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Abstract

LetΩ⊂Cm be a bounded domain and K :Ω×Ω→C be a sesqui-analytic function. We show

that if α,β > 0 be such that the functions K α and K β, defined on Ω×Ω, are non-negative

definite kernels, then the Mm(C) valued function

K(α,β)(z, w) := K α+β(z, w)
((
∂i ∂̄ j logK

)
(z, w)

)m

i , j=1
, z, w ∈Ω,

is also a non-negative definite kernel on Ω×Ω. Then a realization of the Hilbert space

(H ,K(α,β)) determined by the kernelK(α,β) in terms of the tensor product (H ,K α)⊗ (H ,K β)

is obtained. For two reproducing kernel Hilbert modules (H ,K1) and (H ,K2), let An , n ≥ 0, be

the submodule of the Hilbert module (H ,K1)⊗ (H ,K2) consisting of functions vanishing to

order n on the diagonal set ∆ := {(z, z) : z ∈Ω}. Setting S0 =A ⊥
0 , Sn =An−1 ªAn , n ≥ 1, leads

to a natural decomposition of (H ,K1)⊗ (H ,K2) into infinite direct sum
⊕∞

n=0 Sn . A theorem

of Aronszajn shows that the module S0 is isomorphic to the push-forward of the module

(H ,K1K2) under the map ι : Ω→Ω×Ω, where ι(z) = (z, z), z ∈Ω. We prove that if K1 = K α

and K2 = K β, then the module S1 is isomorphic to the push-forward of the module (H ,K(α,β))

under the map ι.

Let Möb denote the group of all biholomorphic automorphisms of the unit disc D. An

operator T in B(H ) is said to be weakly homogeneous if σ(T ) ⊆ D̄ and ϕ(T ) is similar to T

for each ϕ in Möb. For a sharp non-negative definite kernel K :D×D→Mk (C), we show that

the multiplication operator Mz on (H ,K ) is weakly homogeneous if and only if for each ϕ in

Möb, there exists a gϕ ∈ Hol(D,GLk (C)) such that the weighted composition operator MgϕCϕ−1

is bounded and invertible on (H ,K ). We also obtain various examples and nonexamples of

weakly homogeneous operators in the class FB2(D). Finally, it is shown that there exists a

Möbius bounded weakly homogeneous operator which is not similar to any homogeneous

operator.

We also show that if K1 and K2 are two positive definite kernels on D×D such that the

multiplication operators Mz on the corresponding reproducing kernel Hilbert spaces are

subnormal, then the multiplication operator Mz on the Hilbert space determined by the sum

K1 +K2 need not be subnormal. This settles a recent conjecture of Gregory T. Adams, Nathan S.

Feldman and Paul J. McGuire in the negative.
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Chapter 1

Introduction

(Reproducing kernel Hilbert spaces): Let Ω ⊂ Cm be a bounded domain and H be a Hilbert

space consisting of Ck valued holomorphic functions onΩ. Assume that the evaluation map

Ew : H → Ck , defined by Ew ( f ) = f (w), f ∈ H , is bounded for each w ∈ Ω. The function

K :Ω×Ω→Mk (C), defined by

K (z, w) := EzE∗
w , z, w ∈Ω,

is called the reproducing kernel of H , and H is called the reproducing kernel Hilbert space

with the reproducing kernel K . The kernel function K satisfies the following two properties.

For all w inΩ and η in Ck ,

(i) the function K (·, w)η is in H ,

(ii)
〈

f ,K (·, w)η
〉
H = 〈

f (w),η
〉
Ck for all f in H .

Every reproducing kernel K is a non-negative definite kernel in the following sense.

A function K :Ω×Ω→Mk (C) is said to be a non-negative definite kernel if for any subset

{w1, . . . , wn} ofΩ, the n ×n block matrix
(
K (wi , w j )

)n
i , j=1 is non-negative definite, that is,

n∑
i , j=1

〈
K (wi , w j )η j ,ηi

〉≥ 0, η1, . . . ,ηn ∈Ck .

Analogously, a function K : Ω×Ω→ Mk (C) is said to be a positive definite kernel if for any

subset {w1, . . . , wn} of Ω, the n ×n block matrix
(
K (wi , w j )

)n
i , j=1 is positive definite, that is, it

is non-negative definite and invertible. We always assume that the kernel K (z, w) is sesqui-

analytic, that is, it is holomorphic in z and anti-holomorphic in w . If K is the reproducing

kernel of a reproducing kernel Hilbert space H , then for any subset {w1, . . . , wn} of Ω and
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η1, . . . ,ηn in Ck , we have

n∑
i , j=1

〈
K (wi , w j )η j ,ηi

〉= n∑
i , j=1

〈
K (·, w j )η j ,K (·, wi )ηi

〉
= ∥∥ n∑

i=1
K (·, wi )ηi

∥∥2 ≥ 0.

Thus every reproducing kernel is a non-negative definite kernel.

Conversely, given any non-negative definite kernel K :Ω×Ω→Mk (C), let H0 be the vector

space consisting of functions of the form
∑n

i=1 K (·, wi )ηi , wi ∈ Ω, ηi ∈ Ck , i = 1, . . .n, n ≥ 1.

Define an inner product on H0 by the following formula:〈 n∑
i=1

K (·, wi )ηi ,
n∑

j=1
K (·, w ′

j )η′j
〉
=

n∑
i , j=1

〈
K (w ′

j , wi )ηi ,η′j
〉

, wi , w ′
i ∈Ω, ηi ,η′i ∈Ck . (1.1)

Using the non-negative definiteness of K , it is easily verified that (1.1) indeed defines an inner

product on H0. Let H be the completion of H0. Then H is a Hilbert space consisting of

functions on Ω and K is the reproducing kernel of H . Note that if the kernel K is sesqui-

analytic, then the Hilbert space H consists of holomorphic functions onΩ taking values in Ck .

This completes the proof of the Theorem due to Moore stated below.

Theorem 1.1.1 (Moore). If K :Ω×Ω→Mk (C) is a sesqui-analytic non-negative definite kernel,

then there exists a unique Hilbert space H consisting of Ck valued holomorphic functions onΩ

such that the evaluation map Ew is bounded for each w ∈Ω and K is the reproducing kernel of

H .

We let (H ,K ) denote the unique reproducing kernel Hilbert space H determined by the

non-negative definite kernel K . Also for K :Ω×Ω→Mk (C), we write K º 0 to denote that K is

non-negative definite. For two functions K1,K2 :Ω×Ω→Mk (C), we write K1 º K2 if K1−K2 º 0.

Analogously, we write K ¹ 0 if −K is non-negative definite and K1 ¹ K2 if K1 −K2 ¹ 0.

We refer to [4] and [47] for the relationship between non-negative definite kernels and

Hilbert spaces with the reproducing property as above.

LetΩ⊂Cm be a bounded domain and K :Ω×Ω→C be a non-zero sesqui-analytic function.

Let t > 0 be any arbitrary positive real number. The function K t is defined in the usual manner,

namely K t (z, w) = exp(t logK (z, w)), z, w ∈ Ω, assuming that a continuous branch of the

logarithm of K exists onΩ×Ω. Clearly, K t is also sesqui-analytic. However, if K is non-negative

definite, then K t need not be non-negative definite unless t is a natural number. A direct

computation, assuming the existence of a continuous branch of logarithm of K on Ω×Ω,

shows that for 1 ≤ i , j ≤ m,

∂i ∂̄ j logK (z, w) = K (z, w)∂i ∂̄ j K (z, w)−∂i K (z, w)∂̄ j K (z, w)

K (z, w)2
, z, w ∈Ω,
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where ∂i and ∂̄ j denote ∂
∂zi

and ∂
∂w̄ j

, respectively.

For any positive integer s ≥ 2, define (K s∂i ∂̄ j logK (z, w))m
i , j=1 to be

K (z, w)s−2(K (z, w)∂i ∂̄ j K (z, w)−∂i K (z, w)∂̄ j K (z, w)
)m

i , j=1,

where we have not assumed that a continuous branch of the logarithm of K (z, w) exists on

Ω×Ω. Also, unless t is a positive integer, we write K t with the understanding that a continuous

branch of logarithm of K exists onΩ×Ω. Similarly, with the same hypothesis on K , we write(
∂i ∂̄ j logK (z, w)

)m
i , j=1.

For a sesqui-analytic function K :Ω×Ω→C satisfying K (z, z) > 0, an alternative interpreta-

tion of K (z, w)t (resp. logK (z, w)) is possible using the notion of polarization. The real analytic

function K (z, z)t (resp. logK (z, z)) defined onΩ extends to a unique sesqui-analytic function

in some neighbourhood U of the diagonal set {(z, z) : z ∈Ω} in Ω×Ω. If the principal branch of

logarithm of K exists on Ω×Ω, then it is easy to verify that these two definitions of K (z, w)t

(resp. logK (z, w)) agree on the open set U .

(Hilbert Modules): We will find it useful to state many of our results in the language of

Hilbert modules. The notion of a Hilbert module was introduced by R. G. Douglas (cf. [29]),

which we recall below. We point out that in the original definition, the module multiplication

was assumed to be continuous in both the variables. However, for our purposes, it would be

convenient to assume that it is continuous only in the second variable.

Definition (Hilbert module). A Hilbert module M over a unital, complex algebraA consists of

a complex Hilbert space M and a map (a,h) 7→ a ·h, a ∈A,h ∈M , such that

(i) 1 ·h = h

(ii) (ab) ·h = a · (b ·h)

(iii) (a +b) ·h = a ·h +b ·h

(iv) for each a in A, the map ma : M → M , defined by ma(h) = a ·h, h ∈ M , is a bounded

linear operator on M .

A closed subspace S of M is said to be a submodule of M if mah ∈ S for all h ∈ S

and a ∈ A. The quotient module Q := H
/
S is the Hilbert space S ⊥, where the module

multiplication is defined to be the compression of the module multiplication on H to the

subspace S ⊥, that is, the module action on Q is given by ma(h) = PS ⊥(mah), h ∈S ⊥.

Two Hilbert modules M1 and M2 overA are said to be isomorphic if there exists a unitary

operator U : M1 →M2 such that U (a ·h) = a ·Uh, a ∈A, h ∈M1.

Now, if M0,M1, with M1 ⊆M0, are a pair of nested submodules of M , then the quotient
M0

/
M1 inherits a module multiplication from M0. Notice that the two projection operators



4 1. Introduction

P0 : M0 → M0 ªM1 and P : M →M0 ªM1 agree on the subspace M0. Thus ma( f ) = P (ah),

h ∈M0 ªM1, a ∈A, defines a module multiplication on M0 ªM1. Note that, in general, the

module M0 ªM1 is neither a submodule nor a quotient module of M . Indeed, one may say it

is a semi-invariant module of the Hilbert module M .

Let K :Ω×Ω→Mk (C) be a non-negative definite kernel. Assume that the multiplication

operator Mzi by the i th coordinate function zi is bounded on (H ,K ) for i = 1, . . . ,m. Then

(H ,K ) may be realized as a Hilbert module over the polynomial ring C[z1, . . . , zm] with the

module action given by the point-wise multiplication:

mp (h) = ph, h ∈ (H ,K ), p ∈C[z1, . . . , zm].

(Tensor products): Let K1 and K1 be two scalar valued non-negative definite kernels defined

onΩ×Ω. We identify the tensor product (H ,K1)⊗ (H ,K2) as a Hilbert space of holomorphic

functions defined onΩ×Ω. Then it is the reproducing kernel Hilbert space with the reproducing

kernel K1 ⊗K2 where K1 ⊗K2 : (Ω×Ω)× (Ω×Ω) →C is given by

(K1 ⊗K2)(z,ζ; w,ρ) = K1(z, w)K2(ζ,ρ), z,ζ, w,ρ ∈Ω.

We also make the standing assumption that the multiplication operators Mzi , i = 1, . . . ,m, are

bounded on (H ,K1) as well as on (H ,K2). Thus the map

m :C[z1, . . . , z2m]× (
(H ,K1)⊗ (H ,K2)

)→ (H ,K1)⊗ (H ,K2)

defined by

mp (h) = ph, h ∈ (H ,K1)⊗ (H ,K2), p ∈C[z1, . . . , z2m],

provides a module multiplication on (H ,K1)⊗ (H ,K2) over the polynomial ring C[z1, . . . , z2m].

The module (H ,K1)⊗ (H ,K2) admits a natural direct sum decomposition as follows. First, we

recall some multi-index notations.

Let Z+ denote the set of all non-negative integers. For i = (i1, . . . , im) ∈Zm+ , let |i | = i1+·· ·+
im . For a holomorphic function f :Ω×Ω→C, let

(
∂
∂ζ

)i f (z,ζ) be the function ∂|i |

∂ζ
i1
1 ···∂ζim

m

f (z,ζ)

and
((

∂
∂ζ

)i f (z,ζ)
)
|∆ be the restriction of

(
∂
∂ζ

)i f (z,ζ) to the set ∆, where ∆ is the diagonal set

{(z, z) : z ∈Ω}. Also if K :Ω×Ω→C is non-negative definite, then ∂̄i K (·, w) denotes the function
∂|i |

∂w̄
i1
1 ···∂w̄ im

m

K (·, w).

For a non-negative integer k, let Ak be the subspace of (H ,K1)⊗ (H ,K2) defined by

Ak := {
f ∈ (H ,K1)⊗ (H ,K2) :

((
∂
∂ζ

)i f (z,ζ)
)
|∆ = 0, i ∈Zm

+ , |i | ≤ k
}
. (1.2)

It is verified that the subspaces Ak , k ≥ 0, are closed and also invariant under the multipli-

cation by any polynomial in C[z1, . . . , z2m], therefore, they are submodules of (H ,K1)⊗ (H ,K2).
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Setting S0 =A ⊥
0 and Sk :=Ak−1 ªAk , k ≥ 1, we obtain a direct sum decomposition of the

Hilbert space

(H ,K1)⊗ (H ,K2) =
∞⊕

k=0

Sk .

In this decomposition, the subspaces Sk ⊆ (H ,K1)⊗ (H ,K2), k ≥ 0, are not necessarily

submodules. As we have already mentioned, these are called semi-invariant modules following

the terminology commonly used in operator theory. We aim to study the compression of the

module action to these subspaces analogous to the ones studied in operator theory. Also,

such a decomposition is similar to the Clebsch-Gordan decomposition, which describes the

decomposition of the tensor product of two irreducible representations, say %1 and %2 of a

group G when restricted to the diagonal subgroup in G ×G :

%1(g )⊗%2(g ) =⊕
k

dkπk (g ),

where πk , k ∈ Z+, are irreducible representation of the group G and dk , k ∈ Z+, are natural

numbers. However, the decomposition of the tensor product of two Hilbert modules cannot be

expressed as the direct sum of submodules. Noting that S0 is a quotient module, describing all

the semi-invariant modules Sk , k ≥ 1, would appear to be a natural question. To describe the

equivalence classes of S0, S1, . . . etc., it would be useful to recall the notion of the push-forward

of a module.

Let ι :Ω→Ω×Ω be the map ι(z) = (z, z), z ∈Ω. Any Hilbert module M over the polynomial

ring C[z1, . . . , zm] may be thought of as a module ι?M over the ring C[z1, . . . , z2m] by re-defining

the multiplication: mp (h) = (p ◦ ι)h, h ∈M and p ∈C[z1, . . . , z2m].

Definition (push-forward module under ι). The module ι?M over C[z1, . . . , z2m] is defined to

be the push-forward of the module M over C[z1, . . . , zm] under the inclusion map ι.

In [4], Aronszajn proved that the Hilbert space (H ,K1K2) corresponding to the point-wise

product K1K2 of two non-negative definite kernels K1 and K2 is obtained by the restriction of

the functions in the tensor product (H ,K1)⊗ (H ,K2) to the diagonal set ∆.

Theorem 1.1.2 (Aronszajn, [4]). Let K1,K2 : Ω×Ω→ C be two non-negative definite kernels.

Then K1K2 is a non-negative kernel and the Hilbert space determined by K1K2 is given by

(H ,K1K2) = {
h|∆ : h ∈ (H ,K1)⊗ (H ,K2)

}
,

with

‖ f ‖2
(H ,K1K2) = min

{‖h‖2 : h ∈ (H ,K1)⊗ (H ,K2) and h|∆ = f
}
.

Building on his work, it was shown in [28] that the restriction map is isometric on the

subspace S0 onto (H ,K1K2) intertwining the module actions on ι?(H ,K1K2) and S0. However,
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using the jet construction given below, it is possible to describe the quotient modules A ⊥
k , k ≥ 0.

Here we address the question of describing the semi-invariant modules, namely, S1,S2, . . ..

Unfortunately, we have been able to succeed in describing only S1 assuming that K1 = K α and

K2 = K β for some sesqui-analytic function K :Ω×Ω→C and a pair of positive real numbersα,β.

In the particular case, when K1 = (1− zw̄)−α and K2 = (1− zw̄)−β, α,β> 0, the semi-invariant

modules Sk , k ≥ 0, were described by Ferguson and Rochberg.

Theorem 1.1.3 (Ferguson-Rochberg, [31]). If K1(z, w) = 1
(1−zw̄)α and K2(z, w) = 1

(1−zw̄)β
onD×D

for some α,β> 0, then the Hilbert modules Sn and ι?(H , (1− zw̄)−(α+β+2n)) are isomorphic.

(The jet construction): For a bounded domainΩ⊂Cm , let K1 and K2 be two scalar valued

non-negative kernels defined on Ω×Ω. Assume that the multiplication operators Mzi , i =
1, . . . ,m, are bounded on (H ,K1) as well as on (H ,K2). For a non-negative integer k, let Ak be

the subspace defined in (1.2).

Let d be the cardinality of the set {i ∈Zm+ , |i | ≤ k}, which is
(m+k

m

)
. Define the linear map

Jk : (H ,K1)⊗ (H ,K2) → Hol(Ω×Ω,Cd) by

(Jk f )(z,ζ) = ∑
|i |≤k

(
∂
∂ζ

)i f (z,ζ)⊗ei , f ∈ (H ,K1)⊗ (H ,K2), (1.3)

where
{
ei

}
i∈Zm+ ,|i |≤k is the standard orthonormal basis of Cd . Let R : ran Jk → Hol(Ω,Cd) be

the restriction map, that is, R(h) = h|∆, h ∈ ran Jk . Clearly, kerR Jk = Ak . Hence the map

R Jk : A ⊥
k → Hol(Ω,Cd) is one to one. Therefore we can give a natural inner product on ran R Jk ,

namely,

〈R Jk ( f ),R Jk (g )〉 = 〈PA ⊥
k

f ,PA ⊥
k

g 〉, f , g ∈ (H ,K1)⊗ (H ,K2).

In what follows, we think of ran R Jk as a Hilbert space equipped with this inner product. The

theorem stated below is a straightforward generalization of one of the main results from [28].

Theorem 1.1.4. ( [28, Proposition 2.3]) Let K1,K2 : Ω×Ω→ C be two non-negative definite

kernels. Then ran R Jk is a reproducing kernel Hilbert space and its reproducing kernel

Jk (K1,K2)|res∆ is given by the formula

Jk (K1,K2)|res∆(z, w) := (
K1(z, w)∂i ∂̄ j K2(z, w)

)k
|i |,| j |=0, z, w ∈Ω.

Now for any polynomial p in z,ζ, define the operator Tp on ran R Jk as

(T p)(R Jk f ) = ∑
|l |≤k

( ∑
q≤l

( l
q

)((
∂
∂ζ

)q p(z,ζ)
)
|∆

((
∂
∂ζ

)l−q f (z,ζ)
)
|∆

)
⊗el , f ∈ (H ,K1)⊗ (H ,K2),

where l = (l1, . . . , lm), q = (q1, . . . , qm) ∈ Zm+ , and q ≤ l means qi ≤ li , i = 1, . . . ,m and
( l

q

) =( l1
q1

) · · ·( lm
qm

)
. The proof of the Proposition below follows from a straightforward computation

using the Leibniz rule, see [28].
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Proposition 1.1.5. For any polynomial p in C[z1, . . . , z2m], the operator PA ⊥
k

Mp |A ⊥
k

is unitarily

equivalent to the operator Tp on (ran R Jk ).

(The Cowen-Douglas class): We now discuss an important class of operators introduced by

Cowen and Douglas in the very influential paper [21]. The case of 2 variables was discussed

in [22], while a detailed study in the general case appeared later in [26]. The definition below is

taken from [26]. Let T := (T1, ...,Tm) be a m-tuple of commuting bounded linear operators on

a separable Hilbert space H . Let DT : H →H ⊕·· ·⊕H be the operator defined by DT (x) =
(T1x, ...,Tm x), x ∈H .

Definition 1.1.6 (Cowen-Douglas class operator). Let Ω⊂Cm be a bounded domain. The oper-

ator T is said to be in the Cowen-Douglas class Bn(Ω) if T satisfies the following requirements:

(i) dim kerDT−w = n, w ∈Ω
(ii) ran DT−w is closed for all w ∈Ω

(iii)
∨{

kerDT−w : w ∈Ω}=H .

If T ∈ Bn(Ω), then for each w ∈Ω, there exist functions γ1, . . . ,γn holomorphic in a neigh-

bourhood Ω0 ⊆ Ω containing w such that kerDT−w ′ = ∨
{γ1(w ′), . . . ,γn(w ′)} for all w ′ ∈ Ω0

(cf. [22]). Consequently, every T ∈ Bn(Ω) corresponds to a rank n holomorphic hermitian

vector bundle ET defined by

ET = {(w, x) ∈Ω×H : x ∈ kerDT−w }

and π(w, x) = w , (w, x) ∈ ET .

For a bounded domain Ω in Cm , let Ω∗ = {z : z̄ ∈Ω}. It is known that if T is an operator

in Bn(Ω∗), then for each w ∈Ω, T is unitarily equivalent to the adjoint of the multiplication

tuple (Mz1 , . . . , Mzm ) on some reproducing kernel Hilbert space (H ,K ) ⊆ Hol(Ω0,Cn) for some

open subsetΩ0 ⊆Ω containing w . Here the kernel K can be described explicitly as follows. Let

Γ= {γ1, . . . ,γn} be a holomorphic frame of the vector bundle ET on a neighbourhoodΩ∗
0 ⊆Ω∗

containing w̄ . Define KΓ : Ω0 ×Ω0 → Mn(C) by KΓ(z, w) = (〈
γ j (w̄),γi (z̄)

〉)n
i , j=1, z, w ∈ Ω0.

Setting K = KΓ, one may verify that the operator T is unitarily equivalent to the adjoint of the

m-tuple of multiplication operators (Mz1 , . . . , Mzm ) on the Hilbert space (H ,K ).

If T ∈ B1(Ω∗), the curvature matrix KT (w̄) at a fixed but arbitrary point w̄ ∈Ω∗ is defined

by

KT (w̄) = (
∂i ∂̄ j log‖γ(w̄)‖2)m

i , j=1,

where γ is a holomorphic frame of ET defined on some open subset Ω∗
0 ⊆Ω∗ containing w̄ .

If T is realized as the adjoint of the multiplication tuple (Mz1 , . . . , Mzm ) on some reproducing

kernel Hilbert space (H ,K ) ⊆ Hol(Ω0), where w ∈Ω0, the curvature KT (w̄) is then equal to(
∂i ∂̄ j logK (w, w)

)m
i , j=1.
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The study of operators in the Cowen-Douglass class using the properties of the kernel

functions was initiated by Curto and Salinas in [26]. The following definition is taken from [49].

Definition 1.1.7 (Sharp kernel and generalized Bergman kernel). A positive definite kernel

K :Ω×Ω→Mk (C) is said to be sharp if

(i) the multiplication operator Mzi is bounded on (H ,K ) for i = 1, . . . ,m,

(ii) kerD(M z−w)∗ = ran K (·, w), w ∈Ω,

where M z denotes the m-tuple (Mz1 , Mz2 , . . . , Mzm ) on (H ,K ). Moreover, if ran D(M z−w)∗ is

closed for all w ∈Ω, then K is said to be a generalized Bergman kernel.

Some of the results in this thesis generalize, among other things, one of the main results

of [49], which is reproduced below.

Theorem 1.1.8 (Salinas, [49, Theorem 2.6]). Let Ω ⊂ Cm be a bounded domain. If K1,K2 :

Ω×Ω→C are two sharp kernels (resp. generalized Bergman kernels), then K1⊗K2 and K1K2 are

also sharp kernels (resp. generalized Bergman kernels).

(Homogeneous and weakly homogeneous operators): Let Möb denote the group of all

biholomorphic automorphisms of the unit disc D. Recall that an operator T in B(H ) is said to

be homogeneous if σ(T ) ⊆D and ϕ(T ) is unitarily equivalent to T for all ϕ in Möb, where ϕ(T )

is defined by using the usual Riesz functional calculus. It follows from the spectral mapping

theorem that the spectrum of a homogeneous operator is invariant under the action of Möb

and therefore, it is either the unit circle T or the closed unit disc D̄.

For λ > 0, let K (λ) denote the positive definite kernel (1− zw̄)−λ on D×D and let H (λ)

denote the Hilbert space determined by the kernel K (λ). It known that the adjoint M∗
z of the

multiplication operator by the coordinate function z on H (λ), λ> 0, is homogeneous and upto

unitary equivalence, every homogeneous operator in B1(D) is of this form , see [44].

An operator T in B(H ) is said to be weakly homogeneous if σ(T ) ⊆D and ϕ(T ) is similar

to T for all ϕ in Möb, see [16], [10]. As in the case of homogeneous operators, the spectrum of

a weakly homogeneous operator is also T or D. It is easy to verify that every operator T which

is similar to a homogeneous operator is weakly homogeneous. But the converse of this is not

true. To see this, it would be useful to recall the definition of a Möbius bounded operator.

Möbius bounded operators were introduced in [51] by Shields. An operator T on a Banach

space B is said to be Möbius bounded if σ(T ) ⊆D and supϕ∈Möb ‖ϕ(T )‖ <∞. We will only

discuss Möbius bounded operators on Hilbert spaces. By the von Neumann’s inequality, every

contraction on a Hilbert space is Möbius bounded. Also, if T is an operator which is similar

to a homogeneous operator, then it is easily verified that T is Möbius bounded. In [10], the

existence of a weakly homogeneous operator which is not Möbius bounded was given. Hence



9

it cannot be similar to any homogeneous operator. In the same paper, the following question

was raised.

Question 1.1.9 (Bagchi-Misra, [10, Question 10]). Is it true that every Möbius bounded weakly

homogeneous operator is similar to a homogeneous operator?

In [51], it was shown that every power bounded operator is Möbius bounded. An example

of an operator on a Banach space which is Möbius bounded but not power bounded was also

given in that paper. The multiplication operator Mz on the Hilbert space (H ,K (λ)), 0 <λ< 1, is

homogeneous, therefore, Möbius bounded, however, it is not power bounded. This was noted

in [10]. Although a Möbius bounded operator need not be power bounded, Shields proved that

if T is a Möbius bounded operator on a Banach space, then ‖T n‖ ≤ c(n +1), n ∈Z+, for some

constant c > 0. But for operators on Hilbert spaces, he made the following conjecture.

Conjecture 1.1.10 (Shields, [52]). If T is a Möbius bounded operator on a Hilbert space, then

‖T n‖ ≤ c(n +1)
1
2 , n ∈Z+, for some constant c > 0.

This conjecture is verified for the class of quasi-homogeneous operators introduced re-

cently in the paper [38].

(subnormal operators on reproducing kernel Hilbert spaces): Recall that an operator T in

B(H ) is said to be subnormal if there exists a Hilbert space K ⊃H and a normal operator N

in B(K ) such that N (H ) ⊂H and N|H = T. For the basic theory of subnormal operators, we

refer to [18].

Completely hyperexpansive operators were introduced in [6]. An operator T ∈ B(H ) is said

to be completely hyperexpansive if

n∑
j=0

(−1) j

(
n

j

)
T ∗ j T j ≤ 0 (n ≥ 1).

The theory of subnormal and completely hyperexpansive operators is closely related with

the theory of completely monotone and completely alternating sequences (cf. [5], [6] ). A

sequence {ak }k∈Z+ of positive real numbers is said to be completely monotone if

n∑
j=0

(−1) j (n
j

)
am+ j ≥ 0 (m,n ≥ 0). (1.4)

It is known that a sequence {ak }k∈Z+ is completely monotone if and only if it is a Hausdorff

moment sequence, that is, there exists a positive measure ν supported in [0,1] such that

ak = ∫
[0,1] xk dν(x) for all k ∈Z+ (see [12]). The measure ν is called the representing measure of

the sequence {ak }k∈Z+ .
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Similarly, a sequence {ak }k∈Z+ of positive real numbers is said to be completely alternating

if
n∑

j=0
(−1) j (n

j

)
am+ j ≤ 0 (m ≥ 0,n ≥ 1). (1.5)

Note that {ak }k∈Z+ is completely alternating if and only if the sequence {∆ak }k∈Z+ is completely

monotone, where ∆ak := ak+1 −ak .

Let (H ,K ) be a reproducing kernel Hilbert space consisting of holomorphic functions

on the unit disc D where K has the diagonal expansion
∑

k∈Z+ ak (zw̄)k , ak > 0. Consider

the operator Mz of multiplication by the coordinate function z on (H ,K ). As is well-known,

such a multiplication operator is unitarily equivalent to a weighted shift operator W with the

weight sequence
{
( ak

ak+1
)1/2

}
k∈Z+ . The operator Mz on (H ,K ) is contractive subnormal if and

only if { 1
ak

}k∈Z+ is a Hausdorff moment sequence (cf. [18, Theorem 6.10]). We will often call

the representing measure of the Hausdorff moment sequence { 1
ak

}k∈Z+ as the representing

measure of the subnormal operator Mz . On the other hand, the operator Mz on (H ,K ) is

completely hyperexpansive if and only if the sequence { 1
ak

}k∈Z+ is completely alternating

(see [6, Proposition 3]).

For any two positive definite kernels K1 and K2 defined on D×D, their sum K1+K2 is again

a positive definite kernel on D×D and therefore determines a Hilbert space (H ,K1 +K2) of

functions on D. It was shown in [4] that

(H ,K1 +K2) = { f = f1 + f2 : f1 ∈ (H ,K1), f2 ∈ (H ,K2)},

and the norm is given by

‖ f ‖2
(H ,K1+K2) := inf

{
‖ f1‖2

(H ,K1) +‖ f2‖2
(H ,K2) : f = f1 + f2, f1 ∈ (H ,K1), f2 ∈ (H ,K2)

}
.

The sum of two kernel functions is also discussed by Salinas in [49]. He proved that if K1 and K2

are generalized Bergman kernels, then so is K1+K2. Although not explicitly stated in [4], it is not

hard to verify that the multiplication operator Mz on (H ,K1 +K2) is unitarily equivalent to the

operator PN ⊥(M (1) ⊕M (2))|N ⊥ , where M (i ) is the operator of multiplication by the coordinate

function z on (H ,Ki ), i = 1,2 and

N = {
(g ,−g ) ∈ (H ,K1)⊕ (H ,K2) : g ∈ (H ,K1)∩ (H ,K2)

}
.

Evidently, if M (1) and M (2) are subnormal, then so is M (1) ⊕M (2). In chapter 5, we discuss

the subnormality of the compression PN ⊥(M (1) ⊕M (2))|N ⊥ for a class of kernels. In particular,

we show that the subnormality of M (1) and M (2) need not imply that PN ⊥(M (1) ⊕M (2))|N ⊥ is

subnormal.

A similar question on subnormality involving the point-wise product of two positive

definite kernels was raised in [49]. Recently, a counterexample of the conjecture has been



11

found, see [2, Theorem 1.5]. The conjecture below is similar except that it involves the sum of

two kernels.

Conjecture 1.1.11 (Adams-Feldman-McGuire, [1, page 22]). Let K1(z, w) =∑
k∈Z+ ak (zw̄)k and

K2(z, w) =∑
k∈Z+ bk (zw̄)k be any two reproducing kernels satisfying:

(a) lim ak
ak+1

= lim bk
bk+1

= 1

(b) lim ak = limbk =∞

(c) 1
ak

= ∫
[0,1] t k dν1(t ) and 1

bk
= ∫

[0,1] t k dν2(t ) for all k ∈Z+, where ν1 and ν2 are two positive

measures supported in [0,1].

Then the multiplication operator Mz on (H ,K1 +K2) is a subnormal operator.

An equivalent formulation, in terms of the moment sequence criterion, of the conjecture

is the following. If { 1
ak

}k∈Z+ and { 1
bk

}k∈Z+ are Hausdorff moment sequences, does it necessarily

follow that
{ 1

ak+bk

}
k∈Z+ is also a Hausdorff moment sequence?

1.1.1 Main results of the thesis

In this section, we present the main results of this thesis.

In Chapter 2, a decomposition of the tensor product of Hilbert modules via the jet con-

struction is discussed. First, the following proposition is proved.

Proposition. 2.1.4. Let Ω be a bounded domain in Cm and K :Ω×Ω→C be a sesqui-analytic

function. Suppose that K α and K β, defined onΩ×Ω, are non-negative definite for someα, β> 0.

Then the functionK(α,β) :Ω×Ω→Mm(C) defined by

K(α,β)(z, w) = K α+β(z, w)
((
∂i ∂̄ j logK

)
(z, w)

)m

i , j=1
, z, w ∈Ω,

is a non-negative definite kernel.

The following corollary is an immediate consequence.

Corollary. 2.1.5. LetΩ be a bounded domain in Cm . If K :Ω×Ω→C is a non-negative definite

kernel, then

K(z, w) := K 2(z, w)
((
∂i ∂̄ j logK

)
(z, w)

)m
i , j=1 (1.6)

is also a non-negative definite kernel, defined onΩ×Ω, taking values in Mm(C).
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Next, a realization of the Hilbert space determined by the non-negative definite kernel

K(α,β) is obtained. For this, first define a linear map R1 : (H ,K α)⊗ (H ,K β) → Hol(Ω,Cm) by

R1( f ) = 1√
αβ(α+β)


(β∂1 f −α∂m+1 f )|∆

...

(β∂m f −α∂2m f )|∆

 , f ∈ (H ,K α)⊗ (H ,K β). (1.7)

We have shown that (kerR1)⊥ =A0 ªA1, where A0 and A1 are defined by (1.2). Therefore, the

map R1|A0ªA1 → ran R1 is one-to-one and onto. Require this map to be unitary by defining

an appropriate inner-product on ran R1, that is, define〈
R1( f ),R1(g )

〉
:= 〈

PA0ªA1 f ,PA0ªA1 g
〉

, f , g ∈ (H ,K α)⊗ (H ,K β), (1.8)

where PA0ªA1 is the orthogonal projection of (H ,K α)⊗ (H ,K β) onto the subspace A0 ªA1.

Theorem. 2.2.3. Let Ω ⊂ Cm be a bounded domain and K : Ω×Ω→ C be a sesqui-analytic

function. Suppose that the functions K α and K β, defined on Ω×Ω, are non-negative definite

for some α,β> 0. Then the Hilbert space determined by the non-negative definite kernel K(α,β)

coincides with the space ran R1 and the inner product given by (1.8) on ran R1 agrees with the

one induced by the kernelK(α,β).

Then a description of the Hilbert module S1 is given using Theorem 2.2.3.

Theorem. 2.2.5. Let Ω ⊂ Cm be a bounded domain and K : Ω×Ω→ C be a sesqui-analytic

function. Suppose that the functions K α and K β, defined on Ω×Ω, are non-negative definite

for some α,β > 0, and the multiplication operators Mzi , i = 1,2, . . . ,m, are bounded on both

(H ,K α) and (H ,K β). Then the Hilbert modules S1 and ι?
(
H ,K(α,β)

)
are isomorphic via the

module map R1|S1 .

The jet construction gives rise to a family of non-negative definite kernels Jk (K1,K2)|res∆,

k ≥ 0. In case k = 0, it is the point-wise product K1K2. The next two results are generalization

of Theorem 1.1.8 for all kernels of the form Jk (K1,K2)|res∆.

Theorem. 2.3.14. Let Ω ⊂ Cm be a bounded domain. If K1,K2 : Ω×Ω→ C are two sharp

kernels, then so is the kernel Jk (K1,K2)|res∆, k ≥ 0.

Theorem. 2.3.16. Let Ω ⊂ Cm be a bounded domain. If K1,K2 : Ω×Ω→ C are generalized

Bergman kernels, then so is the kernel Jk (K1,K2)|res∆, k ≥ 0.

In Chapter 3, we discuss the generalized Bergman metrics and the generalized Wallach set.

The notion of a generalized Bergman metric was introduced in [26], however, it has a

different meaning in what follows. Let Ω⊂Cm be a bounded domain and let BΩ denote the
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Bergman kernel of Ω. Assume that a continuous branch of logarithm of BΩ exists. Then B t
Ω

is well defined for all t ∈ R. A function of the form
(
B t
Ω(w, w)∂i ∂̄ j logBΩ(w, w)

)m
i , j=1, t ∈ R,

w ∈Ω, is said to be a generalized Bergman metric. Note that a generalized Bergman metric is

non-negative definite at each w ∈Ω and for all t ∈R.

The ordinary Wallach set associated with the Bergman kernel of a bounded symmetric

domainΩ is the set {t > 0 : B t
Ω is non-negative definite}. It has been determined explicitly in

this case, see [30]. Replacing the Bergman kernel in the definition of the Wallach set by an

arbitrary non-negative definite kernel, we define the ordinary Wallach set WΩ(K ) for K to be

the set

{t > 0 : K t is non-negative definite}.

More importantly, we introduce the generalized Wallach set for any kernel K as follows:

GWΩ(K ) := {
t ∈R : K t−2K is non-negative definite

}
, (1.9)

where we have assumed that K t is well defined for all t ∈ R and K is the function defined

in (1.6). In the particular case of the Euclidean unit ball in Cm and the Bergman kernel, the

generalized Wallach set GWBm (BBm ), m > 1, is shown to be the set {t ∈R : t ≥ 0}. If m = 1, then

it is the set {t ∈R : t ≥−1}.

Let Ω ⊂ Cm be a bounded domain and Aut(Ω) denote the group of all biholomorphic

automorphisms ofΩ. Let J : Aut(Ω)×Ω→ GLk(C) be a function such that J (ϕ, ·) is holomorphic

for each ϕ in Aut(Ω), where GLk (C) is the set of all invertible matrices in Mk (C).

A non-negative definite kernel K :Ω×Ω→Mk (C) is said to be quasi-invariant with respect

to J if K satisfies the following transformation rule:

J (ϕ, z)K (ϕ(z),ϕ(w))J (ϕ, w)∗ = K (z, w), z, w ∈Ω, ϕ ∈ Aut(Ω). (1.10)

In this chapter, we show that if K :Ω×Ω→Mk (C) is a quasi-invariant kernel, then K t−2K

is also a quasi-invariant kernel whenever t is in GWΩ(K ).

In Chapter 4, we study weakly homogeneous operators.

It is shown that if K :D×D→Mk (C) is a sharp kernel, then the following conditions are

equivalent.

(i) The multiplication operator Mz on (H ,K ) is weakly homogeneous.

(ii) For each ϕ ∈ Möb, there exists a gϕ ∈ Hol(D,GLk(C)) such that the weighted composition

operator MgϕCϕ−1 on (H ,K ) is bounded and invertible.

Thus, if K is a sharp kernel such that multiplication operator Mz on (H ,K ) is not weakly

homogeneous, then there exists a ϕ ∈ Möb such that the weighted composition operator

MgϕCϕ−1 on (H ,K ) is not simultaneously bounded and invertible for any choice of gϕ in
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Hol(D,GLk(C)). In particular, there must exist a ϕ ∈ Möb such that the composition operator

Cϕ is not bounded.

