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Abstract

A bounded operator T on a complex separable Hilbert space is said to be homogeneous

if ϕ(T ) is unitarily equivalent to T for all ϕ in Möb, where Möb is the Möbius group. A

complete description of all homogeneous weighted shifts was obtained by Bagchi and Misra.

The first examples of irreducible bi-lateral homogeneous 2-shifts were given by Korányi. For

0 < a < b < 1, the bi-lateral shifts T (a,b) and T (b, a) with weights
√

n+a
n+b and

√
n+b
n+a , respec-

tively, are homogeneous and the associated representation is the Complementary series Cλ,σ,

where λ= a+b−1 andσ= (b−a)/2. Consequently, the operator
(

T (a,b) α(T (a,b)−T (b,a))
0 T (b,a)

)
, α> 0,

is homogeneous. It has been proved by Korányi that these are all irreducible homogeneous

operators, modulo unitary equivalence, whose associated representation is a direct sum of

two copies of a Complementary series representation. We describe all irreducible homoge-

neous 2-shifts up to unitary equivalence completing the list of homogeneous 2-shifts of Ko-

rányi.

After completing the list of all irreducible homogeneous 2-shifts, we show that every

homogeneous operator whose associated representation is a direct sum of three copies of a

Complementary series representation, is reducible. Moreover, we show that such an operator

is either a direct sum of three bi-lateral weighted shifts, each of which is a homogeneous op-

erator or a direct sum of a homogeneous bi-lateral weighted shift and an irreducible bi-lateral

2-shift.

It is known that the characteristic function θT of a homogeneous contraction T with an

associated representation π is of the form

θT (a) =σL(φa)∗θT (0)σR (φa),

where σL and σR are projective representations of the Möbius group Möb with a common

multiplier. We give another proof of the “product formula”.

We point out that the defect operators of a homogeneous contraction in B2(D) are not

always quasi-invertible (recall that an operator T is said to be quasi-invertible if T is injective

and ran(T ) is dense).

We prove that when the defect operators of a homogeneous contraction in B2(D) are

not quasi-invertible, the projective representations σL and σR are unitarily equivalent to the

vii
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holomorphic Discrete series representations D+
λ−1 and D+

λ+3, respectively. Also, we prove that,

when the defect operators of a homogeneous contraction in B2(D) are quasi-invertible, the

two representations σL and σR are unitarily equivalent to certain known pairs of representa-

tions Dλ−1,µ2 and Dλ+1,µ1 , respectively. These are described explicitly.

Let G be either (i) the direct product of n-copies of the bi-holomorphic automorphism

group of the disc or (ii) the bi-holomorphic automorphism group of the polydisc Dn .

A commuting tuple of bounded operators T= (T1,T2, . . . ,Tn) is said to be homogeneous

with respect to G if the joint spectrum of T lies in Dn and ϕ(T), defined using the usual func-

tional calculus, is unitarily equivalent to T for all ϕ ∈G .

If the tuple of multiplication operators on a reproducing kernel Hilbert space is homo-

geneous with respect to G , then we prove that the curvature obeys a transformation rule. This

transformation rule is the key to identifying the equivalence classes of homogeneous opera-

tors in B1(Dn). However, the commuting tuples of homogeneous operators in Bm(Dn) cannot

be classified using the curvature since it is not a complete invariant when m > 1. Nevertheless,

the commuting tuples of homogeneous operators in B2(Dn) have been classified here.

We show that a commuting tuple T in the Cowen-Douglas class of rank 1 is homo-

geneous with respect to G if and only if it is unitarily equivalent to the tuple of the multi-

plication operators on either the reproducing kernel Hilbert space with reproducing kernel∏n
i=1

1
(1−zi w̄i )λi

or
∏n

i=1
1

(1−zi w̄i )λ
, where λ, λi , 1 ≤ i ≤ n, are positive real numbers, according as

G is as in (i) or (ii).

Let T := (T1, . . . ,Tn−1) be an (n −1)-tuple of rank 1 Cowen-Douglas class operators and

homogeneous with respect to G , where G is the direct product of (n − 1)-copies of the bi-

holomorphic automorphism group of the disc. Let T̂ be an irreducible homogeneous (with

respect to the bi-holomorphic group of automorphisms of the disc) operator in the Cowen-

Douglas class on the disc of rank 2. We show that every irreducible homogeneous operator

with respect to G , G as in (i), of rank 2 must be of the form

(T1 ⊗ IĤ , . . . ,Tn−1 ⊗ IĤ , IH ⊗ T̂ ).

We also show that if G is chosen to be the group as in (ii), then there are no irreducible

operators of rank 2 which is homogeneous with respect to G .
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Chapter 1

Introduction

Let Möb denote the Möbius group of all biholomorphic automorphisms φ of the unit disc

D := {z ∈C : |z| < 1}. These are of the form φ(z) = e iθ z−a
1−āz , θ ∈R, a ∈D.

Definition 1.1. A bounded linear operator T on a complex separable Hilbert space H is said

to be homogeneous if the spectrum of T is contained in D, the closed unit disc and φ(T ) is

unitarily equivalent to T for every φ in Möb.

These assumptions on an operator T and the Hilbert space H , namely that the operator

is linear and bounded, the Hilbert space is complex and separable will be in force throughout

this thesis.

The definition of a homogeneous operator while ensuring the existence of a unitary op-

erator Uφ intertwining φ(T ) with T does not impose any additional condition on the map

φ 7→Uφ. To investigate some of these properties, we recall some basic notions from the repre-

sentation theory of locally compact second countable (lcsc) groups, in particular, the Möbius

group. Most of what follows is from [7, 9].

Definition 1.2. Let G be a locally compact second countable group, H be a Hilbert space and

U (H) be the group of unitary operators on H . A Borel function π : G → U (H) is said to be a

projective representation of G on the Hilbert space H , if

π(1) = I , π(g h) = m(g ,h)π(g )π(h); g ,h ∈G

where m : G ×G →T is a Borel function.

The function m associated with a projective representation π is called the multiplier of

π and satisfies the equations

m(g ,1) = m(1, g ) = 1, m(g1, g2)m(g1g2, g3) = m(g1, g2g3)m(g2, g3)
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for all g , g1, g2 and g3 in G . Two multipliers m and m̃ are said to be equivalent if there is a

Borel function f : G →T such that m(g ,h) = f (g h)
f (g ) f (h) m̃(g ,h), g ,h ∈G .

Let π1 and π2 be two projective representations of G on Hilbert spaces H1 and H2, re-

spectively. The representations π1 and π2 are called equivalent if there exists a unitary opera-

tor U : H1 → H2 and a Borel function f : G →T such that

π1(g ) = f (g )U∗π2(g )U

holds for all g in G .

Definition 1.3. Let T be a homogeneous operator on a Hilbert space H . If there is a projective

representation π of Möb on H with the property

φ(T ) =π(φ)∗Tπ(φ), φ ∈ Möb,

then π is said to be the representation associated with the operator T.

A homogeneous operator need not possess an associated representation. However, the

following theorem says that for every irreducible homogeneous operator, there exists a unique

(upto equivalence) projective representation associated with it.

Theorem 1.4. [9, Theorem 2.2] If T is an irreducible homogeneous operator, then T has a

unique (upto equivalence) projective representation of Möb associated with it.

Clearly, to describe the homogeneous operators, we need a complete set of unitary in-

variants. For example, the spectral theorem for normal operators provides such a complete

set of unitary invariants. It is possible to describe all the homogeneous operators which are

normal using these invariants, see [7, Theorem 6.6].

In this thesis, we use the characteristic function for a contraction introduced by Sz.-

Nagy and Foias as well as the curvature invariant introduced by Cowen and Douglas to inves-

tigate homogeneous operators which are not necessarily normal. We therefore recall these

notions below and then describe our main results.

An operator T on a Hilbert space H is said to be a contraction if ‖T ‖ ≤ 1 and T is said

to be a pure contraction if ‖T x‖ < ‖x‖, x ∈ H . Given a contraction T , the operators DT =
(I −T ∗T )

1
2 and DT ∗ = (I −T T ∗)

1
2 are called the defect operators of T . The closed subspaces

DT = DT H and DT ∗ = DT ∗H are called the defect spaces.

Given a Hilbert space K , let L2
K be a Hilbert space consisting of K valued square in-

tegrable function on T and H 2
K be the vector valued Hardy space consisting of K valued

holomorphic functions on D. Every element of H 2
K has square integrable boundary value on

T (cf. [32, pp. 185]). Therefore, H 2
K is naturally identified with a subspace of L2

K .
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Given two Hilbert spaces K and L , let θ : D→ B(K ,L ) be a bounded holomorphic

function. In [32, pp. 187], it has been proved θ(e i t ) = limθ(z) (z → e i t non tangentially) exists

almost everywhere. Therefore θ naturally definesΘ : L2
K → L2

L
by

(Θ f )(e i t ) = θ(e i t ) f (e i t ), f ∈ L2
K .

