3 1) is not subnormal. By using the properties of the
gamma function, one may verify that K, and Kz 1 both satisfy (a), (b) and (c) of the
Conjecture 5.1.1. Hence this also provides a class of counterexamples for the Conjecture
5.1.1.
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Proposition 5.1.15. Let0 < p < g < p+ 1. Suppose K(z, w) = Y ez, aZ(ZlI})k and Ky (z, w) =
Y kez, aZ(z )k are any two reproducing kernels such that {ax}kez, is a completely alternating
sequence. Then the multiplication operator M, on (A, K1 + K») is subnormal.

Proof. Note that
1 1
a,f+az - aZ(1+az_p)
Since 0 < g — p <1 and {as}rez, is completely alternating, it follows from [7, Corollary 1] that
{ az_p }kez, is also completely alternating. Thus so is {1 + az_p }kez, . Hence, by Remark 5.1.7,
{1+ az_p)‘l}kEL is completely monotone. Also, by [11, Corollary 4.1], {a,;p}kEL is completely

monotone. Now the proof follows as the product of two completely monotone sequences is

, keZ,.

also completely monotone. O

Example 5.1.16. Recall that any p > 0, the positive definite kernel Ky, is defined by

Kp(zw):= Y k+DP)f  (zweDb).
keZ .

It is known that the multiplication operator M, on (#€, K y)) is subnormal with the representing

_ -1
measure dv(x) = %dx (see [24, Theorem 4.3]). By Proposition 5.1.15, it follows that M,

on (A, Kp) + Kg) is subnormal ifp<q < p +1.
The next result also provides a class of counter-examples to the Conjecture 5.1.1.

Theorem 5.1.17. The multiplication operator M, on (#€, Ky + Kp+2)) is subnormal if and only
ifp=1.

Proof. For x € (0,1], let g(x) := %p) fo_logx(—logx — )P lsiny dy and dv(x) = g(x)dx. Then

1
f xkdv(x)
0

1 oo preV ‘
— xF(~logx—y)P ldxsiny d
F(p)fy:ofxzo gx=y yay
- L e_(k“)yf e~ *Duyr=laysiny dy
I'(p) Jy=0 u=0
1 oo r
= — e~ krly 2 () siny dy
I'(p) Jy=0 (k+1)P
1 1

(k+1DP (k+1)2+1°

Thus the sequence {W m} rez, is completely monotone if and only if the function g(x)
is non-negative a.e. Note that the function g(x) is non-negative on (0, 1] a.e. if and only if the
function h(x) := g(e™™) is non-negative a.e. on (0,00). Now

h(x) = f(x AL 1smydy—

) f(l WP sin(xy) dy.

I'(p)
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By [33, Chapter 3, pp 439], we have h(x) = 1 1(x), where sp 1 1(x) is the Lommel
11 _

VEN
HP)p 22
function of first kind. Thus the sequence {W m} kez, being completely monotone

is equivalent to the non-negativity of the function sp 11(x) on (0,00). If p = 1, then by

"22

[53, Theorem A], we get that S, 11 (x) = 0 for all x > 0. The converse also follows from [53,
272

Theorem 2], which completes the proof. O

5.2 Multi-variable case

Given a commuting m-tuple T = (T3,..., T);) of bounded linear operators on %, set
m
Qr(X):=) TXT;  (XeB(H)).
i=1
For X € B(#) and k = 1, one may define Q% (X) := Qr(Q¥™1(X)), where Q%.(X) = X.
Recall that T is said to be
(i) spherical contractionif Qp(I) < 1.

(ii) jointly left invertible if there exists a positive number c such that Qr(I) = cI.

For a jointly left invertible m-tuple T, the spherical Cauchy dual T® of T is the m-tuple
(13,15 -+, Tp)), where T} := T;(Qr(I)! (i =1,2,---,m). We say that T is a joint complete
hyperexpansion if

n
B =Y -D¥"|okm =0 m=1.
k=0 k

Recall that for m = 1, B,, denotes the Euclidean unit ball {z € C™ : |z1|? + - + |z;n]? < 1}.
For the rest of the section, we write B instead of B,,. Also let 0B denote the unit sphere
{zeC™:|z1)*++ - +|zp/* =1} inC™.

Let {fa}qez be a multi-sequence of positive numbers. Consider the Hilbert space H?(B)
of formal power series f(z) =} gezm f(a)z® such that

1134 = L If(@PB; <oo.
aeZ

The Hilbert space H? () is said to be spherically balanced if the norm on H?(f) admits the
slice representation [v, H2(y)], that is, there exist a Reinhardt measure v and a Hilbert space
H?(y) of formal power series in one variable such that

By = | 1elpgav@  (FeHAB),
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where y = {yi}rez, is given by the relation S = y/a/l1 2% 12(9p,v) for all @ € Z'". Here, by the Rein-
hardt measure, we mean a T -invariant finite positive Borel measure supported in 0B, where
T™ denotes the unit m-torus {z € C" :|z;| = 1,---,|z;;| = 1}. For more details on spherically
balanced Hilbert spaces, we refer to [14].