Although there are examples, see [41, Theorem (1.1)′] and [43, Theorem 3.3]), of scalar

valued sharp kernels K such that the composition operators Cϕ, ϕ ∈ Möb, are not bounded

on (H ,K ) , it does not necessarily follow that the multiplication operator Mz on (H ,K ) fails

to be weakly homogeneous. In many other examples excluding the ones in [41] and [43],

the operator Cϕ is bounded for all ϕ in Möb showing that the corresponding multiplication

operator Mz is weakly homogeneous. While the question of the existence of an operator Mz

which is not weakly homogeneous on a Hilbert space (H ,K ), where K is a scalar valued sharp

kernel, remains unanswered, in this chapter, we find such examples where the kernel K takes

values in M2(C). Indeed, the theorem given below provides many examples and nonexamples

of weakly homogeneous operators in the class FB2(D) ⊂ B2(D), see [37].

Theorem. 4.3.16. Let 1 ≤ λ≤ µ< λ+2 and ψ be a non-zero function in C (D̄)∩Hol(D). Then

the operator T =
M∗

z M∗
ψ

0 M∗
z

 on H (λ) ⊕H (µ) is weakly homogeneous if and only if ψ is non-

vanishing on D̄.

In this chapter, we also study Möbius bounded operators. Some necessary conditions for a

weighted shift to be Möbius bounded are obtained. As a result, it is shown that the Dirichlet

shift, which has the weight sequence
{(n+2

n+1

) 1
2
}

n∈Z+ , is not Möbius bounded. In the class of

quasi-homogeneous operators, recently introduced by Ji, Jiang and Misra, see [38], the Möbius

bounded operators have been identified.

Theorem. 4.4.11. A quasi-homogeneous operator T is Möbius bounded if and only if Λ(T ) ≥ 2.

As a consequence of this theorem, it is shown that the Shields’ conjecture has an affirmative

answer for the class of quasi homogeneous operators. Finally, we show that there exists a

Möbius bounded weakly homogeneous operator which is not not similar to any homogeneous

operator. This answers Question 1.1.9 in the negative.

Theorem. 4.5.3. Let K (z, w) = ∑∞
n=0 an(zw̄)n , z, w ∈ D, be a positive definite kernel such

that for each γ ∈ R, lim|z|→1(1− |z|2)γK (z, z) is either 0 or ∞. Assume that the adjoint M∗
z of

the multiplication operator by the coordinate function z on (H ,K ) is in B1(D) and is weakly

homogeneous. Then the multiplication operator Mz on (H ,K K (λ)), λ> 0, is a Möbius bounded

weakly homogeneous operator which is not similar to any homogeneous operator.

In Chapter 5, we discuss the subnormality of the multiplication operator on the Hilbert

space determined by the sum of two positive definite kernels. It is shown that if K1 and

K2 are two positive definite kernels on D×D such that the multiplication operators Mz on
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the corresponding Hilbert spaces are subnormal, then the multiplication operator Mz on

the Hilbert space determined by the sum K1 +K2 need not be subnormal. This settles the

Conjecture 1.1.11 of Gregory T. Adams, Nathan S. Feldman and Paul J. McGuire in the negative.

We also discuss some cases for which the answer to this conjecture is affirmative.
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Chapter 2

Decomposition of the tensor product of

two Hilbert modules

Given a pair of positive real numbers α,β and a sesqui-analytic function K on a bounded

domainΩ⊂Cm , in this chapter, we investigate the properties of the sesqui-analytic function

K(α,β) := K α+β(
∂i ∂̄ j logK

)m
i , j=1, taking values in m ×m matrices. One of the key findings is

that K(α,β) is non-negative definite whenever K α and K β are non-negative definite. In this

case, a realization of the Hilbert space determined by the kernel K(α,β) is obtained. Let Mi ,

i = 1,2, be two Hilbert modules over the polynomial ring C[z1, . . . , zm]. The polynomial ring

C[z1, . . . , z2m] then naturally acts on the tensor product M1 ⊗M2. The restriction of this action

to the polynomial ring C[z1, . . . , zm] obtained using the restriction map p 7→ p|∆ leads to a

natural decomposition of the tensor product M1 ⊗M2, which is investigated in this chapter.

Two of the initial pieces in this decomposition are identified. The first one is the push-forward

of the module corresponding to the non-negative definite kernel K α+β while the second one is

the push-forward of the Hilbert module determined by the kernelK(α,β). In the section 2.3, a

class of matrix valued kernels arising out of the jet construction are studied and are shown to

be generalized Bergman kernels. Various other properties, which is preserved by the kernel

K(α,β), is also discussed.

2.1 A new non-negative definite kernel

The following lemma is undoubtedly well-known, however, we provide the easy proof here.

Lemma 2.1.1. LetΩ⊂Cm be a bounded domain and H be a Hilbert space. If φ1,φ2, . . . ,φk are

anti-holomorphic functions from Ω into H , then the function K :Ω×Ω→Mk (C) defined by

K (z, w) = (〈
φ j (w),φi (z)

〉
H

)k
i , j=1, z, w ∈Ω, is a sesqui-analytic non-negative definite kernel.

Proof. Let z1, z2, . . . , zn be n arbitrary points in Ω and η1,η2, . . . ,ηn be n arbitrary vectors in Ck ,
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where ηp = (ηp,1,ηp,2, . . . ,ηp,k ), ηp, j ∈C. Then

n∑
p,q=1

〈
K (zp , zq )ηq ,ηp

〉
Ck =

n∑
p,q=1

k∑
i , j=1

〈
φ j (zq ),φi (zp )

〉
H
ηq, jηp,i

=
n∑

p,q=1

k∑
i , j=1

〈
ηq, jφ j (zq ),ηp,iφi (zp )

〉
H

=
∥∥∥ n∑

p=1

k∑
i=1

ηp,iφi (zp )
∥∥∥2

H
≥ 0,

proving that K is non-negative definite. Also sinceφ1,φ2, . . . ,φk are anti-holomorphic, it follows

easily that K is sesqui-analytic.

Remark 2.1.2. It is clear from the proof that if the vectors φ1(z),φ2(z), . . . ,φk (z) are linearly

independent in H , then the matrix K (z, z) is positive definite.

For any reproducing kernel Hilbert space (H ,K ) the following proposition from [26,

Lemma 4.1] is a basic tool in what follows. While the proof is not difficult, we provide the

details for the sake of completeness.

In what follows, the symbol ∂
∂w j

denotes differentiation with respect to the complex

conjugate of the variable w j . We will often write ∂̄ j instead of ∂
∂w j

. Also, for any non-

negative definite kernel K : Ω×Ω→ Mk (C) and η ∈ Ck , let ∂̄i K (·, w)η denote the function(
∂

∂w1

)i1 · · ·( ∂
∂wm

)im K (·, w)η and (∂i f )(z) be the function
(
∂
∂z1

)i1 · · ·( ∂
∂zm

)im f (z), i = (i1, . . . , im) ∈
Zm+ .

Proposition 2.1.3. Let K :Ω×Ω→Mk (C) be a non-negative definite kernel. For every i ∈Zm+ ,

η ∈Ck and w ∈Ω, we have

(i) ∂̄i K (·, w)η is in (H ,K ),

(ii)
〈

f , ∂̄i K (·, w)η
〉

(H ,K ) =
〈

(∂i f )(w),η
〉
Ck , f ∈ (H ,K ).

Proof. For any 1 ≤ j ≤ m, we prove that the function ∂̄ j K (·, w)η belongs to (H ,K ). Then the

proof, by induction, showing that ∂̄i K (·, w)η is in (H ,K ) for any i ∈Zm+ is omitted.

First, choose a sequence {hn}n∈Z+ of complex numbers such that w +hne j ∈Ω and hn → 0,

where e j is the j th standard basis vector of Cm . Define

S(hn) = K (·, w +hne j )η−K (·, w)η

hn

,n ∈Z+.

Since S(hn) belongs to (H ,K ) and f is holomorphic, it follows that

lim
n→∞

〈
f ,S(hn)

〉
(H ,K ) = lim

n→∞

〈
f (w +hne j )− f (w)

hn
,η

〉
Ck

= 〈
∂ j f (w),η

〉
Ck , (2.1)
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for all f in (H ,K ). Therefore the sequence {S(hn)}n∈Z+ is weakly bounded. Consequently,

using the uniform boundedness principle, we conclude that {S(hn)}n∈Z+ is bounded. Hence

|〈∂ j f (w),η
〉
Ck | = lim

n→∞ |〈 f ,S(hn)
〉

(H ,K ) | ≤ sup
n∈Z+

‖S(hn)‖‖ f ‖.

Thus the linear functional f 7→ 〈
∂ j f (w),η

〉
is bounded on (H ,K ). By the Riesz representation

theorem, there exists a vector Lw,η in (H ,K ) such that
〈
∂ j f (w),η

〉
Ck =

〈
f ,Lw,η

〉
(H ,K ) for f in

(H ,K ). From (2.1), we see that {S(hn)}n∈Z+ converges to Lw,η weakly. Moreover, since〈
Lw,η(z),η′

〉
Ck =

〈
Lw,η,K (·, z)η′

〉
Ck

= lim
n→∞

〈
S(hn),K (·, z)η′

〉
(H ,K )

= lim
n→∞

〈
S(hn)(z),η′

〉
Ck

=〈
∂̄ j K (z, w)η,η′

〉
Ck ,

for all z ∈Ω and η′ ∈Ck , it follows that ∂̄ j K (·, w)η= Lw,η. Hence ∂̄ j K (·, w)η is in (H ,K ).

The proof of part (ii) is implicit in the proof of part (i) given above.

Proposition 2.1.4. Let Ω be a bounded domain in Cm and K :Ω×Ω→C be a sesqui-analytic

function. Suppose that K α and K β, defined onΩ×Ω, are non-negative definite for someα, β> 0.

Then the function

K α+β(z, w)
((
∂i ∂̄ j logK

)
(z, w)

)m

i , j=1
, z, w ∈Ω,

is a non-negative definite kernel onΩ×Ω taking values in Mm(C).

Proof. For 1 ≤ i ≤ m, set φi (z) =β∂̄i K α(·, z)⊗K β(·, z)−αK α(·, z)⊗ ∂̄i K β(·, z). From Proposition

2.1.3, it follows that each φi is a function from Ω into the Hilbert space (H ,K α)⊗ (H ,K β).

Then we have〈
φ j (w),φi (z)

〉=β2∂i ∂̄ j K α(z, w)K β(z, w)+α2K α(z, w)∂i ∂̄ j K β(z, w)

−αβ(
∂i K α(z, w)∂̄ j K β(z, w)+ ∂̄ j K α(z, w)∂i K β(z, w)

)
=β2(α(α−1)K α+β−2(z, w)∂i K (z, w)∂̄ j K (z, w)+αK α+β−1(z, w)∂i ∂̄ j K (z, w)

)
+α2(β(β−1)K α+β−2(z, w)∂i K (z, w)∂̄ j K (z, w)+βK α+β−1(z, w)∂i ∂̄ j K (z, w)

)
−2α2β2K α+β−2(z, w)∂i K (z, w)∂̄ j K (z, w)

= (α2β+αβ2)K α+β−2(z, w)
(
K (z, w)∂i ∂̄ j K (z, w)−∂i K (z, w)∂̄ j K (z, w)

)
=αβ(α+β)K α+β(z, w)∂i ∂̄ j logK (z, w).

An application of Lemma 2.1.1 now completes the proof.

The particular case, whenα= 1 =β occurs repeatedly in the following. We therefore record

it separately as a corollary.
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Corollary 2.1.5. LetΩ be a bounded domain in Cm . If K :Ω×Ω→C is a non-negative definite

kernel, then

K 2(z, w)
((
∂i ∂̄ j logK

)
(z, w)

)m
i , j=1

is also a non-negative definite kernel, defined onΩ×Ω, taking values in Mm(C).

A more substantial corollary is the following taken from [13]. Here we provide a slightly

different proof. Recall that a non-negative definite kernel K :Ω×Ω→C is said to be infinitely

divisible if for all t > 0, the function K t is also non-negative definite.

Corollary 2.1.6. Let Ω be a bounded domain in Cm . Suppose that K :Ω×Ω→C is an infinitely

divisible kernel. Then the function
( (
∂i ∂̄ j logK

)
(z, w)

)m
i , j=1 is a non-negative definite kernel

taking values in Mm(C).

Proof. For t > 0, the function K t (z, w) is non-negative definite by hypothesis. It follows, from

Corollary 2.1.5, that
(

K 2t∂i ∂̄ j logK t (z, w)
)m

i , j=1 is non-negative definite. Hence the function(
K 2t∂i ∂̄ j logK (z, w)

)m
i , j=1 is non-negative definite for all t > 0. Taking the limit as t → 0, we

conclude that
(
∂i ∂̄ j logK (z, w)

)m
i , j=1 is non-negative definite since it is the point-wise limit of

the non-negative definite kernels
(

K 2t∂i ∂̄ j logK (z, w)
)m

i , j=1.

The kernel K (z, w)α+β
(
∂i ∂̄ j logK (z, w)

)m
i , j=1 is going to appear repeatedly in our study of

the Hilbert module
(
H ,

(
K (z, w)α+β∂i ∂̄ j logK (z, w)

)m
i , j=1

)
in this chapter. We begin by setting

up some helpful notations.

Notation 2.1.7. Let K(α,β) denote the kernel K α+β(z, w)
( (
∂i ∂̄ j logK

)
(z, w)

)m

i , j=1
. If α = 1 = β,

then we writeK instead ofK(1,1).

Remark 2.1.8. It is known that even if K is a positive definite kernel,
( (
∂i ∂̄ j logK

)
(z, w)

)m
i , j=1

need not be a non-negative definite kernel. In fact,
((
∂i ∂̄ j logK

)
(z, w)

)m
i , j=1 is non-negative

definite if and only if K is infinitely divisible (see [13, Theorem 3.3]).

Let K :D×D→C be the positive definite kernel given by K (z, w) = 1+∑∞
i=1 ai zi w̄ i , z, w ∈D,

ai > 0. For any t > 0, a direct computation gives

(
K t∂∂̄ logK

)
(z, w) = (

1+
∞∑

i=1
ai zi w̄ i )t

∂∂̄
( ∞∑

i=1
ai zi w̄ i − (

∑∞
i=1 ai zi w̄ i )2

2
+·· ·)

= (1+ t a1zw̄ +·· · )(a1 +2(2a2 −a2
1)zw̄ +·· · )

= a1 + (4a2 + (t −2)a2
1)zw̄ +·· · .

Thus, if t < 2, one may choose a1, a2 > 0 such that 4a2 + (t −2)a2
1 < 0. Hence

(
K t∂∂̄ logK

)
(z, w)

cannot be a non-negative definite kernel. Therefore, in general, for
( (

K t∂i ∂̄ j logK
)
(z, w)

)m
i , j=1

to be non-negative definite, it is necessary that t ≥ 2.



2.1. A new non-negative definite kernel 21

Remark 2.1.9. Let Ω ⊂ C be open and ρ : Ω→ R+ be a C 2-smooth function. The Gaussian

curvature of the metric ρ is given by the formula

KG (z,ρ) =−
(
∂∂̄ logρ

)
(z)

ρ(z)2
, z ∈Ω. (2.2)

If K :Ω×Ω→C is a non-negative definite kernel with K (z, z) > 0, then the function 1
K defines a

metric on Ω and its Gaussian curvature is given by the formula

KG (z, 1
K ) = K (z, z)2(∂∂̄ logK

)
(z, z), z ∈Ω.

2.1.1 Boundedness of the multiplication operator on
(
H ,K

)
For a holomorphic function f :Ω→ C, the operator M f of multiplication by f on the linear

space Hol(Ω,Ck ) is defined by the rule M f h = f h, h ∈ Hol(Ω,Ck ), where ( f h)(z) = f (z)h(z),

z ∈Ω. The boundedness criterion for the multiplication operator M f restricted to the Hilbert

space (H ,K ) is well-known for the case of positive definite kernels. In what follows, often

we have to work with a kernel which is merely non-negative definite. A verification of the

boundedness criterion is therefore given below assuming only that the kernel K is non-negative

definite.

Lemma 2.1.10. Let Ω⊂ Cm be a bounded domain and K :Ω×Ω→Mk (C) be a non-negative

definite kernel. Let f :Ω→C be an arbitrary holomorphic function. Then the operator M f of

multiplication by f is bounded on (H ,K ) if and only if there exists a constant c > 0 such that(
c2 − f (z) f (w)

)
K (z, w) is non-negative definite on Ω×Ω. In case M f is bounded, ‖M f ‖ is the

infimum of all c > 0 such that
(
c2 − f (z) f (w)

)
K (z, w) is non-negative definite.

Proof. Suppose that the multiplication operator M f is bounded on (H ,K ). Then for any

h ∈ (H ,K ), w ∈Ω,η ∈Ck , we see that〈
M f h,K (·, w)η

〉= 〈
(M f h)(w),η

〉
= 〈

f (w)h(w),η
〉

=
〈

h(w), f (w)η
〉

=
〈

h, f (w)K (·, w)η
〉

.

Therefore

M∗
f K (·, w)η= f (w)K (·, w)η, w ∈Ω,η ∈Ck . (2.3)

Since M f is bounded, for any points z1, . . . , zn inΩ and vectors η1, . . . ,ηn in Ck , we have

∥∥M∗
f

( n∑
j=1

K (·, z j )η j
)∥∥2 ≤ ∥∥M∗

f

∥∥2∥∥ n∑
j=1

K (·, z j )η j
∥∥2. (2.4)
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A straightforward computation using (2.3), shows that (2.4) is equivalent to

n∑
j ,l=1

f (zl ) f (z j )
〈

K (zl , z j )η j ,ηl
〉≤ ‖M f ‖2

n∑
j ,l=1

〈
K (zl , z j )η j ,ηl

〉
.

Therefore we conclude that
(
c2 − f (z) f (w)

)
K (z, w) is non-negative definite on Ω×Ω where

c = ‖M f ‖.

Conversely, suppose that there exists a constant c > 0 such that (c2 − f (z) f (w))K (z, w)

is non-negative definite on Ω×Ω. Let H0 be the linear subspace of (H ,K ) spanned by the

elements K (·, w)η, w ∈Ω,η ∈Ck . Define an operator
◦
T f on H0 by the following formula:

◦
T f

( n∑
i=1

K (·, wi )ηi

)
=

n∑
i=1

f (wi )K (·, wi )ηi ,

where w1, . . . , wn ∈Ω, η1, . . . ,ηn ∈Ck , n ≥ 1. First, we show that the operator
◦
T f is well-defined

on H0. From the assumption on K , it follows that∥∥ n∑
i=1

f (wi )K (·, wi )ηi
∥∥2 =

n∑
i , j=1

〈
f (wi ) f (w j )K (wi , w j )η j ,ηi

〉
≤ c2

n∑
i , j=1

〈
K (wi , w j )η j ,ηi

〉
= c2

∥∥ n∑
i=1

K (·, wi )ηi
∥∥2.

Therefore, if
∑n

i=1 K (·, wi )ηi = 0 for some points w1, . . . , wn ∈Ω and vectors η1, . . . ,ηn ∈Ck , then∑n
i=1 f (wi )K (·, wi )ηi must be 0. Consequently, the operator

◦
T f is well-defined on H0. It is also

evident from the above computation that

‖ ◦
T f (h)‖ ≤ c‖h‖, h ∈H0.

Since H0 is a dense subspace of (H ,K ), it follows that
◦
T f can be extended to a unique bounded

linear operator T f on (H ,K ) and ‖T f ‖ ≤ c. Finally, note that for w ∈Ω,η ∈Ck and h ∈ (H ,K ),〈
(T ∗

f h)(w),η
〉
=

〈
T ∗

f h,K (·, w)η
〉

= 〈
h,T f (K (·, w)η)

〉
= 〈

f (w)h,K (·, w)η
〉

= 〈
f (w)h(w),η

〉
.

Therefore, we conclude that T ∗
f = M f and ‖M f ‖ ≤ c.

From the proof, it is also clear that if the operator M f is bounded, then ‖M f ‖ is the infimum

of all c > 0 such that
(
c2 − f (z) f (w)

)
K (z, w) is non-negative definite onΩ×Ω.
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The proof of the lemma stated below is not significantly different from the one we have

just proved. However, it would be useful for some of our later arguments, exactly in the form

given below.

Lemma 2.1.11. Let Ω⊂ Cm be a bounded domain and K :Ω×Ω→Mk (C) be a non-negative

definite kernel. Then the operator Mzi of multiplication by the i th coordinate function zi

is bounded on (H ,K ) for i = 1, . . . ,m, if and only if there exists a constant c > 0 such that(
c2 −〈z, w〉)K (z, w) is non-negative definite onΩ×Ω.

Proof. Suppose that the operator Mzi is bounded on (H ,K ) for i = 1, . . . ,m. Then it follows

that the operator DM∗
z

: (H ,K ) → (H ,K )
⊕ · · ·⊕(H ,K ) taking h to (M∗

z1
h ⊕·· ·⊕M∗

zm
h) is also

bounded. Now, set c = ‖DM∗
z
‖. For this c, following the proof of the first half of Lemma 2.1.10,

we conclude that
(
c2 −〈z, w〉)K (z, w) is non-negative definite.

Conversely, assume that there exists a constant c > 0 such that (c2 −〈z, w〉)K (z, w) is non-

negative definite onΩ×Ω. Let H0 be the subspace of (H ,K ) spanned by the vectors K (·, w)η,

w ∈Ω,η ∈Ck . Let
◦

DT : H0 →H0
⊕ · · ·⊕H0 be given by the formula:

◦
DT

( n∑
i=1

K (·, wi )ηi

)
=

n∑
i=1

(
w̄i ,1K (·, wi )ηi , . . . , w̄i ,mK (·, wi )ηi

)
, (2.5)

where wi = (wi ,1, . . . , wi ,m) ∈Ω and ηi ∈Ck , i = 1, . . . ,n, n ≥ 1. As in Lemma 2.1.10, the following

computation∥∥∥ m∑
i=1

(
w̄i ,1K (·, wi )ηi , . . . , w̄i ,mK (·, wi )ηi

)∥∥∥2

=
n∑

i , j=1

〈(
w̄i ,1K (·, wi )ηi , . . . , w̄i ,mK (·, wi )ηi

)
,
(
w̄ j ,1K (·, w j )η j , . . . , w̄ j ,mK (·, w j )η j

)〉
=

n∑
i , j=1

m∑
p=1

w j ,p w̄i ,p
〈

K (·, wi )ηi ,K (·, w j )η j
〉

=
n∑

i , j=1

〈
w j , wi

〉〈
K (w j , wi )ηi ,η j

〉
≤ c2

n∑
i , j=1

〈
K (w j , wi )ηi ,η j

〉
= c2

∥∥ n∑
i=1

K (·, wi )ηi
∥∥2,

shows that
◦

DT is well defined and ‖ ◦
DT (h)‖ ≤ c‖h‖, h ∈H0. Consequently, for 1 ≤ j ≤ m, the

operator
◦

DT j is well-defined and ‖ ◦
DT j (h)‖ ≤ c‖h‖, h ∈H0, where

◦
DT j

( n∑
i=1

K (·, wi )ηi

)
=

n∑
i=1

w̄i , j K (·, wi )ηi , wi ∈Ω,ηi ∈Ck , i = 1, . . . ,n, n ≥ 1.
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Therefore each
◦

DT j can be extended to a bounded linear operator DT j on (H ,K ) with ‖DT j ‖ ≤
c. Now a similar argument used towards the end of the proof of Lemma 2.1.10 shows that

DT j
∗ = Mz j on (H ,K ), j = 1, . . . ,m, completing the proof.

As we have pointed out, the distinction between the non-negative definite kernels and the

positive definite ones is very significant. Indeed, as shown in [26, Lemma 3.6], it is interesting

that if the operator M z := (Mz1 , . . . , Mzm ) is bounded on (H ,K ) for some non-negative definite

kernel K such that K (z, z), z ∈Ω, is invertible, then K is positive definite. We give a proof of this

statement which is different from the inductive proof of Curto and Salinas. First, let us recall

a generalization of the Openheim inequality for the block Hadamard product of two block

matrices.

Let A = (
Ai j

)n
i , j=1, B = (

Bi j
)n

i , j=1 be two n ×n block matrices where each block is of size

k ×k. The block Hadamard product A2B of A and B is defined by A2B = (
Ai j Bi j

)n
i , j=1, where

Ai j Bi j denotes the usual matrix product. If each block Ai , j of A commutes with every block

Bpq of B , then A and B are said to be block commuting. The statement in the lemma given

below combines [34, Corollary 3.3] and [34, Proposition 3.8].

Lemma 2.1.12. Let A = (
Ai j

)n
i , j=1, B = (

Bi j
)n

i , j=1 be two n ×n block matrices where each block

is of size k ×k. Suppose that A and B are non-negative definite and block commuting. Then the

block Hadamard product A2B is non-negative definite and

det(A2B) ≥ det A
( n∏

i=1
detBi i

)
.

The addendum at the end of [26, Lemma 3.6] follows immediately from the following

lemma.

Lemma 2.1.13. Let X be an arbitrary set. Let k1 : X × X → C be a positive definite kernel and

K2 : X ×X →Mk (C) be a non-negative definite kernel. Suppose that K2(x, x) is invertible for all

x ∈ X . Then the product k1K2 is positive definite on X ×X .

Proof. Let x1, . . . , xn be a set of n arbitrary points from X and let C be the n ×n block matrix(
k1(xi , x j )K2(xi , x j )

)n
i , j=1, which is of the form A2B , where

A =
(
k1(xi , x j )Ik

)n

i , j=1
and B =

(
K2(xi , x j )

)n

i , j=1
.

Since K2 is non-negative definite on X ×X , we have that B is non-negative definite. Further-

more, since k1 is positive definite and(
k1(xi , x j )Ik

)n

i , j=1
=

(
k1(xi , x j )

)n

i , j=1

⊗
Ik , (2.6)
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it follows that A is positive definite. It is easily verified that A and B are block commuting.

Hence by Lemma 2.1.12, we have that C is non-negative definite and

detC ≥ det A
( n∏

i=1
detK2(xi , xi )

)
. (2.7)

From (2.6), we see that det A = det
(
k1(xi , x j )

)n
i , j=1 > 0. Also, by hypothesis, detK2(xi , xi ) > 0 for

i = 1, . . . ,n. Hence, from (2.7), it follows that C is positive definite, completing the proof of the

lemma.

Proposition 2.1.14. LetΩ⊂Cm be a bounded domain and K :Ω×Ω→Mk (C) be a non-negative

definite kernel. Suppose that K (z, z) is invertible for all z ∈Ω and the multiplication operator

Mzi on (H ,K ) is bounded for i = 1, . . . ,m. Then K is positive definite onΩ×Ω.

Proof. Since the m-tuple of operators (Mz1 , . . . , Mzm ) on (H ,K ) is bounded, by Corollary 2.1.11,

there exists a constant c > 0 such that K̂ (z, w) := (c2 −〈z, w〉)K (z, w), z, w ∈Ω, is non-negative

definite on Ω×Ω. Therefore, using the positive definiteness of K (z, z), we find that ‖z‖2 ≤ c,

z ∈ Ω. Since Ω is an open subset of C, it follows that ‖z‖2 < c, z ∈ Ω. Thus |〈z, w〉| < c2 for

z, w ∈Ω. Consequently, (c2 −〈z, w〉) is non-vanishing on Ω×Ω, and K can be written as the

product

K (z, w) = (
c2 −〈z, w〉)−1

K̂ (z, w), z, w ∈Ω.

Note that

(c2 −〈z, w〉)−1 = c−2 (
1−〈 z

c , w
c

〉)−1 , z, w ∈Ω. (2.8)

Since (1−〈z, w〉)−1 is a positive definite kernel on Bm ×Bm (where Bm is the Euclidean unit

ball in Cm) and ‖z‖2 < c onΩ, by (2.8), we conclude that the function
(
c2 −〈z, w〉)−1

is positive

definite on Ω×Ω. Also, since K (z, z) is invertible, we see that K̂ (z, z) is also invertible for all

z ∈Ω. Hence, by Lemma 2.1.13, it follows that K is positive definite.

Lemma 2.1.15. LetΩ⊂Cm be a bounded domain and K :Ω×Ω→C be a non-negative definite

kernel. Let f :Ω→C be an arbitrary holomorphic function. Suppose that there exists a constant

c > 0 such that
(
c2 − f (z) f (w)

)
K (z, w) is non-negative definite on Ω×Ω. Then the function(

c2 − f (z) f (w)
)2
K(z, w) is non-negative definite onΩ×Ω.

Proof. Without loss of generality, we assume that f is non-constant and K is non-zero. The

function G(z, w) := (
c2 − f (z) f (w)

)
K (z, w) is non-negative definite on Ω×Ω by hypothesis.

We claim that | f (z)| < c for all z in Ω. If not, then by the open mapping theorem, there

exists an open setΩ0 ⊂Ω such that | f (z)| > c, z ∈Ω0. Since
(
c2 −| f (z)|2)K (z, z) ≥ 0, it follows

that K (z, z) = 0 for all z ∈ Ω0. Now, let h be an arbitrary vector in (H ,K ). Clearly, |h(z)| =
|〈h,K (·, z)〉 | ≤ ‖h‖‖K (·, z)‖ = ‖h‖K (z, z)

1
2 = 0 for all z ∈Ω0. Consequently, h(z) = 0 onΩ0. Since
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Ω is connected and h is holomorphic, it follows that h = 0. This contradicts the assumption

that K is non-zero verifying the validity of our claim.

From the claim, we have that the function c2 − f (z) f (w) is non-vanishing onΩ×Ω. There-

fore, the kernel K can be written as the product

K (z, w) = 1(
c2 − f (z) f (w)

)G(z, w), z, w ∈Ω.

Since | f (z)| < c on Ω, the function 1(
c2− f (z) f (w)

) has a convergent power series expansion,

namely,
1(

c2 − f (z) f (w)
) = ∞∑

n=0

1

c2(n+1)
f (z)n f (w)n , z, w ∈Ω.

Therefore it defines a non-negative definite kernel onΩ×Ω. Note that(
K (z, w)2∂i ∂̄ j logK (z, w)

)m
i , j=1

=
(
K (z, w)2∂i ∂̄ j log

1(
c2 − f (z) f (w)

) )m

i , j=1
+

(
K (z, w)2∂i ∂̄ j logG(z, w)

)m

i , j=1

= 1(
c2 − f (z) f (w)

)2

(
K (z, w)2

(
∂i f (z)∂ j f (w)

)m

i , j=1
+G(z, w)2

(
∂i ∂̄ j logG(z, w)

)m

i , j=1

)
,

where for the second equality, we have used that

∂i ∂̄ j log
1(

c2 − f (z) f (w)
) = ∂i f (z)∂ j f (w)(

c2 − f (z) f (w)
)2 , z, w ∈Ω, 1 ≤ i , j ≤ m.

Thus (
c2 − f (z) f (w)

)2
K(z, w)

= K (z, w)2
(
∂i f (z)∂ j f (w)

)m

i , j=1
+

(
G(z, w)2∂i ∂̄ j logG(z, w)

)m

i , j=1
.

(2.9)

By Lemma 2.1.1, the function
(
∂i f (z)∂ j f (w)

)m
i , j=1 is non-negative definite onΩ×Ω. Thus the

product K (z, w)2
(
∂i f (z)∂ j f (w)

)m
i , j=1 is also non-negative definite on Ω×Ω. Since G is non-

negative definite onΩ×Ω, by Corollary 2.1.5, the function
(

G(z, w)2∂i ∂̄ j logG(z, w)
)m

i , j=1 is also

non-negative definite on Ω×Ω. The proof is now complete since the sum of two non-negative

definite kernels remains non-negative definite.

We use the lemma we have just proved in the proof of the following theorem giving a

sufficient condition for the boundedness of the multiplication operator on the Hilbert space(
H ,K

)
.
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Theorem 2.1.16. LetΩ⊂Cm be a bounded domain and K :Ω×Ω→C be a non-negative definite

kernel. Let f :Ω→C be a holomorphic function. Suppose that the multiplication operator M f

on (H ,K ) is bounded. Then the multiplication operator M f is also bounded on (H ,K).

Proof. Since the operator M f is bounded on (H ,K ), by Lemma 2.1.10, we find a constant c > 0

such that
(
c2 − f (z) f (w)

)
K (z, w) is non-negative definite onΩ×Ω. Then , by Lemma 2.1.15,

it follows that
(
c2 − f (z) f (w)

)2
K(z, w) is non-negative definite onΩ×Ω. Also, from the proof

of Lemma 2.1.15, we have that
(
c2 − f (z) f (w)

)−1 is non-negative definite onΩ×Ω (assuming

that f is non-constant). Hence
(
c − f (z) f (w)

)
K(z, w), being the product of two non-negative

definite kernels, is non-negative definite onΩ×Ω. An application of Lemma 2.1.10, a second

time, completes the proof.

The corollary given below provides a sufficient condition for the positive definiteness of

the kernelK.

Corollary 2.1.17. Let Ω ⊂ Cm be a bounded domain and K : Ω×Ω→ C be a non-negative

definite kernel satisfying K (w, w) > 0, w ∈Ω. Suppose that the multiplication operator Mzi on

(H ,K ) is bounded for i = 1, . . . ,m. Then the kernel K is positive definite onΩ×Ω.

Proof. By Corollary 2.1.5, we already have that K is non-negative definite. Moreover, since

Mzi on (H ,K ) is bounded for i = 1, . . . ,m, it follows from Theorem 2.1.16 that Mzi is bounded

on (H ,K) also. Therefore, in view of Proposition 2.1.14, K is positive definite if K(w, w) is

invertible for all w ∈Ω. To verify this, set

φi (w) = ∂̄i K (·, w)⊗K (·, w)−K (·, w)⊗ ∂̄i K (·, w), 1 ≤ i ≤ m.

From the proof of Proposition 2.1.4, we see thatK(w, w) = 1
2

(〈
φ j (w),φi (w)

〉)m
i , j=1. Therefore,

in view of Remark 2.1.2,K(w, w) is invertible if the vectors φ1(w), . . . ,φm(w) are linearly inde-

pendent. Note that for w = (w1, . . . , wm) inΩ and j = 1, . . . ,m, we have (Mz j −w j )∗K (·, w) = 0.

Differentiating this equation with respect to w̄i , we obtain

(Mz j −w j )∗∂̄i K (·, w) = δi j K (·, w), 1 ≤ i , j ≤ m.

Thus (
(Mz j −w j )∗⊗ I

)(
φi (w)

)= δi j K (·, w)⊗K (·, w), 1 ≤ i , j ≤ m. (2.10)

Now assume that
∑m

i=1 ciφi (w) = 0 for some scalars c1, . . . ,cm . Then, for 1 ≤ j ≤ m, we have

that
∑m

i=1

(
(Mz j −w j )∗⊗ I

)(
φi (w)

) = 0. Thus, using (2.10), we see that c j K (·, w)⊗K (·, w) = 0.

Since K (w, w) > 0, we conclude that c j = 0. Hence the vectors φ1(w), . . . ,φm(w) are linearly

independent. This completes the proof.
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Remark 2.1.18. Recall that any operator T in B1(D) is unitarily equivalent to the adjoint M∗
z of

the multiplication operator by the coordinate function z on some reproducing kernel Hilbert

space (H ,K ) ⊆ Hol(D). In particular, any contraction T in B1(D), modulo unitary equivalence, is

of this form. For such a contractive operator M∗
z in B1(D), the curvature inequality [45, Corollary

1.2’] takes the form (see [13]):

−∂∂̄ logK (z, z) ≤−∂∂̄ logSD(z, z), z ∈D, (2.11)

where SD(z, w) = 1
1−zw̄ , z, w ∈ D, is the Szegö kernel of the unit disc D. Since M∗

z on (H ,K )

is a contraction, by Lemma 2.1.10, it follows that the function G(z, w) := (1− zw̄)K (z, w) is

non-negative definite on D×D. Hence, from (2.9), we have that

−G(z, w)2∂∂̄ logG(z, w)

= (1− zw̄)2K (z, w)2(−∂∂̄ logK (z, w)+∂∂̄ logSD(z, w)
)
, z, w ∈D.

Therefore, applying Corollary 2.1.5 for G(z, w), we obtain that

(1− zw̄)2K (z, w)2(−∂∂̄ logK (z, w)+∂∂̄ logSD(z, w)
)¹ 0. (2.12)

In particular, evaluating (2.12) at a fixed but arbitrary point, the inequality (2.11) is evident.

However, for any contraction in B1(D), (2.12) gives a much stronger (curvature) inequality.

Conversely, whether it is strong enough to force contractivity of the operator is not clear.

Let Ω be a finitely connected bounded planar domain and Rat(Ω) be the ring of rational

functions with poles off Ω. Let T be an operator in B1(Ω) with σ(T ) = Ω. Suppose that the

homomorphism qT : Rat(Ω) → B(H ) given by

qT ( f ) = f (T ), f ∈ Rat(Ω),

is contractive, that is, ‖ f (T )‖ ≤ ‖ f ‖Ω,∞, f ∈ Rat(Ω). Setting G f (z, w) = (1− f (z) f (w))K (z, w)

and using (2.9), as before, we have

0 ¹G f (z, w)2∂∂̄ logG f (z, w)

=G f (z, w)2
(
− f ′(z) f ′(w)

(1− f (z) f (w))2
+∂∂̄ logK (z, w)

)
=−K (z, w)2 f ′(z) f ′(w)+ (1− f (z) f (w))2K (z, w)2∂∂̄ logK (z, w)

for any rational function f with poles off Ω and | f (z)| ≤ 1, z ∈Ω. As in the case of the disc, in

particular, evaluating this inequality at a fixed but arbitrary point z ∈Ω, we have

∂∂̄ logK (z, z) ≥ sup
{ | f ′(z)|2

(1−| f (z)|2)2 : f ∈ Rat(Ω),‖ f ‖Ω,∞ ≤ 1
}
=SΩ(z, z)2,

where SΩ is the Szegö kernel of the domainΩ. This is the curvature inequality for contractive

homomorphisms (cf. [45, Corollary 1.2’]).
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2.2 Realization of
(
H ,K(α,β)

)
LetΩ⊂Cm be a bounded domain and K :Ω×Ω→C be a sesqui-analytic function. Suppose

that the functions K α and K β are non-negative definite for some α,β> 0. In this section, we

give a description of the Hilbert space
(
H ,K(α,β)

)
. As before, we set

φi (w) =β∂̄i K α(·, w)⊗K β(·, w)−αK α(·, w)⊗ ∂̄i K β(·, w), 1 ≤ i ≤ m, w ∈Ω. (2.13)

Let N be the subspace of (H ,K α)⊗ (H ,K β) which is the closed linear span of the vectors{
φi (w) : w ∈Ω, 1 ≤ i ≤ m

}
.

From the definition of N , it is not easy to determine which vectors are in it. A useful alternative

description of the space N is given below.