Since θ is holomorphic, it follows that Θ maps H 2
K to H 2

L
. The function θ is said to be pure

contractive if θ(0) is pure contractive and inner ifΘ is an isometry.

Two bounded holomorphic functions θ1 : D→ B(K1,L1) and θ2 : D→ B(K2,L2) are

said to be coincide, if there exists two unitary operator η : K1 →K2 and τ : L2 →L1 such that

θ1(z) = τθ2(z)η, z ∈D.

Given a contraction T , define θT :D→B(DT ,DT ∗) by

θT (a) =−T|DT +aDT ∗(I −aT ∗)−1DT |DT , a ∈D.

In [32, pp. 239], it has been proved that θT is a purely contractive holomorphic function. Given

a contraction T , the purely contractive holomorphic function θT is called the characteristic

function of T . A contraction T on a Hilbert space H is said to be completely non-unitary (cnu)

if there does not exists any non-trivial reducing subspace L of H such that T|L is unitary. The

following theorem says that the unitary equivalence class of a cnu contraction is determined

by the characteristic function.

Theorem 1.5. [32, Theorem 3.4, Chapter VI] Let T and T̃ be two cnu contractions and θT and

θT̃ be the characteristic functions of T and T̃ , respectively. The operators T and T̃ are unitarily

equivalent if and only if θT and θT̃ coincide.

A contraction T on a Hilbert space H is said to C.0, if T ∗n x → 0 as n →∞ for all x in H .

In [32, Proposition 3.5, Chapter VI], it has been proved that a cnu contraction T is C.0 if and

only if the characteristic function θT of T is inner.

Let θ : D→ B(K ,L ) be an inner function and Θ : L2
K → L2

L
be the operator induced

by θ. Suppose M is the operator of multiplication by the coordinate function z on the Hilbert

space H 2
L

. Let M be the range of the operator Θ and T = PM⊥M|M⊥ , where PM⊥ is the pro-

jection of H 2
L

onto M⊥. From [32, Theorem 3.1, Chapter VI] and [32, Proposition 3.5, Chapter

VI], it follows that the operator T is C.0 and the characteristic function of T coincides with θ.

This completes the preliminaries needed from the Sz.-Nagy–Foias model theory for con-

tractions for our work. Now, we recall another important class of operators, introduced by

Cowen and Douglas, studied extensively over the past five decades.

Definition 1.6. LetΩ be an open and connected subset of C. An operator T acting on a com-

plex separable Hilbert space H is said to be in the Cowen-Douglas class of rank m, denoted

by Bm(Ω), if it meets the following requirements:
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1. ran(T − w̄ I ) = H , w ∈Ω,

2. dim(ker(T − w̄ I )) = m, w ∈Ω, and

3.
∨

w∈Ωker(T − w̄ I ) = H .

The definition of the Cowen-Douglas class ensures that, if an operator T is in Bm(Ω),

then there exists a rank m Hermitian holomorphic vector bundle overΩ∗ := {w̄ : w ∈Ω}

ET = {(w,h) ∈Ω∗×H : h ∈ ker(T −w I )} and p(w,h) = w

which is a sub-bundle of the trivial bundle Ω∗×H . The following theorem says that the uni-

tary equivalence class of a rank m Cowen-Douglas operator is determined by the associated

Hermitian holomorphic vector bundle.

Theorem 1.7. [12, Theorem 1.14] Let T and T̃ be two operators in Bm(Ω). The operators T and

T̃ are unitarily equivalent if and only if the associated Hermitian holomorphic vector bundles

ET and ET̃ are equivalent.

Given an operator T on a Hilbert space H in Bm(Ω), the Hermitian structure of the

bundle ET at w in Ω∗ is obtained from that of the subspace ker(T − w I ) of H . It is shown

in [12, Proposition 1.11] that if an operator T on a Hilbert space H is in Bm(Ω), then there ex-

ists a holomorphic map w ∈Ω∗ → γ(w) := (
γ1(w),γ2(w), . . . ,γm(w)

)
such that ker(T −w I ) =

span{γi (w) : 1 ≤ i ≤ m}. Let h(w) = ((〈
γ j (w),γi (w)

〉))
. The curvature of the KT of the bundle

ET with respect to the frame γ is given by the following formula ( [34, Proposition 1.11])

KT (w) = ∂

∂w̄

(
h(w)−1 ∂

∂w
h(w)

)
d w̄ ∧d w.

Like in the case of pure contractions, Cowen and Douglas show that the curvature KT (w) is a

complete invariant for operators T in B1(Ω).

Theorem 1.8. [12, Theorem 1.17] Let T and T̃ be two operators in B1(Ω). The operators T and

T̃ are unitarily equivalent if and only if KT (w) =KT̃ (w) for all w inΩ∗.

Let K :Ω×Ω→ Mm be a positive definite kernel which is holomorphic in the first and

anti-holomorphic in the second variable. The linear span of the vectors

{K (·, w)x : x ∈Cm , w ∈Ω}

equipped with the inner product

〈K (·, w2)x,K (·, w1)y〉 = 〈K (w1, w2)x, y〉
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is a pre-Hilbert space. The completion is a Hilbert space, say HK , of holomorphic functions

on Ω. For each fixed but arbitrary w ∈ Ω, the vector K (·, w)x, x ∈ Cm , is in HK and has the

reproducing property:

〈 f ,K (·, w)x〉 = 〈 f (w), x〉, f ∈ HK .

Given an operator T in Bm(Ω), there exists a reproducing kernel Hilbert space HK possessing

a reproducing kernel K :Ω×Ω→ Mm such that T is unitarily equivalent to M∗
z , where Mz is

the operator of multiplication by the co-ordinate function z on HK (see [14, Theorem 4.12]).

Soon afterwards, Cowen and Douglas isolated a class of commuting tuples of bounded

linear operators Bm(Ω),Ω⊆Cn , which, like in the one variable case, determines and is deter-

mined by a certain class of holomorphic Hermitian vector bundles, see [13, 14]. As in the

case of one variable, these operators can be realized as the adjoint M∗ := (M∗
z1

, . . . , M∗
zn

) of

the commuting tuple of multiplication by the co-ordinate functions on a Hilbert space H of

holomorphic functions defined onΩ possessing a reproducing kernel K :Ω×Ω→Mm . In this

case, the joint eigenspace Ew :=∩n
i=1 ker(Mzi −wi )∗, by assumption, is of constant dimension

m for all w in Ω. The vector bundle is then EM∗ := {(w,h) : h ∈ Ew , w ∈ Ω}, where the map

si : w → K (·, w)ei , 1 ≤ i ≤ m, w ∈Ω, serves as an anti-holomorphic frame onΩ. Consequently,

the Hermitian structure of the vector bundle EM∗ is given by K (w, w). Now, the curvatureK(w)

of this vector bundle is defined by the formula

K(w) =
n∑

i , j=1
∂i

[
K (w, w)−1∂ j K (w, w)

]
d wi ∧d w̄ j .

A study of commuting tuples of operators homogeneous with respect to the bi-holomorphic

automorphism group of an irreducible bounded symmetric domain was begun in [28], where

a transformation rule for the curvature was established in the case: m = 1. This transforma-

tion rule is the key to identify the equivalence classes of homogeneous operators in B1(Ω).

The study of commuting tuples of homogeneous operators has been continued in [3, 4, 24].

However, the cases of bounded symmetric domains like the polydisc Dn , which are reducible,

were left out so far. A study of homogeneous operators with respect to the bi-holomorphic au-

tomorphism group of Dn is begun here. The transformation rule for the curvature of a com-

muting tuple of homogeneous operators in B1(Ω) is independent of whether the bounded

symmetric domainΩ is reducible or irreducible. Thus using the transformation rule, we clas-

sify all commuting tuples of homogeneous operators in B1(Dn).

However, the commuting tuples of homogeneous operators in Bm(Dn) cannot be classi-

fied using the curvature since it is not a complete invariant when m > 1. Nevertheless, build-

ing on existing techniques from [22], the commuting tuples of homogeneous operators in

B2(Dn) have been classified.
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Finally, we point out that there are some situations, where tools from the well-known

theory of representations of Möb appear to be more effective than the use of unitary invari-

ants. This situation is described later.

Definition 1.9. A bounded operator T on a Hilbert space H is said to be a shift if H admits a

direct sum decomposition of the form ⊕i∈I Hi , where each Hi is a closed subspace of H and

T maps Hi into Hi+1, i ∈ I . The operator T is a bi-lateral, forward or backward shift according

as I equals Z, {n ∈Z : n ≥ n0} or {n ∈Z : n ≤ n0}.