The following lemma has been already recorded in [14, Lemma 4.3]. We include a statement
for ready reference.

Lemma 5.2.1. Let H*(f8) be a spherically balanced Hilbert space and let [v, H*(y)] be the slice
representation for the norm on H? (P). Consider the m-tuple M, = (My,,---,M,, ) of multiplica-
tion by the coordinate functions zy,-++ , zy, on H*(8). Then for everyne Z, and a € Z'",

n n
(Bu(M2)z% 2% = Y (D7 [k (D2% 2% = Y D " 12, 12 g -
k=0 k ‘ k=0 k ’

If the interior of the point spectrum o, (M}) of M} is non-empty, then H?() may be
realized as a reproducing kernel Hilbert space (#, K) [36, Propositions 19 and 20], where the
reproducing kernel K is given by

z%w?*

K(zw)= ).

7 (z,we T ,(M)).
aeZll a

This leads to the following definition.

Definition 5.2.2. Let (A, K) be a reproducing kernel Hilbert space defined on the open unit ball
B with reproducing kernel K(z, w) = ¥ qezm aqz® W for all z, w € B. We say that K is a balanced
kernel if (#, K) is a spherically balanced Hilbert space. Further, the multiplication m-tuple M,
on (A€, K) may be called a balanced multiplication tuple.

Remark 5.2.3. The spherical Cauchy dual M, of a jointly left invertible balanced multiplication

tuple M, can be seen as a multiplication m-tuple M7, = (M3 ,---, M ) of multiplication by the

1
coordinate functions zy,- -+, z;, on HZ(,Bs), where

1
Bo = T 2% 208y  (@€Z).
a

In other words, the norm on H?(8°) admits the slice representation [v, H*(y")], where Y =17k
forallkez,.

Proposition 5.2.4. If Ki(z, w) = Y. gezm gz w* and Ky(z, w) = ¥ gezm boez2®w® are any two
balanced kernels with the slice representations [v, H>(y1)] and [v, H*(y»)] respectively, then
K + K> is a balanced kernel with the slice representation [v/2, H*(y)], wherey = {y} is given by
the relation

2
yon V2Yi1Yk2 keZy).

=7 2
01 * 7/k,z)l/2
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Proof. For every a € Z'"*, we have

2 2
Gt b. = 1 N 1 Mg a2
a a= 5 an2 2 a T2 2 a2 ’
Va2 208 Via2l#¥2esy)  Yia1Yia 212 12 0m.0)
Therefore
2 2
12%)12 _ Va2 oo =2 112°12
(#,K1+Ko) = 120B,v/2) — Vlal 12(0B,v/2)

(7’|2a|,1 +7’|2a|,2)

forall a € Z". Since {z%} ¢z forms an orthogonal subset of L2(0B, v/2), the conclusion follows
immediately. O

Remark 5.2.5. The conclusion of the Proposition 5.2.4 still holds even if we choose two different
Reinhardt measures v, and v, in the slice representations of Ky and K, such that for some
sequence of positive real numbers {hi} ez, , 12% I 120m,v,) = Malll2% I 120m,v,) for all a € Z1'. For
every j = 1,2, it is easy to verify that

a+e; 2
i Iz ”Lz(atas,vj)
‘ a2 -
l:l ”Z ||L2(6IHS,VJ)

where e; is the i th standard basis vector of C™. This implies that {hi} ez, is a constant sequence,

say c. Now, by a routine argument, using the Stone-Weierstrass theorem, we conclude that
2

V1 =C"V.

For a fixed Reinhardt measure v, let BK(v) denote the class of all balanced kernels with the
following properties:

(i) Forall K € BK(v), the norm on (#, K) admits the slice representations with fixed Rein-
hardt measure v.

(ii) For every member K of BK(v), the multiplication operator M, on (#, K) is jointly left
invertible.

(iii) The Cauchy dual tuple M3 of M, is a joint complete hyperexpansion.

Lemma 5.2.6. For every member K of BK(v), the multiplication operator M, on (#,K) is a
subnormal spherical contraction.