Recall that K α⊗K β is the reproducing kernel for the Hilbert space (H ,K α)⊗ (H ,K β),

where the kernel K α⊗K β on (Ω×Ω)× (Ω×Ω) is given by

K α⊗K β(z,ζ; z ′,ζ′) = K α(z, z ′)K β(ζ,ζ′),

z = (z1, . . . , zm), ζ= (ζ1, . . . ,ζm), z ′ = (zm+1, . . . , z2m), ζ′ = (ζm+1, . . . ,ζ2m) are inΩ. We realize the

Hilbert space (H ,K α)⊗ (H ,K β) as a space consisting of holomorphic functions onΩ×Ω. Let

A0 and A1 be the subspaces defined by

A0 =
{

f ∈ (H ,K α)⊗ (H ,K β) : f|∆ = 0
}

and

A1 =
{

f ∈ (H ,K α)⊗ (H ,K β) : f|∆ = (∂m+1 f )|∆ = ·· · = (∂2m f )|∆ = 0
}
,

where ∆ is the diagonal set {(z, z) ∈ Ω×Ω : z ∈ Ω}, ∂i f is the derivative of f with respect to

the i th variable, and f|∆, (∂i f )|∆ denote the restrictions to the set ∆ of the functions f , ∂i f ,

respectively. It is easy to see that both A0 and A1 are closed subspaces of the Hilbert space

(H ,K α)⊗ (H ,K β) and A1 is a closed subspace of A0.

Now observe that, for 1 ≤ i ≤ m, we have

∂̄i (K α⊗K β)(·, (z ′,ζ′)) = ∂̄i K α(·, z ′)⊗K β(·,ζ′), z ′,ζ′ ∈Ω
∂̄m+i (K α⊗K β)(·, (z ′,ζ′)) = K α(·, z ′)⊗ ∂̄i K β(·,ζ′), z ′,ζ′ ∈Ω.

(2.14)

Hence, taking z ′ = ζ′ = w, we see that

φi (w) =β∂̄i (K α⊗K β)(·, (w, w))−α∂̄m+i (K α⊗K β)(·, (w, w)). (2.15)

We now prove a useful lemma on the Taylor coefficients of an analytic function.
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Lemma 2.2.1. Suppose that f :Ω×Ω→C is a holomorphic function satisfying f|∆ = 0. Then

(∂i f )|∆+ (∂m+i f )|∆ = 0, 1 ≤ i ≤ m.

Proof. Recall that the map ι :Ω→Ω×Ω is defined by ι(z) = (z, z), z ∈Ω. Let g (z) = ( f ◦ ι)(z),

z ∈Ω. Clearly, the condition f|∆ = 0 is equivalent to saying that g is identically zero on Ω. Thus,

if f|∆ = 0, then it follows that ∂i g (z) = 0 on Ω, 1 ≤ i ≤ m. Setting ι j (z) = ιm+ j (z) = z j , z ∈ Ω,

1 ≤ j ≤ m, and applying the chain rule (cf. [48, page 8]), we obtain

∂i g (z) =
2m∑
j=1

(∂ j f )(ι(z))∂i ι j (z)+
2m∑
j=1

(∂̄ j f )(ι(z))∂i ῑ j (z)

=
2m∑
j=1

(∂ j f )(ι(z))∂i ι j (z)

= (∂i f )(z, z)+ (∂m+i f )(z, z), z ∈Ω.

This completes the proof.

An alternative description of the subspace N of (H ,K α)⊗ (H ,K β) is provided below.

Proposition 2.2.2. N =A0 ªA1.

Proof. For all z ∈Ω, we see that

φi (w)(z, z) =αβK α+β−1(z, w)∂̄i K (z, w)−αβK α+β−1(z, w)∂̄i K (z, w) = 0.

Hence each φi (w), w ∈Ω,1 ≤ i ≤ m, belongs to A0 and consequently, N ⊂A0. Therefore, to

complete the proof of the proposition, it is enough to show that A0 ªN =A1.

To verify this, note that f ∈N ⊥ if and only if
〈

f ,φi (w)
〉= 0, 1 ≤ i ≤ m, w ∈Ω. Now, in view

of (2.15) and Proposition 2.1.3, we have that〈
f ,φi (w)

〉=〈
f ,β∂̄i (K α⊗K β)(·, (w, w))−α∂̄m+i (K α⊗K β)(·, (w, w))

〉
=β(∂i f )(w, w)−α(∂m+i f )(w, w), 1 ≤ i ≤ m, w ∈Ω.

(2.16)

Thus f ∈N ⊥ if and only if the function β (∂i f )|∆−α (∂m+i f )|∆ = 0, 1 ≤ i ≤ m. Combining this

with Lemma 2.2.1, we see that any f ∈A0 ªN , satisfies

β(∂i f )|∆−α(∂m+i f )|∆ = 0,

(∂i f )|∆+ (∂m+i f )|∆ = 0,

for 1 ≤ i ≤ m. Therefore, we have (∂i f )|∆ = (∂m+i f )|∆ = 0, 1 ≤ i ≤ m. Hence f belongs to A1.
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Conversely, let f ∈A1. In particular, f ∈A0. Hence invoking Lemma 2.2.1 once again, we

see that

(∂i f )|∆+ (∂m+i f )|∆ = 0, 1 ≤ i ≤ m.

Since f is in A1, (∂m+i f )|∆ = 0, 1 ≤ i ≤ m, by definition. Therefore, (∂i f )|∆ = (∂m+i f )|∆ = 0, 1 ≤
i ≤ m, which implies

β(∂i f )|∆−α(∂m+i f )|∆ = 0, 1 ≤ i ≤ m.

Hence f ∈A0 ªN , completing the proof.

We now give a description of the Hilbert space
(
H ,K(α,β)

)
. For this, first define a linear

map R1 : (H ,K α)⊗ (H ,K β) → Hol(Ω,Cm) by

R1( f ) = 1√
αβ(α+β)


(β∂1 f −α∂m+1 f )|∆

...

(β∂m f −α∂2m f )|∆

 , f ∈ (H ,K α)⊗ (H ,K β). (2.17)

Note that

R1( f )(w) = 1√
αβ(α+β)


〈

f ,φ1(w)
〉

...〈
f ,φm(w)

〉
 , w ∈Ω, f ∈ (H ,K α)⊗ (H ,K β). (2.18)

From the above equality, it is easy to see that kerR1 = N ⊥. Since N = A0 ªA1 from

Proposition 2.2.2, it follows that kerR⊥
1 = A0 ªA1. Therefore, the map R1|A0ªA1 → ran R1

is one-to-one and onto. Require this map to be a unitary by defining an appropriate inner

product on ran R1, that is, define〈
R1( f ),R1(g )

〉
:= 〈

PA0ªA1 f ,PA0ªA1 g
〉

, f , g ∈ (H ,K α)⊗ (H ,K β), (2.19)

where PA0ªA1 is the orthogonal projection of (H ,K α)⊗ (H ,K β) onto the subspace A0 ªA1.

Theorem 2.2.3. Let Ω ⊂ Cm be a bounded domain and K : Ω×Ω→ C be a sesqui-analytic

function. Suppose that the functions K α and K β are non-negative definite for some α,β> 0. Let

R1 be the map defined by (2.17). Then the Hilbert space determined by the non-negative definite

kernelK(α,β) coincides with the space ran R1 and the inner product given by (2.19) on ran R1

agrees with the one induced by the kernel K(α,β).

Proof. Let {e1, . . . ,em} be the standard orthonormal basis ofCm . For 1 ≤ i , j ≤ m, from the proof

of Proposition 2.1.4, we have〈
φ j (w),φi (z)

〉=αβ(α+β)K α+β(z, w)∂i ∂̄ j logK (z, w) (2.20)

=αβ(α+β)
〈
K(α,β)(z, w)e j ,ei

〉
Cm

, z, w ∈Ω. (2.21)
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Therefore, from (2.18), it follows that for all w ∈Ω and 1 ≤ j ≤ m,

R1(φ j (w)) =
√
αβ(α+β)K(α,β)(·, w)e j .

Hence, for all w ∈ Ω and η ∈ Cm , K(α,β)(·, w)η belongs to ran R1. Let R1( f ) be an arbitrary

element in ran R1 where f ∈A0 ªA1. Then〈
R1( f ),K(α,β)(·, w)e j

〉
= 1√

αβ(α+β)

〈
R1( f ),R1(φ j (w))

〉
= 1√

αβ(α+β)

〈
f ,φ j (w)

〉
= 1√

αβ(α+β)
(β∂ j f (w, w)−α∂m+ j f (w, w))

= 〈
R1( f )(w),e j

〉
Cm ,

where the second equality follows since both f and φ j (w) belong to A0 ªA1.

This completes the proof.

Let z = (z1, . . . , zm) and let C[z] := C[z1, . . . , zm] denote the ring of polynomials in m-

variables. The following proposition gives a sufficient condition for density of C[z] ⊗Cm

in the Hilbert space
(
H ,K(α,β)

)
.

Proposition 2.2.4. Let Ω⊂ Cm be a bounded domain and K :Ω×Ω→ C be a sesqui-analytic

function such that the functions K α and K β are non-negative definite onΩ×Ω for some α,β> 0.

Suppose that both the Hilbert spaces (H ,K α) and (H ,K β) contain the polynomial ring C[z] as

a dense subset. Then the Hilbert space
(
H ,K(α,β)

)
contains the ring C[z]⊗Cm as a dense subset.

Proof. Since C [z] is dense in both the Hilbert spaces (H ,K α) and (H ,K β), it follows that

C [z]⊗C [z], which is C[z1, . . . , z2m], is contained in the Hilbert space (H ,K α)⊗ (H ,K β) and is

dense in it. Since R1 maps (H ,K α)⊗(H ,K β) onto
(
H ,K(α,β)

)
, to complete the proof, it suffices

to show that R1(C[z1, . . . , z2m]) =C[z]⊗Cm . It is easy to see that R1(C[z1, . . . , z2m]) ⊆C[z]⊗Cm .

Conversely, if
∑m

i=1 pi (z1, . . . , zm)⊗ei is an arbitrary element ofC[z]⊗Cm , then it is easily verified

that the function p(z1, . . . , z2m) :=
√

αβ
α+β

∑m
i=1(zi − zm+i )pi (z1, . . . , zm) belongs to C[z1, . . . , z2m]

and R1(p) =∑m
i=1 pi (z1, . . . , zm)⊗ei . Therefore R1(C[z1, . . . , z2m]) =C[z]⊗Cm , completing the

proof.

2.2.1 Hilbert modules

In this section, we study certain decomposition of the tensor product of two Hilbert modules.

For the basic definitions and properties related to Hilbert module, the reader is referred to

chapter 1.



2.2. Realization of
(
H ,K(α,β)

)
33

Let Ω ⊂ Cm be a bounded domain. Let K1 and K2 are two scalar valued non-negative

definite kernels defined onΩ×Ω. We identify the tensor product (H ,K1)⊗ (H ,K2) as a spaces

of holomorphic functions defined onΩ×Ω. We assume that the multiplication operators Mzi ,

i = 1, . . . ,m, are bounded on (H ,K1) as well as on (H ,K2). Thus the map

m :C[z1, . . . , z2m]× (
(H ,K1)⊗ (H ,K2)

)→ (H ,K1)⊗ (H ,K2)

defined by

mp (h) = ph, h ∈ (H ,K1)⊗ (H ,K2), p ∈C[z1, . . . , z2m],

provides a module multiplication on (H ,K1)⊗ (H ,K2) over the polynomial ring C[z1, . . . , z2m].

The Hilbert space (H ,K1)⊗ (H ,K2) admits a natural direct sum decomposition as follows.

For a non-negative integer k, let Ak be the subspace of (H ,K1)⊗ (H ,K2) defined by

Ak := {
f ∈ (H ,K1)⊗ (H ,K2) :

((
∂
∂ζ

)i f (z,ζ)
)
|∆ = 0, i ∈Zm

+ , |i | ≤ k
}
. (2.22)

By Proposition 2.1.3, the vector K1(·, w)⊗ ∂̄i K2(·, w), i ∈Zm+ , belongs to (H ,K1)⊗ (H ,K2)

and (
∂
∂ζ

)i f (z,ζ)|z=ζ=w = 〈
f ,K1(·, w)⊗ ∂̄i K2(·, w)

〉
, f ∈ (H ,K1)⊗ (H ,K2). (2.23)

Thus

A ⊥
k =∨{

K1(·, w)⊗ ∂̄i K2(·, w) : w ∈Ω, i ∈Zm
+ , |i | ≤ k

}
. (2.24)

From (2.23), it also follows that these subspaces Ak , k ≥ 0, are closed. Moreover, using

the Leibniz rule, it is verified that the closed subspaces Ak , k ≥ 0, are invariant under the

multiplication by any polynomial p in C[z1, . . . , z2m] and therefore they are sub-modules of

(H ,K1)⊗ (H ,K2).

Setting S0 =A ⊥
0 , Sk :=Ak−1 ªAk , k = 1,2, . . ., we obtain the direct sum decomposition of

the Hilbert module

(H ,K1)⊗ (H ,K2) =
∞⊕

k=0

Sk .

As we have discussed in chapter 1, each Sk , k ≥ 0, is a semi-invariant module of (H ,K1)⊗
(H ,K2) with the module multiplication given by mp ( f ) = PSk (p f ), p ∈C[z1, . . . , z2m], f ∈Sk .

The following theorem gives a description of the Hilbert module S1 in the particular case

when K1 = K α and K2 = K β for some sesqui-analytic function K defined on Ω×Ω and a pair of

positive real numbers α,β.

Recall that the map ι : Ω→ Ω×Ω is defined by ι(z) = (z, z), z ∈ Ω. For the definition of

push-forward of a module over C[z1, . . . , zm], the reader is referred to chapter 1.

Theorem 2.2.5. Let K :Ω×Ω→C be a sesqui-analytic function such that the functions K α and

K β, defined onΩ×Ω, are non-negative definite for someα,β> 0. Suppose that the multiplication

operators Mzi , i = 1,2, . . . ,m, are bounded on both (H ,K α) and (H ,K β). Then the Hilbert

module S1 is isomorphic to the push-forward module ι?
(
H ,K(α,β)

)
via the module map R1|S1 .
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Proof. From Theorem 2.2.3, it follows that the map R1 defined in (2.17) is a unitary map from

S1 onto (H ,K(α,β)). Now we will show that R1PS1 (ph) = (p ◦ ι)R1h, h ∈S1, p ∈C[z1, . . . , z2m].

Let h be an arbitrary element of S1. Since kerR1 =S ⊥
1 (see the discussion before Theorem

2.2.3), it follows that R1PS1 (ph) =R1(ph), p ∈C[z1, . . . , z2m]. Hence

R1PS1 (ph) =R1(ph)

= 1√
αβ(α+β)

m∑
j=1

(β∂ j (ph)−α∂m+ j (ph))|∆⊗e j

= 1√
αβ(α+β)

m∑
j=1

p|∆(β∂ j h −α∂m+ j h)|∆⊗e j +
m∑

j=1
h|∆(β∂ j p −α∂m+ j p)|∆⊗e j

= 1√
αβ(α+β)

m∑
j=1

p|∆(β∂ j h −α∂m+ j h)|∆⊗e j (since h ∈S1)

= (p ◦ ι)R1h,

completing the proof.

Notation 2.2.6. For 1 ≤ i ≤ m, let M (1)
i and M (2)

i denote the operators of multiplication by the

coordinate function zi on the Hilbert spaces (H ,K1) and (H ,K2), respectively. If m = 1, we let

M (1) and M (2) denote the operators M (1)
1 and M (2)

1 , respectively.

In case K1 = K α and K2 = K β, let M (α)
i , M (β)

i and M (α+β)
i denote the operators of multipli-

cation by the coordinate function zi on the Hilbert spaces (H ,K α), (H ,K β) and (H ,K α+β),

respectively. If m = 1, we write M (α), M (β) and M (α+β) instead of M (α)
1 , M (β)

1 and M (α+β)
1 , respec-

tively.

Finally, let M(α,β)
i denote the operator of multiplication by the coordinate function zi on

(H ,K(α,β)). Also letM(α,β) denote the operatorM(α,β)
1 whenever m = 1.

Remark 2.2.7. It is verified that (M (α)
i ⊗ I )∗(φ j (w)) = w̄iφ j (w)+βδi j K α(·, w)⊗K β(·, w) and

(I ⊗M (β)
i )∗(φ j (w)) = w̄iφ j (w)−αδi j K α(·, w)⊗K β(·, w), 1 ≤ i , j ≤ m, w ∈Ω. Therefore,

PS1 (M (α)
i ⊗ I )|S1 = PS1 (I ⊗M (β)

i )|S1 , i = 1,2, . . . ,m.

Corollary 2.2.8. The m-tuple of operators
(
PS1 (M (α)

1 ⊗ I )|S1
, . . . ,PS1 (M (α)

m ⊗ I )|S1

)
is unitarily

equivalent to the m-tuple of operators (M(α,β)
1 , . . . ,M(α,β)

m ) on
(
H ,K(α,β)

)
.

In particular, if either the m-tuple of operators (M (α)
1 , . . . , M (α)

m ) on (H ,K α) or the m-tuple

of operators (M (β)
(1) , . . . , M (β)

m ) on (H ,K β) is bounded, then the m-tuple (M(α,β)
1 , . . . ,M(α,β)

m ) is also

bounded on
(
H ,K(α,β)

)
.

Proof. The proof of the first statement follows from Theorem 2.2.5 and the proof of the second

statement follows from the first together with Remark 2.2.7.
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2.2.2 Description of the quotient module A ⊥
1

In this subsection, we give a description of the quotient module A ⊥
1 . Let (H ,K α+β)⊕̂(H ,K(α,β))

be the Hilbert module, which is the Hilbert space (H ,K α+β)⊕(H ,K(α,β)), equipped with the

multiplication (distinct from the natural multiplication on it induced by the direct sum of the

multiplication operators on (H ,K α+β) and (H ,K(α,β))) over the polynomial ring C[z1, . . . , z2m]

induced by the 2m-tuple of operators (T1, . . . ,Tm ,Tm+1, . . . ,T2m) described below. First, for any

polynomial p ∈ C[z1, . . . , z2m], let p∗(z) := (p ◦ ι)(z) = p(z, z), z ∈ Ω and let Sp : (H ,K α+β) →
(H ,K(α,β)) be the operator given by

Sp ( f0) = 1√
αβ(α+β)

m∑
j=1

(β(∂ j p)∗−α(∂m+ j p)∗) f0 ⊗e j , f0 ∈ (H ,K α+β).

On the Hilbert space (H ,K α+β)⊕ (H ,K(α,β)), let Ti =
(

Mzi 0
Szi Mzi

)
, and Tm+i =

(
Mzi 0

Szm+i Mzi

)
, 1 ≤ i ≤

m. Now, a straightforward verification shows that the module multiplication induced by these

2m-tuple of operators is given by the formula:

mp ( f0 ⊕ f1) =
Mp∗ f0 0

Sp f0 Mp∗ f1

 , f0 ⊕ f1 ∈ (H ,K α+β)⊕ (H ,K(α,β)). (2.25)

Theorem 2.2.9. Let K :Ω×Ω→C be a sesqui-analytic function such that the functions K α and

K β, defined onΩ×Ω, are non-negative definite for someα,β> 0. Suppose that the multiplication

operators Mzi , i = 1,2, . . . ,m, are bounded on both (H ,K α) and (H ,K β). Then the quotient

module A ⊥
1 and the Hilbert module (H ,K α+β)⊕̂(H ,K(α,β)) are isomorphic.

Proof. The proof is accomplished by showing that the compression operator PA ⊥
1

Mp |A ⊥
1

is

unitarily equivalent to the operator
(

Mp∗ 0
Sp Mp∗

)
on

(
H ,K α+β)⊕(

H ,K(α,β)
)

for any polynomial

p in C[z1, . . . , z2m].

We recall that the map R0 : (H ,K α)⊗ (H ,K β) → (H ,K α+β) given by R0( f ) = f|∆, f in

(H ,K α)⊗ (H ,K β) defines a unitary map from S0 onto (H ,K α+β), and it intertwines the

operators PS0 Mp |S0
on S0 and Mp∗ on (H ,K α+β), that is, Mp∗R0|S0 =R0|S0 PS0 Mp |S0

. Com-

bining this with Theorem 2.2.3, we conclude that the map R =
(

R0|S0 0
0 R1|S1

)
is unitary from

S0
⊕

S1 (which is A ⊥
1 ) to (H ,K α+β)

⊕
(H ,K(α,β)). Since S0 is invariant under M∗

p , it follows

that PS1 M∗
p |S0

= 0. Hence

RPA ⊥
1

M∗
p |A ⊥

1
R∗ =

R0PS0 M∗
p |S0

R∗
0 R0PS0 M∗

p |S1
R∗

1

0 R1PS1 M∗
p |S1

R∗
1


on S0

⊕
S1. We have R0PS0 M∗

p |S0
R∗

0 = (Mp∗)∗, already, on (H ,K α+β). From Theorem 2.2.5,

we see that R1PS1 M∗
p |S1

R∗
1 = (Mp∗)∗ on (H ,K(α,β)). Thus we will be done if we can show that

R0PS0 M∗
p |S1

R∗
1 = S∗

p .
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To verify this, we claim that

M∗
p (φ j (w)) = p(w, w)φ j (w)+ (β(∂ j p)(w, w)−α(∂m+ j p)(w, w)) K α(·, w)⊗K β(·, w),

where φ j (w) is defined in (2.13), 1 ≤ j ≤ m, w ∈Ω. If h is an arbitrary element of (H ,K α)⊗
(H ,K β), then〈

h, M∗
p (φ j (w))

〉
= 〈

Mp h,φ j (w)
〉

= 〈
ph,φ j (w)

〉
=β(

∂ j (ph)
)
(w, w)−α(

∂m+ j (ph)
)
(w, w) ( by (2.16))

=β(
(∂ j p)(w, w)h(w, w)+p(w, w)(∂ j h)(w, w)

)
−α(

(∂m+ j p)(w, w)h(w, w)+p(w, w)(∂m+ j h)(w, w)
)

= (
β(∂ j p)(w, w)−α(∂m+ j p)(w, w)

)
h(w, w)

+ (
β(∂ j h)(w, w)−α(∂m+ j h)(w, w)

)
p(w, w)

=
〈

h, (β(∂ j p)(w, w)−α(∂m+ j p)(w, w))K α(·, w)⊗K β(·, w)
〉

+
〈

h, p(w, w)φ j (w)
〉

.

Hence our claim is verified. Since φ j (w) ∈A0 (which is S ⊥
0 ), in the computation below, the

third equality follows:

R0PS0 M∗
p |S1

R∗
1 (K(α,β)(·, w)e j )

= 1√
αβ(α+β)

R0PS0 M∗
p |S1

(φ j (w))

= 1√
αβ(α+β)

R0PS0

(
p(w, w)φ j (w)+ (

β(∂ j p)(w, w)−α(∂m+ j p)(w, w)
)
K α(·, w)⊗K β(·, w)

)
= 1√

αβ(α+β)
R0PS0

((
β(∂ j p)(w, w)−α(∂m+ j p)(w, w)

)
K α(·, w)⊗K β(·, w)

)
= 1√

αβ(α+β)
(β(∂ j p)(w, w)−α(∂m+ j p)(w, w))R0(K α(·, w)⊗K β(·, w))

= 1√
αβ(α+β)

(β(∂ j p)(w, w)−α(∂m+ j p)(w, w))K α+β(·, w).

Set S]p =R1PS1 Mp |S0
R∗

0 . Then the above computation gives

(S]p )∗(K(α,β)(·, w)e j ) = 1√
αβ(α+β)

(β(∂ j p)(w, w)−α(∂m+ j p)(w, w))K α+β(·, w),
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for 1 ≤ j ≤ m and w ∈Ω. If f is an arbitrary element in (H ,K α+β), then we see that

〈S]p f (z),e j 〉 = 〈S]p f ,K(α,β)(·, z)e j 〉
= 〈 f , (S]p )∗(K(α,β)(·, z)e j )〉
= 1√

αβ(α+β)
(β(∂ j p)(z, z)−α(∂m+ j p)(z, z))〈 f ,K α+β(·, z) 〉

= 1√
αβ(α+β)

(
β(∂ j p)(z, z)−α(∂m+ j p)(z, z)

)
f (z).

Hence S]p = Sp , completing the proof of the theorem.

Corollary 2.2.10. LetΩ⊂C be a bounded domain. The operator PA ⊥
1

(M (α) ⊗ I )|A ⊥
1

is unitarily

equivalent to the operator
(

M (α+β) 0
δ inc M(α,β))

)
on (H ,K α+β)

⊕
(H ,K(α,β)), where δ= βp

αβ(α+β)
and

inc is the inclusion operator from (H ,K α+β) into (H ,K(α,β)).

2.3 Generalized Bergman Kernels

In this section, we study the generalized Bergman kernels introduced by Curto and Salinas [26].

We refer the reader to chapter 1 for the definitions and motivation related to generalized

Bergman kernels. We start with the following lemma (cf. [27, page 285]) which provides a

sufficient condition for the sharpness of a non-negative definite kernel K .

Lemma 2.3.1. Let Ω ⊂ Cm be a bounded domain and K : Ω×Ω→ Mk (C) be a non-negative

definite kernel. Assume that the multiplication operator Mzi on (H ,K ) is bounded for 1 ≤ i ≤ m.

If the vector valued polynomial ring C[z1, . . . , zm]⊗Ck is contained in (H ,K ) as a dense subset,

then K is a sharp kernel.

Corollary 2.3.2. Let Ω ⊂ Cm be a bounded domain and K : Ω×Ω→ C be a sesqui-analytic

function such that the functions K α and K β are non-negative definite onΩ×Ω for some α,β> 0.

Suppose that either the m-tuple of operators (M (α)
1 , . . . , M (α)

m ) on (H ,K α) or the m-tuple of

operators (M (β)
1 , . . . , M (β)

m ) on (H ,K β) is bounded. If both the Hilbert spaces (H ,K α) and (H ,K β)

contain the polynomial ring C[z1, . . . , zm] as a dense subset, then the kernelK(α,β) is sharp.

Proof. By Corollary 2.2.8, we have that the m-tuple of operators (M(α,β)
1 , . . . ,M(α,β)

m ) is bounded

on
(
H ,K(α,β)

)
. If both the Hilbert spaces (H ,K α) and (H ,K β) contain the polynomial ring

C[z1, . . . , zm] as a dense subset, then by Proposition 2.2.4, we see that the ring C[z1, . . . , zm]⊗Cm

is contained in (H ,K(α,β)) and is dense in it. An application of Lemma 2.3.1 now completes

the proof.
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2.3.1 Jet Construction

For two scalar valued non-negative definite kernels K1 and K2, defined on Ω×Ω, the jet

construction (Theorem 1.1.4) gives rise to a family of non-negative kernels Jk (K1,K2)|res∆,

k ≥ 0, where

Jk (K1,K2)|res∆(z, w) := (
K1(z, w)∂i ∂̄ j K2(z, w)

)k
|i |,| j |=0, z, w ∈Ω.

In the particular case when k = 0, it coincides with the point-wise product K1K2. In this section,

we generalize Theorem 1.1.8 for all kernels of the form Jk (K1,K2)|res∆. First, we discuss two

important corollaries of the jet construction which will be used later in this chapter.

For 1 ≤ i ≤ m, let Jk Mi denote the operator of multiplication by the i th coordinate function

zi on the Hilbert space
(
H , Jk (K1,K2)|res∆

)
. In case m = 1, we write Jk M instead of Jk M1.

Taking p(z,ζ) to be the i th coordinate function zi in Proposition 1.1.5, we obtain the

following corollary.

Corollary 2.3.3. Let K1,K2 : Ω×Ω → C be two non-negative definite kernels. Then the m-

tuple of operators
(
PA ⊥

k
(M (1)

1 ⊗ I )|A ⊥
k

, . . . ,PA ⊥
k

(M (1)
m ⊗ I )|A ⊥

k

)
is unitarily equivalent to the m-

tuple (Jk M1, . . . , Jk Mm) on the Hilbert space
(
H , Jk (K1,K2)|res∆

)
.

Combining this with Corollary 2.2.10 we obtain the following result.

Corollary 2.3.4. LetΩ⊂C be a bounded domain and K :Ω×Ω→C be a sesqui-analytic function

such that the functions K α and K β are non-negative definite on Ω×Ω for some α,β> 0. The

following operators are unitarily equivalent:

(i) the operator PA ⊥
1

(M (α) ⊗ I )|A ⊥
1

(ii) the multiplication operator J1M on
(
H , J1(K α,K β)|res∆

)
(iii) the operator

M (α+β) 0

δ inc M(α,β)

 on (H ,K α+β)
⊕

(H ,K(α,β)) where δ= βp
αβ(α+β)

and inc is

the inclusion operator from (H ,K α+β) into (H ,K(α,β)).

We need the following lemmas for the generalization of Theorem 1.1.8.

Lemma 2.3.5. Let H1 and H2 be two Hilbert spaces and T be a bounded linear operator on

H1. Then

ker(T ⊗ IH2 ) = kerT ⊗H2.

Proof. It is easily seen that kerT ⊗H2 ⊂ ker(T ⊗ IH2 ). To establish the opposite inclusion, let x

be an arbitrary element in ker(T ⊗ IH2 ). Fix an orthonormal basis { fi } of H2. Note that x is of
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the form
∑

vi ⊗ fi for some vi ’s in H1. Since x ∈ ker(T ⊗ IH2 ), we have
∑

T vi ⊗ fi = 0. Moreover,

since { fi } is an orthonormal basis of H2, it follows that T vi = 0 for all i . Hence x belongs to

ker(T )⊗H2, completing the proof of the lemma.

Lemma 2.3.6. Let H1 and H2 be two Hilbert spaces. If B1, . . . ,Bm are closed subspaces of H1,

then
m⋂

l=1
(Bl ⊗H2) =

( m⋂
l=1

Bl

)
⊗H2.

Proof. We only prove the non-trivial inclusion, namely, ∩m
l=1 (Bl ⊗H2) ⊂ (∩m

l=1Bl
)⊗H2.

Let { f j } j be an orthonormal basis of H2 and x be an arbitrary element in H1 ⊗H2. Recall

that x can be written uniquely as
∑

x j ⊗ f j , x j ∈H1.

Claim: If x belongs to Bl ⊗H2, then x j belongs to Bl for all j .

To prove the claim, assume that {ei }i is an orthonormal basis of Bl . Since {ei ⊗ f j }i , j is an

orthonormal basis of Bl ⊗H2 and x can be written as
∑

xi j ei ⊗ f j = ∑
j (

∑
i xi j ei )⊗ f j . Then,

the uniqueness of the representation x =∑
x j ⊗ f j , ensures that x j =∑

i xi j ei . In particular, x j

belongs to Bl for all j . Thus the claim is verified.

Now let y be any element in ∩m
l=1 (Bl ⊗H2) . Let

∑
y j ⊗ f j be the unique representation of y

in H1 ⊗H2. Then from the claim, it follows that y j ∈∩m
l=1Bl . Consequently, y ∈ (∩m

l=1Bl )⊗H2.

This completes the proof.

The proof of the following lemma is straightforward and therefore it is omitted.

Lemma 2.3.7. Let H1 and H2 be two Hilbert spaces. Let A : H1 → H1 be a bounded linear

operator and B : H1 →H2 be a unitary operator. Then

kerB AB∗ = B(ker A).

The lemma given below is a generalization of [21, Lemma 1.22 (i)] to commuting tuples.

Recall that for a commuting m-tuple T = (T1, . . . ,Tm), the operator T i is defined by T i1
1 · · ·T im

m ,

where i = (i1, . . . , im) ∈Zm+ .

Lemma 2.3.8. If K :Ω×Ω→C is a positive definite kernel such that the m-tuple of multiplica-

tion operators M z = (Mz1 , . . . , Mzm ) on (H ,K ) is bounded, then for w ∈Ω and i = (i1, . . . , im), j =
( j1, . . . , jm) in Zm+ ,

(i) (M∗
z − w̄)i ∂̄ j K (·, w) = 0 if |i | > | j |,

(ii) (M∗
z − w̄)i ∂̄ j K (·, w) = j !δi j K (·, w) if |i | = | j |.

Proof. First, we claim that if il > jl for some 1 ≤ l ≤ m, then (M∗
zl
− w̄l )il ∂̄

jl
l K (·, w) = 0. The

claim is verified by induction on jl . The case jl = 0 holds trivially since (M∗
zl
− w̄l )K (·, w) = 0.
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Now assume that the claim is valid for jl = p. We have to show that it is true for jl = p +1 also.

Suppose il > p+1. Then il−1 > p. Hence, by the induction hypothesis, (M∗
zl
−w̄l )il−1∂̄

p
l K (·, w) =

0. Differentiating this with respect to w̄l , we see that

(il −1)(M∗
zl
− w̄l )il−2(−1)∂̄p

l K (·, w)+ (M∗
zl
− w̄l )il−1∂̄

p+1
l K (·, w) = 0.

Applying (M∗
zl
− w̄l ) to both sides of the equation above, we obtain

(il −1)(M∗
zl
− w̄l )il−1(−1)∂̄p

l K (·, w)+ (M∗
zl
− w̄l )il ∂̄

p+1
l K (·, w) = 0.

Using the induction hypothesis once again, we conclude that (M∗
zl
− w̄l )il ∂̄

p+1
l K (·, w) = 0.

Hence the claim is verified.

Now, to prove the first part of the lemma, assume that |i | > | j |. Then there exists a l such

that il > jl . Hence from the claim, we have (M∗
zl
− w̄l )il ∂̄

jl
l K (·, w) = 0. Differentiating with

respect to all other variables except w̄l , we get (M∗
zl
− w̄l )il ∂̄ j K (·, w) = 0. Applying the operator

(M∗
z −w̄)i−il el , where el is the l th standard unit vector ofCm , we see that (M∗

z −w̄)i ∂̄ j K (·, w) = 0,

completing the proof of the first part.

For the second part, assume that |i | = | j | and i 6= j . Then there is atleast one l such that il >
jl . Hence by the argument used in the last paragraph, we conclude that (M∗

z −w̄)i ∂̄ j K (·, w) = 0.

Finally, if i = j , we use induction on i to proof the lemma. There is nothing to prove if i = 0. For

the proof by induction, now, assume that (M∗
z − w̄)i ∂̄i K (·, w) = i !K (·, w) for some i ∈Zm+ . To

complete the induction step, we have to prove that (M∗
z − w̄)i+el ∂̄i+el K (·, w) = (i +el )!K (·, w).

By the first part of the lemma, we have (M∗
z − w̄)i+el ∂̄i K (·, w) = 0. Differentiating with respect

to w̄l , we get that

(M∗
z − w̄)i+el ∂̄i+el K (·, w)− (il +1)(M∗

z − w̄)i ∂̄i K (·, w) = 0.

Hence, by the induction hypothesis, (M∗
z − w̄)i+el ∂̄i+el K (·, w) = (i +el )!K (·, w). This completes

the proof.

Corollary 2.3.9. Let K :Ω×Ω→ C be a positive definite kernel. Suppose that the m-tuple of

multiplication operators M z on (H ,K ) is bounded. Then, for all w ∈Ω, the set
{
∂̄i K (·, w) : i ∈

Zm+
}

is linearly independent. Consequently, the matrix
(
∂i ∂̄ j K (w, w)

)
i , j∈Λ is positive definite

for any finite subsetΛ of Zm+ .

Proof. Let w be an arbitrary point inΩ. It is enough to show that the set
{
∂̄i K (·, w) : i ∈Zm+ , |i | ≤

k
}

is linearly independent for each non-negative integer k. Since K is positive definite, there

is nothing to prove if k = 0. To complete the proof by induction on k, assume that the set{
∂̄i K (·, w) : i ∈Zm+ , |i | ≤ k

}
is linearly independent for some non-negative integer k. Suppose

that
∑

|i |≤k+1 ai ∂̄
i K (·, w) = 0 for some ai ’s in C. Then (M∗

z − w̄)q (
∑

|i |≤k+1 ai ∂̄
i K (·, w)) = 0, for

all q ∈ Zm+ with |q | ≤ k + 1. If |q | = k + 1, by Lemma 2.3.8, we have that aq q !K (·, w) = 0.
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Consequently, aq = 0 for all q ∈Zm+ with |q | = k +1. Hence, by the induction hypothesis, we

conclude that ai = 0 for all i ∈ Zm+ , |i | ≤ k +1 and the set
{
∂̄i K (·, w) : i ∈ Zm+ , |i | ≤ k +1

}
is

linearly independent, completing the proof of the first part of the corollary.

If Λ is a finite subset of Zm+ , then it follows form the linear independence of the vectors{
∂̄i K (·, w) : i ∈ Λ}

that the matrix
(〈
∂̄ j K (·, w), ∂̄i K (·, w)

〉)
i , j∈Λ is positive definite. Now the

proof is complete since
〈
∂̄ j K (·, w), ∂̄i K (·, w)

〉= ∂i ∂̄ j K (w, w) (see Proposition 2.1.3).

The following proposition is also a generalization to the multi-variate setting of [21, Lemma

1.22 (ii)]( see also [22]).

Proposition 2.3.10. If K :Ω×Ω→C is a sharp kernel, then for every w ∈Ω⋂
| j |=k+1

ker (M∗
z − w̄) j =∨{

∂̄ j K (·, w) : | j | ≤ k
}
.

Proof. The inclusion
∨

{∂̄ j K (·, w) : | j | ≤ k} ⊆ ⋂
| j |=k+1 ker (M∗

z − w̄) j follows from part (i) of

Lemma 2.3.8. We use induction on k for the opposite inclusion. From the definition of sharp

kernel, this inclusion is evident if k = 0. Assume that⋂
| j |=k+1

ker (M∗
z − w̄) j ⊆∨{

∂̄ j K (·, w) : | j | ≤ k
}

for some non-negative integer k. To complete the proof by induction, we show that the

inclusion remains valid for k +1 as well. Let f be an arbitrary element of
⋂

|i |=k+2 ker(M∗
z − w̄)i .

Fix a j ∈ Zm+ with | j | = k +1. Then it follows that (M∗
z − w̄) j f belongs to ∩m

l=1 ker(M∗
zl
− w̄l ).

Since K is sharp, we see that (M∗
z − w̄) j f = c j K (·, w) for some constant c j depending on w .

Therefore

(M∗
z − w̄) j

(
f − ∑

|q |=k+1

cq

q !
∂̄q K (·, w)

)
=c j K (·, w)− ∑

|q |=k+1

cq

q !
(M∗

z − w̄) j ∂̄q K (·, w)

=c j K (·, w)− ∑
|q |=k+1

cqδ j q
j !
q ! K (·, w)

=0,

where the last equality follows from Lemma 2.3.8. Hence the element f −∑
|q |=k+1

cq

q ! ∂̄
q K (·, w)

belongs to
⋂

| j |=k+1 ker(M∗
z − w̄) j . Thus by the induction hypothesis, f −∑

|q |=k+1
cq

q ! ∂̄
q K (·, w) =∑

| j |≤k d j ∂̄
j K (·, w). Hence f belongs to

∨
{∂̄ j K (·, w) : | j | ≤ k +1}. This completes the proof.

For a m-tuple of bounded operators T = (T1, . . . ,Tm) on a Hilbert space H , we define an

operator DT : H
⊕ · · ·⊕H →H by

DT (x1, . . . , xm) =
m∑

i=1
Ti xi , x1, . . . , xm ∈H .
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A routine verification shows that (DT )∗ = DT ∗
. The following lemma is undoubtedly well

known, however, we provide a proof for the sake of completeness.