The realization of an irreducible operator as a block shift is uniquely determined, that

is, there is exactly one possible decomposition of the Hilbert space on which T acts as a shift

(see [9, Lemma 2.2]).

Definition 1.10. An irreducible operator T is said to be an n-shift if dim Hi = n, for all i ∈ I

except for finitely many of them.

All irreducible homogeneous forward (and consequently backward) 2-shifts were de-

scribed by Korányi and Misra in [22]. First example of an irreducible homogeneous bilateral

2-shift was given by Korányi in [20]. In [20], a three parameter family of irreducible homo-

geneous bilateral 2-shifts was constructed by Korányi using the following theorem which is

proved by combining [7, Theorem 5.3] and [5, Proposition 2.4.].

Theorem 1.11. Let π be a representation of Möb and Ti , i = 1,2 be homogeneous operators

with associated representation π. Then the operator
(

T1 α(T1−T2)
0 T2

)
, α ∈ C, is homogeneous with

associated representation π⊕π.

1.0.1 Main results

A complete list of the three parameter family of bi-lateral 2-shifts, discovered by Korányi, is

given at the end of this introductory chapter. In chapter 2, we describe all irreducible ho-

mogeneous 2-shifts up to unitary equivalence completing the list of homogeneous 2-shifts of

Korányi.

In chapter 3, we show that every homogeneous operator whose associated representa-

tion is a direct sum of three copies of a Complementary series representation, is reducible.

Moreover, we show that such an operator is either a direct sum of three bi-lateral weighted

shifts, each of which is a homogeneous operator or a direct sum of a homogeneous bi-lateral

weighted shift and an irreducible bi-lateral 2-shift.

In chapter 4, we describe the characteristic functions of all homogeneous contractions

in B2(D). In [2], it has been proved that the characteristic function θT of a homogeneous
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contraction T with an associated representation π is of the form

θT (a) =σL(φa)∗θT (0)σR (φa),

where σL and σR are projective representations of Möb with a common multiplier. We give

another proof of the “product formula”.

We point out that the defect operators of a homogeneous contraction in B2(D) are not

always quasi-invertible (recall that an operator T is said to be quasi-invertible if T is injective

and ran(T ) is dense).

We prove that when the defect operators of a homogeneous contraction in B2(D) are

not quasi-invertible, the projective representations σL and σR are unitarily equivalent to the

holomorphic Discrete series representations D+
λ−1 and D+

λ+3, respectively. Also, we prove that

when the defect operators of a homogeneous contraction in B2(D) are quasi-invertible, the

two representations σL and σR are unitarily equivalent to certain known pair of representa-

tions Dλ−1,µ2 and Dλ+1,µ1 , respectively. These are described explicitly.

In chapter 5, we show that a commuting tuple (T1,T2, . . . ,Tn) in the Cowen-Douglas class

of rank 1 is homogeneous with respect to G if and only if it is unitarily equivalent to the tuple of

the multiplication operators on either the reproducing kernel Hilbert space with reproducing

kernel
∏n

i=1
1

(1−zi w̄i )λi
or

∏n
i=1

1
(1−zi w̄i )λ

, where λ, λi , 1 ≤ i ≤ n, are positive real numbers, ac-

cording as G is (i) the direct product of n-copies of the bi-holomorphic automorphism group

of the disc, denoted by Möbn or (ii) the bi-holomorphic automorphism group of the poly-

disc Dn , denoted by Aut(Dn). Finally, we show that a commuting tuple (T1,T2, . . . ,Tn) in the

Cowen-Douglas class of rank 2 is homogeneous with respect to Möbn if and only if it is uni-

tarily equivalent to the tuple of the multiplication operators on the reproducing kernel Hilbert

space whose reproducing kernel is a product of n −1 rank one kernels and a rank two kernel.

We also show that there is no irreducible tuple of operators in B2(Dn), which is homogeneous

with respect to the group Aut(Dn).

1.0.2 Preliminaries

For any projective representation π of Möb, let π# be the representation of Möb defined by

π#(φ) =π(φ∗) where φ∗(z) =φ(z̄), z ∈D, for every φ in Möb.

Proposition 1.12. [9, Proposition 2.1] Suppose T is a homogeneous operator and π is an asso-

ciated representation of T . Then the adjoint, T ∗, is also homogeneous and π# is an associated

representation of T ∗. If T is invertible, then T −1 is also homogeneous and π# is an associated

representation of T −1. In particular, T and T ∗−1 have the same associated representation.

To fix notation and terminology, we reproduce below a complete list of irreducible pro-

jective representations of Möb from [9].
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(i) Holomorphic Discrete series representations D+
λ

,λ > 0 : The holomorphic Discrete se-

ries representation, denoted by D+
λ

, acts on the reproducing kernel Hilbert space H (λ)

determined by the positive definite kernel 1
(1−zw̄)λ

, z, w ∈D, by the rule

(
D+
λ (φ−1) f

)
(z) = (

φ′(z)
)λ

2 ( f ◦φ)(z), φ ∈ Möb, f ∈ H (λ), z ∈D.

(ii) Anti-holomorphic Discrete series representations D−
λ

,λ> 0 : The anti-holomorphic Dis-

crete series representation is denoted by D−
λ

. The representation space for D−
λ

is the re-

producing kernel Hilbert space H (λ). The representation D−
λ

is defined by D−
λ

:= (D+
λ

)#.

(iii) Principal series representations Pλ,s , −1 <λ≤ 1, s purely imaginary: The representation

space of each Pλ,s is L2(T). The action of Pλ,s on L2(T) is given by

(
Pλ,s(φ−1) f

)
(z) = (

φ′(z)
)λ

2
∣∣φ′(z)

∣∣µ ( f ◦φ)(z), φ ∈ Möb, f ∈ L2(T), z ∈T,

where µ= 1−λ
2 + s. We point out that the representations Pλ,s and Pλ,−s are equivalent.

(iv) Complementary series representations Cλ,σ, −1 < λ < 1, 0 < σ < 1
2 (1− |λ|) : The repre-

sentation space of Cλ,σ is the Hilbert space spanned by the orthogonal set of vectors{
fn :T→C | fn(z) = zn

}
n∈Z where ‖ fn‖ = Γ(1−µ+n)

Γ(λ+µ+n) , n ∈Z, µ= 1−λ
2 +σ. The action of the

representation Cλ,σ on the Hilbert space Hλ,σ is given by

(
Cλ,σ(φ−1) f

)
(z) = (

φ′(z)
)λ

2
∣∣φ′(z)

∣∣µ ( f ◦φ)(z), φ ∈ Möb, f ∈ Hλ,σ, z ∈T.

Note that the Complementary series representations and Principal series representations are

together called Continuous series representations.

Remark 1.13. It is known that all the Principal series representations are irreducible except

P1,0. The representation P1,0 is a direct sum of two irreducible representations, one of which

is equivalent to the holomorphic Discrete series representation D+
1 and the other one is equiv-

alent to the anti-holomorphic Discrete series representation D−
1 .

Let n : Möb×Möb →Z be the measurable function defined by

n(φ−1
1 ,φ−1

2 ) = 1

2π

(
arg(φ2φ1)′(0)−argφ′

1(0)−argφ′
2(φ1(0))

)
, φ1,φ2 ∈ Möb.

Using the chain rule, it is easy to check that n is an integer valued function. For any w ∈ T,

define mw : Möb×Möb →T by

mw (φ1,φ2) = w n(φ1,φ2). (1.1)
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Theorem 1.14. [9, Theorem 3.2] (a) For each w in T, the map mw is a multiplier of Möb. Up

to equivalence, these are all multipliers of Möb. Furthermore, these are mutually inequivalent

multipliers and therefore H 2(Möb,T) is naturally isomorphic to T via the map w 7→ [mw ].

(b) For each representation of Möb in the above list, the associated multiplier is mw where

w = e iπλ, except for the anti-holomorphic Discrete series representations for which w = e−iπλ.

Corollary 1.15. [9, Corollary 3.2] Let π and σ be two representations from the above list of

irreducible representations of Möb. The multipliers of π and σ are either equal or inequivalent.

If both or neither ofπ andσ are from the anti-holomorphic Discrete series representations, then

they have same multiplier if and only if their λ parameters differ by an even integer. If exactly

one of π and σ is from the anti-holomorphic Discrete series representations, then they have the

same multiplier if and only if their λ parameters add to an even integer.

A projective representationπ of Möb on a Hilbert space H , containing a dense subspace

M consisting of functions on some set X , is called a multiplier representation if

(
π(φ−1) f

)
(x) = c(φ, x)( f ◦φ)(x), φ ∈ Möb, f ∈M , x ∈ X

where c is a non-vanishing measurable function on Möb×X .