Proof. Let K € BK(v) and [v, H?(y)] be the slice representation for the norm on (#, K). Note
that the Cauchy dual M3, of M is a balanced multiplication tuple with slice representation
[v, H?(1/7)] (see Remark 5.2.3). Since M is a joint complete hyperexpansion, it follows from
Lemma 5.2.1 that {1/ ﬁc} kez, 1s a completely alternating sequence. Therefore, by Remark
5.1.7, {ﬁc} kez. 1s a completely monotone sequence. Now again by applying Lemma 5.2.1, we
conclude that the multiplication operator M is a subnormal spherical contraction. O
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Theorem 5.2.7. IfK; and K, are any two members of BK(v), then the multiplication operator
M, on (A, K, + K) is a subnormal spherical contraction.

Proof. Note that the norm on (#, K; + K») admits the slice representation [v/2, H?(y)], where

2 2
ﬁc =2 Zk'f;f forall k € Z, (see Proposition 5.2.4). It follows from the proof of Lemma 5.2.6 that
k1 k,2

{1/7% \}kez, and {1/y7 ,}xez, are completely alternating. So their sum, and hence {1/y{}tez,
is a completely alternating sequence. Now the conclusion follows by imitating the argument
given in Lemma 5.2.6. O

For A >0, consider the positive definite kernel K given by

Ky(z,w) = (z, w eB).

(1~ (z, wy*
The norm on (H,K}) admits the slice representation [0, H*(y)], where o denotes the nor-
malized surface area measure on 0B and yi = % for all k € Z,. It is well known that the
multiplication operator M, 3 on (H, K}) is a subnormal contraction if and only if A = m. The
same can also be verified by using Lemma 5.2.1 and part (i) of Theorem 5.1.12. Similarly, by
using Lemma 5.2.1 and part (ii) of Theorem 5.1.12, one may conclude that the Cauchy dual
tuple Mi 4 is a joint complete hyperexpansion if and only if m < A < m + 1. Thus, if we choose
A and A are such that m < 1,1’ < m+ 1. Then K} and Kj' are in BK(0). It now follows from
Theorem 5.2.7 that the multiplication operator M, on (/#, K) + Kj/) is subnormal. This is also

included in the following example.

Example 5.2.8. Let0 < m=< A’ <A <A +1. Note that the norm on (A, K) + Ky/) admits the slice
% forall k€ Z,. From the proof of Proposition
5.1.13, it is clear that {ﬁc} kez, 1s completely monotone. Hence the multiplication operator M,

on (A,Ky + Ky/) is subnormal.

representation [0/2, H? ()], where ﬁc =

A m-tuple § = (S3,...,Sm) of commuting bounded linear operators Sy, ..., Sy, in B(A) is
said to be a spherical isometry if S{S1 +---+ S;,S, = I. In other words, Qs(I) = I. The most
interesting example of a spherical isometry is the Szeg6é m-shift, that is, the m-tuple M, of
multiplication operators M,,, -+, M,, on the Hardy space H?(0B) of the unit ball.

Let v be a Reinhardt measure. Consider the multiplication tuple M, on the reproducing
kernel Hilbert space (/#, K") where

K'(zw)= ) 2% 50,2 0 (zweB). (5.2)
aeZ’l

Note that M, is a spherical isometry. In this case, the norm on (#,K") admits the slice
representation [v, H?(D)], where H2(D) is the Hardy space of the unit disc.
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Theorem 5.2.9. Let K be the reproducing kernel given as in equation (5.2) and K be any
balanced kernel with the slice representation [v, H*(y)]. Assume that the multiplication tuple
M on (#,K" + K) is subnormal. Then the multiplication tuple M, on (#¢,K) is subnormal.

Proof. Observe that the norm on (#, K" + K) admits the slice representation [v/2, H*(y)],
where yi =21+ I/f/k)_1 forall k € Z,. Since M, on (#, K" + K) is subnormal, it follows from
Lemma 5.2.1 that {yi} kez, is a completely monotone sequence. Thus the sequence {(1 +
1/7%) " kez, is completely monotone. If we replace ai by 1/77 in the proof of the Proposition
5.1.10, we get that {)7%6} kez, is completely monotone. Now, by applying Lemma 5.2.1, we
conclude that the multiplication operator on (/, K) is subnormal. O

We conclude this chapter with the following questions:
Question 5.2.10. In view of Proposition 5.1.13 and Theorem 5.1.17, it is natural to ask that

(i) what is the necessary and sufficient condition for the multiplication operator M, on
(A, Ky, + Ky ) to be subnormal?

(ii) what is the necessary and sufficient condition for the multiplication operator M, on
(A, Kp) + K(g)) to be subnormal?

Question 5.2.11. Let KV be the reproducing kernel given as in equation (5.2) and K be any
positive definite kernel given by

K(z,w):= ) aqz%w" (z, w €B).
aezZ'

If the m-tuple M, = (M,,..., M, ) on (#,K" + K) is subnormal, then is it necessary that the
m-tuple M, on (A, K) is also subnormal?
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