Lemma 2.3.11. Let K :Ω×Ω→ C be a positive definite kernel such that the m-tuple of mul-

tiplication operators M z on (H ,K ) is bounded. Let w = (w1, . . . , wm) be a fixed but arbitrary

point inΩ and let Vw be the subspace given by { f ∈ (H ,K ) : f (w) = 0}. Then K is a generalized

Bergman kernel if and only if for every w ∈Ω,

Vw =
{∑m

i=1(zi −wi )gi : gi ∈ (H ,K )
}

. (2.26)

Proof. First, observe that the right-hand side of (2.26) is equal to ran D M z−w . Hence it suffices

to show that K is a generalized Bergman kernel if and only if Vw = ran D M z−w . In any case, we

have the following inclusions

ran D M z−w = ran (D(M z−w)∗)∗ ⊆ ran (D(M z−w)∗)∗ = kerD(M z−w)∗
⊥ (2.27)

⊆ {cK (·, w) : c ∈C}⊥

= Vw .

Hence it follows that Vw = ran D M z−w if and only if equality is forced everywhere in these

inclusions, that is, ran (D(M z−w)∗)∗ = ran (D(M z−w)∗)∗ and kerD(M z−w)∗
⊥ = {cK (·, w) : c ∈C}⊥.

Now ran (D(M z−w)∗)∗ = ran (D(M z−w)∗)∗ if and only if ran (D(Mz−w)∗)∗ is closed. Recall that,

if H1,H2 are two Hilbert spaces, and an operator T : H1 → H2 has closed range, then T ∗

also has closed range. Therefore, ran (D(M z−w)∗)∗ is closed if and only if ran D(M z−w)∗ is

closed. Finally, note that kerD(M z−w)∗
⊥ = {cK (·, w) : c ∈C}⊥ holds if and only if kerD(M z−w)∗ =

{cK (·, w) : c ∈C}. This completes the proof.

Notation 2.3.12. Recall that for 1 ≤ i ≤ m, M (1)
i , M (2)

i , Jk Mi denote the operators of multiplica-

tion by the coordinate function zi on the Hilbert spaces (H ,K1), (H ,K2) and (H , Jk (K1,K2)|res∆),

respectively. Set M (1) = (M (1)
1 , . . . , M (1)

m ), M (2) = (M (2)
1 , . . . , M (2)

m ) and J k M = (Jk M1, . . . , Jk Mm).

Also, for the sake of brevity, let H1 and H2 be the Hilbert spaces (H ,K1) and (H ,K2), respec-

tively for the rest of this section.

The following lemma is the main tool to prove that the kernel Jk (K1,K2)|res∆ is sharp

whenever K1 and K2 are sharp.

Lemma 2.3.13. If K1,K2 :Ω×Ω→C are two sharp kernels, then for all w = (w1, . . . , wm) ∈Ω,

m⋂
p=1

ker
((

(M (1)
p −wp )∗⊗ I

)
|A ⊥

k

)
= ⋂

|i |=1
ker

(
M (1) −w

)∗i ⊗ ⋂
|i |=k+1

ker
(
M (2) −w

)∗i

=∨{
K1(·, w)⊗ ∂̄i K2(·, w) : |i | ≤ k

}
.
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Proof. Since K1 and K2 are sharp kernels, by Proposition 2.3.10, it follows that⋂
|i |=1

ker(M (1) −w)∗i ⊗ ⋂
|i |=k+1

ker(M (2) −w)∗i =∨
{K1(·, w)⊗ ∂̄ j K2(·, w) : | j | ≤ k}. (2.28)

Therefore, if we can show that

m⋂
p=1

ker
((

(M (1)
p −wp )∗⊗ I

)
|Ak

⊥
)
= ⋂

|i |=1
ker(M (1) −w)∗i ⊗ ⋂

|i |=k+1
ker(M (2) −w)∗i

, (2.29)

then we will be done. To prove this, first note that

m⋂
p=1

ker
((

(M (1)
p −wp )∗⊗ I

)
|A ⊥

k

)
=

m⋂
p=1

(
ker

(
(M (1)

p −wp )∗⊗ I
)⋂

A ⊥
k

)
=

( m⋂
p=1

ker
(
(M (1)

p −wp )∗⊗ I
))⋂

A ⊥
k

=
( m⋂

p=1

(
ker(M (1)

p −wp )∗⊗H2
))⋂

A ⊥
k

=
(( m⋂

p=1
ker(M (1)

p −wp )∗
)
⊗H2

)⋂
A ⊥

k

=
(

kerD(M (1)−w)∗ ⊗H2

)⋂
A ⊥

k .

Here the third equality follows from Lemma 2.3.5 and the forth equality follows from Lemma

2.3.6. In view of the above computation, to verify (2.29), it is enough to show that(
kerD(M (1)−w)∗ ⊗H2

)⋂
A ⊥

k = ⋂
|i |=1

ker(M (1) −w)∗i ⊗ ⋂
|i |=k+1

ker(M (2) −w)∗i
. (2.30)

Since K1 is a sharp kernel, kerD(M (1)−w)∗ is spanned by the vector K1(·, w). Hence, by (2.24), the

vector K1(·, w)⊗ ∂̄ j K2(·, w) belongs to
(

kerD(M (1)−w)∗ ⊗H2

)⋂
A ⊥

k for all j in Zm+ with | j | ≤ k.

Therefore, by (2.28), we have the inclusion⋂
|i |=1

ker(M (1) −w)∗i ⊗ ⋂
|i |=k+1

ker(M (2) −w)∗i ⊆
(

kerD(M (1)−w)∗ ⊗H2

)⋂
A ⊥

k . (2.31)

Now to prove the opposite inclusion, note that an arbitrary vector of
(

kerD(M (1)−w)∗⊗H2
)⋂

A ⊥
k

can be taken to be of the form K1(·, w)⊗ g , where g ∈ H2 is such that K1(·, w)⊗ g ∈ A ⊥
k . We

claim that such a vector g must be in
⋂

|i |=k+1 ker(M (2) −w)∗i
.

As before, we realize the vectors of H1 ⊗H2 as functions in z = (z1, . . . , zm),ζ= (ζ1, . . . ,ζm)

inΩ. Fix any i ∈Zm+ with |i | = k+1. Then (ζ−z)i = (ζq1−zq1 )(ζq2−zq2 ) · · · (ζqk+1−zqk+1 ) for some

1 ≤ q1, q2, . . . , qk+1 ≤ m. Since M (1)
i and M (2)

i are bounded for 1 ≤ i ≤ m, for any h ∈H1 ⊗H2,
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we see that the function (ζ− z)i h belongs to H1 ⊗H2. Then〈
K1(·, w)⊗ g , (ζq1 − zq1 )(ζq2 − zq2 ) · · · (ζqk+1 − zqk+1 )h

〉
=

〈
M∗

(ζq1−zq1 )(K1(·, w)⊗ g ), (ζq2 − zq2 ) · · · (ζqk+1 − zqk+1 )h
〉

=
〈

(I ⊗M (2)
q1

∗−M (1)
q1

∗⊗ I )K1(·, w)⊗ g , (ζq2 − zq2 ) · · · (ζqk+1 − zqk+1 )h
〉

=
〈

K1(·, w)⊗M (2)
q1

∗
g − w̄q1 K1(·, w)⊗ g , (ζq2 − zq2 ) · · · (ζqk+1 − zqk+1 )h

〉
=

〈
K1(·, w)⊗ (M (2)

q1
−wq1 )∗g , (ζq2 − zq2 ) · · · (ζqk+1 − zqk+1 )h

〉
.

Repeating this process, we get〈
K1(·, w)⊗ g , (ζ− z)i h

〉= 〈
K1(·, w)⊗ (M (2) −w)∗i

g ,h
〉

.

Since |i | = k + 1, it follows that the element (ζ− z)i h belongs to Ak . Furthermore, since

K1(·, w)⊗ g ∈A ⊥
k , from the above equality, we have〈

K1(·, w)⊗ (M (2) −w)∗i
g ,h

〉
= 0

for any h ∈H1⊗H2. Taking h = K1(·, w)⊗K2(·,u), u ∈Ω, we get K1(w, w)
(
(M (2) −w)∗i

g
)
(u) = 0

for all u ∈Ω. Since K1(w, w) > 0, it follows that (M (2) −w)∗i
g = 0. Since this is true for all i ∈Zm+

with |i | = k +1, it follows that g ∈⋂
|i |=k+1 ker(M (2) −w)∗i

. Hence K1(·, w)⊗ g belongs to

⋂
|i |=1

ker(M (1) −w)∗i ⊗ ⋂
|i |=k+1

ker(M (2) −w)∗i
,

proving the opposite inclusion of the one appearing in (2.31). This completes the proof of

equality in (2.29).

Theorem 2.3.14. LetΩ⊂Cm be a bounded domain. If K1,K2 :Ω×Ω→C are two sharp kernels,

then so is the kernel Jk (K1,K2)|res∆, k ≥ 0.

Proof. Since the tuple M (1) is bounded, by Corollary 2.3.3, it follows that the tuple J k M is

also bounded. Now we will show that the kernel Jk (K1,K2)|res∆ is positive definite on Ω×Ω.

Since K2 is positive definite, by Corollary 2.3.9, we obtain that the matrix
(
∂i ∂̄ j K2(w, w)

)k
|i |,| j |=0

is positive definite for w ∈Ω. Moreover, since K1 is also positive definite, we conclude that

Jk (K1,K2)|res∆(w, w) is positive definite for w ∈Ω. Hence, by Proposition 2.1.14, we conclude

that the kernel Jk (K1,K2)|res∆ is positive definite.

To complete the proof, we need to show that

kerD(J k M−w)∗ = ran Jk (K1,K2)|res∆(·, w), w ∈Ω.
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Note that, by the definition of R and Jk (see the discussion before Theorem 1.1.4), we have

R Jk (K1(·, w)⊗ ∂̄i K2(·, w)) = Jk (K1,K2)|res∆(·, w)ei , i ∈Zm
+ , |i | ≤ k. (2.32)

In the computation below, the third equality follows from Lemma 2.3.7, the injectivity of the

map R Jk |A ⊥
k

implies the fourth equality, the fifth equality follows from Lemma 2.3.13 and

finally the last equality follows from (2.32):

kerD(J k M−w)∗ =
m⋂

p=1
ker(Jk Mp −wp )∗

=
m⋂

p=1
ker

(
(R Jk )PA ⊥

k

(
(M (1)

p −wp )∗⊗ I
)
|A ⊥

k
(R Jk )∗

)
=

m⋂
p=1

(R Jk )
(

ker
(
PA ⊥

k

(
(M (1)

p −wp )∗⊗ I
)
|A ⊥

k

))
=(R Jk )

( m⋂
p=1

ker
(
PA ⊥

k

(
(M (1)

p −wp )∗⊗ I
)
|A ⊥

k

))
=(R Jk )

(∨{
K1(·, w)⊗ ∂̄i K2(·, w) : | j | ≤ k

} )
=ran Jk (K1,K2)|res∆(·, w).

This completes the proof.

The lemma given below is the main tool to prove Theorem 2.3.16.

Lemma 2.3.15. Let K1,K2 : Ω×Ω → C be two generalized Bergman kernels, and let w =
(w1, . . . , wm) be an arbitrary point in Ω. Suppose that f is a function in H1 ⊗H2 satisfying((

∂
∂ζ

)i f (z,ζ)
)
|z=ζ=w = 0 for all i ∈Zm+ , |i | ≤ k. Then

f (z,ζ) =
m∑

j=1
(z j −w j ) f j (z,ζ)+ ∑

|q |=k+1
(z −ζ)q f ]q (z,ζ)

for some functions f j , f ]q in H1 ⊗H2, j = 1, . . . ,m, q ∈Zm+ , |q | = k +1.

Proof. Since K1 and K2 are generalized Bergman kernels, by Theorem 1.1.8, we have that

K1⊗K2 is also a generalized Bergman kernel. Therefore, if f is a function in H1⊗H2 vanishing

at (w, w), then using Lemma 2.3.11, we find functions f1, . . . , fm , and g1, . . . , gm in H1 ⊗H2

such that

f (z,ζ) =
m∑

j=1
(z j −w j ) f j +

m∑
j=1

(ζ j −w j )g j .
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Equivalently, we have

f (z,ζ) =
m∑

j=1
(z j −w j )( f j + g j )+

m∑
j=1

(z j −ζ j )(−g j ).

Thus the statement of the lemma is verified for k = 0. To complete the proof by induction

on k, assume that the statement is valid for some non-negative integer k. Let f be a function in

H1 ⊗H2 such that
((

∂
∂ζ

)i f (z,ζ)
)
|z=ζ=w = 0 for all i ∈Zm+ , |i | ≤ k +1. By induction hypothesis,

we can write

f (z,ζ) =
m∑

j=1
(z j −w j ) f j (z,ζ)+ ∑

|q |=k+1
(z −ζ)q f ]q (z,ζ) (2.33)

for some f j , f ]q ∈H1⊗H2, j = 1, . . . ,m, q ∈Zm+ , |q | = k+1. Fix a i ∈Zm+ with |i | = k+1. Applying(
∂
∂ζ

)i to both sides of (2.33), we see that

(
∂
∂ζ

)i f (z,ζ) =
m∑

j=1
(z j −w j )

(
∂
∂ζ

)i f j (z,ζ)+ ∑
|q |=k+1

(
∂
∂ζ

)i ((z −ζ)q f ]q (z,ζ)
)

=
m∑

j=1
(z j −w j )

(
∂
∂ζ

)i f j (z,ζ)+ ∑
|q |=k+1

∑
p≤i

( i
p

)(
∂
∂ζ

)p (z −ζ)q (
∂
∂ζ

)i−p f ]q (z,ζ).

Putting z = ζ= w , we obtain((
∂
∂ζ

)i f (z,ζ)
)
|z=ζ=w = (−1)|i |i ! f ]i (w, w),

where we have used the simple identity:
((

∂
∂ζ

)p (z −ζ)q
)
|z=ζ=w

= δpq (−1)|p|p !.

Since
((

∂
∂ζ

)i f (z,ζ)
)
|z=ζ=w = 0, we conclude that f ]i (w, w) = 0. Since the statement of the

lemma has been shown to be valid for k = 0, it follows that

f ]i (z,ζ) =
m∑

j=1
(z j −w j )

(
f ]i

)
j (z,ζ)+

m∑
j=1

(z j −ζ j )
(

f ]i
)]

j (z,ζ) (2.34)

for some
(

f ]i
)

j ,
(

f ]i
)]

j ∈ H1 ⊗H2, j = 1, . . . ,m. Since (2.34) is valid for any i ∈ Zm+ , |i | = k +1,

replacing the f ]q ’s in (2.33) by
∑m

j=1(z j −w j )
(

f ]q
)

j (z,ζ)+∑m
j=1(z j −ζ j )

(
f ]q

)]
j (z,ζ), we obtain the

desired conclusion after some straightforward algebraic manipulation.

Theorem 2.3.16. Let Ω ⊂ Cm be a bounded domain. If K1,K2 : Ω×Ω → C are generalized

Bergman kernels, then so is the kernel Jk (K1,K2)|res∆, k ≥ 0.

Proof. By Theorem 2.3.14, we will be done if we can show that ran D(J k M−w)∗ is closed for every

w ∈ Ω. Fix a point w = (w1, . . . , wm) in Ω. Let X := (
PA ⊥

k
(M (1)

1 ⊗ I )|A ⊥
k

, . . . ,PA ⊥
k

(M (1)
m ⊗ I )|A ⊥

k

)
.

By Corollary 2.3.3, we see that ran D(J k M−w)∗ is closed if and only if ran D(X−w)∗ is closed.
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Moreover, since (D(X−w)∗)∗ = D (X−w), we conclude that ran D(X−w)∗ is closed if and only if

ran D (X−w) is closed. Note that X satisfies the following equality:

kerD(X−w)∗
⊥ = ran (D(X−w)∗)∗ = ran D (X−w).

Therefore, to prove ran D (X−w) is closed, it is enough to show that kerD(X−w)∗
⊥ ⊆ ran D X−w .

To prove this, note that

D (X−w)(g1 ⊕·· ·⊕ gm) = PA ⊥
k

( m∑
i=1

(zi −wi )gi
)
, gi ∈A ⊥

k , i = 1, . . . ,m.

Thus

ran D (X−w) =
{

PA ⊥
k

( m∑
i=1

(zi −wi )gi : g1, . . . , gm ∈A ⊥
k

}
. (2.35)

Now, let f be an arbitrary element of kerD(X−w)∗
⊥. Then, by Lemma 2.3.13 and Proposition

2.1.3, we have
((

∂
∂ζ

)i f (z,ζ)
)
|z=ζ=w = 0 for all i ∈Zm+ , |i | ≤ k. By Lemma 2.3.15,

f (z,ζ) =
m∑

j=1
(z j −w j ) f j (z,ζ)+ ∑

|q |=k+1
(z −ζ)q f ]q (z,ζ)

for some functions f j , f ]q in H1⊗H2, j = 1, . . . ,m and q ∈Zm+ , |q | = k+1. Note that the element∑
|q |=k+1(z −ζ)q f ]q belongs to Ak . Hence f = PA ⊥

k
( f ) = PA ⊥

k

(∑m
j=1(z j −w j ) f j

)
. Furthermore,

since the subspace Ak is invariant under (M (1)
j −w j ), j = 1, . . . ,m, we see that

f = PA ⊥
k

(∑m
j=1(z j −w j ) f j

)= PA ⊥
k

(∑m
j=1(z j −w j )

(
PA ⊥

k
f j +PAk f j

))
= PA ⊥

k

(∑m
j=1(z j −w j )(PA ⊥

k
f j )

)
.

Therefore, from (2.35), we conclude that f ∈ ran D (X−w). This completes the proof.

2.3.2 The class FB2(Ω)

In this subsection, first we will use Theorem 2.3.16 to prove that, ifΩ⊂C, and K α, K β, defined

onΩ×Ω, are generalized Bergman kernels, then so is the kernelK(α,β). The following propo-

sition, which is interesting on its own right, is an essential tool in proving this theorem. The

notation below is chosen to be close to that of [37].

Proposition 2.3.17. LetΩ⊂C be a bounded domain. Let T be a bounded linear operator of the

form

T0 S

0 T1

 on H0
⊕

H1. Suppose that T belongs to B2(Ω) and T0 belongs to B1(Ω). Then T1

belongs to B1(Ω).
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Proof. First, note that, for w ∈Ω,

(T −w)(x ⊕ y) = ((T0 −w)x +Sy)⊕ (T1 −w)y. (2.36)

Since T ∈ B2(D), T −w is onto. Hence, from the above equality, it follows that (T1 −w) is onto.

Now we claim that dimker(T1−w) = 1 for all w ∈Ω. From (2.36), we see that (x⊕y) belongs

to ker(T −w) if and only if (T0−w)x+Sy = 0 and y ∈ ker(T1−w). Therefore, if dimker(T1−w) is

0, it must follow that ker(T −w) = ker(T0−w), which is a contradiction. Hence dimker(T1−w)

is atleast 1. Now assume that dimker(T1 −w) > 1. Let v1(w) and v2(w) be two linearly inde-

pendent vectors in ker(T1 −w). Since (T0 −w) is onto, there exist u1(w),u2(w) ∈ H0 such that

(T0−w)ui (w)+Svi (w) = 0, i = 1,2. Hence the vectors (u1(w)⊕v1(w)), (u2(w)⊕v2(w)) belong to

ker(T−w). Also, since dimker(T0−w) = 1, there exists γ(w) ∈ H0, such that (γ(w)⊕0) belongs to

ker(T −w). It is easy to verify that the vectors {(u1(w)⊕v1(w)), (u2(w)⊕v2(w)), (γ(w)⊕0)} are lin-

early independent. This is a contradiction since dimker(T −w) = 2. Therefore dimker(T1−w) ≤
1. In consequence, dimker(T1 −w) = 1.

Finally, to show that
∨

w∈Ωker(T1 −w) = H1, let y be an arbitrary vector in H1 which is

orthogonal to
∨

w∈Ωker(T1 −w). Then it follows that (0⊕ y) is orthogonal to ker(T −w), w ∈Ω.

Consequently, y = 0. This completes the proof.

Theorem 2.3.18. Let Ω ⊂ C be a bounded domain and K : Ω×Ω→ C be a sesqui-analytic

function such that the functions K α and K β are positive definite on Ω×Ω for some α,β > 0.

Suppose that the operators M (α)∗ on (H ,K α) and M (β)∗ on (H ,K β) belong to B1(Ω∗). Then the

operator M(α,β)∗ on (H ,K(α,β)) belongs to B1(Ω∗). Equivalently, if K α and K β are generalized

Bergman kernels, then so is the kernel K(α,β).

Proof. Since the operators M (α)∗ and M (β)∗ belong to B1(Ω∗), by Theorem 2.3.16, the kernel

J1(K α,K β)|res∆ is a generalized Bergman kernel. Therefore, from corollary 2.3.4, we deduce that

the operator
(

M (α+β)∗ η inc∗
0 M(α,β)∗

)
belongs to B2(Ω∗), where η = βp

αβ(α+β)
and inc is the inclusion

operator from (H ,K α+β) into (H ,K(α,β)). Also, by Theorem 1.1.8, the operator M (α+β)∗ on

(H ,K α+β) belongs to B1(Ω∗). Proposition 2.3.17, therefore shows that the operator M(α,β)∗ on

(H ,K(α,β)) belongs to B1(Ω∗).

A smaller class of operators FBn(Ω) from Bn(Ω), n ≥ 2, was introduced in [37]. A set of

tractable complete unitary invariants and concrete models were given for operators in this

class. We give below examples of a large class of operators in FB2(Ω). In caseΩ is the unit disc

D, these examples include the homogeneous operators of rank 2 in B2(D) which are known to

be in FB2(D).

Definition 2.3.19. An operator T on H0
⊕

H1 is said to be in FB2(Ω) if it is of the form

T0 S

0 T1

,

where T0,T1 ∈ B1(Ω) and S is a non-zero operator satisfying T0S = ST1.
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Theorem 2.3.20. Let Ω ⊂ C be a bounded domain and K : Ω×Ω→ C be a sesqui-analytic

function such that the functions K α and K β are positive definite on Ω×Ω for some α,β > 0.

Suppose that the operators M (α)∗ on (H ,K α) and M (β)∗ on (H ,K β) belong to B1(Ω∗). Then the

operator (J1M)∗ on (H , J1(K α,K β)|res∆) belongs to FB2(Ω∗).

Proof. By Theorem 2.3.16, the operator (J1M)∗ on (H , J1(K α,K β)|res∆) belongs to B2(Ω∗), and

by Corollary 2.3.4, it is unitarily equivalent to
(

M (α+β)∗ η inc∗
0 M(α,β)∗

)
on (H ,K α+β)

⊕
(H ,K(α,β)). By

Theorem 1.1.8, the operator M (α+β)∗ on (H ,K α+β) belongs to B1(Ω∗) and by Theorem 2.3.18,

the operatorM(α,β)∗ on (H ,K(α,β)) belongs to B1(Ω∗). The adjoint of the inclusion operator inc
clearly intertwines M (α+β)∗ andM(α,β)∗. Therefore the operator (J1M)∗ on (H , J1(K α,K β)|res∆)

belongs to FB2(Ω∗).

LetΩ⊂C be a bounded domain and K :Ω×Ω→C be a sesqui-analytic function such that

the functions K α1 ,K α2 ,K β1 and K β2 are positive definite onΩ×Ω for some αi ,βi > 0, i = 1,2.

Suppose that the operators M (αi )∗ on (H ,K αi ) and M (βi )∗ on (H ,K βi ), i = 1,2, belong to

B1(Ω∗). Let A1(αi ,βi ) be the subspace A1 of the Hilbert space (H ,K αi )⊗ (H ,K βi ) for i = 1,2.

Then we have the following corollary.

Corollary 2.3.21. The operators
(
M (α1) ⊗ I

)∗
|A1(α1,β1)⊥ and

(
M (α2) ⊗ I

)∗
|A1(α2,β2)⊥ are unitarily

equivalent if and only if α1 =α2 and β1 =β2.

Proof. If α1 =α2 and β1 = β2, then there is nothing to prove. For the converse, assume that

the operators
(
M (α1) ⊗ I

)∗
|A1(α1,β1)⊥ and

(
M (α2) ⊗ I

)∗
|A1(α2,β2)⊥ are unitarily equivalent. Then, by

Corollary 2.2.10, we see that the operators
(

M (α1+β1)∗ η1 (inc)∗1
0 M(α1,β1)∗

)
on (H ,K α1+β1 )

⊕
(H ,K(α1,β1))

and
(

M (α2+β2)∗ η2 (inc)∗2
0 M(α2,β2)∗

)
on (H ,K α2+β2 )

⊕
(H ,K(α2,β2)) are unitarily equivalent, where ηi =

βip
αiβi (αi+βi )

and (inc)i is the inclusion operator from (H ,K αi+βi ) into (H ,K(αi ,βi )), i = 1,2.

Since M (αi )∗ on (H ,K αi ) and M (βi )∗ on (H ,K βi ), i = 1,2, belong to B1(Ω∗), by Theorem 2.3.20,

we conclude that the operator
(

M (αi +βi )∗ ηi (inc)∗i
0 M(αi ,βi )∗

)
belongs to FB2(Ω∗) for i = 1,2. Therefore,

by [37, Theorem 2.10], we obtain that

KM (α1+β1)∗ =KM (α2+β2)∗ and
η1 ‖(inc)∗1 (t1)‖2

‖t1‖2
= η2 ‖(inc)∗2 (t2)‖2

‖t2‖2
, (2.37)

where KM (αi +βi )∗ , i = 1,2, is the curvature of the operator M (αi+βi )∗, and t1 and t2 are two

non-vanishing holomorphic sections of the vector bundles EM(α1,β1)∗ and EM(α2,β2)∗ , respectively.

Note that, for i = 1,2, ti (w) =K(αi ,βi )(·, w) is a holomorphic non-vanishing section of the vector

bundle E
M(αi ,βi )∗ , and also (inc)∗i (K(αi ,βi )(·, w)) = K αi+βi (·, w), w ∈ Ω. Therefore the second

equality in (2.37) implies that

η1K α1+β1 (w, w)

K α1+β1 (w, w)∂∂̄ logK (w, w)
= η2K α2+β2 (w, w)

K α2+β2 (w, w)∂∂̄ logK (w, w)
, w ∈Ω,
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or equivalently η1 = η2. Furthermore, it is easy to see that KM (α1+β1)∗ =KM (α2+β2)∗ if and only if

α1 +β1 =α2 +β2. Hence, from (2.37), we see that

α1 +β1 =α2 +β2 and η1 = η2. (2.38)

Then a simple calculation shows that (2.38) is equivalent to α1 =α2 and β1 =β2, completing

the proof.

2.4 Some Applications

2.4.1 A limit computation

In this subsection, we give an alternative computation for the curvature of an operator in the

Cowen - Douglas class B1(Ω).

Let Ω⊂Cm be a bounded domain and K :Ω×Ω→C be a sesqui-analytic function such

that the functions K α and K β are non-negative definite on Ω×Ω for some α,β > 0. For a

non-negative integer p, let K ⊗
Ap

be the reproducing kernel of Ap , where Ap is defined in (2.22).

One way to prove both of the following two lemmas is to make the change of variables

u1 = 1
2 (z1 −ζ1), . . . ,um = 1

2 (zm −ζm); v1 = 1
2 (z1 +ζ1), . . . , vm = 1

2 (zm +ζm).

We give the details for the proof of the first lemma. The proof for the second one follows by

similar arguments.

Lemma 2.4.1. Suppose that f :Ω×Ω→ C is a holomorphic function satisfying f|∆ = 0. Then

for each z0 ∈Ω, there exists a neighbourhoodΩ0 ⊂Ω (independent of f ) of z0 and holomorphic

functions f1, f2, . . . , fm onΩ0 ×Ω0 such that

f (z,ζ) =
m∑

i=1
(zi −ζi ) fi (z,ζ), z,ζ ∈Ω0.

Lemma 2.4.2. Suppose that f : Ω×Ω→ C is a holomorphic function satisfying f|∆ = 0 and((
∂
∂ζ j

)
f (z,ζ)

)
|∆ = 0, j = 1, . . . ,m. Then for each z0 ∈ Ω, there exists a neighbourhood Ω0 ⊂ Ω

(independent of f ) of z0 and holomorphic functions fi j , 1 ≤ i ≤ j ≤ m, on Ω0 ×Ω0 such that

f (z,ζ) = ∑
1≤i≤ j≤m

(zi −ζi )(z j −ζ j ) fi j (z,ζ), z,ζ ∈Ω0.

Note that the image of the diagonal set ∆ ⊆ Ω×Ω under the map (u, v) : Ω×Ω→ C2m ,

where (u, v ) = (u1, . . . ,um , v1, . . . , vm), is the set {(0, v) : v ∈Ω}. Therefore we may choose a neigh-

bourhood of (0, z0) which is a polydisc contained in Ω̂ := (u, v )(Ω×Ω). Let f be a holomorphic



2.4. Some Applications 51

function on Ω×Ω vanishing on the set ∆. Setting g := f ◦ (u, v)−1 on Ω̂, we see that g is a

holomorphic function on Ω̂ vanishing on the set {(0, v) : v ∈Ω}. Therefore g has a power series

representation around (0, z0) of the form
∑

i , j ai j ui (v − z0) j , where
∑

j a0 j (v − z0) j = 0 and

i , j ∈Zm+ , on the chosen polydisc. Hence a0 j = 0 for all j ∈Zm+ , and the power series is of the

form
∑m
`=1 u`g`(u, v), where

g`(u, v) =∑
i j

ai j ui−e`(v − z0) j , 1 ≤ `≤ m.

Here the sum is over all multi-indices i satisfying i1 = 0, . . . , i`−1 = 0, i` ≥ 1 while j remains

arbitrary. Pulling this expression back toΩ×Ω under the bi-holomorphic map (u, v ), we obtain

the expansion of f in a neighbourhood of (z0, z0) as prescribed in the Lemma 2.4.1.

Theorem 2.4.3. For z in Ω and 1 ≤ i , j ≤ m, we have

lim
ζi→zi
ζ j→z j

(
K ⊗

A0
(z,ζ; z,ζ)

(zi −ζi )(z̄ j − ζ̄ j )

∣∣∣
ζl=zl ,l 6=i , j

)
= αβ

(α+β) K (z, z)α+β∂i ∂̄ j logK (z, z),

where
K ⊗

A0
(z,ζ;z,ζ)

(zi−ζi )(z̄ j−ζ̄ j )

∣∣∣
ζl=zl ,l 6=i , j

is the restriction of the function
K ⊗

A0
(z,ζ;z,ζ)

(zi−ζi )(z̄ j−ζ̄ j )
to the set{

(z,ζ) ∈Ω×Ω : zl = ζl , l = 1, . . . ,m, l 6= i , j
}
.

Proof. Let K ⊗
A0ªA1

(z,ζ; w,ν) be the reproducing kernels of A0 ªA1. Fix a point z0 inΩ. Choose

a neighbourhood Ω0 of z0 inΩ such that the conclusions of Lemma 2.4.1 and Lemma 2.4.2 are

valid. Now we restrict the kernels K α and K β toΩ0 ×Ω0.

Let f be an arbitrary function in A1. Then, by definition, f satisfies the hypothesis of

Lemma 2.4.2, and therefore, it follows that

lim
ζi→zi

(
f (z,ζ)

(zi −ζi )

∣∣∣
zl=ζl ,l 6=i

)
= 0, i = 1, . . . ,m. (2.39)

Let {hn}n∈Z+ be an orthonormal basis of A1. Since the series
∑∞

n=0 hn(z,ζ)hn(z,ζ) converges

uniformly to K ⊗
A1

(z,ζ; z,ζ) on the compact subsets ofΩ0 ×Ω0, using (2.39) we see that

lim
ζi→zi
ζ j→z j

(
K ⊗

A1
(z,ζ; z,ζ)

(zi −ζi )(z̄ j − ζ̄ j )

∣∣∣
ζl=zl ,l 6=i , j

)
=

∞∑
n=0

lim
ζi→zi

(
hn(z,ζ)

(zi −ζi )

∣∣∣
zl=ζl ,l 6=i

)
lim
ζ j→z j

(
hn(z,ζ)

(z j −ζ j )

∣∣∣
zl=ζl ,l 6= j

)

= 0.

Since K ⊗
A0

= K ⊗
A0ªA1

+K ⊗
A1

, the above equality leads to

lim
ζi→zi
ζ j→z j

(
K ⊗

A0
(z,ζ; z,ζ)

(zi −ζi )(z̄ j − ζ̄ j )

∣∣∣
ζl=zl ,l 6=i , j

)
= lim

ζi→zi
ζ j→z j

(
K ⊗

A0ªA1
(z,ζ; z,ζ)

(zi −ζi )(z̄ j − ζ̄ j )

∣∣∣
ζl=zl ,l 6=i , j

)
.



52 2. Decomposition of the tensor product of two Hilbert modules

Now let {en}n∈Z+ be an orthonormal basis of A0 ªA1. Since each en ∈A0, by Lemma 2.4.1,

there exist holomorphic functions en,i , 1 ≤ i ≤ m, onΩ0 ×Ω0 such that

en(z,ζ) =
m∑

i=1
(zi −ζi )en,i (z,ζ), z,ζ ∈Ω0.

Thus for 1 ≤ i ≤ m, we have

lim
ζi→zi

(
en(z,ζ)

(zi −ζi )

∣∣∣
zl=ζl ,l 6=i

)
= en,i (z, z), z ∈Ω0. (2.40)

Since the series
∑∞

n=0 en(z,ζ)en(z,ζ) converges to K ⊗
A0ªA1

uniformly on compact subsets of

Ω0 ×Ω0, using (2.40), we see that

lim
ζi→zi
ζ j→z j

(
K ⊗

A0ªA1
(z,ζ; z,ζ)

(zi −ζi )(z̄ j − ζ̄ j )

∣∣∣
ζl=zl ,l 6=i , j

)
=

∞∑
n=0

en,i (z, z)en, j (z, z), z ∈Ω0. (2.41)

Recall that by Theorem 2.2.3, the map R1 : A0 ªA1 → (H ,K(α,β)) given by

R1 f = 1√
αβ(α+β)


(β∂1 f −α∂m+1 f )|∆

...

(β∂m f −α∂2m f )|∆

 , f ∈A0 ªA1

is unitary. Hence {R1(en)}n is an orthonormal basis for (H ,Kα,β) and consequently

∞∑
n=0

R1(en)(z)R1(en)(w)∗ =K(α,β)(z, w), z, w ∈Ω0. (2.42)

A direct computation shows that(
(β∂i −α∂m+i )en(z,ζ)

)
|∆ = (α+β)en,i (z,ζ)|∆, 1 ≤ i ≤ m, n ≥ 0.

Therefore R1(en)(z) =
√

α+β
αβ


en,1(z, z)

...

en,m(z, z)

 . Thus using (2.42) we obtain

∞∑
n=0


en,1(z, z)

...

en,m(z, z)




en,1(z, z)
...

en,m(z, z)


∗

= αβ
(α+β)K

(α,β)(z, z), z ∈Ω0.

Now the proof is complete using (2.41).
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The following corollary is immediate by choosing α = 1 = β. It also gives an alternative

for computing the Gaussian curvature defined in (2.2) whenever the metric is of the form

K (z, z)−1 for some positive definite kernel K defined on Ω×Ω, where Ω ⊂ C is a bounded

domain. Indeed, the assumption that T is in B1(Ω) is not necessary to arrive at the formula in

the corollary below.

Corollary 2.4.4. Let T be a commuting m-tuple in the Cowen-Douglas class B1(Ω) realized as

the adjoint of the m-tuple of multiplication operators by coordinate functions on a Hilbert space

H ⊆ Hol(Ω0), for some open subsetΩ0 ofΩ possessing a reproducing kernel K . The curvature

KT (z) is then given by the formula

KT (z)i , j = 2

K (z, z)2
lim
ζi→zi
ζ j→z j

(
K ⊗

A0
(z,ζ; z,ζ)

(zi −ζi )(z̄ j − ζ̄ j )

∣∣∣
ζl=zl ,l 6=i , j

)
, z ∈Ω, 1 ≤ i , j ≤ m.

2.4.2 Some additional results

Continuing our investigation of the behaviour of a non-negative definite kernel K and the non-

negative definite kernel
(
K 2(z, w)∂i ∂̄ j logK (z, w)

)m
i , j=1 obtained from it, we prove the following

monotonicity property.

Proposition 2.4.5. LetΩ⊂Cm be a bounded domain. If K1,K2 :Ω×Ω→C are two non-negative

definite kernels satisfying K1 º K2, then(
K 2

1∂i ∂̄ j logK1(z, w)
)m

i , j=1 º
(
K 2

2∂i ∂̄ j logK2(z, w)
)m

i , j=1.

Proof. Set K3 = K1 −K2. By hypothesis, K3 is non-negative definite onΩ×Ω. For 1 ≤ i , j ≤ m, a

straightforward computation shows that

K 2
1∂i ∂̄ j logK1 = K 2

2∂i ∂̄ j logK2 +K 2
3∂i ∂̄ j logK3

+K2∂i ∂̄ j K3 +K3∂i ∂̄ j K2 −∂i K2∂̄ j K3 −∂i K3∂̄ j K2.
(2.43)

Now set γi (w) = K2(·, w)⊗ ∂̄i K3(·, w)− ∂̄i K2(·, w)⊗K3(·, w),1 ≤ i ≤ m, w ∈Ω. For 1 ≤ i , j ≤ m

and z, w ∈Ω, then we have〈
γ j (w),γi (z)

〉
= (

K2∂i ∂̄ j K3
)
(z, w)+ (

K3∂i ∂̄ j K2
)
(z, w)− (

∂i K2∂̄ j K3
)
(z, w)− (

∂i K3∂̄ j K2
)
(z, w).

(2.44)

Combining (2.43) and (2.44), we obtain((
K 2

1∂i ∂̄ j logK1
)
(z, w)

)m
i , j=1

= ((
K 2

2∂i ∂̄ j logK2
)
(z, w)

)m
i , j=1 +

((
K 2

3∂i ∂̄ j logK3
)
(z, w)

)m
i , j=1 +

(〈
γ j (w),γi (z)

〉)m
i , j=1.
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It follows from Lemma 2.1.1 that
(〈γ j (w),γi (z)〉)m

i , j=1 is non-negative definite on Ω×Ω. The

proof is now complete since sum of two non-negative definite kernels remains non-negative

definite.

The theorem given below shows that the differential operator is bounded from (H ,K ) to

(H ,K).

Theorem 2.4.6. LetΩ⊂Cm be a bounded domain. Let K :Ω×Ω→C be a non-negative definite

kernel. Suppose that the Hilbert space (H ,K ) contains the constant function 1. Then the

linear operator ∂ : (H ,K ) → (H ,K), where ∂ f = (∂1 f , . . . ,∂m f )tr, f ∈ (H ,K ), is bounded with

‖∂‖ ≤ ‖1‖(H ,K ).

Proof. It is easily verified that the map ∂ is unitary from ker∂⊥ to (H , (∂i ∂̄ j K )m
i , j=1), and there-

fore is contractive from (H ,K ) to (H , (∂i ∂̄ j K )m
i , j=1). Hence, to complete the proof, it suffices

to show that (H , (∂i ∂̄ j K )m
i , j=1) is contained in (H ,K) and the inclusion map is bounded by

‖1‖(H ,K ).

Set c = ‖1‖2
(H ,K ). Choose an orthonormal basis {en(z)}n≥0 of (H ,K ) with e0(z) = 1p

c
. Then

K (z, w)− 1

c
=

∞∑
i=1

ei (z)ei (w), z, w ∈Ω.