Theorem 1.16. [9, Theorem 2.3] Suppose there is a multiplier representation π of Möb on a

Hilbert space H, containing a dense subspace M consisting of functions on some set X . Suppose

the operator T given on M by

(T f )(x) = x f (x), f ∈M , x ∈ X

leaves M invariant and has a bounded extension to H. Then the extension of T is homogeneous

and π is associated with T .

From the list of the irreducible projective representations of Möb, we see that every ir-

reducible projective representation of Möb is a multiplier representation. Therefore Theorem

1.16 says that if the multiplication by the coordinate function on the representation space of

an irreducible projective representation of Möb is bounded, then it must be homogeneous.

Indeed this is true. The following list of homogeneous operators is given in [9, List 4.1].

(i) The Principal series example: The unweighted bilateral shift B is homogeneous. To

prove this, apply Theorem 1.16 to any Principal series representation. Up to unitary

equivalence, the operator B is the only weighted shift which is reducible [9, Theorem

2.1].
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(ii) The Holomorphic Discrete series examples: For any positive real number λ > 0, the

multiplication operator, M (λ), on the reproducing kernel Hilbert space H (λ) with repro-

ducing kernel 1
(1−zw̄)λ

, z, w ∈ D, is homogeneous. Applying Theorem 1.16, we see that

the holomorphic Discrete series representation D+
λ

is associated with it. These are irre-

ducible operators.

(iii) The anti-Holomorphic Discrete series examples: Since the adjoint of a homogeneous

operator is homogeneous, it follows that M (λ)∗, λ > 0, is homogeneous. Proposition

1.12 implies that the representation D−
λ

is associated with M (λ)∗.

(iv) The Complementary series examples: For any two real numbers a,b in (0,1), let T (a,b)

be the bilateral weighted shift with weight sequence
{√

n+a
n+b : n ∈Z

}
. If 0 < a < b < 1,

then applying Theorem 1.16 to the Complementary series representation Cλ,σ with λ=
a+b−1 andσ= b−a

2 , it follows that T (a,b) is homogeneous with associated representa-

tion Cλ,σ. Since T (b, a) = T (a,b)∗−1, using Proposition 1.12 it follows that the operator

T (b, a) is also a homogeneous operator with associated representation Cλ,σ. These are

irreducible operators.

(v) The Constant Characteristic examples: For x > 0, let Bx be the bilateral weighted shift

with weight sequence {. . . ,1,1, x,1,1, . . .}, where x is the zeroth weight. In [5], it has been

proved that the operator Bx is homogeneous with associated representation P1,0. For

x 6= 1, the operator Bx is irreducible. For 0 < x < 1, the operator Bx is completely non

unitary and the characteristic function of Bx is constant.

Remark 1.17. The operators given in the above list are not unitarily equivalent (see [9, 31]).

Also note that the only contractions in the above list of homogeneous operators are M (λ),λ≥ 1

(consequently M (λ)∗) and Bx , 0 < x ≤ 1.

The following theorem completes the description of all homogeneous shifts which was

obtained by Bagchi and Misra in [9].

Theorem 1.18. [9, Theorem 5.2] Up to unitary equivalence, the only homogeneous scalar

weighted shifts with non-zero weights are the ones given in the above list of homogeneous

weighted shifts.

The first examples of irreducible bi-lateral homogeneous 2-shifts were given by Korányi

in [20]. Recall from Theorem 1.11 that if π(φ)∗Tiπ(φ) =φ(Ti ), i = 1,2, for some representation

of Möb, then the operator
(

T1 α(T1−T2)
0 T2

)
, α> 0, is homogeneous. From the above list of homo-

geneous weighted shifts, we see that for 0 < a < b < 1, the bi-lateral shifts T (a,b) and T (b, a)

with weights
√

n+a
n+b and

√
n+b
n+a , respectively, are homogeneous and the associated represen-

tation is the Complementary series Cλ,σ, where λ= a +b −1 and σ= (b −a)/2. Consequently,
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the operator
(

T (a,b) α(T (a,b)−T (b,a))
0 T (b,a)

)
, α ∈ C, is homogeneous. In [20], Korányi shows that the

family

C :=
{

T (a,b,α) =
[

T (a,b) α(T (a,b)−T (b, a))

0 T (b, a)

]
: 0 < a < b < 1,α> 0

}

contains all irreducible homogeneous operators, modulo unitary equivalence, whose associ-

ated representation is Cλ,σ⊕Cλ,σ.
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Chapter 2

Irreducible Homogeneous 2-shifts

A bounded operator T on a Hilbert space H , which is always assumed to be complex and

separable, is said to be a shift if H admits a direct sum decomposition of the form ⊕i∈I Hi ,

where each Hi is a closed subspace of H and T maps Hi into Hi+1, i ∈ I . The operator T is a

bi-lateral, forward or backward shift according as I equalsZ, {n ∈Z : n ≥ n0} or {n ∈Z : n ≤ n0}.

Also, the realization of an irreducible operator as a block shift is uniquely determined, that is,

there is exactly one possible decomposition of the Hilbert space on which T acts as a shift

(see [9, Lemma 2.2]). An irreducible operator T is said to be an n-shift if dim Hi = n, for all

i ∈ I except for finitely many of them.

Let T be an irreducible homogeneous operator acting on a Hilbert space H . Then there

exists a projective unitary representation π of Möb on H , associated with the operator T as

shown in [9], that is, ϕ(T ) = π(ϕ)∗Tπ(ϕ) for all ϕ in the group Möb. Indeed this associated

representation π is uniquely determined up to unitary equivalence.

LetK be the maximal compact subgroup consisting of those elements of Möb which fix

the point 0. Recall that a subspace

Vn(π) := {h :π(k)h = k−nh, k ∈K}

of the representation space H is said to be K-isotypic. Setting I (π) = {n ∈ Z : dim Vn(π) 6= 0},

we note that the operator T must be a shift from Vn(π) to Vn+1(π), n ∈ I (π) by virtue of [9,

Theorem 5.1]. The set I (π) is said to be connected if for any three elements a,b,c in Z with

a < b < c and a,c ∈ I (π), then b ∈ I (π).

Theorem 2.1. Suppose T is an irreducible 2-shift homogeneous operator. Then the associated

representation π is the direct sum of two or three or at most four irreducible representations.

Proof. Let T be an irreducible homogeneous 2 - shift and π be the associated representation.

Since theK-isotypic subspace of an irreducible projective representation is one dimen-

sional (cf. [9]), it follows that π cannot be irreducible.
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Thus we may assume without loss of generality that π is a direct sum of two non-trivial

representations, say, π00 ⊕π22. If both of them are irreducible, then we are done.

If not, one of them, say, π00 must be reducible. Then π00 is the direct sum of two non-

trivial representations, namely, π00 = π01 ⊕π21. Hence π = π01 ⊕π21 ⊕π22. If all of them are

irreducible, then we are done.

If not, one of them, say π01, is reducible. Then π01 is the direct sum of two non-trivial

representations, namely, π01 =π11 ⊕π12. Then

π=π11 ⊕π12 ⊕π21 ⊕π22.

Now, we claim that each summand in π must be irreducible. If not, then one of them,

say, π11 is reducible. Then π11 =σ⊕ρ, where σ and ρ are non-trivial representations. There-

fore, we have the decomposition

π=σ⊕ρ⊕π12 ⊕π21 ⊕π22.

Now [9, Lemma 3.2] says that connected component of each I (σ), I (ρ), I (π12), I (π21)

and I (π22) is unbounded. Therefore, each of I (σ), I (ρ), I (π12), I (π21) and I (π22) contains a tail

of Z. This implies that one tail of Z must occur three times. Therefore, dimVn(π) ≥ 3 for all

those n in that tail ofZwhich occurs three times in I (π). This contradicts the assumption that

the operator T is a 2 - shift. Therefore each of π11,π12,π21 and π22 must be irreducible.

The following theorem lists the possibilities of the associated representation for an irre-

ducible homogeneous 2-shift T.

Theorem 2.2. If T is an irreducible homogeneous 2-shift andπ is the associated representation,

then π must be of the form

π = ⊕2
i=1πi : In this case, the only possibilities for π1 and π2 are that they must be si-

multaneously one of the holomorphic Discrete series, anti-holomorphic Discrete series or

Continuous series representations.

π = ⊕3
i=1πi : In this case, one of the summands must be a Continuous series representa-

tion. Among the other two, one of them must be a holomorphic Discrete series and the

other one an anti-holomorphic Discrete series representation.

π=⊕4
i=1πi : In this case, two of the summands must be holomorphic Discrete series rep-

resentations while the other two summands must be anti-holomorphic Discrete series

representations simultaneously.
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Proof. Now suppose π is a direct sum of two irreducible representations, say, π = π1 ⊕π2. If

one of them is a holomorphic Discrete series representation then the other one also has to

be a holomorphic Discrete series representation. Suppose not, then there is at least one tail

I of Z such that the dimension of Vn(π), n ∈ I , is one. Similarly, if one of them is an anti-

holomorphic Discrete series representation then the other one has to be an anti-holomorphic

Discrete series representation. It follows that if one of these representations is from the Con-

tinuous series, then the other one cannot be either the holomorphic or the anti-holomorphic

Discrete series representation. This completes the proof of the first case.

If π is a direct sum of three irreducible representations, then one of them must be from

the Continuous series representations. If not, all the three summands are from the Discrete

series representations. In consequence, the existence of a tail I in Z such that dimension of

Vn(π), n ∈I , is either one or three follows. This contradiction proves our claim. If one of the

summands is a Continuous series representation, then the other two cannot be simultane-

ously holomorphic or anti-holomorphic Discrete series representations. If not, we find a tail

I in Z for which the dimension of Vn(π), n ∈I , is 3, which is a contradiction.

Now supposeπ is the direct sum of four irreducible representations, sayπ1⊕π2⊕π3⊕π4.

If one of them is a Continuous series representation, then there exists a tail of Z for which

the dimension of Vn(π) is greater than or equal to 3. So, none of the representations πi ,

1 ≤ i ≤ 4, are from the Continuous series representations. Thus each one of the represen-

tations π1,π2,π3,π4 must be from the Discrete series. Now if three of them are either from

the holomorphic or anti-holomorphic Discrete series representations, then the dimension of

Vn(π) must be greater than or equal to 3 for n in some tail of Z. Therefore if π is a direct sum

of four irreducible representation, then two of them have to be holomorphic Discrete series

representations and the other two have to be anti-holomorphic Discrete series representa-

tions.

Each of the three cases enumerated in Theorem 2.2 is discussed below in three different

Sections.

2.1 The associated representation is the direct sum of two rep-

resentations from the Continuous series

In this section, we find all the irreducible homogeneous operators for which the associated

representation is a direct sum of two Continuous series representations. This naturally splits

into several cases. In the paper [20], the case when the associated representation π is the

direct sum Cλ,σ⊕Cλ,σ, is discussed. Here we begin with the case when π= π1 ⊕π2, π1,π2 are

form the Principal series.



16 2. Irreducible Homogeneous 2-shifts

2.1.1 π= Pλ,s ⊕Pλ,s

In this subsection, we find all the irreducible homogeneous operators for which the associated

representation π is of the form Pλ,s ⊕Pλ,s . It is convenient to separate two cases, namely, the

case of s = 0 and that of s 6= 0.

The case “s 6= 0”:

In what follows, we assume s 6= 0. Let B(s) be the bounded linear transformation on L2(T)

obtained by requiring that

B(s) zn = n + 1+λ
2 + s

n + 1+λ
2 − s

zn+1, n ∈Z.

Thus it is the weighted bilateral shift with weight sequence

{
wn = n+ 1+λ

2 +s

n+ 1+λ
2 −s

}
. Let B be the mul-

tiplication by the co-ordinate function on L2(T). The operator B is the unweighted bi-lateral

shift. Both the operators B(s) and B are known to be homogeneous [9, Theorem 5.2]. Each of

the Principal series representations Pλ,s may be taken to be the associated representation for

both of these operators.

Proposition 2.3. For all φ in Möb, suppose that

SPλ,s(φ)−e iθPλ,s(φ)S = aB(s)Pλ,s(φ)S +aSPλ,s(φ)B , (2.1)

for some operator S on L2(T). Then S =α (B(s)−B) for some α ∈C.

Proof. Using homogeneity of B(s) and B it is easy to see that α(B(s)−B) satisfies (2.1) for all

α ∈C. We show that these operators are the only solutions of the equation (2.1).

For the proof, let S be any operator for which (2.1) holds. Restricting the equation (2.1)

to the subgroup of rotations of the form φθ, we see that S is a weighted shift operator with

respect to the orthonormal basis {zn} in L2(T). Let {αn} be the weight sequence of S. Now

we find the value of αn . Let φa(z) = − z−a
1−az , z ∈ D be the set of involutions in the group Möb.

Restricting to these in (2.1), we obtain

SPλ,s(φa)+Pλ,s(φa)S = aB(s)Pλ,s(φa)S +aSPλ,s(φa)B.

Evaluating on the vector zm , we have

SPλ,s(φa)zm +Pλ,s(φa)Szm = aB(s)Pλ,s(φa)Szm +aSPλ,s(φa)B zm .

Therefore it follows that

SPλ,s(φa)zm +αmPλ,s(φa)zm+1 = aαmB(s)Pλ,s(φa)zm+1 +aSPλ,s(φa)zm+1.
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Consequently, we obtain

〈Pλ,s(φa)zm ,S∗zn〉+αm〈Pλ,s(φa)zm+1, zn〉 =
aαm〈Pλ,s(φa)zm+1,B(s)∗zn〉+a〈Pλ,s(φa)zm+1,S∗zn〉.

Since S∗zn = ᾱn−1zn−1 and B(s)∗zn = w̄n−1zn−1, it follows that

αn−1〈Pλ,s(φa)zm , zn−1〉+αm〈Pλ,s(φa)zm+1, zn〉 = a(αm wn−1 +αn−1)〈Pλ,s(φa)zm+1, zn−1〉
(2.2)

The matrix coefficients of Pλ,s(φa) are given in [9, p. 316]:〈
Pλ,s(φa) fm , fn

〉= c(−1)n(a)n−m‖ fn‖2
∑

k≥(m−n)+
Ck (m,n)r k , (2.3)

where fn = zn ,r = |a|2, c =φ′
a(0)λ/2|φ′

a(0)|µ and Ck (m,n) =
(
−λ−µ−m

k +n −m

)(
−µ+m

k

)
. Using

these matrix coefficients, we may rewrite the equation (2.2) in the form

αn−1
∑

k≥(m−n+1)+
Ck (m,n −1)r k −αm

∑
k≥(m−n+1)+

Ck (m +1,n)r k

= (αm wn−1 +αn−1)
∑

k≥(m−n+2)+
Ck (m +1,n −1)r k .

Now putting m = n, we get

αn−1
∑
k≥1

Ck (n,n − 1)r k − αn
∑
k≥1

Ck (n + 1,n)r k = (αn wn−1 + αn−1)
∑
k≥2

Ck (n + 1,n − 1)r k .

Comparing the coefficient of r, we have

αn−1C1(n,n −1)−αnC1(n +1,n) = 0.

Since C1(n,n −1) = (−µ+n), C1(n +1,n) = (−µ+n +1) and µ= 1−λ
2 + s, we finally obtain

αn−1

(
−1−λ

2
− s +n

)
−αn

(
−1−λ

2
− s +n +1

)
= 0,

which implies

αn−1(λ+2n −1−2s) =αn(λ+2n +1−2s).

An easy induction argument shows that αn =α
(

n+ 1+λ
2 +s

n+ 1+λ
2 −s

−1

)
for some α ∈ C. This shows that

S =α(B(s)−B) for some α ∈C.
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Corollary 2.4. The operator

[
B(s) α(B(s)−B)

0 B

]
is homogeneous with associate representa-

tion Pλ,s ⊕Pλ,s .

Proof. The proof follows from Theorem 1.11.

It is evident that
[

B(s) α(B(s)−B)
0 B

]
and

[
B(s) β(B(s)−B)

0 B

]
are unitarily equivalent when |α| =

|β|. A particular case of what is proved in [20, Lemma 1.1] is that
[

B(s) α(B(s)−B)
0 B

]
and

[B α(B−B(s))
0 B(s)

]
are unitarily equivalent. We show that these are irreducible, which is very similar to the proof

of [20, Theorem 1.2].

Theorem 2.5. For a fixed but arbitrary α > 0, the operator T :=
[

B(s) α(B(s)−B)

0 B

]
is irre-

ducible.

Proof. Let H(n) be the subspace of L2(T)⊕L2(T) spanned by the orthonormal set

Bn =
{(

zn

0

)
,

(
0

zn

)}
.

Clearly, T sends H(n) to H(n +1). Let Tn := T|H(n). The matrix representations of Tn , T ∗
n with

respect to Bn and Bn+1 are of the form[
wn α(wn −1)

0 1

]
and

[
w̄n 0

α(w̄n −1) 1

]
,

respectively. The operators An = T ∗
n Tn and Bn = Tn−1T ∗

n−1 map H(n) to H(n), their matrix

representation with respect to the orthonormal basis Bn is easy to compute, namely,

An =
[

1 α(1− w̄n)

α(1−wn) 1+α2|wn −1|2
]

and Bn =
[

1+α2|wn−1 −1|2 α(wn−1 −1)

α(w̄n−1 −1) 1

]
.