Hence K (z, w)− 1
c is non-negative definite on Ω×Ω, or equivalently cK −1 is non-negative

definite onΩ×Ω. Therefore, by Corollary 2.1.5, it follows that
(

(cK −1)2∂i ∂̄ j log(cK −1)
)m

i , j=1

is non-negative definite onΩ×Ω. Note that, for z, w ∈Ω, we have(
(cK −1)2∂i ∂̄ j log(cK −1)

)
(z, w)

=(cK −1)(z, w)
(
∂i ∂̄ j (cK −1)

)
(z, w)− (

∂i (cK −1)
)
(z, w)

(
∂̄ j (cK −1)

)
(z, w)

=c2K (z, w)∂i ∂̄ j K (z, w)− c∂i ∂̄ j K (z, w)− c2∂i K (z, w)∂̄ j K (z, w)

=c2K 2∂i ∂̄ j logK (z, w)− c∂i ∂̄ j K (z, w).

Hence we conclude that(
∂i ∂̄ j K (z, w)

)m
i , j=1 ¹ c

(
K 2∂i ∂̄ j logK (z, w)

)m
i , j=1.

The proof is now complete by using [47, Theorem 6.25].

Corollary 2.4.7. LetΩ⊂Cm be a bounded domain. Let K :Ω×Ω→C be a non-negative definite

kernel. Suppose that K is normalized at the point w0 ∈Ω, that is, K (·, w0) is the constant function

1. Then the linear operator ∂ : (H ,K ) → (H ,K) is contractive.

Proof. By hypothesis, we have ‖1‖2
(H ,K ) = 〈K (·, w0),K (·, w0)〉(H ,K ) = K (w0, w0) = 1. The proof

now follows from Theorem 2.4.6.
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2.5 Relationship between the Jet construction and

the Gamma construction

The motivation for Theorem 2.5.1 in this section comes from two different constructions for

homogeneous operators. The homogeneous operators in the Cowen-Douglas class B1(D) are

easily described using the curvature invariant. However, to determine which operators in Bn(D)

are homogeneous, the curvature is of very little use. From the beginning, two distinct methods

were available to answer this question. The first of these used the jet construction of [28] and

the second one used an intertwining operator called the Gamma map in [39]. It turns out

that both of these methods succeed in identifying all the homogeneous operators in B2(D).

The answer for n > 2 is more complicated. In this section, we establish a correspondence

between the homogeneous operators obtained using the jet construction to those obtained via

the Γ - map. Indeed the theorem goes beyond the homogeneous operators and establishes a

relationship between these two constructions in much greater generality.

Let Ω⊂Cm be a bounded domain and K :Ω×Ω→C be a sesqui-analytic function such

that the functions K α and K β are non-negative definite onΩ×Ω for some α,β> 0. The map

Γ :
(
H ,K α+β)⊕(

H ,K(α,β)
)→ Hol (Ω,Cm+1) is defined by

Γ( f ⊕ g ) =
 f

1
α+β∂ f

+µ
0

g

 , f ⊕ g ∈ (
H ,K α+β)⊕(

H ,K(α,β)), (2.45)

where ∂ f is the vector (∂1 f , . . . ,∂m f )tr, and µ> 0 is arbitrary. Note that the map Γ is one-to-one.

Define an inner product on the linear space ran Γ by requiring the map Γ to be a unitary.

Pick any orthonormal basis {e ′
n : n ≥ 0} in (H ,K α+β) and {e ′′

n : n ≥ 0} in (H ,K(α,β)). Setting

en := e ′
n ⊕e ′′

n , n ≥ 0, we see that
∑∞

n=0(Γen)(z)(Γen)(w)tr, z, w ∈Ω, which is1 0

0 1
α+β Im

(
∂i ∂̄ j K α+β(z, w)

)m

i , j=0

1 0

0 1
α+β Im

+µ2

0 0

0 K(α,β)

 , (2.46)

is the reproducing kernel for the Hilbert space ran Γ.

Since ran Γ ⊆ Hol(Ω,Cm+1), every vector in ran Γ is of the form
(

f
g

)
, where f ∈ Hol(Ω,C)

and g ∈ Hol(Ω,Cm). Let U be the linear map from ran Γ to Hol(Ω,Cm+1) given by

U
(

f
g

)
=

(
f
βg

)
,
(

f
g

)
∈ ran Γ.

Note that U is also one-to-one. Therefore, as before, we identify ran U with ran Γ as a Hilbert

space using the map U . Then we see that ran U possesses a reproducing kernel which is of the

form 1 0

0 β
α+β Im

(
∂i ∂̄ j K α+β(z, w)

)m

i , j=0

1 0

0 β
α+β Im

+β2µ2

0 0

0 K(α,β)

 .
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We recall that S0 = A ⊥
0 and S1 = A0 ªA1, and R0 is the map from (H K α)⊗ (H ,K β) to

(H ,K α+β) given by f → f|∆. The map J1 is defined in (1.3) and R is the map given by R(h) = h|∆,

h ∈ ran J1. Finally, set R̂1 =−R1, where R1 is defined in (2.17).

Theorem 2.5.1. If µ=
√

α
β(α+β) , then the following diagram of Hilbert modules is commutative:

S0
⊕

S1 J1(S0
⊕

S1) R J1(S0
⊕

S1)

(H ,K α+β)
⊕

(H ,K(α,β)) ran Γ ran U

J1

R0
⊕

R̂1

R

i d

Γ U

(2.47)

Proof. Let f0 ⊕ f1 be an arbitrary element in S0 ⊕S1. Note that

R J1( f0 ⊕ f1) =


( f0+ f1)|∆(

∂m+1( f0+ f1)
)
|∆

...(
∂2m ( f0+ f1)

)
|∆

=


( f0)|∆(

∂m+1( f0+ f1)
)
|∆

...(
∂2m ( f0+ f1)

)
|∆

 , (2.48)

where the last equality follows since f1 ∈S1. Computing R0
⊕

R̂1 on f0 ⊕ f1, we see that

(
R0

⊕
R̂1

)
( f0 ⊕ f1) = (

( f0)|∆
)⊕ 1√

αβ(α+β)


(α∂m+1 f1 −β∂1 f1)|∆

...

(α∂2m f1 −β∂m f1)|∆

 .

Therefore applying the map (U ◦Γ) and using µ=
√

α
β(α+β) , we obtain that

UΓ
(
R0

⊕
R̂1

)
( f0 ⊕ f1) =


( f0)|∆

β
α+β∂1

(
( f0)|∆

)
...

β
α+β∂m

(
( f0)|∆

)

+ 1

(α+β)


0

(α∂m+1 f1 −β∂1 f1)|∆
...

(α∂2m f1 −β∂m f1)|∆

 . (2.49)

Thus, in view of (2.48) and (2.49), we will be done if we can show

β
α+β∂i

(
( f0)|∆

)+ 1
α+β (α∂m+i f1 −β∂i f1)|∆ = (

∂m+i ( f0 + f1)
)
|∆, i = 1, . . . ,m.

To verify this, it suffices to show that

β
α+β∂i

(
( f0)|∆

)= (
∂m+i f0

)
|∆ and 1

α+β (α∂m+i f1 −β∂i f1)|∆ = (
∂m+i f1

)
|∆, i = 1, . . . ,m. (2.50)
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Since f0 ∈S0 and S0 ⊆ kerR⊥
1 , it follows that

(
α∂m+i f0 −β∂i f0

)
|∆ = 0. Therefore,

β
α+β∂i

(
( f0)|∆

)= β
α+β

(
(∂i f0)|∆+ (∂m+i f0)|∆

)
= α

α+β (∂m+i f0)|∆+ β
α+β (∂m+i f0)|∆

= (∂m+i f0)|∆,

where, for the first equality, we have used ∂i
(
( f0)|∆

) = (∂i f0
)
|∆+ (∂m+i f0)|∆ (see the proof of

Lemma 2.2.1). Finally, since f1 ∈S1, we have (∂i f1)|∆+ (∂m+i f1)|∆ = 0 by Lemma 2.2.1. There-

fore

1
α+β (α∂m+i f1 −β∂i f1)|∆ = α

α+β (∂m+i f1)|∆+ β
α+β (∂m+i f1)|∆

= (∂m+i f1)|∆.

This completes the proof.
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Chapter 3

The generalized Bergman metrics and the

generalized Wallach set

In this chapter, we study the Generalized Bergman metrics and the generalized Wallach set. It is

shown that ifΩ⊂Cm is a bounded domain and K :Ω×Ω→C is a quasi-invariant kernel, then

K t
(
∂i ∂̄ j logK

)m
i , j=1 is also a quasi-invariant kernel whenever t is in the generalized Wallach set

GWΩ(K ). The generalized Wallach set for the Bergman kernel of the open Euclidean unit ball in

Cm is determined.

3.1 Introduction and background

LetΩ be a bounded domain in Cm . Recall that the Bergman space A2(Ω) is the Hilbert space of

all square integrable analytic functions defined onΩ. The inner product of A2(Ω) is given by

the formula 〈
f , g

〉
:=

∫
Ω

f (z)g (z) dV(z), f,g ∈ A2(Ω),

where dV(z) is the area measure on Cm . The evaluation linear functional f 7→ f (w) is bounded

on A2(Ω) for all w ∈Ω. Consequently, the Bergman space is a reproducing kernel Hilbert space.

The reproducing kernel of the Bergman space A2(Ω) is called the Bergman kernel ofΩ and is

denoted by BΩ.

It is known that BΩ(w, w) > 0 for all w ∈ Ω. The Bergman metric of Ω is defined to be(
∂i ∂̄ j logBΩ(w, w)

)m
i , j=1, w ∈Ω, which is evidently non-negative definite. Finally, let us define a

generalized Bergman metric ofΩ to be the bilinear form BΩ(w, w)t
(
∂i ∂̄ j logBΩ(w, w)

)m
i , j=1,w ∈

Ω, t ∈R. Clearly, such a generalized Bergman metric is also non-negative definite at each point

w inΩ. It is important to note that the notion of generalized Bergman metric introduced here

is different from the one introduced in [26].

If Ω⊂Cm is a bounded symmetric domain, then the ordinary Wallach set WΩ is defined
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as {t > 0 : B t
Ω is non-negative definite}. Here B t

Ω, t > 0, makes sense since every bounded

symmetric domainΩ is simply connected and the Bergman kernel on it is non-vanishing. IfΩ

is the Euclidean unit ball Bm , then the Bergman kernel is given by

BBm (z, w) = (1−〈z, w〉)−(m+1), z, w ∈ BBm , (3.1)

and the Wallach set WBm = {t ∈ R : t > 0}. But, in general, there are examples of bounded

symmetric domainsΩ, like the open unit ball in the space of all m ×n matrices, m,n > 1, with

respect to the operator norm, where the Wallach set WΩ is a proper subset of {t ∈R : t > 0}. For

any bounded symmetric domainΩ, an explicit description of WΩ is given in [30].

Replacing the Bergman kernel in the definition of the Wallach set by an arbitrary scalar

valued non-negative definite kernel K , we define the ordinary Wallach set WΩ(K ) to be the set

{t > 0 : K t is non-negative definite}.

Here we have assumed that there exists a continuous branch of logarithm of K onΩ×Ω and

therefore K t , t > 0, makes sense. Clearly, every natural number belongs to the Wallach set

WΩ(K ). In [13], it is shown that K t is non-negative definite for all t > 0 if and only if the function(
∂i ∂̄ j logK (z, w)

)m
i , j=1 is non-negative definite. Therefore it follows from the discussion in

the previous paragraph that there are non-negative definite kernels K on Ω×Ω for which(
∂i ∂̄ j logK (z, w)

)m
i , j=1 need not define a non-negative definite kernel on Ω×Ω. However, it

follows from Proposition 2.1.4 that K t1+t2
(
∂i ∂̄ j logK (z, w)

)m
i , j=1 is a non-negative kernel on

Ω×Ω as soon as t1 and t2 are in the Wallach set WΩ(K ). Therefore it is natural to introduce the

generalized Wallach set for any scalar valued kernel K defined onΩ×Ω as follows:

GWΩ(K ) := {
t ∈R : K t−2K is non-negative definite

}
, (3.2)

where, as before, we have assumed that K t is well defined for all t ∈ R and K is the function

K 2
(
∂i ∂̄ j logK

)m
i , j=1 as in chapter 2. Clearly, we have the following inclusion{

t1 + t2 : t1, t2 ∈WΩ(K )
}⊆GWΩ(K ).

3.2 Generalized Wallach set for the Bergman kernel of the

Euclidean unit ball in Cm

In this section, we compute the generalized Wallach set for the Bergman kernel of the Euclidean

unit ball in Cm . In the case of the unit disc D, the Bergman kernel BD(z, w) = (1− zw̄)−2 and

∂∂̄ logBD(z, w) = 2(1−zw̄)−2, z, w ∈D. Therefore t is in GWD(BD) if and only if (1−zw̄)−(2t+2) is

non-negative definite on D×D. Consequently,

GWD(BD) = {t ∈R : t ≥−1}.
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For the case of the Bergman kernel BBm of the Euclidean unit ball Bm , m ≥ 2, we have shown

that GWBm (BBm ) = {t ∈R : t ≥ 0}. We need some lemmas to prove this statement.

As before, we write K º 0 to denote that K is a non-negative definite kernel. For two non-

negative definite kernels K1,K2 :Ω×Ω→Mk (C), we write K1 ¹ K2 if K2 −K1 is a non-negative

definite kernel onΩ×Ω. Analogously, we write K1 º K2 if K1 −K2 is non-negative definite.

Lemma 3.2.1. Let Ω be a bounded domain in Cm , and λ0 > 0 be an arbitrary constant. Let

{Kλ}λ≥λ0
be a family of non-negative definite kernels, defined onΩ×Ω, taking values in Mk (C)

such that the followings hold:

(i) if λ≥λ′ ≥λ0, then Kλ′ ¹ Kλ,

(ii) for z, w ∈Ω, Kλ(z, w) converges to Kλ0 (z, w) entrywise as λ→λ0.

Suppose that f : Ω→ Ck is a holomorphic function which is in (H ,Kλ) for all λ > λ0. Then

f ∈ (H ,Kλ0 ) if and only if supλ>λ0
‖ f ‖(H ,Kλ) <∞.

Proof. Recall that if K and K ′ are two non-negative definite kernels satisfying K ¹ K ′, then

(H ,K ) ⊆ (H ,K ′) and ‖h‖(H ,K ′) ≤ ‖h‖(H ,K ) for h ∈ (H ,K ) (see [47, Theorem 6.25]). Therefore,

by the hypothesis, we have that

(H ,Kλ′) ⊆ (H ,Kλ) and ‖h‖(H ,Kλ) ≤ ‖h‖(H ,Kλ′ ), (3.3)

whenever λ≥λ′ ≥λ0 and h ∈ (H ,Kλ′).

Now assume that f ∈ (H ,Kλ0 ). Then, clearly ‖ f ‖(H ,Kλ) ≤ ‖ f ‖(H ,Kλ0 ) for all λ>λ0. Conse-

quently, supλ>λ0
‖ f ‖(H ,Kλ) ≤ ‖ f ‖(H ,Kλ0 ) <∞.

For the converse, assume that supλ>λ0
‖ f ‖(H ,Kλ) < ∞. Then, from (3.3), it follows that

limλ→λ0 ‖ f ‖(H ,Kλ) exists and is equal to supλ>λ0
‖ f ‖(H ,Kλ). Since f ∈ (H ,Kλ) for all λ > λ0,

by [47, Theorem 6.23], we have that

f (z) f (w)∗ ¹ ‖ f ‖2
(H ,Kλ)Kλ(z, w).

Taking limit as λ→λ0 and using part (ii) of the hypothesis, we obtain

f (z) f (w)∗ ¹ sup
λ>λ0

‖ f ‖2
(H ,Kλ)Kλ0 (z, w).

Hence, using [47, Theorem 6.23] once again, we conclude that f ∈ (H ,Kλ0 ).
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If m ≥ 2, then from (3.1), we have((
B t
Bm
∂i ∂̄ j logBBm

)
(z, w)

)m

i , j=1

= m +1

(1−〈z, w〉)t (m+1)+2


1−∑

j 6=1 z j w̄ j z2w̄1 · · · zm w̄1

z1w̄2 1−∑
j 6=2 z j w̄ j · · · zm w̄2

...
...

...
...

z1w̄m z2w̄m · · · 1−∑
j 6=m z j w̄ j

 .
(3.4)

For m ≥ 2, λ ∈R and z, w ∈Bm , set

Kλ(z, w) := 1

(1−〈z, w〉)λ


1−∑

j 6=1 z j w̄ j z2w̄1 · · · zm w̄1

z1w̄2 1−∑
j 6=2 z j w̄ j · · · zm w̄2

...
...

...
...

z1w̄m z2w̄m · · · 1−∑
j 6=m z j w̄ j

 . (3.5)

In view (3.4) and (3.5), for λ> 2, we have

Kλ =
2

t (m +1)

(
(B

t
2
Bm

)2∂i ∂̄ j logB
t
2
Bm

)m

i , j=1
,

where t = λ−2
m+1 > 0. Since B t/2

Bm
is positive definite on Bm ×Bm for t > 0, it follows from Corollary

2.1.5 thatKλ is non-negative definite on Bm ×Bm for λ> 2. SinceKλ(z, w) →K2(z, w), z, w ∈
Bm , entrywise as λ→ 2, we conclude thatK2 is also non-negative definite on Bm ×Bm .

Let {e1, . . . ,em} be the standard basis of Cm . The lemma given below finds the norm of the

vector z2 ⊗e1 in (H ,Kλ) when λ> 2.

Lemma 3.2.2. For each λ > 2, the vector z2 ⊗ e1 belongs to (H ,Kλ) and ‖z2 ⊗ e1‖(H ,Kλ) =√
λ−1

λ(λ−2) .

Proof. By a straight forward computation, we obtain

∂̄1Kλ(·,0)e2 = z2 ⊗e1 + (λ−1)z1 ⊗e2

and

∂̄2Kλ(·,0)e1 = (λ−1)z2 ⊗e1 + z1 ⊗e2.

Thus we have

(λ−1)∂̄2Kλ(·,0)e1 − ∂̄1Kλ(·,0)e2 = (λ2 −2λ)z2 ⊗e1. (3.6)
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By Proposition 2.1.3, the vectors ∂̄2Kλ(·,0)e1 and ∂̄1Kλ(·,0)e2 belong to (H ,Kλ). Since

λ> 2, from (3.6), it follows that the vector z2⊗e1 belongs to (H ,Kλ). Now, taking norm in both

sides of (3.6) and using Proposition 2.1.3 a second time, we obtain

(λ2 −2λ)2‖z2 ⊗e1‖2

= (λ−1)2〈∂2∂̄2Kλ(0,0)e1,e1〉− (λ−1)〈∂1∂̄2Kλ(0,0)e1,e2〉
− (λ−1)〈∂̄1∂2Kλ(0,0)e2,e1〉+〈∂1∂̄1Kλ(0,0)e2,e2〉

(3.7)

By a routine computation, we obtain

∂i ∂̄ jKλ(0,0) = (λ−1)δi j Im +E j i ,

where δi j is the Kronecker delta function, Im is the identity matrix of order m, and E j i is the

matrix whose ( j , i )th entry is 1 and all other entries are 0. Hence, from (3.7), we see that

(λ2 −2λ)2||z2 ⊗e1||2
= (λ−1)2(λ−1)−2(λ−1)+ (λ−1)

= (λ−1)(λ2 −2λ).

Hence ||z2 ⊗e1|| =
√

λ−1
λ(λ−2) , completing the proof of the lemma.

Lemma 3.2.3. The multiplication operator by the coordinate function z2 on (H ,K2) is not

bounded.

Proof. SinceK2(·,0)e1 = e1, we have that the constant function e1 is in (H ,K2). Hence, to prove

that Mz2 is not bounded on (H ,K2), it suffices to show that the vector z2 ⊗e1 does not belong

to (H ,K2).

Consider the family of non-negative definite kernels {Kλ}λ≥2. Observe that for λ≥λ′ ≥ 2,

Kλ(z, w)−Kλ′(z, w) =
(
(1−〈z, w〉)−(λ−λ′) −1

)
Kλ′(z, w). (3.8)

It is easy to see that if λ ≥ λ′, then (1 − 〈z, w〉)−(λ−λ′) − 1 º 0. Thus the right hand side of

(3.8), being a product of a scalar valued non-negative definite kernel with a matrix valued

non-negative definite kernel, is non-negative definite. Consequently, Kλ′ ¹ Kλ. Also since

Kλ(z, w) →K2(z, w) entry-wise as λ→ 2, by Lemma 3.2.1, it follows that z2 ⊗ e1 ∈ (H ,K2) if

and only if supλ>2 ‖z2 ⊗ e1‖(H ,Kλ) < ∞. By lemma 3.2.2, we have ‖z2 ⊗ e1‖(H ,Kλ) =
√

λ−1
λ(λ−2) .

Thus supλ>2 ||z2 ⊗e1||(H ,Kλ) =∞. Hence the vector z2 ⊗e1 does not belong to (H ,K2) and the

operator Mz2 on (H ,Kλ) is not bounded.

The following theorem describes the generalized Wallach set for the Bergman kernel of the

Euclidean unit ball in Cm , m ≥ 2.
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Theorem 3.2.4. If m ≥ 2, then GWBm (BBm ) = {t ∈R : t ≥ 0}.

Proof. In view of (3.4) and (3.5), we see that t ∈ GWBm (BBm ) if and only if Kt (m+1)+2 is non-

negative definite on Bm ×Bm . Hence we will be done if we can show thatKλ is non-negative if

and only if λ≥ 2.

From the discussion preceding Lemma 3.2.2, we have thatKλ is non-negative definite on

Bm ×Bm for λ≥ 2.

To prove the converse, assume thatKλ is non-negative definite for some λ< 2. Note that

K2 can be written as the product

K2(z, w) = (1−〈z, w〉)−(2−λ)Kλ(z, w), z, w ∈Bm . (3.9)

Note that the multiplication operator Mz2 on (H , (1−〈z, w〉)−(2−λ)) is bounded. Hence, by

Lemma 2.1.10, there exists a constant c > 0 such that (c2−z2w̄2)(1−〈z, w〉)−(2−λ) is non-negative

definite. Consequently, the product (c2 − z2w̄2)(1−〈z, w〉)−(2−λ)Kλ, which is (c2 − z2w̄2)K2,

is non-negative. Hence, again by Lemma 2.1.10, it follows that the operator Mz2 is bounded

on (H ,K2). This is a contradiction to the Lemma 3.2.3. Hence our assumption that Kλ is

non-negative for some λ< 2, is not valid. This completes the proof.

The theorem given below finds all λ ∈R such thatKtr
λ

is non-negative definite.

Theorem 3.2.5. For m ≥ 2,Kλ
tr(z, w) is non-negative definite on Bm ×Bm if and only if λ≥ 1.

Proof. Note that

Kλ
tr(z, w) = (1−〈z, w〉)−(λ−1)Im + (1−〈z, w〉)−λ(zi w̄ j

)m
i , j=1, z, w ∈Bm .

It is easily verified that
(
zi w̄ j

)m
i , j=1 is non-negative definite on Bm ×Bm . Assume λ≥ 1. Then

Kλ
tr is the sum of two non-negative definite kernels and therefore is non-negative definite

on Bm ×Bm . Conversely, assume thatKλ
tr is non-negative definite on Bm ×Bm . Then, by [13,

Lemma 3.2] , we see that 〈Kλ
tr(z, w)e1,e1〉, which is equal to

(1− ∑
j 6=1

z j w̄ j )(1−〈z, w〉)−λ,

is non-negative definite on Bm ×Bm . Hence, by an argument similar to the proof of Lemma

2.1.11, it follows that ∑
j 6=1

Mz j M∗
z j
≤ I

on the Hilbert space (H , (1−〈z, w〉)−λ). In particular, we have Mz2 M∗
z2
≤ I on (H , (1−〈z, w〉)−λ).

It is easily verified that ‖Mz2‖(H ,(1−〈z,w〉)−λ) ≤ 1 if and only if λ≥ 1. Hence λ≥ 1, completing the

proof of the theorem.
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3.3 Quasi-invariant kernels

Let Ω ⊂ Cm be a bounded domain and let Aut(Ω) denote the group of all biholomorphic

automorphisms ofΩ. Let J : Aut(Ω)×Ω→ GLk(C) be a function such that J (ϕ, ·) is holomorphic

for each ϕ in Aut(Ω). A non-negative definite kernel K : Ω×Ω→ Mk (C) is said to be quasi-

invariant with respect to J if K satisfies the following transformation rule:

J (ϕ, z)K (ϕ(z),ϕ(w))J (ϕ, w)∗ = K (z, w), z, w ∈Ω, ϕ ∈ Aut(Ω). (3.10)

The following proposition is a basic tool in defining unitary representations of the automor-

phism group Aut(Ω) and the straightforward proof for the case of unit disc D appears in [39].

The proof for the general domainΩ follows in exactly the same way.

For a fixed but arbitrary ϕ ∈ Aut(Ω), let Uϕ be the linear map on Hol(Ω,Ck ) defined by

Uϕ( f ) = J
(
ϕ−1, ·) f ◦ϕ−1, f ∈ Hol(Ω,Ck ).

Proposition 3.3.1. The linear map Uϕ is unitary on (H ,K ) for all ϕ in Aut(Ω) if and only if the

kernel K is quasi-invariant with respect to J .

Remark 3.3.2. If K :Ω×Ω→Mk (C) is a quasi-invariant kernel with respect to some J and the

commuting tuple M z = (Mz1 , . . . , Mzm ) on (H ,K ) is bounded, then the commuting tuple Mϕ :=
(Mϕ1 , . . . , Mϕm ) is unitarily equivalent to M z via the unitary map Uϕ, where ϕ= (ϕ1, . . . ,ϕm) is

in Aut(Ω).

The lemma given below, which will be used in the proof of the Proposition 3.3.4, follows

from applying the chain rule [48, page 8] twice.

Lemma 3.3.3. Let φ= (φ1, . . . ,φm) :Ω→Cm be a holomorphic map and g : ran φ→C be a real

analytic function. If h = g ◦φ, then( (
∂i ∂̄ j h

)
(z)

)m

i , j=1
= (Dφ(z))tr

( (
∂i ∂̄ j g

)
(ϕ(z))

)m

i , j=1
(Dφ(z)),

where (Dφ)(z)tr is the transpose of the derivative of φ at z.

The following proposition shows that if K a is quasi-invariant kernel with respect to some

J , then K t−2K is also a quasi-invariant kernel with respect to some J whenever t is in the

generalized Wallach set GWΩ(K ).

Proposition 3.3.4. Let Ω ⊂ Cm be a bounded domain. Let K : Ω×Ω→ C be a non-negative

definite kernel and J : Aut(Ω)×Ω→ C \ {0} be a function such that J(ϕ, ·) is holomorphic for

each ϕ in Aut(Ω). Suppose that K is quasi-invariant with respect to J . Then the kernel K t−2K

is also quasi-invariant with respect to Jwhenever t ∈GWΩ(K ), where J(ϕ, z) = J(ϕ, z)t Dϕ(z)tr,

ϕ ∈ Aut(Ω), z ∈Ω.



66 3. The generalized Bergman metrics and the generalized Wallach set

Proof. Since K is quasi-invariant with respect to J , we have

logK (z, z) = log |J (ϕ, z)|2 + logK (ϕ(z),ϕ(z)), ϕ ∈ Aut(Ω), z ∈Ω.

Also, J(ϕ, ·) is a non-vanishing holomorphic function on Ω, therefore ∂i ∂̄ j log |J(ϕ, z)|2 = 0.

Hence

∂i ∂̄ j logK (z, z) = ∂i ∂̄ j logK (ϕ(z),ϕ(z)), ϕ ∈ Aut(Ω), z ∈Ω. (3.11)

Any biholomorphic automorphism ϕ of Ω is of the form (ϕ1, . . . ,ϕm), where ϕi : Ω→ C

is holomorphic, i = 1, . . . ,m. By setting g (z) = logK (z, z), z ∈Ω, and using Lemma 3.3.3, we

obtain (
∂i ∂̄ j logK (ϕ(z),ϕ(z))

)m
i , j=1 = Dϕ(z)tr((∂l ∂̄p logK

)
(ϕ(z),ϕ(z))

)m
l ,p=1Dϕ(z).

Combining this with (3.11), we obtain(
∂i ∂̄ j logK (z, z)

)m
i , j=1 = Dϕ(z)tr((∂l ∂̄p logK

)
(ϕ(z),ϕ(z))

)m
l ,p=1Dϕ(z).

Multiplying K (z, z)t both sides and using the quasi-invariance of K , a second time, we

obtain(
K (z, z)t∂i ∂̄ j logK (z, z)

)m
i , j=1

= J (ϕ, z)t Dϕ(z)trK (ϕ(z),ϕ(z))t ((∂l ∂̄p logK
)
(ϕ(z),ϕ(z)

)m
l ,p=1 J (ϕ, z)t Dϕ(z).

Equivalently, we have

K t−2(z, z)K(z, z) = J(ϕ, z)K t−2(ϕ(z),ϕ(z))K(ϕ(z),ϕ(z))J(ϕ, z)∗, (3.12)

where J(ϕ, z) = J (ϕ, z)t Dϕ(z)tr,ϕ ∈ Aut(Ω), z ∈Ω. Therefore, polarizing both sides of the above

equation, we have the desired conclusion.

Remark 3.3.5. The function J in the definition of quasi-invariant kernel is said to be a projective

cocycle if it is a Borel map satisfying

J (ϕψ, z) = m(ϕ,ψ)J (ψ, z)J (ϕ,ψz), ϕ,ψ ∈ Aut(Ω), z ∈Ω, (3.13)

where m : Aut(Ω)×Aut(Ω) → T is a multiplier, that is, m is Borel and satisfies the following

properties:

(i) m(e,ϕ) = m(ϕ,e) = 1, where ϕ ∈ Aut(Ω) and e is the identity in Aut(Ω)

(ii) m(ϕ1,ϕ2)m(ϕ1ϕ2,ϕ3) = m(ϕ1,ϕ2ϕ3)m(ϕ2,ϕ3), ϕ1,ϕ2,ϕ3 ∈ Aut(Ω).
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J is said to be a cocycle if it is a projective cocycle with m(ϕ,ψ) = 1 for all ϕ,ψ in Aut(Ω).

If we assume that J : Aut(Ω)×Ω→ C \ {0} in the Proposition 3.3.4 is a cocycle, then it is

verified that the function J is a projective co-cycle. Moreover, if t is a positive integer, then J is

also a cocycle. 2.

For the preceding to be useful, one must exhibit non-negative definite kernels which are

quasi-invariant. It is known that the Bergman kernel BΩ of any bounded domainΩ is quasi-

invariant with respect to J , where J (ϕ, z) = detDϕ(z), ϕ ∈ Aut(Ω),z ∈Ω [40, Proposition 1.4.12].

We provide the easy proof here for the sake of completeness.

Lemma 3.3.6. Let Ω⊂Cm be a bounded domain and ϕ :Ω→Ω be a biholomorphic map. Then

BΩ(z, w) = detDϕ(z)BΩ(ϕ(z),ϕ(w))detDϕ(w), z, w ∈Ω.

Proof. For ϕ ∈ Aut(Ω), consider the operator Vϕ on A2(Ω) given by

Vϕ( f )(z) = detDϕ(z)( f ◦ϕ)(z), f ∈ A2(Ω).

Using the change of variable formula, it follows that the operator Vϕ is unitary on A2(Ω).

Therefore, if
{

fn
}∞

n=0 is an orthonormal basis of A2(Ω), so is
{
Vϕ( fn)

}∞
n=0. Hence

BΩ(z, w) =
∞∑

n=0
Vϕ( fn)(z)Vϕ( fn)(w)

=
∞∑

n=0
detDϕ(z)( fn ◦ϕ)(z) detDϕ(w)( fn ◦ϕ)(w)

= detDϕ(z)
( ∞∑

n=0
fn(ϕ(z)) fn(ϕ(w))

)
detDϕ(w)

= detDϕ(z)BΩ(ϕ(z),ϕ(w))detDϕ(w),

completing the proof of the lemma.

The following proposition follows from combining Proposition 3.3.4 and Lemma 3.3.6, and

therefore the proof is omitted.

Proposition 3.3.7. LetΩ be a bounded domain Cm . If t is in GWΩ(BΩ), then the kernel(
B t
Ω(z, w)∂i ∂̄ j logBΩ(z, w)

)
i , j=1

is quasi-invariant with respect to (detDϕ(z))t Dϕ(z)tr, ϕ ∈ Aut(Ω), z ∈Ω.

In case of the Bergman kernel BBm of the Euclidean unit ball in Cm , we have

(
B t
Bm
∂i ∂̄ j logBBm

)m
i , j=1 = 2

t

(
(B

t
2
Bm

)2∂i ∂̄ j logB
t
2
Bm

)m
i , j=1, t > 0.
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Since the multiplication tuple M z on
(
H ,B t/2

Bm

)
is bounded, it follows from the above equation

together with Theorem 2.1.16 that the multiplication tuple M z on
(
H , ( B t

Bm
∂i ∂̄ j logBBm )m

i , j=1

)
is also bounded. Also, by Proposition 3.3.7, the kernel

(
B t
Bm
∂i ∂̄ j logBBm

)m
i , j=1 is quasi-invariant.

Hence, by Remark 3.3.2, it follows that the multiplication tuple M z and the tuple Mϕ are uni-

tarily equivalent on
(
H , ( B t

Bm
∂i ∂̄ j logBBm )m

i , j=1

)
for all ϕ ∈ Aut(Bm). Therefore, in the language

of [46], we conclude that the multiplication tuple M z on
(
H , (B t

Bm
∂i ∂̄ j logBBm )m

i , j=1

)
, t > 0, is

homogeneous with respect to the group Aut(Bm).
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Chapter 4

Weakly homogeneous operators

In this chapter, we study weakly homogeneous operators. First, some elementary properties of

weakly homogeneous operators are discussed. In section 4.2, we show that the weak homo-

geneity of the multiplication operator Mz on reproducing kernel Hilbert spaces is equivalent

to the existence of certain bounded and invertible weighted composition operators. We use

this to show that the weak homogeneity of Mz is preserved under the jet construction. Next,

in section 4.3, weakly homogeneous operators in the class FB2(D) are studied. In section 4.4,

we discuss Möbius bounded operators. It is shown that the Shields’ conjecture on this class of

operators has an affirmative answer in the class of quasi-homogeneous operators. Finally, in

section 4.5, we show that there exists a Möbius bounded weakly homogeneous operator which

is not similar to any homogeneous operator. This answers a question of Bagchi and Misra in

the negative.

4.1 Definition and elementary properties

Throughout this chapter, we let Möb denote the group of all biholomorphic automorphisms{
ϕθ,a : θ ∈ [0,2π), a ∈ D}

of the unit disc D, where ϕθ,a(z) = e iθ z−a
1−az , z ∈ D. It is a topological

group with the topology induced by T×D.

For an operator T ∈ B(H ) with σ(T ) ⊆ D̄, recall that the operator ϕ(T ), ϕ ∈ Möb, is defined

by using the Riesz functional calculus since ϕ is holomorphic in a neighbourhood of D̄. Such

an operator T is said to be homogeneous if ϕ(T ) is unitarily equivalent to T for all ϕ ∈ Möb.

Weakly homogeneous operators are straightforward generalization of homogeneous operators,

see [16], [10].

Definition 4.1.1. An operator T ∈ B(H ) is said to be weakly homogeneous if σ(T ) ⊆ D̄ and ϕ(T )

is similar to T for all ϕ in Möb.

Suppose that T is an operator which is similar to a homogeneous operator, that is, T =
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X SX −1 for some homogeneous operator S and an invertible operator X . Clearly, σ(T ) =σ(S).

Thus, using homogeneity of S, we have thatσ(T ) is eitherT or D̄, and consequently the operator

ϕ(T ) is well-defined for any ϕ ∈ Möb. Note that ϕ(T ) = Xϕ(S)X −1. Using homogeneity of S a

second time, we have that ϕ(S) =UϕSU−1
ϕ for some unitary operator Uϕ. Hence

ϕ(T ) = (XUϕ)S(XUϕ)−1 = (XUϕX −1)T (XUϕX −1)−1. (4.1)

Thus ϕ(T ) is similar to T for all ϕ ∈ Möb and consequently, T is weakly homogeneous. Hence

every operator which is similar to a homogeneous operator is weakly homogeneous. The

converse of this is not true, that is, a weakly homogeneous operator need not be similar to any

homogeneous operator (see Corollary 4.3.9 and section 4.5).

The following lemma, which shows that the spectrum of a weakly homogeneous operator

is either T or D̄, is a straightforward generalization of [9, Lemma 2.2]. Therefore the proof is

omitted.

Lemma 4.1.2. Let T be an operator in B(H ). If the operators T and ϕ(T ) are similar for all ϕ

in a neighbourhood of the identity in Möb, then σ(T ) is either T or D̄, and T is similar to ϕ(T )

(which makes sense for all ϕ in Möb since σ(T ) is either D̄ or T) for all ϕ in Möb. In particular,

T is weakly homogeneous.

It is easy to see that an operator T is weakly homogeneous if and only if the operator T ∗ is

weakly homogeneous.

Since two normal operators are similar if and only if they are unitarily equivalent, the proof

of the following proposition is evident.

Proposition 4.1.3. A normal operator N is homogeneous if and only if it is weakly homogeneous.

4.2 Jet construction and weak homogeneity

In this section, we show that the weak homogeneity of the multiplication operators Mz on

reproducing kernel Hilbert spaces is preserved under the jet construction.

Throughout this section, we assume thatΩ⊂C is a bounded domain. By Hol(Ω), we denote

the space of all holomorphic functions fromΩ to C. LetΩ′ denote one of the four domains: Ω,

Ck , GLk (C) and Mk (C). By Hol(Ω,Ω′), we denote the space of all holomorphic functions from

Ω toΩ′. As before, Aut(Ω) denotes the group of all biholomorphic automorphisms ofΩ.

Let K :Ω×Ω→Mk (C) be a non-negative definite kernel. Let ψ be a holomorphic function

on Ω taking values in Mk (C). Let Mψ be the linear map on Hol(Ω,Ck ) defined by point-wise

multiplication:

(Mψ f )(·) =ψ(·) f (·), f ∈ Hol(Ω,Ck ).
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For a holomorphic self map ϕ ofΩ, let Cϕ be the linear map on Hol(Ω,Ck ) defined by composi-

tion:

(Cϕ f )(·) = ( f ◦ϕ)(·), f ∈ Hol(Ω,Ck ).

In general, neither Mψ nor Cϕ maps (H ,K ) into (H ,K ). However, by the Closed graph theorem,

if they do, then they are bounded. Whenever the map MψCϕ is bounded on (H ,K ), it is called

a weighted composition operator on (H ,K ). Fix a w ∈Ω and η ∈Ck . Then, for h ∈ (H ,K ), we

see that

〈
(MψCϕ)∗K (·, w)η,h

〉= 〈
K (·, w)η,ψ(·)h(ϕ(·))

〉
= 〈

η,ψ(w)h(ϕ(w))
〉

= 〈
ψ(w)∗η,h(ϕ(w))

〉
= 〈

K
(·,ϕ(w)

)(
ψ(w)∗η

)
,h

〉
.