Since determinant of An is 1, and An 6= I , it follows that the eigenvalues of An are of the form

λ2
n , 1

λ2
n

for some real number λn > 1. Consequently, the trace of An is λ2
n + 1

λ2
n

. Thus λ2
n + 1

λ2
n
=

2+α2|wn −1|2 and therefore
(
λn − 1

λn

)2 =α2|wn −1|2.

Now suppose there exists n,m such that |wn −1|2 = |wm −1|2. Then putting the value

of wn and wm , we get |n + 1+λ
2 − s|2 = |m + 1+λ

2 − s|2. Since s = i a, equivalently,
(
n + 1+λ

2

)2 +
a2 =

(
m + 1+λ

2

)2 + a2 and it follows that n = m or n +m +1+λ = 0. Consequently, if λ is not

an integer, then λn 6= λm for n 6= m. Since −1 < λ ≤ 1, the possible integer values of λ are

either 0 or 1. If λ = 0 then λn = λ−n−1 and if λ = 1, then λn = λ−n−2. Note that λn 6= λm

if n 6= m and n,m ≥ 0. Let λ(1)
n = λ2

n , and λ(2)
n = 1

λ2
n

. Pick an orthonormal basis {v (1)
n , v (2)

n } of
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H(n) which makes An diagonal. Then An v (i )
n = λ(i )

n v (i )
n . Let u(i )

n = Tn−1v (i )
n−1. Then Bnu(i )

n =
Tn−1T ∗

n−1Tn−1v (i )
n−1 = λ(i )

n−1Tn−1v (i )
n−1 = λ(i )

n−1u(i )
n . Also it is easily checked that u(1)

n and u(2)
n are

orthogonal. So, {u(1)
n ,u(2)

n } is an orthogonal basis of H(n) which makes Bn diagonal.

Suppose u(1)
n = cv (1)

n for c ∈ C, then we show that u(2)
n = d v (2)

n for some d ∈ C. Find

d1,d2 ∈ C such that u(2)
n = d1v (1)

n +d2v (2)
n . Taking inner product of v (1)

n with u(2)
n , we see that

d1 = 0 using the equality v (1)
n = 1

c u(1)
n and the orthogonality of the two vectors u(1)

n , u(2)
n . Thus

we conclude that u(2)
n is a scalar multiple of v (2)

n .

Similarly, we can show that if u(1)
n is a scalar multiple of v (2)

n , then u(2)
n is a scalar multiple

of v (1)
n . This shows that if one of {v (1)

n , v (2)
n } is a scalar multiple of one of {u(1)

n ,u(2)
n }, then the

same is true of the other one. If this statement is true for all n, then we must have AnBn −
Bn An = 0 for all n. But an easy computation shows that AnBn 6= Bn An for any n ≥ 1.

Now let K be a reducing subspace of T . Then K is an invariant subspace of both T T ∗

and T ∗T and therefore, for f ∈K , the projections of f onto any eigenspaces of T T ∗ and T ∗T

are also in K .

λ 6= 0,1 : Let An,i be the space spanned by the vector v (i )
n . It is the eigenspace of T ∗T with

eigenvalueλ(i )
n . Then L2(T)⊕L2(T) =⊕n∈Z,i=1,2An,i . Let f ∈K . Then f = ∑

n∈Z,i=1,2
αn,i v (i )

n .

Since f is non-zero, we can find n, i such that αn,i 6= 0. Therefore, the vector v (i )
n is in

K . This implies that K ∩H(n) 6= ;, for some n ∈Z.

λ= 0 : Let An,i , be the space spanned by the two vectors v (i )
n , v (i )

−n−1. It is the eigenspace of

T ∗T with eigenvalue λ(i )
n . Then L2(T)⊕ L2(T) = ⊕n≥0,i=1,2An,i . Now suppose f ∈ K .

Then

f = ∑
n≥0,i=1,2

αn,i hn,i ,

where hn,i is in An,i . Since f 6= 0, we can find αn,i 6= 0 for some n, i . Also there exist

scalars γ,δ such that hn,i = γv (i )
−n−1 +δv (i )

n . Since v (i )
−n−1 ∈ H(−n − 1) and v (i )

n ∈ H(n),

applying T n+2 we see that T n+2hn,i = γ̃h1 + δ̃h2n+2 for some h1 ∈ H(1) and h2n+2 ∈
H(2n + 2). Therefore, there are scalars γ1,γ2,δ1,δ2, such that h1 = γ1v (1)

1 +γ2v (2)
1 and

h2n+2 = δ1v (1)
2n+2 +δ2v (2)

2n+2. So,

T n+2hn,i = γ̃γ1v (1)
1 + γ̃γ2v (2)

1 + δ̃δ1v (1)
2n+2 + δ̃δ2v (2)

2n+2.

Note that v (1)
1 ∈ A1,1, v (2)

1 ∈ A1,2, v (1)
2n+2 ∈ A2n+2,1 and v (2)

2n+2 ∈ A2n+2,2. Each of these cor-

respond to distinct eigenspaces of T ∗T . Since hn,i is non-zero, so is T n+2hn,i . There-

fore one of the coefficients of this sum must be non zero. This implies that one of

v (1)
1 , v (2)

1 , v (1)
2n+2 or v (2)

2n+2 is in K . It follows that H(n)∩K 6= ; for some n.

λ= 1 : A similar calculation as in the case of λ= 0 ensures the existence of some n with K ∩
H(n) 6= ;.
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These three cases ensure the existence of n such that K ∩ H(n) 6= ;. Since each Tn is

invertible, by applying T k for sufficiently large k it follows that there exists m > 0 such that

K ∩ H(m) 6= ;. Pick a non-zero element hm from K ∩ H(m). Then hm = αv (1)
m +βv (2)

m =
γu(1)

m +δu(2)
m . We have already shown that AmBm −Bm Am 6= 0, therefore either αβ 6= 0 or γδ 6=

0. If αβ 6= 0, then v (1)
m , v (2)

m ∈ K since v (1)
m , v (2)

m are in different eigenspaces of T ∗T. Similarly,

u(1)
m ,u(2)

m ∈ K if γδ 6= 0. We conclude that H(m) ⊆ K . Now since Tn is invertible for all n,

applying T n and T ∗n on H(m), we find that H(k) ⊆K for all k. This implies that K = L2(T)⊕
L2(T) completing the proof.

Let B(λ, s,α) denote the operator

[
B(s) α(B(s)−B)

0 B

]
. Now we show that the unitary

equivalence class of B(λ, s,α) depends only on λ, |a|, (where s = i a) and |α|.

Theorem 2.6. The operators B(λ1, s1,α1) and B(λ2, s2,α2) are unitarily equivalent if and only if

λ1 =λ2, a1 = a2 and α1 =α2 for any choice of a pair of purely imaginary numbers s1 = i a1, s2 =
i a2, a1, a2 > 0, and α1,α2 > 0.

Proof. The operators B(λi , si ,αi ) are homogeneous with associated representation Pλi ,si ⊕
Pλi ,si for i = 1,2, see Corollary 2.4. If λ1 6= λ2 then the multipliers of Pλ1,s1 ⊕Pλ1,s1 and Pλ2,s2 ⊕
Pλ2,s2 are inequivalent [9, Corollary 3.2]. Therefore Pλ1,s1 ⊕ Pλ1,s1 and Pλ2,s2 ⊕ Pλ2,s2 are in-

equivalent. Since the representation associated with an irreducible homogeneous operator is

uniquely determined, it follows that B(λ1, s1,α1) and B(λ2, s2,α2) cannot be inequivalent and

consequently λ1 =λ2.

Now, setting λ1 =λ2 =λ, we show that if B(λ, s1,α1) and B(λ, s2,α2) are equivalent, then

s1 = s2 and α1 =α2.

The set of singular values of the operators B(λ1, s1,α1) and B(λ2, s2,α2) are

S1 :=
{
α2

1
|2s1|2

|n + 1+λ
2 − s1|2

: n ∈Z
}

and S2 :=
{
α2

2
|2s2|2

|n + 1+λ
2 − s2|2

: n ∈Z
}

,

respectively. Since B(λ, s1,α1) and B(λ, s2,α2) are equivalent, it follows that the set of singular

values of these two operators must be the same, that is, S1 = S2. To complete the proof, we

discuss three cases.