Therefore,

(MψCϕ)∗K (·, w)η= K (·,ϕ(w))(ψ(w)∗η), w ∈Ω,η ∈Ck . (4.2)

We now recall the jet construction from chapter 2. Suppose that K1,K2 :Ω×Ω→C are two

non-negative definite kernels. As before we realize the vectors of the Hilbert space (H ,K1)⊗
(H ,K2) as holomorphic functions in z and ζ, z,ζ ∈Ω. Recall that the subspaces Ak , k ≥ 0, of

(H ,K1)⊗ (H ,K2) are defined as following:

Ak := {
f ∈ (H ,K1)⊗ (H ,K2) :

((
∂
∂ζ

)i f (z,ζ)
)
|∆ = 0, 0 ≤ i ≤ k

}
, (4.3)

where ∆ is the diagonal set {(z, z) : z ∈Ω}. Also recall that the map Jk : (H ,K1)⊗ (H ,K2) →
Hol(Ω×Ω,Ck+1) is given by the following formula

(Jk f )(z,ζ) =
k∑

i=0

(
∂
∂ζ

)i f (z,ζ)⊗ei , f ∈ (H ,K1)⊗ (H ,K2),

where
{
ei

}k
i=0 is the standard orthonormal basis of Ck+1. The map R : ran Jk → Hol(Ω,Ck+1) is

the restriction map, that is, R(h) = h|∆, h ∈ ran Jk . By Theorem 1.1.4, we have that ran R Jk is a re-

producing kernel Hilbert space determined by the non-negative definite kernel Jk (K1,K2)|res∆,

where

Jk (K1,K2)|res∆ = (
K1(z, w)∂i ∂̄ j K2(z, w)

)k
i , j=0, z, w ∈Ω.

For any ψ ∈ Hol(Ω), let ψ(i )(z), i ∈ Z+, denote the i th derivative of ψ at the point z. Let

(Jkψ)(z), z ∈Ω, be the (k +1)× (k +1) lower triangular matrix given by the following formula:
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(Jkψ)(z) :=



ψ(z) 0 0 . . . 0(1
0

)
ψ(1)(z) ψ(z) 0 . . . 0(2

0

)
ψ(2)(z)

(2
1

)
ψ(1)(z) ψ(z) . . . 0

...
...

. . . . . .
...(k

0

)
ψ(k)(z) . . . . . .

( k
k−1

)
ψ(1)(z) ψ(z)


Recall that for any f ∈ Hol(Ω) and ϕ ∈ Hol(Ω,Ω), the Faà di Bruno’s formula (cf. [17, page

139]) for the i th derivative of the composition function f ◦ϕ is the following:

( f ◦ϕ)(i )(z) =
i∑

j=1
f ( j )(ϕ(z)

)
Bi , j

(
ϕ(1)(z), ...,ϕ(i− j+1)(z)

)
, z ∈Ω, (4.4)

where Bi , j (z1, . . . , zi− j+1), i ≥ j ≥ 1, are the Bell’s polynomials. Furthermore, let (Bkϕ)(z)

denote the (k +1)× (k +1) lower triangular matrix of the form

(Bkϕ)(z) :=

 1 0

0
((

Bi , j
(
ϕ(1)(z), ...,ϕ(i− j+1)(z)

)))k
i , j=1

 , z ∈Ω,

where Bi , j , 1 ≤ i < j ≤ k, is set to be 0.

The main result of this subsection is the Theorem below identifying the compression of the

tensor product of two weighted composition operators with another weighted composition

operator.

Theorem 4.2.1. LetΩ⊆C be a bounded domain, ψ1,ψ2 ∈ Hol(Ω) and ϕ ∈ Hol(Ω,Ω). Suppose

that the weighted composition operators Mψ1Cϕ and Mψ2Cϕ are bounded on (H ,K1) and

(H ,K2) respectively. Then the operator PA ⊥
k

(Mψ1Cϕ⊗Mψ2Cϕ)|A ⊥
k

is unitarily equivalent to the

operator Mψ1(Jkψ2)(Bkϕ)Cϕ on
(
H , Jk (K1,K2)|res∆

)
.

In particular, the operator Mψ1(Jkψ2)(Bkϕ)Cϕ is bounded on
(
H , Jk (K1,K2)|res∆

)
and

‖Mψ1(Jkψ2)(Bkϕ)Cϕ‖ ≤ ‖Mψ1Cϕ‖‖Mψ2Cϕ‖.

Before, we give the proof of Theorem 4.2.1, we state a second theorem refining some of the

statements in it. In this refined form, it will be a useful tool in finding new weakly homogeneous

operators.

Theorem 4.2.2. LetΩ⊆C be a bounded domain, ψ1,ψ2 ∈ Hol(Ω) and ϕ ∈ Aut(Ω). Then

(i) if the operators Mψ1Cϕ and Mψ2Cϕ are bounded and invertible on (H ,K1) and (H ,K2)

respectively, then so is the operator Mψ1(Jkψ2)(Bkϕ)Cϕ on
(
H , Jk (K1,K2)|res∆

)
.
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(ii) if the operators Mψ1Cϕ and Mψ2Cϕ are unitary on (H ,K1) and (H ,K2) respectively, then

so is the operator Mψ1(Jkψ2)(Bkϕ)Cϕ on
(
H , Jk (K1,K2)|res∆

)
.

The following lemma will be an essential ingredient in the proof of Theorem 4.2.2.

Lemma 4.2.3. Let H be a Hilbert space and X : H → H be a bounded, invertible operator.

Suppose that H0 be a closed subspace of H which is invariant under both X and X −1. Then the

operators X |H0 and PH⊥
0

X |H⊥
0

are invertible. Moreover, if X is unitary, then H⊥
0 is also invariant

under X , and the operators X |H0 and X |H⊥
0

are unitary.

Proof. Since H0 is invariant under both X and X −1, we have

X =
(

A B

0 C

)
and X −1 =

(
P Q

0 R

)
(4.5)

on H0 ⊕H⊥
0 , for some A,B ,C and P,Q,R. A routine calculation shows that AP = PA = I and

C R = RC = I . Hence A and C are invertible. If X is unitary, using X X ∗ = I , we see that(
A A∗+BB∗ BC∗

C B∗ CC∗

)
=

(
I 0

0 I

)
.

Thus BC∗ = 0. By the first part of the lemma, we have that C is invertible. Therefore B = 0.

Hence A A∗ =CC∗ = I . Since A and C are also invertible, it follows that A and C are unitary.

Proof of Theorem 4.2.1. First, set

(ψ1 ⊗ψ2)(z,ζ) :=ψ1(z)ψ2(ζ) and ϕ(z,ζ) := (ϕ(z),ϕ(ζ)), z,ζ ∈Ω.

Then ψ1 ⊗ψ2 ∈ Hol(Ω×Ω) andϕ ∈ Hol(Ω×Ω,Ω×Ω). Consequently, the operator Mψ1⊗ψ2Cϕ

is a weighted composition operator on (H ,K1)⊗ (H ,K2).

Recall that (H ,K1)⊗ (H ,K2) is the reproducing kernel Hilbert space with the reproducing

kernel K1 ⊗K2 where K1 ⊗K2 : (Ω×Ω)× (Ω×Ω) →C is given by

(K1 ⊗K2)(z,ζ; w,ρ) = K1(z, w)K2(ζ,ρ), z,ζ, w,ρ ∈Ω.

By (4.2), we see that for w,ρ ∈Ω,

(Mψ1Cϕ⊗Mψ2Cϕ)∗(K1(·, w)⊗K2(·,ρ)) =ψ1(w)K1(·,ϕ(w))⊗ψ2(ρ)K2(·,ϕ(ρ))

= (ψ1 ⊗ψ2)(w,ρ)(K1 ⊗K2)(·, (ϕ(w),ϕ(ρ)))

= (Mψ1⊗ψ2Cϕ)∗(K1(·, w)⊗K2(·,ρ)).

Since
∨{

K1(·, w)⊗K2(·,ρ) : w,ρ ∈Ω}
is dense in (H ,K1)⊗ (H ,K2), it follows that

Mψ1Cϕ⊗Mψ2Cϕ = Mψ1⊗ψ2Cϕ. (4.6)
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Recall that by Theorem 1.1.4, the operator (R Jk )|A ⊥
k

: A ⊥
k → (

H , Jk (K1,K2)|res∆
)

is unitary.

Therefore we will be done if we can show

(
(R Jk )|A ⊥

k

)
PA ⊥

k
(Mψ1Cϕ⊗Mψ2Cϕ)|A ⊥

k

(
(R Jk )|A ⊥

k

)∗ = Mψ1(Jkψ2)(Bkϕ)Cϕ. (4.7)

To verify this, let (R Jk )( f ) be an arbitrary element in
(
H , Jk (K1,K2)|res∆

)
where f ∈A ⊥

k . Since

ker(R Jk ) =Ak (see the discussion before Theorem 1.1.4), it follows that

(
(R Jk )|A ⊥

k

)
PA ⊥

k
(Mψ1Cϕ⊗Mψ2Cϕ)|A ⊥

k

(
(R Jk )|A ⊥

k

)∗(R Jk f ) = (
(R Jk )(Mψ1Cϕ⊗Mψ2Cϕ

)
( f ). (4.8)

Using (4.6), we see that

(
(R Jk )(Mψ1Cϕ⊗Mψ2Cϕ

)
( f ) = (R Jk )

(
ψ1(z)ψ2(ζ) f (ϕ(z),ϕ(ζ)

)
=

k∑
i=0

((
∂
∂ζ

)i (
ψ1(z)ψ2(ζ) f (ϕ(z),ϕ(ζ))

))
|∆
⊗ei .

(4.9)

Also a straightforward computation, noting that Jkψ2 and Bkϕ are lower triangular

matrices, shows that(
Mψ1(Jkψ2)(Bkϕ)Cϕ

)(
(R Jk ) f

)
(z)

= (
Mψ1(Jkψ2)(Bkϕ)Cϕ

)(∑k
i=0

((
∂
∂ζ

)i f (z,ζ)
)
|∆⊗ei

)
=ψ1(z)

∑k
i=0

(∑i
j=0

(
(Jkψ2)(Bkϕ)

)
i , j (z)

((
∂
∂ζ

) j f (z,ζ)
)
|∆(ϕ(z),ϕ(z))

)
⊗ei .

(4.10)

Hence, in view of (4.8), (4.9) and (4.10), to verify (4.7), it suffices to show that((
∂
∂ζ

)i (
ψ2(ζ) f (ϕ(z),ϕ(ζ))

))
(z, z)

=∑i
j=0

(
(Jkψ2)(Bkϕ)

)
i , j (z)

((
∂
∂ζ

) j f (z,ζ)
)
(ϕ(z),ϕ(z)), 0 ≤ i ≤ k.

(4.11)

Since
(
(Jkψ2)(Bkϕ)

)
0,0(z) = 1, equality in both sides of (4.11) is easily verified for the case

i = 0. For 1 ≤ i ≤ k, we see that((
∂
∂ζ

)i (
ψ2(ζ) f (ϕ(z),ϕ(ζ))

))
(z, z)

=
(
ψ(i )

2 (ζ) f (ϕ(z),ϕ(ζ))+∑i
p=1

( i
p

)
ψ

(i−p)
2 (ζ)

(
∂
∂ζ

)p(
f (ϕ(z),ϕ(ζ)

))
(z, z)

=
(
ψ(i )

2 (ζ) f (ϕ(z),ϕ(ζ))+∑i
p=1

( i
p

)
ψ

(i−p)
2 (ζ)

∑p
j=1(Bkϕ)p, j (ζ)

((
∂
∂ζ

) j f (z,ζ)
)
(ϕ(z),ϕ(ζ))

)
(z, z)

=ψ(i )
2 (z) f (ϕ(z),ϕ(z))+∑i

p=1
∑p

j=1

( i
p

)
ψ

(i−p)
2 (z)(Bkϕ)p, j (z)

((
∂
∂ζ

) j f (z,ζ)
)
(ϕ(z),ϕ(z)).

(4.12)
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Here the first equality follows from the Leibniz rule for derivative of product while the second

one follows from (4.4). Finally, we compute∑i
j=0

(
(Jkψ2)(Bkϕ)

)
i , j (z)

((
∂
∂ζ

) j f (z,ζ)
)
(ϕ(z),ϕ(z))

=∑i
j=0

∑i
p= j

( i
p

)
ψ

(i−p)
2 (z)(Bkϕ)p, j (z)

((
∂
∂ζ

) j f (z,ζ)
)
(ϕ(z),ϕ(z))

=ψ(i )
2 (z) f (ϕ(z),ϕ(z))+∑i

j=1

∑i
p= j

( i
p

)
ψ

(i−p)
2 (z)(Bkϕ)p, j (z)

((
∂
∂ζ

) j f (z,ζ)
)
(ϕ(z),ϕ(z))

=ψ(i )
2 (z) f (ϕ(z),ϕ(z))+∑i

p=1
∑p

j=1

( i
p

)
ψ

(i−p)
2 (z)(Bkϕ)p, j (z)

((
∂
∂ζ

) j f (z,ζ)
)
(ϕ(z),ϕ(z)).

(4.13)

Here the second equality follows since (Bkϕ)q,0 = δq 0, 0 ≤ q ≤ k.

The equality in (4.11) is therefore verified, completing the proof of the theorem. 2

Remark 4.2.4. From (4.12), we see that if the hypothesis of Theorem 4.2.1 is in force, then the

subspace Ak is invariant under the operator Mψ1Cϕ⊗Mψ2Cϕ.

Proof of Theorem 4.2.2 (i). By hypothesis the operators Mψ1Cϕ and Mψ2Cϕ are bounded

and invertible on (H ,K1) and (H ,K2), respectively. It follows easily that (Mψi Cϕ)−1 = Mχi Cϕ−1 ,

where χi = 1
ψi ◦ϕ−1 . Consequently, (Mψ1Cϕ⊗ Mψ2Cϕ)−1 = Mχ1Cϕ−1 ⊗ Mχ2Cϕ−1 . Therefore, by

Remark 4.2.4, Ak is invariant under both Mψ1Cϕ⊗Mψ2Cϕ and (Mψ1Cϕ⊗Mψ2Cϕ)−1. Hence, by

Lemma 4.2.3, the operator PA ⊥
k

(Mψ1Cϕ⊗Mψ2Cϕ)|A ⊥
k

is invertible. An application of Theorem

4.2.1 now completes the proof . 2

Proof of Theorem 4.2.2 (ii). If Mψ1Cϕ and Mψ2Cϕ are unitary, then so is the operator

Mψ1Cϕ ⊗ Mψ2Cϕ. Hence, by the argument used in part (i) of this theorem together with

Lemma 4.2.3, we see that Ak is reducing under Mψ1Cϕ⊗ Mψ2Cϕ. Consequently, the oper-

ator (Mψ1Cϕ⊗Mψ2Cϕ)|A ⊥
k

is unitary. Hence, by Theorem 4.2.1, we conclude that the operator

Mψ1(Jkψ2)(Bkϕ)Cϕ on
(
H , Jk (K1,K2)|res∆

)
is unitary. 2

Recall that the compression of the operators Mz ⊗ I and I ⊗Mz acting on (H ,K1)⊗ (H ,K2)

to the subspace A ⊥
0 are unitarily equivalent to the operator Mz on the Hilbert space (H ,K1K2).

The following corollary isolates the case of A0 from the Theorem 4.2.1 and Theorem 4.2.2 pro-

viding a similar model for the compression of the tensor product of the weighted composition

operators on (H ,K1) and (H ,K2) to A ⊥
0 . As a consequence, we obtain the boundedness and

invertibility of such weighted composition operators.

Corollary 4.2.5. Let Ω ⊆ C be a bounded domain, ψ1,ψ2 ∈ Hol(Ω) and ϕ ∈ Hol(Ω,Ω). Let K1

and K2 be two scalar valued non-negative definite kernels onΩ×Ω. Suppose that the weighted

composition operators Mψ1Cϕ and Mψ2Cϕ are bounded on (H ,K1) and (H ,K2), respectively.

Then the operator Mψ1ψ2Cϕ is bounded on (H ,K1K2) with

‖Mψ1ψ2Cϕ‖ ≤ ‖Mψ1Cϕ‖‖Mψ2Cϕ‖.
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Moreover, if the operators Mψ1Cϕ and Mψ2Cϕ are invertible (resp. unitary) on (H ,K1) and

(H ,K2), respectively, ϕ ∈ Aut(Ω), then the operator Mψ1ψ2Cϕ is also invertible (resp. unitary) on

(H ,K1K2).

4.2.1 Weighted composition operators and weakly homogeneous operators

In this subsection, we show that the multiplication by the coordinate function z acting on a

Hilbert space H possessing a sharp reproducing kernel K is weakly homogeneous if and only

if there exist bounded invertible weighted composition operators, one for each ϕ ∈ Möb, on

the same Hilbert space H . We begin with a useful Lemma. A version of this lemma, without

involving the composition by ϕ, is in [26].

Lemma 4.2.6. Let K (z, w) : D×D→ Mk (C) be a positive definite kernel. Suppose that the

multiplication operator Mz is bounded on (H ,K ). Let ϕ be a fixed but arbitrary function in

Möb which is analytic in a neighbourhood of σ(Mz). If X is a bounded invertible operator on

(H ,K ) of the from MgϕCϕ−1 , where gϕ ∈ Hol(D,GLk (C)), then X intertwines Mz andϕ(Mz ), that

is, Mz X = Xϕ(Mz).

Moreover, if K is sharp and X is a bounded invertible operator on (H ,K ) intertwining Mz and

ϕ(Mz), then X = MgϕCϕ−1 for some gϕ ∈ Hol(D,GLk (C)).

Proof. Suppose that X is a bounded invertible operator of the form MgϕCϕ−1 . Then for f ∈
(H ,K ), we have

Xϕ(Mz)( f ) = (MgϕCϕ−1 )Mϕ( f ) = Mgϕ(z( f ◦ϕ−1))

= (Mz MgϕCϕ−1 )( f )

= (Mz X )( f ).

(4.14)

Therefore X intertwines Mz and ϕ(Mz), i.e. Xϕ(Mz) = Mz X .

Conversely, assume that X is a bounded invertible operator on (H ,K ) such that Mz X =
Xϕ(Mz). Taking adjoint and acting on the vector K (·, w)η, w ∈D,η ∈Ck , we obtain

ϕ(Mz)∗X ∗K (·, w)η= X ∗M∗
z K (·, w)η= w X ∗K (·, w)η. (4.15)

Thus X ∗K (., w)η ∈ ker
(
ϕ(Mz)∗−w

)
.

claim: ker
(
ϕ(Mz)∗−w

)= ker
(
M∗

z −ϕ−1(w)
)
.

To verify the claim, set ϕ̂(z) := ϕ(z), z ∈ D. Clearly, ϕ̂ ∈ Möb. It is also easy to see that

ϕ(Mz)∗ = ϕ̂(M∗
z ). Therefore ker

(
ϕ(Mz)∗−w

)= ker
(
ϕ̂(M∗

z )−w
)
. Let f be an arbitrary vector

in ker
(
ϕ̂(M∗

z )−w
)
. Then we have ϕ̂(M∗

z ) f = w f . Hence

M∗
z f = (

ϕ̂−1(ϕ̂(M∗
z ))

)
f = ϕ̂−1 (

w
)

f =ϕ−1(w) f .
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Therefore f ∈ ker
(
M∗

z −ϕ−1(w)
)
. Consequently, ker

(
ϕ̂(M∗

z )−w
)⊆ ker

(
M∗

z −ϕ−1(w)
)
. By the

same argument, it also follows that ker
(
M∗

z −ϕ−1(w)
)⊆ ker

(
ϕ̂(M∗

z )−w
)
. Hence the claim is

verified.

Since K is sharp and the vector X ∗K (·, w)η ∈ ker
(
ϕ(Mz)∗−w

)
, it follows from the claim

that there exists a unique vector hϕ(w)η ∈Ck such that

X ∗K (·, w)η= K (·,ϕ−1(w))hϕ(w)η. (4.16)

The invertibility of the matrix K (ϕ−1(w),ϕ−1(w)) ensures the uniqueness of the vector hϕ(w)η.

It is easily verified that for each w ∈D, the map η 7→ hϕ(w)η defines a linear map on Ck . Since

X is invertible, it follows from (4.16) that hϕ(w) is invertible. Now for any w ∈D, η ∈ Ck and

f ∈ (H ,K ), we see that 〈
(X f )(w),η

〉= 〈
X f ,K (·, w)η

〉
= 〈

f , X ∗K (·, w)η
〉

= 〈
f ,K (·,ϕ−1(w))hϕ(w)η

〉
= 〈

( f ◦ϕ−1)(w),hϕ(w)η
〉

= 〈
hϕ(w)∗( f ◦ϕ−1)(w),η

〉
.

Hence X = MgϕCϕ−1 where gϕ(w) = hϕ(w)∗, w ∈ D. Since we have already shown that

gϕ(w), w ∈ D, is invertible, to complete the proof, we only need to show that the map w 7→
gϕ(w) is holomorphic.

Let w0 be a fixed but arbitrary point in D. Since K (ϕ−1(w0),ϕ−1(w0)) is invertible, there

exists a neighbourhood Ω0 of w0 such that K (ϕ−1(w0),ϕ−1(w)) is invertible for all w in Ω0.

From (4.16), we have

(X ∗K (·, w)η)ϕ−1(w0) = K (ϕ−1(w0),ϕ−1(w))hϕ(w)η, w ∈Ω0.

Therefore

hϕ(w)η= K (ϕ−1(w0),ϕ−1(w))−1(X ∗K (·, w)η)ϕ−1(w0), w ∈Ω0.

Since the right hand side of the above equality is anti-holomorphic onΩ0, it follows that the

function hϕ(w) is anti-holomorphic onΩ0 and therefore gϕ is holomorphic on Ω0. Since w0 is

arbitrary, we conclude that gϕ is holomorphic onΩ. This completes the proof.

Proposition 4.2.7. Let K (z, w) :D×D→Mk (C) be a positive definite kernel. If for eachϕ ∈ Möb,

there exists a function gϕ ∈ Hol(D,GLk (C)) such that the operator MgϕCϕ−1 is bounded and

invertible on (H ,K ), then Mz on (H ,K ) is weakly homogeneous. Moreover, if K is sharp

and the operator Mz on (H ,K ) is weakly homogeneous, then for each ϕ in Möb, there exists

gϕ ∈ Hol(D,GLk (C)) such that the weighted composition operator MgϕCϕ−1 is bounded and

invertible on (H ,K ).
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Proof. Let U be a neighbourhood of the identity in Möb such that ϕ(Mz) is well-defined for

all ϕ ∈ U . By hypothesis, there exists gϕ ∈ Hol(D,GLk (C)) such that the operator MgϕCϕ−1

on (H ,K ) is bounded and invertible. Then by Lemma 4.2.6, it follows that the operator Mz

satisfies Mz X =ϕ(Mz )X ,ϕ ∈U . Hence Mz is similar toϕ(Mz ) for allϕ ∈U . Now an application

of Lemma 4.1.2 completes the proof in the forward direction.

For the proof in the other direction, suppose that Mz on (H ,K ) is weakly homogeneous.

Then, by definition, σ(Mz) ⊆ D̄ and ϕ(Mz) is similar to Mz for all ϕ in Möb. Therefore, for

each ϕ ∈ Möb, there exists a bounded invertible operator Xϕ satisfying Mz Xϕ = Xϕϕ(Mz). By

Lemma 4.2.6, Xϕ is of the form MgϕCϕ−1 , gϕ ∈ Hol(D,GLk (C)). This completes the proof.

The theorem appearing below shows that the weak homogeneity of the multiplication

operator is preserved under the jet construction.

Theorem 4.2.8. Suppose that K1 and K2 are two scalar valued sharp positive definite kernels

on D×D. If the multiplication operators Mz on (H ,K1) and (H ,K2) are weakly homogeneous,

then Mz on
(
H , Jk (K1,K2)|res∆

)
is also weakly homogeneous.

Proof. By hypothesis, the operator Mz on (H ,K1) as well as on (H ,K2) is weakly homogeneous.

By Proposition 4.2.7, for eachϕ ∈ Möb, there exist gϕ,hϕ ∈ Hol(D,C\{0}) such that the weighted

composition operators MgϕCϕ−1 and MhϕCϕ−1 are bounded and invertible on (H ,K1) and

(H ,K2) respectively. Then by Theorem (4.2.2), it follows that the operator Mgϕ(Jk hϕ)(Bkϕ
−1)Cϕ−1

is bounded and invertible on
(
H , Jk (K1,K2)|res∆

)
. Again an application of Proposition 4.2.7

completes the proof.

4.3 Weakly homogeneous operators in the class FB2(D)

In this section, we study weakly homogeneous operators in the class FB2(D). The reader is

referred to see section 2.3.2 for the definition of operators in FB2(D). The following proposition

will be an essential tool in this study.

Proposition 4.3.1. ( [37, Proposition 3.3]) Let T and T̃ be any two operators in FB2(Ω). If X is

a bounded invertible operator which intertwines T and T̃ , then X and X −1 are upper triangular.

Corollary 4.3.2. Let T =
(

T0 S

0 T1

)
on H0⊕H1 and T̃ =

(
T̃0 S̃

0 T̃1

)
on H̃0⊕H̃1 be two operators

in FB2(Ω). Then T is similar to T̃ if and only if there exist bounded invertible operators X :

H0 → H̃0, Y : H1 → H̃1 and a bounded operator Z : H1 → H̃0 such that

(i) X T0 = T̃0X , Y T1 = T̃1Y ,

(ii) X S +Z T1 = T̃0Z + S̃Y .
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Proof. Suppose that T is similar to T̃ . Let A =
(

X Z

W Y

)
: H0 ⊕H1 → H̃0 ⊕H̃1 be an invertible

operator such that AT = T̃ A. By Proposition 4.3.1, we have that W = 0. Further, we see that the

intertwining relation is equivalent to(
X T0 X S +Z T1

0 Y T1

)
=

(
T̃0X T̃0Z + S̃Y

0 T̃1Y

)
.

Again applying Proposition 4.3.1, we see that A−1 is also upper triangular. Hence using Lemma

4.2.3, we conclude that X and Y are invertible.

Conversely, assume that there exist bounded invertible operators X : H0 → H̃0, Y : H1 →
H̃1 and a linear operator Z : H1 → H̃0 satisfying (i) and (ii) of this Corollary. Let A be the

operator

(
X Z

0 Y

)
. Since X and Y are invertible, it follows that A is invertible. The intertwining

requirement AT = T̃ A is also easily verified.

Lemma 4.3.3. Let T ∈ B(H ) be an operator in B1(D) with σ(T ) = D̄. Then the operator ϕ(T )

belongs to B1(D) for all ϕ in Möb.

Proof. Let ϕθ,a , θ ∈ [0,2π), a ∈ D, be an arbitrary biholomorphic automorphism in Möb. A

routine calculation shows that

ϕθ,a(T )−ϕθ,a(w) = e iθ((T −a)(I − āT )−1 − (w −a)(1− āw)−1)
= e iθ(1−|a|2)(1− āw)−1(T −w)(I − āT )−1, w ∈D.

(4.17)

Since T ∈ B1(D), (T −w) is Fredholm for all w ∈D. Therefore, from (4.17), we see that the opera-

tor ϕθ,a(T )−ϕθ,a(w) is the product of a Fredholm operator with an invertible operator. Hence

it is a Fredholm operator (see [19]). Consequently, ran (ϕ(T )−ϕ(w)) is closed. Furthermore,

since the operator (I − āT )−1 is invertible and commutes with (T −w), using (4.17) once again,

it follows that ker
(
ϕθ,a(T )−ϕθ,a(w)

)= ker(T −w). Consequently,

dimker
(
ϕθ,a(T )−ϕθ,a(w)

)= dimker(T −w) = 1, w ∈D

and ∨
w∈Ωker

(
ϕθ,a(T )−ϕθ,a(w)

)=∨
w∈Ωker(T −w) =H .

This completes the proof.

Lemma 4.3.4. Let T =
(

T0 S

0 T1

)
be an operator in FB2(D) with σ(T ) =σ(T0) =σ(T1) = D̄. Then

the operator ϕ(T ) belongs to FB2(D) for all ϕ in Möb.
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Proof. A routine verification, using T0S = ST1, shows that

ϕ(T ) =
(
ϕ(T0) ϕ′(T0)S

0 ϕ(T1)

)
, andϕ(T0)ϕ′(T0)S =ϕ′(T0)Sϕ(T1).

Also by Lemma 4.3.3, we have that ϕ(T0) and ϕ(T1) belong to B1(D). Hence the operator ϕ(T )

belongs to FB2(D).

The Corollary given below, which gives a necessary and sufficient condition for an operator

T in FB2(D) to be weakly homogeneous, is a consequence of Corollary 4.3.2 combined with

the Lemma we have just proved. Hence the proof is omitted.

Corollary 4.3.5. Let T =
(

T0 S

0 T1

)
be an operator in FB2(D) with σ(T ) = σ(T0) = σ(T1) = D̄.

Then T is weakly homogeneous if and only if for each ϕ in Möb, there exist bounded invertible

operators Xϕ : H0 →H0, Yϕ : H1 →H1 and a bounded operator Zϕ : H1 →H0 such that the

following holds:

(i) XϕT0 =ϕ(T0)Xϕ, YϕT1 =ϕ(T1)Yϕ

(ii) XϕS +ZϕT1 =ϕ(T0)Zϕ+ϕ′(T0)SYϕ.

4.3.1 A useful Lemma

Let K1,K2 : D×D→ C be two positive definite kernels. As in the previous chapter, let M (1)

and M (2) denote the operators of multiplication by the coordinate function z on (H ,K1) and

(H ,K2), respectively. The following lemma which is a generalization of Lemma 4.2.6 will be

used to construct operators in FB2(D) that are not weakly homogeneous.

Lemma 4.3.6. Let ϕ be a fixed but arbitrary function in Möb which is analytic in a neighbour-

hood of σ(M (1)). Let ψ be a function in Hol(D) such that the weighted composition operator

MψCϕ−1 is bounded from (H ,K1) to (H ,K2). If X is a bounded linear operator from (H ,K1) to

(H ,K2) such that X ( f ) =ψ(ϕ−1)′( f ′ ◦ϕ−1)+χ( f ◦ϕ−1), f ∈ (H ,K1) for some χ ∈ Hol(D), then

X satisfies

Xϕ(M (1))−M (2)X = MψCϕ−1 . (4.18)

Moreover, if K1 is sharp and X : (H ,K1) → (H ,K2) is a bounded linear operator satisfying

(4.18), then there exists a function χ ∈ Hol(D) such that X ( f ) =ψ(ϕ−1)′( f ′ ◦ϕ−1)+χ( f ◦ϕ−1),

f ∈ (H ,K1).

(Here ψ(ϕ−1)′ denotes the pointwise product of the two functions ψ and (ϕ−1)′. Similarly,

ψ(ϕ−1)′( f ′ ◦ϕ−1) denotes the pointwise product of ψ(ϕ−1)′ and ( f ′ ◦ϕ−1). Finally, χ( f ◦ϕ−1) is

the pointwise product of χ and f ◦ϕ−1. This convention is adopted throughout this chapter.)
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Proof. Suppose that X is bounded linear operator taking f to ψ(ϕ−1)′( f ′ ◦ϕ−1)+χ( f ◦ϕ−1),

f ∈ (H ,K1). Then we see that

(Xϕ(M (1))−M (2)X ) f =X (ϕ f )− z X f

=ψ(ϕ−1)′((ϕ f )′ ◦ϕ−1)+χ((ϕ f )◦ϕ−1)− zψ(ϕ−1)′( f ′ ◦ϕ−1)− zχ( f ◦ϕ−1)

=ψ(ϕ−1)′
(
(ϕ′ ◦ϕ−1)( f ◦ϕ−1)+ (ϕ◦ϕ−1)( f ′ ◦ϕ−1)

)+ zχ( f ◦ϕ−1)

− zψ(ϕ−1)′( f ′ ◦ϕ−1)− zχ( f ◦ϕ−1)

=ψ(ϕ−1)′(ϕ′ ◦ϕ−1)( f ◦ϕ−1)+ψ(ϕ−1)′z( f ′ ◦ϕ−1)− zψ(ϕ−1)′( f ′ ◦ϕ−1)

=ψ( f ◦ϕ−1).

Here for the last equality we have used the identity (ϕ−1)′(ϕ′ ◦ϕ−1) = 1.

For the converse, assume that K1 is sharp and X : (H ,K1) → (H ,K2) is a bounded linear

operator satisfying (4.18). Then taking adjoint and acting on K2(·, z), z ∈D, we obtain

ϕ(M (1))∗X ∗K2(·, z)− z X ∗K2(·, z) = (MψCϕ−1 )∗K2(·, z)

=ψ(z)K1(·,ϕ−1z).
(4.19)

Here the last equality follows from exactly the same argument as in (4.2). Further, since(
ϕ(M (1))∗−ϕ(w)

)
K1(·, w) = 0, w ∈D, differentiating with respect to w , we see that(

ϕ(M (1))∗−ϕ(w)
)
∂̄K1(·, w) =ϕ′(w)K1(·, w), w ∈D. (4.20)

Replacing w by ϕ−1z in the above equation and combining it with (4.19), we see that

(
ϕ(M (1))∗− z

)
X ∗K2(·, z) = (

ϕ(M (1))∗− z
)( ψ(z)

ϕ′(ϕ−1z)
∂̄K1(·,ϕ−1z)

)
. (4.21)

Consequently, the vector X ∗K2(·, z)− ψ(z)

ϕ′(ϕ−1z)
∂̄K1(·,ϕ−1z) ∈ ker

(
ϕ(M (1))∗−z

)
. Since K1 is sharp,

we have that ker
(
ϕ(M (1))∗− z̄

)=∨
{K1(·,ϕ−1z)} (see the proof of Lemma 4.2.6). Therefore

X ∗K2(·, z)− ψ(z)

ϕ′(ϕ−1z)
∂̄K1(·,ϕ−1z) =χ(z)K1(·,ϕ−1z),

for some χ ∈ Hol(D) (the holomorphicity of χ can be proved by a similar argument used at the

end of Lemma 4.2.6).

Finally, for f ∈ (H ,K1) and z ∈D, we see that(
X f

)
(z) = 〈

X f ,K2(·, z)
〉

= 〈
f , X ∗K2(·, z)

〉
=

〈
f ,

ψ(z)

ϕ′(ϕ−1z)
∂̄K1(·,ϕ−1z)+χ(z)K1(·,ϕ−1z)

〉
=ψ(z)(ϕ−1)′(z)( f ′ ◦ϕ−1)(z)+χ(z)( f ◦ϕ−1)(z).
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Here the identity (ϕ′ ◦ϕ−1)(z)(ϕ−1)′(z) = 1, z ∈ D, is used a second time for the last equality.

This completes the proof.

Notation 4.3.7. For the rest of this section, let H (λ), λ> 0, denote the Hilbert space determined

by the positive definite kernel K (λ) where K (λ)(z, w) := 1
(1−zw̄)λ

, z, w ∈D. Note that

K (λ)(z, w) =
∞∑

n=0

(λ)n

n!
, z, w ∈D, (4.22)

where (λ)n is the Pochhammer symbol given by Γ(λ+n)
Γ(λ) .

For any γ ∈R, let K(γ) be the positive definite kernel given by

K(γ)(z, w) :=
∞∑

n=0
(n +1)γ(zw̄)n , z, w ∈D. (4.23)

Note that K(0) = K (1) (the Szegö kernel of the unit disc D) and K(1) = K (2)(the Bergman kernel of

the unit disc D). The kernel K(−1) is known as the Dirichlet kernel of the unit disc D.

For two sequences {an} and {bn} of positive real numbers, we write an ∼ bn if there ex-

ist constants c1,c2 > 0 such that c1bn ≤ an ≤ c2bn , n ∈ Z+. From (4.22) and (4.23), it is

clear that ‖zn‖2
H (λ) = n!

(λ)n
= Γ(n+1)Γ(λ)

Γ(n+λ) and ‖zn‖2
(H ,K(γ)) = (n +1)−γ, n ∈ Z+. Using the identity

limn→∞ Γ(n+a)
Γ(n)na = 1, a ∈C, we see that

‖zn‖2
H (λ) ∼ ‖zn‖2

(H ,K(λ−1)), λ> 0. (4.24)

Therefore, for λ > 0, there exist constants c1,c2 > 0 such that c1K(λ−1) ¹ K (λ) ¹ c2K(λ−1) and

consequently, H (λ) = (H ,K(λ−1)).

Recall that a Hilbert space H consisting of holomorphic functions on the unit discD is said

to be Möbius invariant if for each ϕ ∈ Möb, f ◦ϕ ∈H whenever f ∈H . By an application of

the closed graph Theorem, it follows that H is Möbius invariant if and only if the composition

operator Cϕ is bounded on H for each ϕ ∈ Möb. If the multiplication operator Mz is bounded

on some Möbius invariant Hilbert space H , then by Proposition 4.2.7, it follows that Mz is

weakly homogeneous on H . It is known that the Hilbert spaces H (λ), λ > 0, and (H ,K(γ)),

γ ∈R, are Möbius invariant (see [54], [20]). We record this fact as a Lemma for our later use.

Lemma 4.3.8. The Hilbert spaces H (λ), λ > 0 and (H ,K(γ)), γ ∈ R, are Möbius invariant.

Consequently, the composition operator Cϕ, ϕ ∈ Möb, is bounded and invertible on H (λ), λ> 0,

as well as on (H ,K(γ)), γ ∈R.

Corollary 4.3.9. For any γ ∈R, the operator M∗
z on (H ,K(γ)) is a weakly homogeneous operator

in B1(D). Moreover, it is similar to a homogeneous operator if and only if γ > −1. In particu-

lar, M∗
z on the Dirichlet space is a weakly homogeneous operator which is not similar to any

homogeneous operator.
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Proof. Note that Mz on (H ,K(γ)) is unitarily equivalent to the weighted shift with the weight

sequence {wn}n∈Z+ where wn =
(

n+1
n+2

) γ
2

, n ∈ Z+. Since supn∈Z+ wn <∞, it follows that Mz is

bounded on (H ,K(γ)). By Lemma 4.3.8, Cϕ is bounded and invertible on (H ,K(γ)). Hence by

Proposition 4.2.7, it follows that Mz on (H ,K(γ)) is weakly homogeneous .

Recall that for an operator T , r1(T ) is defined as limn→∞
(
m(T n)

) 1
n (which always exists,

see [51]), where m(T ) = inf
{‖T f ‖ : ‖ f ‖ = 1

}
. For the multiplication operator Mz on (H ,K(γ)),

it is easily verified that r1(Mz) = r (Mz) = 1, where r (Mz) is the spectral radius of Mz . Hence by

a theorem of Seddighi (cf. [50]), we conclude that M∗
z on (H ,K(γ)) belongs to B1(D).

Finally assume that M∗
z on (H ,K(γ)) is similar to a homogeneous operator, say S. Since

B1(D) is closed under similarity, the operator S belongs to B1(D). Furthermore, since upto

unitary equivalence, every homogeneous operator in B1(D) is of the form M∗
z on (H ,K (λ)),

λ> 0, it follows that M∗
z on (H ,K(γ)) is similar to M∗

z on H (λ) for some λ> 0. Hence by [51,

Theorem 2′], γ satisfies ‖zn‖2
(H ,K(γ)) ∼ ‖zn‖2

H (λ) . Then by (4.24), we see that ‖zn‖2
(H ,K(γ)) ∼

‖zn‖2
(H ,K(λ−1)). Hence γ=λ−1. Since λ> 0, it follows that γ>−1.

For the converse, let γ>−1. Again using [51, Theorem 2′] and (4.24), it follows that M∗
z on

(H ,K(γ)) is similar to the homogeneous operator M∗
z on H (γ+1).

The lemma given below shows that the linear map f 7→ f ′ is bounded from H (λ) to H (λ+2).

Lemma 4.3.10. Let λ> 0 and f be an arbitrary holomorphic function on the unit disc D. Then

f ∈H (λ) if and only if f ′ ∈H (λ+2). Moreover, if f ∈H (λ), then ‖ f ′‖H (λ+2) ≤p
λ(λ+1)‖ f ‖H (λ) .

Consequently, the differential operator D, that maps f to f ′, is bounded from H (λ) to H (λ+2)

with ‖D‖ ≤p
λ(λ+1).

Proof. Let
∑∞

n=0αn zn , z ∈ D, be the power series representation of f . Then we have f ′(z) =∑∞
n=0(n+1)αn+1zn , z ∈D. Recall that ‖zn‖2

H (λ) = n!
λ(λ+1)···(λ+n−1) . By a straightforward computa-

tion we see that

λ‖zn+1‖2
H (λ) ≤ (n +1)2‖zn‖2

H (λ+2) ≤λ(λ+1)‖zn+1‖2
H (λ) , n ≥ 0.

Consequently,

λ
∞∑

n=0
|αn+1|2‖zn+1‖2

H (λ) ≤
∞∑

n=0
|αn+1|2(n +1)2‖zn‖2

H (λ+2) ≤λ(λ+1)
∞∑

n=0
|αn+1|2‖zn+1‖2

H (λ) .

(4.25)

From the above inequality, it follows that
∑∞

n=0 |αn |2‖zn‖2
H (λ) <∞ if and only if

∑∞
n=0 |αn+1|2(n+

1)2‖zn‖2
H (λ+2) <∞. Therefore, f ∈H (λ) if and only if f ′ ∈H (λ+2). From (4.25), it is also easy to

see that if f ∈H (λ), then ‖ f ′‖2
H (λ+2) ≤λ(λ+1)‖ f ‖2

H (λ) .
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The proof of the corollary given below follows from the Lemma 4.3.10 together with the

fact that the inclusion operator f 7→ f is bounded from H (λ+2) to H (µ), µ−λ≥ 2.

Corollary 4.3.11. Let λ,µ be two positive real numbers such that µ−λ≥ 2. Then the linear map

f 7→ f ′ is bounded from H (λ) to H (µ).

Recall that for two Hilbert spaces H1 and H2 consisting of holomorphic functions on the

unit disc D, the multiplier algebra Mult (H1,H2) is defined as

Mult (H1,H2) := {
ψ ∈ Hol(D) :ψ f ∈H2 whenever f ∈H1

}
.

When H1 =H2, we write Mult (H1) instead of Mult (H1,H1). By the closed graph theorem, it

is easy to see that ψ ∈ Mult (H1,H2) if and only if the multiplication operator Mψ is bounded

from H1 to H2.

For µ ≥ λ > 0, since H (λ) ⊆ H (µ), it follows that ψ f ∈ H (µ) whenever f ∈ H (λ) and ψ ∈
Mult (H (λ)). Hence

Mult (H (λ)) ⊆ Mult (H (λ),H (µ)), 0 <λ≤µ. (4.26)

It is known that for λ≥ 1, Mult (H (λ)) = H∞(D), where H∞(D) is the algebra of all bounded

holomorphic functions on the unit disc D. Thus, from (4.26), we conclude that

H∞(D) ⊆ Mult(H (λ),H (µ)), 1 ≤λ≤µ. (4.27)

On the other hand, if λ>µ, then Mult(H (λ),H (µ)) = {0}, and hence we make the assump-

tion λ≤µ without loss of generality.

The proposition given below describes a class a weakly homogeneous operators in FB2(D).

Proposition 4.3.12. Let 0 < λ ≤ µ and ψ ∈ Mult(H (λ),H (µ)). Let T =
(

M∗
z M∗

ψ

0 M∗
z

)
on H (λ) ⊕

H (µ). If Mψ is bounded and invertible on H (λ) as well as on H (µ), then T is weakly homoge-

neous.

Proof. It suffices to show that T ∗ is weakly homogeneous. By a routine computation, we

obtain ϕ(T ∗) =
(

Mϕ 0

Mψϕ′ Mϕ

)
on H (λ) ⊕H (µ). By Lemma 4.3.8, the operator Cϕ−1 , ϕ ∈ Möb, is

bounded and invertible on H (λ) as well as on H (µ). Also, by hypothesis, Mψ is bounded and

invertible on H (λ) as well as on H (µ) . Thus MψCϕ−1 is bounded and invertible on H (µ). For

ϕ ∈ Möb, set

Lϕ :=
(

M(ψ◦ϕ−1)(ϕ′◦ϕ−1)Cϕ−1 0

0 MψCϕ−1

)
on H (λ) ⊕H (µ).

Using the equality Mψ◦ϕ−1 = Cϕ−1 MψCϕ, we see that the operator Mψ◦ϕ−1 is bounded and

invertible on H (λ). Consequently, Mψ◦ϕ−1Cϕ−1 is bounded and invertible on H (λ). Therefore,
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to prove that Lϕ is bounded and invertible, it suffices to show that the operator M(ϕ′◦ϕ−1) is

bounded and invertible on H (λ). Take ϕ to be ϕ−1
θ,a and note that

(
(ϕ−1

θ,a)′ ◦ϕθ,a
)
(z) = 1

(ϕθ,a)′(z)
= e−iθ (1− āz)2

(1−|a|2)
, z ∈D, (4.28)

which is a polynomial. Hence M((ϕ−1
θ,a )′◦ϕθ,a ) is bounded on H (λ).

From (4.28), we see that M((ϕ−1
θ,a )′◦ϕθ,a ) is invertible on H (λ) if and only if the operator

M 1
(1−āz)2

is bounded on H (λ). By the closed graph theorem, this is equivalent to 1
(1−āz)2 is in

Mult(H (λ)). To verify this, let f ∈H (λ). Note that( 1

(1− āz)2
f
)′

(z) = 1

(1− āz)2
f ′(z)+ 2ā

(1− āz)3
f (z), z ∈D, (4.29)

Since f ∈ H (λ) and H (λ) ⊆ H (λ+2), we have f ∈ H (λ+2). Also by Lemma 4.3.10, f ′ ∈ H (λ+2).

Since the functions 1
(1−āz)2 and 2ā

(1−āz)3 belong to H∞(D) and Mult(H (λ+2)) = H∞(D), it follows

that both of the functions 1
(1−āz)2 f ′ and 2ā

(1−āz)3 f belong to H (λ+2). Thus, by (4.29),
( 1

(1−āz)2 f
)′

belongs to H (λ+2). Hence, again applying Lemma 4.3.10, we conclude that 1
(1−āz)2 f belongs to

H (λ). Hence the operator M 1
(1−āz)2

is bounded on H (λ).

Finally, a straightforward calculation shows that

T ∗Lϕ = Lϕϕ(T ∗) =
(

Mz(ψ◦ϕ−1)(ϕ′◦ϕ−1)Cϕ−1 0

Mψ(ψ◦ϕ−1)(ϕ′◦ϕ−1)Cϕ−1 MzψCϕ−1

)
, (4.30)

completing the proof.

Lemma 4.3.13. Let 0 <λ≤µ<λ+2 and ψ, χ be two holomorphic functions on the unit disc D.

Let X be the linear map given by X ( f ) =ψ f ′+χ f , f ∈ Hol(D). Suppose that X is bounded from

H (λ) to H (µ). Then ψ is identically zero.

Proof. Letψ(z) =∑∞
j=0α j z j and χ(z) =∑∞

j=0β j z j be the power series representations ofψ and

χ, respectively. Then for n ≥ 1, we see that

‖X (zn)‖2
H (µ) = ‖nzn−1ψ(z)+ znχ(z)‖2

H (µ)

= ‖nzn−1α0 +
∞∑

j=1
(nα j +β j−1)z j+n−1‖2

H (µ)

= |α0|2n2‖zn−1‖2
H (µ) +

∞∑
j=1

|nα j +β j−1|2‖z j+n−1‖2
H (µ) .

Since X is bounded from H (λ) to H (µ), we have that ‖X (zn)‖2
H (µ) ≤ ‖X ‖2‖zn‖2

H (λ) . Conse-

quently, for n ≥ 1,

|α0|2n2‖zn−1‖2
H (µ) +

∞∑
j=1

|nα j +β j−1|2‖z j+n−1‖2
H (µ) ≤ ‖X ‖2‖zn‖2

H (λ) . (4.31)
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From (4.24), we have ‖zn‖2
H (λ) ∼ n−(λ−1) and ‖zn‖2

H (µ)
∼ n−(µ−1). Thus by (4.31), there

exists a constant c > 0 such that |α0|2n−(µ−3) ≤ cn−(λ−1). Equivalently, |α0|2 ≤ cnµ−λ−2. Since

µ−λ−2 < 0, taking limit as n →∞, we obtain α0 = 0.

For j ≥ 1, using ‖z j+n−1‖2
H (µ) ∼ ( j +n −1)−(µ−1) ∼ n−(µ−1) in (4.31), we see that

∣∣∣∣α j +
β j−1

n

∣∣∣∣2

≤ dn(µ−1)−(λ−1)−2 = dn(µ−λ−2)

for some constant d > 0. As before, since µ−λ−2 < 0, taking n →∞, we obtain α j = 0 for j ≥ 1.

Hence ψ is identically zero, completing the proof of the lemma.

Combining Corollary 4.3.11 and Lemma 4.3.13, we obtain the following corollary.

Corollary 4.3.14. The linear map f 7→ f ′, f ∈ Hol(D), is bounded from H (λ) to H (µ) if and only

if µ−λ≥ 2.

As a consequence of the lemma 4.3.13, we also obtain the following proposition which is a

strengthening of [38, Theorem 4.5 (2)] in the particular case of quasi-homogeneous operators

of rank 2. Recall that an operator T is said to be strongly irreducible if X T X −1 is irreducible for

all invertible operator X .

Proposition 4.3.15. Let 0 < λ ≤ µ < λ+2 and ψ ∈ Mult(H (λ),H (µ)). Let T =
(

M∗
z M∗

ψ

0 M∗
z

)
on

H (λ) ⊕H (µ). If ψ is non-zero, then T is strongly irreducible.

Proof. Since T ∈ FB2(D), by [37, Proposition 2.22], it follows that T is strongly reducible if

and only if there exists a bounded operator X : H (µ) →H (λ) satisfying T0X −X T1 = M∗
ψ where

T0 = M∗
z on H (λ) and T1 = M∗

z on H (µ).

Suppose that ψ is non-zero and T is strongly reducible. Then there exists a bounded

operator X : H (µ) → H (λ) such that X ∗T ∗
0 −T ∗

1 X ∗ = Mψ. Since the kernel K (λ) is sharp, by

Lemma 4.3.6 (with ϕ to be the identity map), there exists a function χ ∈ Hol (D) such that

X ∗( f ) =ψ f ′+χ f , f ∈H (λ). Since X is bounded and 0 <λ≤µ<λ+2, by Lemma 4.3.13, ψ is

identically zero on D. This is a contradiction to the assumption that ψ is non-zero. Hence T

must be strongly irreducible, completing the proof.

Let C (D̄) denote the space of all continuous functions on D̄ . If ψ is an arbitrary function in

C (D̄)∩Hol(D), then it is easy to see that ψ ∈ H∞(D). Furthermore, if 1 ≤λ≤µ, then by (4.27),

we see that ψ ∈ Mult (H (λ),H (µ)).

The theorem given below gives several examples and nonexamples of weakly homogeneous

operators in the class FB2(D).



4.3. Weakly homogeneous operators in the class FB2(D) 87

Theorem 4.3.16. Let 1 ≤λ≤µ<λ+2 and ψ be a non-zero function in C (D̄)∩Hol(D). The oper-

ator T =
(

M∗
z M∗

ψ

0 M∗
z

)
on H (λ) ⊕H (µ) is weakly homogeneous if and only if ψ is non-vanishing

on D̄.

Proof. Suppose that ψ is non-vanishing on D̄. Since ψ is continuous on D̄, ψ must be bounded

below. Therefore 1
ψ

is a bounded analytic function on D. Further, since λ,µ≥ 1, we have that

Mult (H (λ)) = Mult (H (µ)) = H∞(D). Hence the operator M 1
ψ

is bounded on H (λ) as well as

on H (µ). Consequently, the operator Mψ is bounded and invertible on H (λ) as well as on H (µ).

Hence, by Proposition 4.3.12, T is weakly homogeneous.

Conversely, assume that T is weakly homogeneous. It is easily verified that T ∈ FB2(D)

and T satisfies the hypothesis of Corollary 4.3.5. Therefore, for each ϕ in Möb, there exists

bounded operators Xϕ : H (λ) → H (λ), Yϕ : H (µ) → H (µ) and Zϕ : H (µ) → H (λ), with Xϕ,Yϕ
invertible, such that the following holds:

XϕT0 =ϕ(T0)Xϕ, YϕT1 =ϕ(T1)Yϕ

XϕM∗
ψ+ZϕT1 =ϕ(T0)Zϕ+M∗

ψϕ
′(T1)Yϕ,

(4.32)

where T0 is M∗
z on H (λ) and T1 is M∗

z on H (µ). Note that ϕ(T0)∗ = ϕ̂(T ∗
0 ) where ϕ̂(z) :=ϕ(z̄).

Taking adjoint in the first equation of (4.32), we see that Xϕ satisfies T ∗
0 X ∗

ϕ = X ∗
ϕϕ̂(T ∗

0 ). Since

K (λ) is sharp, by Lemma 4.2.6 (or Lemma 4.3.6), we obtain X ∗
ϕ = MgϕCϕ̂−1 for some non-

vanishing function gϕ in Hol(D). Furthermore, since Cϕ̂ is bounded and invertible on H (λ)

(see Lemma 4.3.8), it follows from the boundedness and invertibility of Xϕ that the operator

Mgϕ is bounded and invertible on H (λ). Also, since Mult(H (λ)) = H∞(D), λ≥ 1, it follows that

gϕ must be bounded above as well as bounded below on D. By the same argument, we have

Y ∗
ϕ = MhϕCϕ̂−1 for some non-vanishing function hϕ in Hol(D) which is bounded above as well

as bounded below on D. Taking adjoint in the last equation of (4.32), we see that

MψX ∗
ϕ+T ∗

1 Z∗
ϕ = Z∗

ϕϕ̂(T ∗
0 )+Y ∗

ϕ ϕ̂
′(T ∗

1 )Mψ.

Equivalently,

Z∗
ϕϕ̂(T ∗

0 )−T ∗
1 Z∗

ϕ = MψX ∗
ϕ−Y ∗

ϕ ϕ̂
′(T ∗

1 )Mψ

= MψMgϕCϕ̂−1 −MhϕCϕ̂−1 M
ϕ̂′Mψ

= M`ϕCϕ̂−1 ,

where `ϕ = ψgϕ−hϕ(ϕ̂′ ◦ ϕ̂−1)(ψ ◦ ϕ̂−1). Since the kernel K (λ) is sharp, by Lemma 4.3.6, it

follows that

Z∗
ϕ f = `ϕ(ϕ̂−1)′( f ′ ◦ ϕ̂−1)+χϕ( f ◦ ϕ̂−1), f ∈H (λ), (4.33)
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for some χϕ ∈ Hol(D). Furthermore, since the composition operator Cϕ̂ is bounded on H (µ)

by Lemma 4.3.8, the operator Cϕ̂Z∗
ϕ is bounded from H (λ) to H (µ). Note that

Cϕ̂Z∗
ϕ( f ) = (`ϕ ◦ ϕ̂)((ϕ̂−1)′ ◦ ϕ̂) f ′+ (χϕ ◦ ϕ̂) f , f ∈H (λ).

Since λ≤µ<λ+2, by Lemma 4.3.13, it follows that that (`ϕ ◦ ϕ̂)((ϕ̂−1)′ ◦ ϕ̂) is identically

the zero function for each ϕ ∈ Möb and therefore `ϕ is identically the zero function for each

ϕ ∈ Möb. Equivalently,

ψ(z)gϕ(z) = hϕ(z)(ϕ̂′ ◦ ϕ̂−1)(z)(ψ◦ ϕ̂−1)(z), z ∈D,ϕ ∈ Möb. (4.34)

Now we show that ψ is non-vanishing on D. If possible let ψ(w0) = 0 for some w0 ∈D and w

be a fixed but arbitrary point in D. We will show that ψ(w) = 0. By transitivity of Möb, there

exists a function ϕw in Möb such that ϕ̂w
−1(w0) = w . Putting z = w0 and ϕ=ϕw in (4.34), we

see that

ψ(w0)gϕw (w0) = hϕw (w0)(ϕ̂′
w ◦ ϕ̂w

−1)(w0)ψ(w). (4.35)

Since the functions hϕw and (ϕ̂′
w ◦ ϕ̂w

−1) are non-vanishing on D, it follows from (4.35) that

ψ(w) = 0. Since this holds for an arbitrary w ∈D, we conclude that ψ vanishes on D. Conse-

quently,ψ vanishes on D̄, which contradicts thatψ is non-zero on D̄. Henceψ is non-vanishing

on D.

Now we show that ψ is non-vanishing on the unit circle T. Replacing ϕ by ϕθ,0 (which is

the rotation map e iθz) in (4.35), we obtain

ψ(z)gϕθ,0 (z) = e−iθhϕθ,0 (z)ψ(e iθz), z ∈D. (4.36)

Let {wn} be a sequence in D such that wn → 1 as n →∞. If possible let ψ vanishes at some

point e iθ0 on T. Putting z = e iθ0 wn in (4.36), we obtain

ψ(e iθ0 wn)gϕθ,0 (e iθ0 wn) = e−iθhϕθ,0 (e iθ0 wn)ψ(e i (θ0+θ)wn). (4.37)

Since ψ ∈C (D̄) and gϕθ,0 ,hϕθ,0 are bounded above as well as bounded below on D, taking limit

as n →∞, it follows that ψ(e i (θ0+θ)) = 0. Since this is true for any θ ∈ R, we conclude that ψ

vanishes at all points on T. Consequently, ψ is identically zero on D̄. This contradicts our

hypothesis that ψ is non-zero on D̄.

As an immediate consequence of the above theorem, we obtain a class of operators in

FB2(D) which are not weakly homogeneous.

Corollary 4.3.17. Let 1 ≤λ≤µ<λ+2. If ψ is a non-zero function in C (D̄)∩Hol(D) with atleast

one zero in D̄, then the operator T =
(

M∗
z M∗

ψ

0 M∗
z

)
on H (λ) ⊕H (µ) is not weakly homogeneous.



4.4. Möbius bounded operators 89

4.4 Möbius bounded operators

Recall that an operator T on a Hilbert space H is said to be power bounded if supn≥0 ‖T n‖ ≤ c ,

for some constant c > 0. The related notion of Möbius bounded operators was introduced by

Shields in [52].

Definition 4.4.1. An operator T on a Banach space B is said to be Möbius bounded if σ(T ) ⊂ D̄
and

sup
ϕ∈Möb

‖ϕ(T )‖ <∞.

We will only discuss Möbius bounded operators on Hilbert spaces. By the von Neumann’s

inequality, every contraction on a Hilbert space is Möbius bounded. If T is an operator which

is similar to a homogeneous operator, then from (4.1), it follows that T is Möbius bounded. It is

also easily verified that an operator T is Möbius bounded if and only if T ∗ is Möbius bounded.

In this section, we find some necessary conditions for Möbius boundedness of the multi-

plication operator Mz on the reproducing kernel Hilbert space (H ,K ), where K (z, w) is form∑∞
n=0 bn(zw̄)n , bn > 0, on D×D. As a consequence, we show that the multiplication operator

Mz on the Dirichlet space is not Möbius bounded. We begin with a preparatory lemma.

First we recall that, for θ ∈ [0,2π) and a ∈D, the biholomorphic automorphism ϕθ,a of the

unit disc D, is defined by ϕθ,a(z) = e iθ z−a
1−āz , z ∈D. Note that the power series representation of

ϕθ,a is
∑∞

n=0αn zn , z ∈D, where

α0 =−e iθa and αn = e iθ(1−|a|2)(ā)n−1, n ≥ 1. (4.38)

Lemma 4.4.2. Let K (z, w) =∑∞
n=0 bn(zw̄)n , bn > 0, be a positive definite kernel on D×D. Sup-

pose that the multiplication operator Mz is bounded on (H ,K ) and σ(Mz) = D̄. If the sequence

{nbn}n∈Z+ is bounded, then there exists a constant c > 0 such that

‖ϕθ,a(Mz)‖ ≥ K (a, a)

c
−|a|, a ∈D, θ ∈ [0,2π).

Proof. Since {nbn} is bounded, there exists a constant c > 0 such that nbn < c for all n ≥ 0. For

a ∈D,θ ∈ [0,2π), setting ϕ̃θ,a(z) =ϕθ,a(z)−ϕθ,a(0), z ∈D, we see that

ϕ̃θ,a(z)K (z, a) =
∞∑

n=1

(
n∑

k=1
αk bn−k (ā)n−k

)
zn , z ∈D. (4.39)

Since Mz on (H ,K ) is bounded and σ(Mz) = D̄, the operator ϕθ,a(Mz) is bounded and
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hence the function ϕ̃θ,a(·)K (·, a) belongs to (H ,K ) for all a ∈D. Note that

‖ϕ̃θ,a(·)K (·, a)‖2 =
∞∑

n=1

∣∣∣ n∑
k=1

αk bn−k (ā)n−k
∣∣∣2‖zn‖2

= (1−|a|2)2
∞∑

n=1
|a|2(n−1)(n−1∑

j=0
b j

)2 1

bn

= (1−|a|2)2
∞∑

n=0
|a|2n( n∑

j=0
b j

)2 1

bn+1

(4.40)

Claim: For any a ∈D,

∞∑
n=0

|a|2n( n∑
j=0

b j
)2 1

bn+1
≥ 1

c
(1−|a|2)−2K (a, a)2. (4.41)

Since (1−|a|2)−2 =∑∞
n=0(n +1)|a|2n , a ∈D, setting βn =∑n

j=0( j +1)bn− j , n ≥ 0, we see that

(1−|a|2)−2K (a, a) =
∞∑

n=0
βn |a|2n , a ∈D.

Furthermore, setting γn =∑n
j=0β j bn− j , n ≥ 0, we see that

(1−|a|2)−2K (a, a)2 =
∞∑

n=0
γn |a|2n , a ∈D. (4.42)

Note that

βn =
n∑

j=0
( j +1)bn− j ≤ (n +1)

( n∑
j=0

b j
)
, n ≥ 0.

Therefore

γn =
n∑

j=0
β j bn− j ≤

n∑
j=0

( j +1)
( j∑

p=0
bp

)
bn− j ≤ (n +1)

( n∑
j=0

b j
)2.

Consequently,

∞∑
n=0

γn |a|2n ≤
∞∑

n=0
(n +1)

( n∑
j=0

b j
)2|a|2n

≤ c
∞∑

n=0
|a|2n( n∑

j=0
b j

)2 1

bn+1
,

where for the last inequality, we have used that nbn < c, n ≥ 0. Hence, by (4.42), the claim is

verified.

Combining the claim with (4.40), it follows that

‖ϕ̃θ,a(·)K (·, a)‖2 ≥ 1

c
K (a, a)2.
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Since ‖K (·, a)‖2 = K (a, a), it follows that

‖ϕ̃θ,a(Mz)‖2 ≥ ‖φ̃θ,a(·)K (·, a)‖2

‖K (·, a)‖2
≥ 1

c
K (a, a).

Finally, note that for a ∈D,

‖ϕθ,a(Mz)‖ = ‖ϕ̃θ,a(Mz)− ϕ̃θ,a(0)I‖ ≥ ‖ϕ̃θ,a(Mz)‖−|a| ≥ 1

c
K (a, a)−|a|.

This completes the proof.

We reproduce below the easy half of the statement of [15, Lemma 2] along with its proof,

which is all we need.

Lemma 4.4.3. Let f (x) =∑∞
n=0 an xn , an ≥ 0. If f (x) ≤ c(1− x)−α, 0 ≤ x < 1, for some constants

α,c > 0, then there exists c ′ > 0 such that

a0 +a1 + ...+an ≤ c ′(n +1)α, n ≥ 0.

Proof. For 0 ≤ x < 1 and n ≥ 0, we have

xn(a0 +a1 + ...+an) ≤
n∑

j=0
a j x j ≤ f (x) ≤ c(1−x)−α.

Taking x = e− 1
n in the above inequality, we obtain

(a0 +a1 + ...+an) ≤ ce(1−e− 1
n )−α. (4.43)

The proof is now complete since limn→∞ n(1−e− 1
n ) = 1.

The following lemma will be used in the proof of Theorem 4.4.5.

Lemma 4.4.4 (cf. [42]). If {bn}n∈Z+ is a sequence of positive real numbers such that
∑∞

n=0 bn <∞,

then
∞∑

n=0

n +1
1

b0
+ 1

b1
+ ...+ 1

bn

≤ 2
∞∑

n=0
bn .

Theorem 4.4.5. Let K (z, w) =∑∞
n=0 bn(zw̄)n , bn > 0, be a positive definite kernel onD×D. If the

multiplication operator Mz on (H ,K ) is Möbius bounded, then

∞∑
n=0

bn =∞.
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Proof. Note that for any θ ∈ [0,2π), a ∈D and j ∈Z+,∥∥∥∥ϕθ,a(Mz)

(
z j

‖z j‖
)∥∥∥∥2

= 1

‖z j‖2
‖ϕθ,a(z)z j‖2

= 1

‖z j‖2

∥∥ ∞∑
n=0

αn zn+ j
∥∥2

= 1

‖z j‖2

(|a|2‖z j‖2 + (1−|a|2)2
∞∑

n=1
|a|2(n−1)‖zn+ j‖2)

(4.44)

If Mz on (H ,K ) is Möbius bounded, then there exists a constant c > 0 such that

sup
θ∈[0,2π),a∈D, j∈Z+

∥∥∥∥ϕθ,a(Mz)

(
z j

‖z j‖
)∥∥∥∥2

≤ c.

Therefore, from (4.44), we see that

(1−|a|2)2
∞∑

n=1
|a|2(n−1) ‖zn+ j‖2

‖z j‖2
≤ c, a ∈D, j ∈Z+.

Replacing |a|2 by x, we obtain

∞∑
n=0

cn, j xn ≤ c

(1−x)2
, x ∈ [0,1), (4.45)

where cn, j = ‖zn+ j+1‖2

‖z j ‖2 , n, j ∈ Z+. Hence, applying Lemma 4.4.3, we see that there exists a

constant c ′ > 0 such that for all n, j ∈Z+,

(c0, j + c1, j +·· ·+cn, j ) ≤ c ′(n +1)2.

Since bn = 1
‖zn‖2 , n ∈Z+, putting j = 0 in the above inequality, we obtain(

1

b1
+ 1

b2
+·· ·+ 1

bn+1

)
≤ c ′

b0
(n +1)2, n ∈Z+.

Therefore ∞∑
n=0

n +1
1

b1
+ ...+ 1

bn+1

≥ b0

c ′
∞∑

n=0

1

n +1
.

Consequently,
∑∞

n=0
n+1

1
b1

+ 1
b1

+···+ 1
bn+1

=∞. Hence, by Lemma 4.4.4, we conclude that
∑∞

n=0 bn =
∞. This completes the proof.

Theorem 4.4.6. Let K (z, w) = ∑∞
n=0 bn(zw̄)n , bn > 0, be a positive definite kernel on D×D. If

the multiplication operator Mz on (H ,K ) is Möbius bounded, then the sequence
{
nbn

}
n∈Z+ is

unbounded.
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Proof. Assume that Mz on (H ,K ) is Möbius bounded. If possible, let the sequence
{
nbn

}
n∈Z+

is bounded. Then by Lemma (4.4.2), there exists a constant c > 0 such that

sup
a∈D

( K (a, a)

c
−|a|

)
<∞.

Therefore supa∈DK (a, a) <∞. Since Abel summation method is totally regular, it follows that∑∞
n bn <∞ (see [35, page 10]). By Theorem 4.4.5, this contradicts the assumption that Mz is

Möbius bounded. Hence the sequence
{
nbn

}
n∈Z+ is unbounded, completing the proof.

Corollary 4.4.7. Let K (z, w) = ∑∞
n=0 bn(zw̄)n , bn > 0, be a positive definite kernel on D×D.

Suppose that bn ∼ (n +1)γ for some γ ∈ R. Then the multiplication operator Mz on (H ,K ) is

Möbius bounded if and only if γ > −1. In particular, the multiplication operator Mz on the

Dirichlet space is not Möbius bounded.

Proof. By [51, Theorem 2′], it follows that the operator Mz on (H ,K ) is similar to the operator

Mz on (H ,K(γ)). Since similarity preserves Möbius boundedness, it suffices to show that Mz

on (H ,K(γ)) is Möbius bounded if and only if γ>−1. If γ>−1, then by Corollary 4.3.9, Mz on

(H ,K(γ)) is similar to a homogeneous operator and therefore is Möbius bounded. If γ≤−1,

then note that the sequence {n.(n + 1)γ}n∈Z+ is bounded. Hence by Theorem 4.4.6, Mz on

(H ,K(γ)) is not Möbius bounded.

4.4.1 Shields’ Conjecture

We have already mentioned that a Möbius bounded operator need not be power bounded.

Shields proved that if T is a Möbius bounded operator on a Banach space, then ‖T n‖ ≤ c(n+1),

n ∈Z+, for some constant c > 0. But in case of Hilbert spaces, he made the following conjecture.

Conjecture 4.4.8 (Shields, [52]). If T is a Möbius bounded operator on a Hilbert space, then

there exists a constant c > 0 such that

‖T n‖ ≤ c(n +1)
1
2 , n ∈Z+.

The following theorem shows that Shields conjecture has an affirmative answer in a small

class of weighted shifts containing the non-contractive homogeneous operators in B1(D).

Theorem 4.4.9. Let K (z, w) =∑∞
n=0 bn(zw̄)n be a positive definite kernel on D×D. Assume that

the sequence
{
bn

}
n∈Z+ is decreasing. If the multiplication operator Mz on (H ,K ) is Möbius

bounded, then there exists a constant c > 0 such that ‖M n
z ‖ ≤ c(n +1)

1
2 , n ∈Z+.

Proof. It suffices to show that ‖M n+1
z ‖ ≤ c(n +1)

1
2 , n ∈Z+. By, a straightforward computation,

we see that

‖M n+1
z ‖2 = sup

j∈Z+

‖zn+ j+1‖2

‖z j‖2
, n ∈Z+. (4.46)
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From (4.45), we already have that

∞∑
n=0

cn, j xn ≤ c

(1−x)2
, x ∈ [0,1),

where cn, j = ‖zn+ j+1‖2

‖z j ‖2 . Multiplying both sides by 1−x, we see that

c0, j +
∞∑

n=1
(cn, j − cn−1, j )xn ≤ c

1−x
, x ∈ [0,1), j ∈Z+.

Since ‖zn‖2 = 1
bn

and {bn}n∈Z+ is decreasing, the sequence {cn, j }n∈Z+ is increasing. Conse-

quently, (cn, j −cn−1, j ) ≥ 0 for n ≥ 1, j ≥ 0. Therefore, using Lemma 4.4.3, we conclude that there

exists a constant c ′ > 0 (independent of n and j ) such that for all n, j ∈Z+,

c0, j + (c1, j − c0, j )+·· ·+ (cn, j − cn−1, j ) ≤ c ′(n +1),

that is,

cn, j ≤ c ′(n +1).

Hence, in view of (4.46), we conclude that ‖M n+1
z ‖2 ≤ c ′(n+1), n ∈Z+, completing the proof.

4.4.2 Möbius bounded quasi-homogeneous operators

In this subsection we identify all quasi-homogeneous operators which are Möbius bounded.

We start with the following theorem which gives a necessary condition for a class of operators

in FB2(D) to be Möbius bounded.

Theorem 4.4.10. Let 0 <λ≤µ and ψ be a non-zero function in Mult(H (λ),H (µ)). Let T be the

operator

(
M∗

z M∗
ψ

0 M∗
z

)
on H (λ) ⊕H (µ). If T is Möbius bounded, then µ−λ≥ 2.

Proof. Note that T is Möbius bounded if and only if T ∗ is Möbius bounded. Therefore, it

suffices to show that if T ∗ is Möbius bounded, then µ−λ≥ 2. Since σ(Mz) = D̄ on both H (λ)

and H (µ), it is easily verified that σ(T ) = D̄. As before, for ϕ ∈ Möb, we have

ϕ(T ∗) =
(

Mϕ 0

Mψϕ′ Mϕ

)
on H (λ) ⊕H (µ).

Observe that for an operator of the form
(

A 0
B C

)
, ‖B‖ ≤ ∥∥(

A 0
B C

)∥∥≤ (‖A‖+‖B‖+‖C‖). Therefore,

we have

‖Mψϕ′‖H (λ)→H (µ) ≤ ‖ϕ(T ∗)‖ ≤ ‖Mϕ‖H (λ) +‖Mϕ‖H (µ) +‖Mψϕ′‖H (λ)→H (µ) (4.47)
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Since the multiplication operator Mz on H (λ) as well as on H (µ) is Möbius bounded, in

view of (4.47), it follows that T ∗ is Möbius bounded if and only if

sup
ϕ∈Möb

‖Mψφ′‖H (λ)→H (µ) <∞.

Now for all w in D, we have

‖Mψϕ′‖2
H (λ)→H (µ) = ‖(Mψϕ′)∗‖2

H (µ)→H (λ) ≥
‖(Mψϕ′)∗(K (µ)(·, w))‖2

‖K (µ)(·, w)‖2

= |ψ(w)ϕ′(w)|2 ‖K (λ)(·, w)‖2

‖K (µ)(·, w)‖2

= |ψ(w)ϕ′(w)|2(1−|w |2)µ−λ.

Note that ϕ′
θ,a(w) = e iθ 1−|a|2

(1−āw)2 , w ∈D. Thus, if T ∗ is Möbius bounded, then there exists a

constant c > 0 such that

sup
a,w∈D

|ψ(w)|2(1−|a|2)2

|1− āw |4 (1−|w |2)µ−λ ≤ c.

Taking a = w , we obtain

|ψ(w)|2 ≤ c(1−|w |2)−(µ−λ−2). (4.48)

If possible, assume that µ−λ−2 < 0. Then by an application of maximum modulus principle,

it follows from (4.48) that ψ is identically zero, which is a contradiction to our assumption that

ψ is non-zero. Hence µ−λ≥ 2.

Quasi-homogeneous operators

Suppose that 0 < λ0 ≤ λ1 ≤ . . . ≤ λn−1, n ≥ 1, are n positive numbers such that the difference

λi+1−λi , 0 ≤ i ≤ n−2, is a fixed numberΛ. As before, let H (λi ), i = 0,1, · · · ,n−2, be the Hilbert

space determined by the kernel K (λi ) = 1
(1−zw̄)λi

, z, w ∈ D. Let Ti , 0 ≤ i ≤ n − 1, denote the

adjoint M∗
z of the multiplication operator by the coordinate function z on H (λi ). Furthermore,

let Si , j ,0 ≤ i < j ≤ n −1, be the linear map given by the formula

Si , j (K (λ j )(·, w)) = mi , j ∂̄
( j−i−1)K (λi )(·, w), mi , j ∈C, 0 ≤ i < j ≤ n −1.

Note that if Si , j defines a bounded linear operator from H (λ j ) to H (λi ), then (Si , j )∗( f ) =
mi , j f ( j−i−1), f ∈H (λi ).

A quasi-homogeneous operator T of rank n is a bounded operator of the form

T0 S0,1 S0,2 · · · S0,n−1

0 T1 S1,2 · · · S1,n−1
...

. . . . . . . . .
...

0 · · · 0 Tn−2 Sn−2,n−1

0 0 · · · 0 Tn−1

 (4.49)
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on H (λ0) ⊕H (λ1) ⊕ . . .⊕H (λn−1). For a quasi-homogeneous operator T , let Λ(T ) denote the

fixed difference Λ. When Λ(T ) ≥ 2, a repeated application of Lemma 4.3.10 shows that each

Si , j , 0 ≤ i < j ≤ n −1, is bounded from H (λi ) to H (λ j ) and consequently, an operator of the

form (4.49) is also bounded. In case ofΛ(T ) < 2, the boundedness criterion for T was obtained

in terms ofΛ(T ),n and mi , j ’s in [38, Proposition 3.2].

It is easily verified that, a quasi-homogeneous operator T satisfies Ti Si ,i+1 = Si ,i+1Ti+1,

0 ≤ i ≤ n −2. Therefore T belongs to the class FBn+1(D) ⊆ Bn(D) (see [37]).

The theorem given below describes all quasi-homogeneous operators which are Möbius

bounded.

Theorem 4.4.11. A quasi-homogeneous operator T is Möbius bounded if and only ifΛ(T ) ≥ 2.

Proof. IfΛ(T ) ≥ 2, then by [38, Theorem 4.2 (1)], T is similar to the direct sum T0⊕T1⊕·· ·⊕Tn−1.

Hence T is Möbius bounded if and only if T0 ⊕T1 ⊕·· ·⊕Tn−1 is Möbius bounded. Note that

each Ti , 0 ≤ i ≤ n −1, is homogeneous and therefore is Möbius bounded. Consequently, the

operator T0 ⊕T1 ⊕·· ·⊕Tn−1 is also Möbius bounded.

To prove the converse, assume that T is Möbius bounded. By a straightforward computa-

tion using the intertwining relation Ti Si ,i+1 = Si ,i+1Ti+1, 0 ≤ i ≤ n −2, we obtain

ϕ(T ) =



ϕ(T0) ϕ′(S0,1) ∗ ·· · ∗
0 ϕ(T1) ϕ′(S1,2) · · · ∗
...

. . . . . . . . .
...

0 · · · 0 ϕ(Tn−2) ϕ′(Sn−3,n−2)

0 0 · · · 0 ϕ(Tn−1)


on H (λ0) ⊕H (λ1) ⊕ . . .⊕H (λn−1). Since

‖ϕ(T )‖ ≥
∥∥∥∥∥
(
ϕ(T0) ϕ′(S0,1)

0 ϕ(T1)

)∥∥∥∥∥=
∥∥∥∥∥ϕ

(
T0 S0,1

0 T1

)∥∥∥∥∥ ,

it follows that the operator

(
T0 S0,1

0 T1

)
is Möbius bounded. Note that this operator is of the

form

(
M∗

z M∗
ψ

0 M∗
z

)
on H (λ0) ⊕H (λ1), where ψ is the constant function m0,1. Hence, by Theorem

4.4.10, we conclude that λ1 −λ0 ≥ 2. Consequently,Λ(T ) ≥ 2, completing the proof.

Corollary 4.4.12. The Shields’ conjecture has an affirmative answer for the class of quasi-

homogeneous operators.
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Proof. First note that, by Theorem 4.4.11, a quasi-homogeneous operator T is Möbius bounded

if and only if Λ(T ) ≥ 2. Second, if Λ(T ) ≥ 2, then T is similar to T0 ⊕T1 ⊕·· ·⊕Tn−1, (see [38,

Theorem 4.2 (1)]). Shields’ conjecture is easily verified for these operators using the explicit

weights (see [10, section 7.2]). Therefore, its validity for T follows via the similarity.

Corollary 4.4.13. A quasi-homogeneous operator T is Möbius bounded if and only if it is similar

to a homogeneous operator.

Proof. The proof in the forward direction is exactly the same as the proof given in the previous

corollary. In the other direction, an operator similar to a homogeneous operator is clearly

Möbius bounded.