λ< 0 : In this case the maximum of the sets S1 and S2, which is achieved at n = 0 in both

cases, must be equal, that is,

4α2
1a2

1

( 1+λ
2 )2 +a2

1

= 4α2
2a2

2

( 1+λ
2 )2 +a2

2

. (2.4)
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Removing this maximum from both S1 and S2, again, the maximum in each of them is

achieved at n =−1 and they must be equal, that is,

4α2
1a2

1

(−1+ 1+λ
2 )2 +a2

1

= 4α2
2a2

2

(−1+ 1+λ
2 )2 +a2

2

. (2.5)

Combining equations (2.4) and (2.5), we obtain the equation

α2
1a2

1 =α2
2a2

2.

Using this relationship in (2.4), we find that a2
1 = a2

2. Since both a1 and a2 are positive,

it follows that a1 = a2. Therefore α1 =α2.

λ= 0 : As before, in this case, the maximum and the second maximum value of S1 and S2 are

achieved at n = 0 and n = 1, respectively. So, equating these two values, we get

4α2
1a2

1
1
4 +a2

1

= 4α2
2a2

2
1
4 +a2

2

and
4α2

1a2
1

9
4 +a2

1

= 4α2
2a2

2
9
4 +a2

2

.

A similar calculation, as in the case of λ< 0, implies that a1 = a1 and α1 =α2.

λ> 0 : One last time, we note that the maximum and the second maximum of the two sets S1

and S2 are achieved at n = −1 and n = 0, respectively. Equating these values, we have

the equations:
4α2

1a2
1

(−1+ 1+λ
2 )2 +a2

1

= 4α2
2a2

2

(−1+ 1+λ
2 )2 +a2

2

and
4α2

1a2
1

( 1+λ
2 )2 +a2

1

= 4α2
2a2

2

( 1+λ
2 )2 +a2

2

.

But these two equations are identical to the equations we had obtained in the case of

λ< 0. Therefore we conclude that a1 = a2 and α1 =α2.

Thus B(λ1, s1, a1) and B(λ2, s2, a2) are equivalent if and only ifλ1 =λ2, a1 = a2 andα1 =α2.

If Uλ,s : L2(T) → L2(T) is the operator Uλ,s zn = Γ(n+ 1+λ
2 −s)

Γ(n+ 1+λ
2 +s)

zn , then from [9, p. 318], we

have

Uλ,s is unitary,

Uλ,−s =U∗
λ,s ,

Pλ,−sUλ,s =Uλ,sPλ,s ,
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and B(s) =U∗
λ,sBUλ,s .

Replacing s by−s, we see that B(−s) =U∗
λ,−sBUλ,−s . This is the same as B(−s) =Uλ,sBU∗

λ,s .

Consequently, Uλ,s ⊕Uλ,s intertwines
[

B(s) α(B(s)−B)
0 B

]
and

[B α(B−B(−s))
0 B(−s)

]
. It follows, after conju-

gating with a permutation, that
[

B(s) α(B(s)−B)
0 B

]
and

[
B(−s) α(B(−s)−B)

0 B

]
are equivalent. Hence

P :=
{[

B(s) α(B(s)−B)

0 B

]
:λ, s = i a, a > 0,α> 0

}

is a mutually unitarily inequivalent set of homogeneous operators with associated represen-

tation Pλ,s ⊕Pλ,s .

The associated representation of the family of irreducible homogeneous operators

C :=
{

T (a,b,α) =
[

T (a,b) α(T (a,b)−T (b, a))

0 T (b, a)

]
: 0 < a < b < 1,α> 0

}

is the direct sum of two copies of a Complementary series representation [20].

We now show that these two sets of homogeneous operators are mutually unitarily in-

equivalent.

Theorem 2.7. The homogeneous operators in the two sets P and C are mutually unitarily

inequivalent.

Proof. Let T (a,b,α) and B(λ1, s,β) be unitarily equivalent for some

(a,b,α) : 0 < a < b < 1, α> 0;

(λ1,β, s) : −1 <λ1 ≤ 1, β> 0 and s, k =Im(s) > 0.

The associated representation of the operator T (a,b,α) is Cλ,σ ⊕Cλ,σ, where λ = a + b − 1,

σ= b−a
2 (cf. Theorem 1.11) and the associated representation of B(λ1, s,β) is Pλ1,s ⊕Pλ1,s , see

Corollary 2.4. Since the representation associated with an irreducible homogeneous operator

is uniquely determined, it follows that Cλ,σ⊕Cλ,σ, and Pλ1,s ⊕Pλ1,s must be equivalent. This,

in particular, implies that their multipliers are equivalent and, therefore, λ1 must be equal to

λ. For the remaining portion of the proof, we therefore assume that λ1 = λ without loss of

generality.

We know that T (a,b,α) and B(λ, s,β) are 2-shifts. Let λn , 1
λn

be the singular values of the

n-th block of T (a,b,α) for each n ∈Z. From [20, p. 227], we have(
λn − 1

λn

)2

= (1+α2)(a −b)2(
n + 1+λ

2

)2 −
(

a−b
2

)2 .
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For n ∈ Z, let µn , 1
µn

be the singular values of the n-th block of B(λ, s,β). We have shown (see

Theorem 2.5) that (
µn − 1

µn

)2

= 4β2k2(
n + 1+λ

2

)2 +k2
.

Since T (a,b,α) and B(λ, s,β) are unitarily equivalent, it follows that the two sets

S1 =

 (1+α2)(a −b)2(
n + 1+λ

2

)2 −
(

a−b
2

)2 : n ∈Z

 and S2 =

 4β2k2(
n + 1+λ

2

)2 +k2
: n ∈Z


must be equal. The proof naturally splits into three separate cases.

λ< 0 : Since S1 and S2 are equal, their maximum (which is achieved at n = 0 in both of these

sets) must be the same. Equating these, we get

(1+α2)(a −b)2(
1+λ

2

)2 −
(

a−b
2

)2 = 4β2k2(
1+λ

2

)2 +k2
. (2.6)

Removing the maximal element from S1 and S2, we must get two equal sets and again

the maximum in each of them, which is achieved at n =−1, must be equal, that is,

(1+α2)(a −b)2(
1− 1+λ

2

)2 −
(

a−b
2

)2 = 4β2k2(
1− 1+λ

2

)2 +k2
. (2.7)

Puttingλ= a+b−1 in the equations (2.6) and (2.7), after a little simplification, we obtain

(1+α2)(a −b)2 = 4β2k2ab(
1+λ

2

)2 +k2
,

and

(1+α2)(a −b)2 = 4β2k2(1−a)(1−b)(
1−λ

2

)2 +k2
.

Equating these two values of (1+α2)(a−b)2, we get (a−b)2+4k2 = 0, which is a contra-

diction since a < b.

λ> 0 : As in the case of λ < 0, equating the maximum of S1 and S2, which is achieved at

n =−1 for both the sets, we get

(1+α2)(a −b)2(
1− 1+λ

2

)2 −
(

a−b
2

)2 = 4β2k2(
1− 1+λ

2

)2 +k2
.
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Like before, removing the maximal elements from both the sets S1 and S2, the maxi-

mum of these two sets, which is achieved at n = 0, are again equal, that is,

(1+α2)(a −b)2(
1+λ

2

)2 −
(

a−b
2

)2 = 4β2k2(
1+λ

2

)2 +k2
.

These two equations are the same as in the case of λ< 0. Thus repeating the same cal-

culation as in that case, we arrive at a contradiction.

λ= 0 : For a third time, equating the maximum of the two sets S1 and S2, which is achieved

at n = 0 for both of them, we get

(1+α2)(a −b)2

1
4 − (a−b)2

4

= 4βk2

1
4 +k2

.

Equate the maximum of the sets S1 and S2 after removing the maximal elements. This

new maximum is achieved at n = 1, and we obtain

(1+α2)(a −b)2

9
4 − (a−b)2

4

= 4β2k2

9
4 +k2

.

Now, equating the value of (1+α2)(a −b)2, we have

4β2k2
(

1
4 − (a−b)2

4

)
1
4 +k2

=
4β2k2

(
9
4 − (a−b)2

4

)
9
4 +k2

.

This is equivalent to 4k2 + (a −b)2 = 0. But this is a contradiction since a < b.

It follows that T (a,b,α) is not equivalent to B(λ1, s,β) for any choice of (a,b,α) and

(λ1, s,β).

The case of “ s = 0”:

Having disposed of the case of s 6= 0, in what follows, we assume s = 0 with one exception in

the Proposition below.

Proposition 2.8. Suppose S is an operator on L2(T) for which the equation

SPλ,s(φ)−e iθPλ,s(φ)S = aBPλ,s(φ)S +aSPλ,s(φ)B , φ ∈ Möb, (2.8)

holds. Then



2.1. The associated representation is the direct sum of two representations from the
Continuous series 25

(a) if s 6= 0, then S = 0;

(b) if s = 0 and λ 6= 1, then S is a weighted shift operator on L2(T) with respect to the orthonor-

mal basis {zn} with weight sequence
{
αn = 1

λ+2n−1

}
and

(c) if s = 0 and λ= 1, then S is a weighted shift operator on L2(T) with respect to the orthonor-

mal basis {zn} with weight sequence {αn} where each αn = 0 except α−1.