The corollary given below follows immediately from Proposition 4.3.12. Therefore the

proof is omitted.

Corollary 4.4.14. Every quasi-homogeneous operator T of rank 2 is weakly homogeneous.

4.5 A Möbius bounded weakly homogeneous operator not

similar to any homogeneous operator

We recall that every operator which is similar to a homogeneous operator is weakly homoge-

neous. Corollary 4.3.9 gives examples of a continuum of weakly homogeneous operators that

are not similar to any homogeneous operator. In [10], two more classes of examples, distinct

from the ones given in Corollary 4.3.9 have appeared. Among these two classes of examples,

we recall the one due to M. Ordower.

For an arbitrary homogeneous operator T on a Hilbert space H , let T̃ be the operator(
T I

0 T

)
. Let Uϕ be a unitary operator on H such that ϕ(T ) =UϕTU∗

ϕ. A routine verification

taking Lϕ to be the invertible operator ϕ′(T )
1
2 Uϕ

⊕
ϕ′(T )−

1
2 Uϕ shows that LϕT̃ L−1

ϕ = ϕ(T̃ ).

Thus T̃ is weakly homogeneous. Since ϕ(T̃ ) =
(
ϕ(T ) ϕ′(T )

0 ϕ(T )

)
, it follows that ‖ϕ(T̃ )‖ ≥ ‖ϕ′(T )‖.

Moreover,

‖ϕ′
θ,a(T )‖ ≥ r

(
ϕ′
θ,a(T )

)= sup
z∈σ(T )

|ϕ′
θ,a(z)| = sup

z∈D̄
|ϕ′

θ,a(z)| ≥ 1

(1−|a|2)2
, (4.50)

where r
(
ϕ′
θ,a(T )

)
is the spectral radius of the operator ϕ′

θ,a(T ). Note that σ(T ) is either D̄

or T, and hence by the maximum modulus principle, we see that supz∈σ(T ) |ϕ′
θ,a(z)| equals

supz∈D̄ |ϕ′
θ,a(z)|. From (4.50), it is clear that supϕ∈Möb ‖ϕ′(T )‖ =∞. Consequently, T̃ is not

Möbius bounded. Since an operator, which is similar to a homogeneous operator, is necessarily
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Möbius bounded, we conclude that T̃ is not similar to any homogeneous operator. Therefore,

it is natural to ask the following question.

Question 4.5.1 (Bagchi-Misra, [10, Question 10]). Is it true that every Möbius bounded weakly

homogeneous operator is similar to a homogeneous operator?

The following lemma, which will be used for the proof of the main theorem of this section,

provides a sufficient condition on K to determine if the multiplication operator Mz on (H ,K )

is Möbius bounded.

Lemma 4.5.2. Let K :D×D→C be a positive definite kernel. Suppose that there exists a constant

λ > 0 such that (1− zw̄)λK (z, w) is non-negative definite on D×D. Then the multiplication

operator Mz on (H ,K ) is bounded and σ(Mz ) = D̄. Moreover, Mz on (H ,K ) is Möbius bounded.

Proof. Let M (λ) denote the multiplication operator Mz on the Hilbert space (H ,K (λ)) and set

K̂ (z, w) = (1− zw̄)λK (z, w), z, w ∈D. Then, by hypothesis, K̂ is non-negative definite on D×D
and K can be written as the product K (λ)K̂ . Since the operator M (λ) on (H ,K (λ)) is Möbius

bounded, by Lemma 2.1.10, there exists a constant c > 0 such that (c2 −ϕ(z)ϕ(w))K (λ) is non-

negative definite on D×D for all ϕ in Möb. Hence (c2 −ϕ(z)ϕ(w))K , being a product of two

non-negative definite kernels (c2 −ϕ(z)ϕ(w))K (λ) and K̂ , is non-negative definite. Therefore,

again by Lemma 2.1.10, it follows that Mϕ, ϕ ∈ Möb, is uniformly bounded on (H ,K ).

To show that the spectrum of Mz on (H ,K ) is D̄, let a be an arbitrary point in C\ D̄. Since

σ(M (λ)) = D̄, the operator Mz−a is invertible on H (λ). Consequently, the operator M(z−a)−1

is bounded on H (λ). Then, by the same argument used in the last paragraph, it follows that

M(z−a)−1 is bounded on (H ,K ) and therefore a ∉ σ(Mz). Since each K (·, w), w ∈ D, is an

eigenvector of M∗
z on (H ,K ), it follows that D̄⊆σ(Mz ). Therefore we conclude that σ(Mz ) = D̄.

Since σ(Mz) = D̄ and ‖Mϕ‖ ≤ c, ϕ ∈ Möb, for some constant c > 0, it follows that Mz on

(H ,K ) is Möbius bounded.

The theorem given below answers Question 4.5.1 in the negative.

Theorem 4.5.3. Let K (z, w) =∑∞
n=0 bn(zw̄)n , bn > 0, be a positive definite kernel on D×D such

that for each γ ∈ R, lim|z|→1(1− |z|2)γK (z, z) is either 0 or ∞. Assume that the adjoint M∗
z of

the multiplication operator by the coordinate function z on (H ,K ) is in B1(D) and is weakly

homogeneous. Then the multiplication operator Mz on (H ,K K (λ)), λ> 0, is a Möbius bounded

weakly homogeneous operator which is not similar to any homogeneous operator.

Proof. Since the operator M∗
z on (H ,K ) is weakly homogeneous, so is the operator Mz on

(H ,K ). Furthermore, since the operator Mz on (H ,K (λ)) is homogeneous, by Theorem 4.2.8,

it follows that Mz on (H ,K K (λ)) is weakly homogeneous. Also, by Lemma 4.5.2, we see that
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Mz on (H ,K K (λ)) has spectrum D̄ and is Möbius bounded. Therefore, to complete the proof,

it remains to show that Mz on (H ,K K (λ)) is not similar to any homogeneous operator.

Suppose that Mz on (H ,K K (λ)) is similar to a homogeneous operator, say T . Since the

operators M∗
z on (H ,K (λ)) and M∗

z on (H ,K ) belong to B1(D), by Theorem 1.1.8, the opera-

tor M∗
z on (H ,K K (λ)) belongs to B1(D). Furthermore, since the class B1(D) is closed under

similarity, the operator T ∗ belongs to B1(D). Also since T is homogeneous, the operator T ∗ is

homogeneous. Recall that, upto unitary equivalence, every homogeneous operator in B1(D) is

of the form M∗
z on (H ,K (µ)) for some µ> 0 (cf. [44]). Therefore, the operator T ∗ is unitarily

equivalent to M∗
z on (H ,K (µ)) for some µ> 0. Consequently, Mz on (H ,K K (λ)) is similar to

Mz on (H ,K (µ)). Hence, by [51, Theorem 2′], there exist constants c1,c2 > 0 such that

c1 ≤ K (z, z)K (λ)(z, z)

K (µ)(z, z)
≤ c2, z ∈D.

Equivalently,

c1 ≤ (1−|z|2)µ−λK (z, z) ≤ c2, z ∈D.

This is a contradiction to our hypothesis that for each γ ∈R, lim|z|→1(1−|z|2)γK (z, z) is either

0 or ∞. Hence the operator Mz on (H ,K K (λ)) is not similar to any homogeneous operator,

completing the proof of the theorem.

Below we give one example which satisfy the hypothesis of the Theorem 4.5.3. Recall that

the Dirichlet kernel K(−1) is defined by

K(−1)(z, w) =
∞∑

n=0

1

n +1
(zw̄)n = 1

zw̄
log

1

1− zw̄
, z, w ∈D.

By corollary 4.3.9, the operator M∗
z on (H ,K(−1)) is weakly homogeneous and belongs to

B1(D). Let γ be a fixed but arbitrary real number. We will be done if we can show that

lim|z|→1
(1−|z|2)γ

|z|2 log 1
1−|z|2 is either 0 or ∞. To see that, we observe that

lim
|z|→1

(1−|z|2)γ

|z|2 log
1

1−|z|2 = lim
x→0

−xγ log x

1−x
.

Since

lim
x→0

−xγ log x =
{ ∞ (if γ≤ 0)

0 (if γ> 0),

we conclude that the kernel K(−1) satisfies the hypothesis of Theorem 4.5.3. Consequently, we

have the following corollary.

Corollary 4.5.4. The multiplication operator Mz on (H ,K(−1)K (λ)), λ> 0, is a Möbius bounded

weakly homogeneous operator which is not similar to any homogeneous operator.
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Chapter 5

On sum of two subnormal kernels

In this chapter, we study the subnormality of the multiplication operator Mz on the Hilbert

space determined by the sum of two positive definite kernels. In section 5.1, several different

counter-examples settling a recent conjecture of Gregory T. Adams, Nathan S. Feldman and

Paul J. McGuire, in the negative, are given. Some examples, where the conjecture has an

affirmative answer, are also discussed. In section 5.2, we investigate these questions for a class

of weighted multi-shifts. Almost all of the material presented in this chapter is from [32].

5.1 Sum of two subnormal reproducing kernels need not be

subnormal

The reader is referred to chapter 1 for the basic definitions and preliminaries related to sub-

normal operators and completely monotone sequences. The following conjecture regarding

the subnormality of the multiplication operator Mz on the Hilbert space determined by the

the sum of two positive definite kernels appeared in [1, page 22]. Although we have stated the

conjecture in chapter 1, it would be useful for the reader to recall it here once again.

Conjecture 5.1.1 (Adams-Feldman-McGuire, [1, page 22]). Let K1(z, w) =∑
k∈Z+ ak (zw̄)k and

K2(z, w) =∑
k∈Z+ bk (zw̄)k be any two reproducing kernels satisfying:

(a) lim ak
ak+1

= lim bk
bk+1

= 1

(b) lim ak = limbk =∞

(c) 1
ak

= ∫
[0,1] t k dν1(t ) and 1

bk
= ∫

[0,1] t k dν2(t ) for all k ∈Z+, where ν1 and ν2 are two positive

measures supported in [0,1].

Then the multiplication operator Mz on (H ,K1 +K2) is a subnormal operator.
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For the construction of counter-examples to the conjecture, we make use of the following

result, borrowed from [3, Proposition 4.3].

Proposition 5.1.2. For distinct positive real numbers a0, ..., an and non-zero real numbers

b0, ...,bn , consider the polynomial p(x) =Πn
k=0(x +ak + i bk )(x +ak − i bk ). Then the sequence{ 1

p(l )

}
l∈Z+ is never a Hausdorff moment sequence.

For r > 0, let Kr be a positive definite kernel given by

Kr (z, w) := ∑
k∈Z+

k + r

r
(zw̄)k (z, w ∈D).

The case r = 1 corresponds to the Bergman kernel. It is easy to see that the multiplication

operator Mz on (H ,Kr ) is contractive subnormal and the representing measure is r xr−1d x.

For s, t > 0, consider the multiplication operator Mz on (H ,Ks,t ), where

Ks,t (z, w) := ∑
k∈Z+

(k + s)(k + t )

st
(zw̄)k (z, w ∈D).

The case s = 1 and t = 2, corresponds to the kernel (1− zw̄)−3. Note that Mz on (H ,Ks,t ) is

contractive subnormal and the representing measure ν is given by

dν(x) =
{

−s2xs−1 log x d x if s = t

st x t−1−xs−1

s−t d x if s 6= t .

One easily verifies that Kr and Ks,t both satisfy all the conditions (a), (b) and (c) of the

Conjecture 5.1.1. But the multiplication operator on their sum need not be subnormal for all

possible choices of r, s, t > 0. This follows from the following theorem.

Theorem 5.1.3. The multiplication operator Mz on (H ,Kr +Ks,t ) is subnormal if and only if

(r s + st + tr )2 ≥ 8r 2st . (5.1)

Proof. Notice that

(Kr +Ks,t )(z, w) = ∑
k∈Z+

k2 + (s + t + st
r )k +2st

st
(zw̄)k (z, w ∈D).

The roots of the polynomial x2 + (s + t + st
r )x +2st are

x1 :=
−(s + t + st

r )+
√

(s + t + st
r )2 −8st

2
and
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x2 :=
−(s + t + st

r )−
√

(s + t + st
r )2 −8st

2
.

Suppose that (r s+st+tr )2 ≥ 8r 2st . Then the kernel Kr +Ks,t is of the form 2Ks′,t ′ where s′ =−x1

and t ′ =−x2. Hence Mz on (H ,Kr +Ks,t ) is a subnormal operator.

Conversely, assume that (r s + st + tr )2 < 8r 2st . Then it follows from Proposition 5.1.2 that

Mz on (H ,Kr +Ks,t ) cannot be subnormal.

Remark 5.1.4. If we choose s = 1, t = 2 and r > 2, then the inequality (5.1) is not valid.

Recall that an operator T in B(H ) is said to be hyponormal if T ∗T −T T ∗ ≥ 0. It is not hard

to verify that a weighted shift T with weight sequence {wn}n∈Z+ is hyponormal if and only if

{wn}n∈Z+ is increasing (cf. [51]). We point out that if K1 and K2 are two reproducing kernels

such that the multiplication operators Mz on (H ,K1) and (H ,K2) are hyponormal, then the

multiplication operator Mz on (H ,K1 +K2) need not be hyponormal. An example illustrating

this is given below.

Example 5.1.5. For any s, t > 0, consider the reproducing kernel K s,t given by

K s,t (z, w) := 1+ szw̄ + s2(zw̄)2 + t
(zw̄)3

1− zw̄
.

Note that K s,t defines a reproducing kernel on the unit disc D×D and the multiplication op-

erator Mz on (H ,K s,t ) may be realized as a weighted shift operator with weight sequence(√1
s ,

√
1
s ,

√
s2

t ,1,1, · · ·). Hence Mz on (H ,K s,t ) is hyponormal if and only if s2 ≤ t ≤ s3.

Observe that Mz on (H ,K s,t +K s′,t ′) may be realized as a weighted shift operator with weight

sequence (
√

2
s+s′ ,

√
s+s′

s2+s′2 ,
√

s2+s′2
t+t ′ ,1,1, · · · ). For the hyponormality of this weighted shift operator,

it is necessary that 2
s+s′ ≤ s+s′

s2+s′2 , which is true only when s = s′.

We remark that this is different from the case of the product of two kernels, where, the

hyponormality of the multiplication operator on the Hilbert space (H ,K1K2) follows as soon

as we assume they are hyponormal on the two Hilbert spaces (H ,K1) and (H ,K2), see [8].

If T ∈ B(H ) is left invertible, then the operator T ′, given by T ′ = T (T ∗T )−1, is said to be the

operator Cauchy dual to T. The following result has been already recorded in [6, Proposition 6],

which may be paraphrased as follows:

Theorem 5.1.6. Let K (z, w) =∑
k∈Z+ ak (zw̄)k be a positive definite kernel on D×D and Mz be

the multiplication operator on (H ,K ). Assume that Mz is left invertible. Then the followings are

equivalent:

(i) {ak }k∈Z+ is a completely alternating sequence.



104 5. On sum of two subnormal kernels

(ii) The Cauchy dual M ′
z of Mz is completely hyperexpansive.

(iii) For all t > 0,
{ 1

t (ak−1)+1

}
k∈Z+ is a completely monotone sequence.

(iv) For all t > 0, the multiplication operator Mz on (H , tK + (1− t )SD) is contractive subnor-

mal, where SD(z, w) = 1
1−zw̄ is the Szegö kernel of the unit disc D.

Remark 5.1.7. If {ak }k∈Z+ is a completely alternating sequence, then putting t = 1 in part (iii) of

Theorem 5.1.6, it follows that
{ 1

ak

}
k∈Z+ is a completely monotone sequence.

Corollary 5.1.8. Let K1(z, w) =∑
k∈Z+ ak (zw̄)k and K2(z, w) =∑

k∈Z+ bk (zw̄)k be any two repro-

ducing kernels such that {ak }k∈Z+ and {bk }k∈Z+ are completely alternating sequences, then the

multiplication operator Mz on (H ,K1 +K2) is subnormal.

Proof. It is easy to verify that the sum of two completely alternating sequences is completely

alternating. The desired conclusion follows immediately from Remark 5.1.7.

Remark 5.1.9. Note that
{k+r

r

}
k∈Z+ is a completely alternating sequence, but the sequence{ (k+s)(k+t )

st

}
k∈Z+ is not completely alternating. Thus the reproducing kernels Kr and Ks,t , dis-

cussed in Theorem 5.1.3, does not satisfy the hypothesis of Corollary 5.1.8.

Proposition 5.1.10. Let K (z, w) = ∑
k∈Z+ ak (zw̄)k be a positive definite kernel such that the

multiplication operator Mz on (H ,SD+K ) is subnormal. Then the multiplication operator Mz

on (H ,K ) is subnormal.

Proof. From the subnormality of Mz on (H ,SD+K ), it follows that
{ 1

1+ak

}
k∈Z+ is a completely

monotone sequence. Thus the sequence
{
1− 1

1+ak

}
k∈Z+ is completely alternating. Note that

(ak )−1 = (1+ak )−1(1− 1
1+ak

)−1

=
∞∑

j=1

1
(1+ak ) j .

Observe that
{ 1

(1+ak ) j

}
k∈Z+ is a completely monotone sequence for all j ≥ 1. Hence so is the

sequence of partial sums
{∑n

j=1
1

(1+ak ) j

}
k∈Z+ for each n ≥ 1. Now, being the limit of completely

monotone sequences, the sequence {a−1
k }k∈Z+ is completely monotone.

Remark 5.1.11. We have the following remarks:

(i) The converse of the Proposition 5.1.10 is not true (see the example discussed in part (ii) of

the Remark 5.1.14).

(ii) If we replace the Szegö kernel SD by the Bergman kernel BD, then the conclusion of the

Proposition 5.1.10 need not be true. For example, by using Proposition 5.1.2, one may

choose α> 0 such that the sequence
{ 1

k2+αk+1

}
k∈Z+ is not completely monotone, but the

sequence
{ 1

k2+(α+1)k+2

}
k∈Z+ is completely monotone.
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For λ,µ> 0, consider the positive definite kernel

Kλ,µ(z, w) = ∑
k∈Z+

(λ)k

(µ)k
(zw̄)k (z, w ∈D),

where (x)k is the Pochhammer symbol given by Γ(x+k)
Γ(x) . It is easy to see that the case µ = 1

corresponds to the kernel (1− zw̄)−λ. Note that the multiplication operator Mz on (H ,Kλ,µ)

may be realized as a weighted shift operator with weight sequence {
√

k+µ
k+λ }k∈Z+ .

The first part of the following theorem is proved in [25] and the representing measure is

given in [23, Lemma 2.2]. Here, we provide a proof for the second part only.

Theorem 5.1.12. The multiplication operator Mz on (H ,Kλ,µ) is

(i) subnormal if and only if λ≥µ. In the case of subnormality, the representing measure ν of

Mz is given by

dν(x) =
{

Γ(λ)
Γ(µ)Γ(λ−µ) xµ−1(1−x)λ−µ−1d x if λ>µ
δ1(x)d x if λ=µ,

where δ1 is the Dirac delta function.

(ii) completely hyperexpansive if and only if λ≤µ≤λ+1.

Proof. The multiplication operator Mz on (H ,Kλ,µ) is completely hyperexpansive if and only

if the sequence
{ (µ)k

(λ)k

}
k∈Z+ is completely alternating. Here

∆

(
(µ)k

(λ)k

)
= (µ)k+1

(λ)k+1
− (µ)k

(λ)k
= (µ)k+1 − (µ)k (λ+k −1)

(λ)k+1

= µ−λ
λ

(µ)k

(λ+1)k
.

By the first part of this theorem, it follows that {µ−λλ
(µ)k

(λ+1)k
}k∈Z+ is completely monotone if and

only if λ≤µ≤λ+1.

The following proposition gives a sufficient condition for the subnormality of the multipli-

cation operator on Hilbert space determined by the sum of two kernels belonging to the class

Kλ,µ.

Proposition 5.1.13. Let 0 < µ ≤ λ′ ≤ λ ≤ λ′ + 1. Then the multiplication operator Mz on

(H ,Kλ,µ+Kλ′,µ) is contractive subnormal.
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Proof. Observe that

(Kλ,µ+Kλ′,µ)(z, w) = ∑
k∈Z+

(λ)k + (λ′)k

(µ)k
(zw̄)k (z, w ∈D)

and

(µ)k

(λ)k + (λ′)k
= (µ)k

(λ′)k

1

1+ (λ)k
(λ′)k

.

Since µ≤λ′, it follows from part (i) of Theorem 5.1.12 that { (µ)k
(λ′)k

}k∈Z+ is completely monotone.

If λ′ ≤λ≤λ′+1, then by part (ii) of Theorem 5.1.12, the sequence
{ (λ)k

(λ′)k

}
k∈Z+ is completely

alternating. Thus so is the sequence
{
1+ (λ)k

(λ′)k

}
k∈Z+ . Hence, by Remark 5.1.7, we see that{(

1+ (λ)k
(λ′)k

)−1}
k∈Z+ is a completely monotone sequence. Therefore, being a product of two

completely monotone sequences, it follows that { (µ)k
(λ)k+(λ′)k

}k∈Z+ is completely monotone. This

completes the proof.

Remark 5.1.14. Here are some remarks:

(i) Let µ<λ′ and λ=λ′+1. The representing measure for the sequence
{(

1+ (λ)k
(λ′)k

)−1}
k∈Z+ is

λ′x2λ′−1d x. Also the representing measure for the sequence { (µ)k
(λ′)k

}k∈Z+ is given in part (i) of

Theorem 5.1.12. Thus, using Remark 2.4 of [3], one may obtain the representing measure

for Mz on (H ,Kλ,µ+Kλ′,µ) to be given by

dν(x) = λ′Γ(λ′)
Γ(µ)Γ(λ′−µ)

x2λ′−1
(∫ 1−x

0
tλ

′−µ−1(1− t )µ−2λ′−1d t

)
d x.

But in general, when λ<λ′+1, we do not know the representing measure for the sequence{(
1+ (λ)k

(λ′)k

)−1
}

k∈Z+
as well as for the sequence

{
(µ)k

(λ)k+(λ′)k

}
k∈Z+.

(ii) Note that (K1,1 +K3,1)(z, w) =∑
k∈Z+

k2+3k+4
2 (zw̄)k for all z, w ∈D. It follows from Propo-

sition 5.1.2 that the sequence
{ 2

k2+3k+4

}
k∈Z+ is not completely monotone. Consequently,

the multiplication operator Mz on (H ,K1,1 +K3,1) is not subnormal. For λ> 1, consider

the kernel Kλ,1 +K3,1. We claim that there exists a λ0 > 1 such that
{ (1)k

(λ0)k+(3)k

}
k∈Z+ is not

completely monotone. If not, assume that
{ (1)k

(λ)k+(3)k

}
k∈Z+ is completely monotone for all

λ> 1. As λ goes to 1, one may get that
{ 2

k2+3k+4

}
k∈Z+ is completely monotone, which is a

contradiction. Therefore, we conclude that there exists a λ0 > 1 such that the multipli-

cation operator Mz on (H ,Kλ0,1 +K3,1) is not subnormal. By using the properties of the

gamma function, one may verify that Kλ0,1 and K3,1 both satisfy (a), (b) and (c) of the

Conjecture 5.1.1. Hence this also provides a class of counterexamples for the Conjecture

5.1.1.
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Proposition 5.1.15. Let 0 < p ≤ q ≤ p +1. Suppose K1(z, w) = ∑
k∈Z+ ap

k (zw̄)k and K2(z, w) =∑
k∈Z+ aq

k (zw̄)k are any two reproducing kernels such that {ak }k∈Z+ is a completely alternating

sequence. Then the multiplication operator Mz on (H ,K1 +K2) is subnormal.

Proof. Note that
1

ap
k +aq

k

= 1

ap
k (1+aq−p

k )
, k ∈Z+.

Since 0 ≤ q −p ≤ 1 and {ak }k∈Z+ is completely alternating, it follows from [7, Corollary 1] that

{aq−p
k }k∈Z+ is also completely alternating. Thus so is {1+aq−p

k }k∈Z+ . Hence, by Remark 5.1.7,

{(1+aq−p
k )−1}k∈Z+ is completely monotone. Also, by [11, Corollary 4.1], {a−p

k }k∈Z+ is completely

monotone. Now the proof follows as the product of two completely monotone sequences is

also completely monotone.

Example 5.1.16. Recall that any p > 0, the positive definite kernel K(p) is defined by

K(p)(z, w) := ∑
k∈Z+

(k +1)p (zw̄)k (z, w ∈D).

It is known that the multiplication operator Mz on (H ,K(p)) is subnormal with the representing

measure dν(x) = (− log x)p−1

Γ(p) d x (see [24, Theorem 4.3]). By Proposition 5.1.15, it follows that Mz

on (H ,K(p) +K(q)) is subnormal if p ≤ q ≤ p +1.

The next result also provides a class of counter-examples to the Conjecture 5.1.1.

Theorem 5.1.17. The multiplication operator Mz on (H ,K(p)+K(p+2)) is subnormal if and only

if p ≥ 1.

Proof. For x ∈ (0,1], let g (x) := 1
Γ(p)

∫ − log x
0 (− log x − y)p−1 sin y d y and dν(x) = g (x)d x. Then

∫ 1

0
xk dν(x) = 1

Γ(p)

∫ ∞

y=0

∫ e−y

x=0
xk (− log x − y)p−1d x sin y d y

= 1

Γ(p)

∫ ∞

y=0
e−(k+1)y

∫ ∞

u=0
e−(k+1)uup−1du sin y d y

= 1

Γ(p)

∫ ∞

y=0
e−(k+1)y Γ(p)

(k +1)p
sin y d y

= 1

(k +1)p

1

(k +1)2 +1
.

Thus the sequence
{ 1

(k+1)p
1

(k+1)2+1

}
k∈Z+ is completely monotone if and only if the function g (x)

is non-negative a.e. Note that the function g (x) is non-negative on (0,1] a.e. if and only if the

function h(x) := g (e−x) is non-negative a.e. on (0,∞). Now

h(x) = 1

Γ(p)

∫ x

0
(x − y)p−1 sin y d y = xp

Γ(p)

∫ 1

0
(1− y)p−1si n(x y) d y.
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By [33, Chapter 3, pp 439], we have h(x) =
p

x
Γ(p) s

p−1
2 ,

1
2

(x), where s
p−1

2 ,
1
2

(x) is the Lommel

function of first kind. Thus the sequence { 1
(k+1)p

1
(k+1)2+1

}k∈Z+ being completely monotone

is equivalent to the non-negativity of the function s
p−1

2 ,
1
2

(x) on (0,∞). If p ≥ 1, then by

[53, Theorem A], we get that s
p−1

2 ,
1
2

(x) ≥ 0 for all x > 0. The converse also follows from [53,

Theorem 2], which completes the proof.

5.2 Multi-variable case

Given a commuting m-tuple T = (T1, . . . ,Tm) of bounded linear operators on H , set

QT (X ) :=
m∑

i=1
T ∗

i X Ti (X ∈ B(H )).

For X ∈ B(H ) and k ≥ 1 , one may define Qk
T (X ) :=QT (Qk−1

T (X )), where Q0
T (X ) = X .

Recall that T is said to be

(i) spherical contraction if QT (I ) ≤ I .

(ii) jointly left invertible if there exists a positive number c such that QT (I ) ≥ cI .

For a jointly left invertible m-tuple T , the spherical Cauchy dual T s of T is the m-tuple

(T s
1 ,T s

2 · · · ,T s
m), where T s

i := Ti (QT (I ))−1 (i = 1,2, · · · ,m). We say that T is a joint complete

hyperexpansion if

Bn(T ) :=
n∑

k=0
(−1)k

(
n

k

)
Qk

T (I ) ≤ 0 (n ≥ 1).

Recall that for m ≥ 1, Bm denotes the Euclidean unit ball {z ∈ Cm : |z1|2 +·· ·+ |zm |2 < 1}.

For the rest of the section, we write B instead of Bm . Also let ∂B denote the unit sphere

{z ∈Cm : |z1|2 +·· ·+ |zm |2 = 1} in Cm .

Let {βα}α∈Zm+ be a multi-sequence of positive numbers. Consider the Hilbert space H 2(β)

of formal power series f (z) =∑
α∈Zm+ f̂ (α)zα such that

‖ f ‖2
H 2(β) =

∑
α∈Zm+

| f̂ (α)|2β2
α <∞.

The Hilbert space H 2(β) is said to be spherically balanced if the norm on H 2(β) admits the

slice representation [ν, H 2(γ)], that is, there exist a Reinhardt measure ν and a Hilbert space

H 2(γ) of formal power series in one variable such that

‖ f ‖2
H 2(β) =

∫
∂B

‖ fz‖2
H 2(γ)dν(z) ( f ∈ H 2(β)),
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where γ= {γk }k∈Z+ is given by the relation βα = γ|α|‖zα‖L2(∂B,ν) for allα ∈Zm+ . Here, by the Rein-

hardt measure, we mean a Tm-invariant finite positive Borel measure supported in ∂B, where

Tm denotes the unit m-torus {z ∈ Cm : |z1| = 1, · · · , |zm | = 1}. For more details on spherically

balanced Hilbert spaces, we refer to [14].

The following lemma has been already recorded in [14, Lemma 4.3]. We include a statement

for ready reference.

Lemma 5.2.1. Let H 2(β) be a spherically balanced Hilbert space and let [ν, H 2(γ)] be the slice

representation for the norm on H 2(β). Consider the m-tuple M z = (Mz1 , · · · , Mzm ) of multiplica-

tion by the coordinate functions z1, · · · , zm on H 2(β). Then for every n ∈Z+ and α ∈Zm+ ,

〈Bn(M z)zα, zα〉 =
n∑

k=0
(−1)k

(
n

k

)
〈Qk

M z
(I )zα, zα〉 =

n∑
k=0

(−1)k

(
n

k

)
γ2

k+|α|‖zα‖2
L2(∂B,ν).

If the interior of the point spectrum σp (M∗
z ) of M∗

z is non-empty, then H 2(β) may be

realized as a reproducing kernel Hilbert space (H ,K ) [36, Propositions 19 and 20], where the

reproducing kernel K is given by

K (z, w) = ∑
α∈Zm+

zαw̄α

β2
α

(z, w ∈σp (M∗
z )).

This leads to the following definition.

Definition 5.2.2. Let (H ,K ) be a reproducing kernel Hilbert space defined on the open unit ball

Bwith reproducing kernel K (z, w) =∑
α∈Zm+ aαzαw̄α for all z, w ∈B. We say that K is a balanced

kernel if (H ,K ) is a spherically balanced Hilbert space. Further, the multiplication m-tuple M z

on (H ,K ) may be called a balanced multiplication tuple.

Remark 5.2.3. The spherical Cauchy dual Ms
z of a jointly left invertible balanced multiplication

tuple M z can be seen as a multiplication m-tuple Ms
z = (Ms

z1
, · · · , Ms

zm
) of multiplication by the

coordinate functions z1, · · · , zm on H 2(βs), where

βsα = 1

γ|α|
‖zα‖L2(∂B,ν) (α ∈Zm

+ ).

In other words, the norm on H 2(βs) admits the slice representation [ν, H 2(γ′)], where γ′k = 1/γk

for all k ∈Z+.

Proposition 5.2.4. If K1(z, w) = ∑
α∈Zm+ aαzαw̄α and K2(z, w) = ∑

α∈Zm+ bαzαw̄α are any two

balanced kernels with the slice representations [ν, H 2(γ1)] and [ν, H 2(γ2)] respectively, then

K1 +K2 is a balanced kernel with the slice representation [ν/2, H 2(γ)], where γ= {γk } is given by

the relation

γk =
p

2γk,1γk,2

(γ2
k,1 +γ2

k,2)1/2
(k ∈Z+).
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Proof. For every α ∈Zm+ , we have

aα+bα = 1

γ2
|α|,1‖zα‖2

L2(∂B,ν)

+ 1

γ2
|α|,2‖zα‖L2(∂B,ν)

=
(γ2

|α|,1 +γ2
|α|,2)

γ2
|α|,1γ

2
|α|,2‖zα‖2

L2(∂B,ν)

.

Therefore

‖zα‖2
(H ,K1+K2) =

2γ2
|α|,1γ

2
|α|,2

(γ2
|α|,1 +γ2

|α|,2)
‖zα‖2

L2(∂B,ν/2) = γ2
|α|‖zα‖2

L2(∂B,ν/2)

for allα ∈Zm+ . Since {zα}α∈Zm+ forms an orthogonal subset of L2(∂B,ν/2), the conclusion follows

immediately.

Remark 5.2.5. The conclusion of the Proposition 5.2.4 still holds even if we choose two different

Reinhardt measures ν1 and ν2 in the slice representations of K1 and K2 such that for some

sequence of positive real numbers {hk }k∈Z+ , ‖zα‖L2(∂B,ν1) = h|α|‖zα‖L2(∂B,ν2) for all α ∈Zm+ . For

every j = 1,2, it is easy to verify that

m∑
i=1

‖zα+ei ‖2
L2(∂B,ν j )

‖zα‖2
L2(∂B,ν j )

= 1,

where ei is the i th standard basis vector of Cm . This implies that {hk }k∈Z+ is a constant sequence,

say c. Now, by a routine argument, using the Stone-Weierstrass theorem, we conclude that

ν1 = c2ν2.

For a fixed Reinhardt measure ν, let BK (ν) denote the class of all balanced kernels with the

following properties:

(i) For all K ∈ BK (ν), the norm on (H ,K ) admits the slice representations with fixed Rein-

hardt measure ν.

(ii) For every member K of BK (ν), the multiplication operator M z on (H ,K ) is jointly left

invertible.

(iii) The Cauchy dual tuple Ms
z of M z is a joint complete hyperexpansion.

Lemma 5.2.6. For every member K of BK (ν), the multiplication operator M z on (H ,K ) is a

subnormal spherical contraction.

Proof. Let K ∈ BK (ν) and [ν, H 2(γ)] be the slice representation for the norm on (H ,K ). Note

that the Cauchy dual Ms
z of M z is a balanced multiplication tuple with slice representation

[ν, H 2(1/γ)] (see Remark 5.2.3). Since Ms
z is a joint complete hyperexpansion, it follows from

Lemma 5.2.1 that {1/γ2
k }k∈Z+ is a completely alternating sequence. Therefore, by Remark

5.1.7, {γ2
k }k∈Z+ is a completely monotone sequence. Now again by applying Lemma 5.2.1, we

conclude that the multiplication operator M z is a subnormal spherical contraction.



5.2. Multi-variable case 111

Theorem 5.2.7. If K1 and K2 are any two members of BK (ν), then the multiplication operator

M z on (H ,K1 +K2) is a subnormal spherical contraction.

Proof. Note that the norm on (H ,K1 +K2) admits the slice representation [ν/2, H 2(γ)], where

γ2
k = 2

γ2
k,1γ

2
k,2

γ2
k,1+γ2

k,2
for all k ∈Z+ (see Proposition 5.2.4). It follows from the proof of Lemma 5.2.6 that

{1/γ2
k,1}k∈Z+ and {1/γ2

k,2}k∈Z+ are completely alternating. So their sum, and hence {1/γ2
k }k∈Z+

is a completely alternating sequence. Now the conclusion follows by imitating the argument

given in Lemma 5.2.6.

For λ> 0, consider the positive definite kernel Kλ given by

Kλ(z, w) = 1

(1−〈z, w〉)λ (z, w ∈B).

The norm on (H ,Kλ) admits the slice representation [σ, H 2(γ)], where σ denotes the nor-

malized surface area measure on ∂B and γ2
k = (m)k

(λ)k
for all k ∈ Z+. It is well known that the

multiplication operator M z,λ on (H ,Kλ) is a subnormal contraction if and only if λ≥ m. The

same can also be verified by using Lemma 5.2.1 and part (i ) of Theorem 5.1.12. Similarly, by

using Lemma 5.2.1 and part (i i ) of Theorem 5.1.12, one may conclude that the Cauchy dual

tuple Ms
z,λ is a joint complete hyperexpansion if and only if m ≤λ≤ m +1. Thus, if we choose

λ and λ′ are such that m ≤ λ,λ′ ≤ m +1. Then Kλ and Kλ′ are in BK (σ). It now follows from

Theorem 5.2.7 that the multiplication operator M z on (H ,Kλ+Kλ′) is subnormal. This is also

included in the following example.

Example 5.2.8. Let 0 < m ≤λ′ ≤λ≤λ′+1. Note that the norm on (H ,Kλ+Kλ′) admits the slice

representation [σ/2, H 2(γ)], where γ2
k = 2(m)k

(λ)k+(λ′)k
for all k ∈Z+. From the proof of Proposition

5.1.13, it is clear that {γ2
k }k∈Z+ is completely monotone. Hence the multiplication operator M z

on (H ,Kλ+Kλ′) is subnormal.

A m-tuple S = (S1, . . . ,Sm) of commuting bounded linear operators S1, . . . ,Sm in B(H ) is

said to be a spherical isometry if S∗
1 S1 + ·· ·+S∗

mSm = I . In other words, QS (I ) = I . The most

interesting example of a spherical isometry is the Szegö m-shift, that is, the m-tuple M z of

multiplication operators Mz1 , · · · , Mzm on the Hardy space H 2(∂B) of the unit ball.

Let ν be a Reinhardt measure. Consider the multiplication tuple M z on the reproducing

kernel Hilbert space (H ,K ν) where

K ν(z, w) = ∑
α∈Zm+

‖zα‖−2
L2(∂B,ν)zαw̄α (z, w ∈B). (5.2)

Note that M z is a spherical isometry. In this case, the norm on (H ,K ν) admits the slice

representation [ν, H 2(D)], where H 2(D) is the Hardy space of the unit disc.
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Theorem 5.2.9. Let K ν be the reproducing kernel given as in equation (5.2) and K̃ be any

balanced kernel with the slice representation [ν, H 2(γ̃)]. Assume that the multiplication tuple

M z on (H ,K ν+ K̃ ) is subnormal. Then the multiplication tuple M z on (H , K̃ ) is subnormal.

Proof. Observe that the norm on (H ,K ν+ K̃ ) admits the slice representation [ν/2, H 2(γ)],

where γ2
k = 2(1+1/γ̃2

k )−1 for all k ∈Z+. Since Mz on (H ,K ν+ K̃ ) is subnormal, it follows from

Lemma 5.2.1 that {γ2
k }k∈Z+ is a completely monotone sequence. Thus the sequence {(1+

1/γ̃2
k )−1}k∈Z+ is completely monotone. If we replace ak by 1/γ̃2

k in the proof of the Proposition

5.1.10, we get that {γ̃2
k }k∈Z+ is completely monotone. Now, by applying Lemma 5.2.1, we

conclude that the multiplication operator on (H , K̃ ) is subnormal.

We conclude this chapter with the following questions:

Question 5.2.10. In view of Proposition 5.1.13 and Theorem 5.1.17, it is natural to ask that

(i) what is the necessary and sufficient condition for the multiplication operator Mz on

(H ,Kλ,µ+Kλ′,µ) to be subnormal?

(ii) what is the necessary and sufficient condition for the multiplication operator Mz on

(H ,K(p) +K(q)) to be subnormal?

Question 5.2.11. Let K ν be the reproducing kernel given as in equation (5.2) and K̃ be any

positive definite kernel given by

K̃ (z, w) := ∑
α∈Zm+

aαzαw̄α (z, w ∈B).

If the m-tuple M z = (Mz1 , . . . , Mzm ) on (H ,K ν+ K̃ ) is subnormal, then is it necessary that the

m-tuple M z on (H , K̃ ) is also subnormal?
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