Proof. Restricting the equation (2.8) to the subgroup of rotations of the group Möb, we see

that S is a weighted shift operator with respect to the orthonormal basis {zn} in L2(T). Let

{αn} be the weight sequence of S. Let φa ∈ Möb be an involution, i.e., φa(z) = − z−a
1−az , z ∈ D.

Restricting the equation (2.8) to involutions of the form φa , evaluating on the vector zm and

then taking inner product with the vector zn , we obtain

αn−1〈Pλ,s(φa)zm , zn−1〉+αm〈Pλ,s(φa)zm+1, zn〉 = a(αm +αn−1)〈Pλ,s(φa)zm+1, zn−1〉
Using the matrix coefficients of the representation Pλ,s(φa) from the equation (2.3), we have

the equality

αn−1
∑

k≥(m−n+1)+
Ck (m,n −1)r k −αm

∑
k≥(m−n+1)+

Ck (m +1,n)r k

= (αm +αn−1)
∑

k≥(m−n+2)+
Ck (m +1,n −1)r k . (2.9)

Proof of (a) : Substituting m = n−1 in the equation (2.9) and comparing the coefficient of r k ,

k ≥ 1, we get

αn−1Ck (n −1,n −1)−αn−1Ck (n,n) = 2αn−1Ck (n,n −1).

Substituting the values of Ck (n −1,n −1),Ck (n,n) and Ck (n,n −1), we obtain the equa-

tion

αn−1(λ+2µ−1) = 0.

Since µ= 1−λ
2 + s, it follows that

2sαn−1 = 0.

Therefore, if s 6= 0, then αn−1 = 0 for all n ∈Z. This completes the proof of (a).

Proof of (b) : Putting m = n in the equation (2.9) and comparing the coefficient of r, we have

αn−1(λ+2n −1) =αn(λ+2n +1) (2.10)

after substituting the values C1(n,n −1) and C1(n +1,n). If λ= 1, then putting n = 0 we

get α0 = 0. This recursion makes αn = 0 for all n except for n = −1. Thus α−1 remains

arbitrary completing the proof of part (b).
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Proof of (c) : Now assume that λ 6= 1. Then αn = 1
λ+2n+1 is a solution to the recursion (2.10).

Equating the coefficient of r k in the equation (2.9) and substituting the values of Ck (m,n−
1), Ck (m +1,n), Ck (m +1,n −1), we obtain

αn−1(λ+2n −1) =αm(λ+2m +1).

Thus αn = 1
λ+2n+1 is a solution of this recursion. This shows that S satisfies (2.8) for any

involution φa , a ∈ D. Also S satisfies (2.8) for the subgroup of rotations φθ. Since any

elements of Möb is composition ofφθ andφa for some θ and a, it follows that S satisfies

(2.8) for every element of Möb. This completes the proof of part (c).

Let S[λ] be the weighted shift operator on L2(T) with respect to the orthonormal basis

{zn} with weight sequence
{ 1
λ+2n−1

}
. Also, let

B(λ,α) : L2(T)⊕L2(T) → L2(T)⊕L2(T), B(λ,α) :=
[

B αS[λ]

0 B

]
, α ∈C.

Corollary 2.9 (Theorem 1.11). The operator B(λ,α) is homogeneous with associated represen-

tation Pλ,0 ⊕Pλ,0 with λ 6= 1.

Theorem 2.10. For every fixed but arbitraryλ,αwith−1 <λ< 1 andα> 0, the operator B(λ,α)

is irreducible.

Proof. Let H(n) and Bn be as in Theorem 2.5. Clearly, T maps H(n) to H(n + 1). Let Tn :=
T|H(n). The matrix representation of Tn is of the form[

1 α
λ+2n+1

0 1

]
.

Let An = T ∗
n Tn and Bn = Tn−1T ∗

n−1. Then both An and Bn are operators on H(n). The matrix

representation of An with respect to the orthonormal basis Bn is[
1 α

λ+2n+1
α

λ+2n+1
α2

(λ+2n+1)2 +1

]
.

Since determinant of An is 1 and An 6= I , the eigenvalues of An are of the form λ2
n and 1

λ2
n

for some real number λn > 1. Then λ2
n + 1

λ2
n
= 2+ α2

(λ+2n+1)2 and consequently
(
λn − 1

λn

)2 =
α2

(λ+2n+1)2 . This implies that if λ 6= 0, then λn are distinct and if λ = 0, then λn = −λ−n−1. Also

from a straight forward computation we see that AnBn−Bn An 6= 0, for all n ≥ 1. Now repeating

the same argument as in Theorem 2.5 we conclude that B(λ,α) must be irreducible.
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Now we have another class of irreducible homogeneous operators, {B(λ,α) : −1 <λ< 1,α} ,

whose associated representation is Pλ,0⊕Pλ,0. Clearly, B(λ,α) and B(λ, |α|) are unitarily equiv-

alent.

Proposition 2.11. Let α1,α2 > 0 and −1 <λ1,λ2 < 1. The operators B(λ1,α1) and B(λ2,α2) are

unitarily equivalent if and only if λ1 =λ2 and α1 =α2.

Proof. Assume that the operators B(λ1,α1) and B(λ2,α2) are unitarily equivalent. We infer,

from a similar argument as in Theorem 2.6, that λ1 =λ2.

Since the set of singular values of B(λ,α1) and B(λ,α2) must be the same, it follows

that the maximal elements of the two sets
{

α2
1

(λ+2n+1)2 : n ∈Z
}

and
{

α2
2

(λ+2n+1)2 : n ∈Z
}

, which

are achieved at n = 0, must be the same. Therefore equating them we have α1 =α2.

We have therefore shown that the set of homogeneous operators

P0 = {B(λ,α) : −1 <λ< 1,α> 0}

is irreducible and mutually unitarily inequivalent. In summary, we have proved the following

theorem.

Theorem 2.12. (a) The homogeneous operators in the two sets P and P0 are mutually uni-

tarily inequivalent.

(b) The homogeneous operators in the two sets C and P0 are mutually unitary inequivalent.

Proof. The proof of the statement in (a) is similar to the proof of the Theorem 2.6 and the

proof of the statement in (b) is similar to the proof of the Theorem 2.7.

2.1.2 Classification

Theorem 2.13. Let π1 = Rλ1,µ1 and π2 = Rλ2,µ2 be two representations from the continuous

series excluding P1,0 acting on the Hilbert spaces H1 and H2, respectively. Assume that (λ1,µ1) 6=
(λ2,µ2). Suppose

T =
[

T1 S1

S2 T2

]
is a homogeneous operator on H = H1 ⊕H2 with associated representation π1 ⊕π2. Then either

S1 = 0 or S2 = 0. Furthermore, S1 = 0 and S2 = 0 except when Rλ1,µ1 = Pλ,s and Rλ2,µ2 = Pλ,−s .

Proof. Since T is a homogeneous operator with associated representation π1 ⊕π2, we have

φ(T ) = (π1(φ)∗⊕π2(φ)∗)T (π1(φ)⊕π2(φ)), φ ∈ Möb.
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For φθ,a in Möb, this is equivalent to the four equations listed below:

e iθπ1(φθ,a)(T1 −aI ) = T1π1(φθ,a)(I −aT1)−aS1π2(φθ,a)S2 (2.11)

S1π2(φθ,a)−e iθπ1(φθ,a)S1 = aT1π1(φθ,a)S1 +aS1π2(φθ,a)T2 (2.12)

S2π1(φθ,a)−e iθπ2(φθ,a)S2 = aS2π1(φθ,a)T1 +aT2π2(φθ,a)S2 (2.13)

e iθπ2(φθ,a)(T2 −aI ) = T2π2(φθ,a)(I −aT2)−aS2π1(φθ,a)S1. (2.14)

Let 〈., .〉i denote the inner product of Hi . We know that {zn : n ∈ Z} is an orthogonal basis of

Hi . Let φθ ∈ Möb be such that φθ(z) = e iθz. Then

πi (φθ)zn = e
−i

(
n+λi

2

)
θ

zn

for all n ∈Z and i = 1,2. Since −1 < λ1−λ2
2 < 1, the only possible integer value for λ1−λ2

2 is 0, it

follows that there exists a θ such that

(i) for any pair n,m ∈Z, e
−i

(
n+λ1

2

)
θ 6= e

−i
(
m+λ2

2

)
θ

, whenever λ1 6=λ2;

(ii) e
−i

(
n+λi

2

)
θ 6= e

−i
(
m+λi

2

)
θ

for i = 1,2, whenever n 6= m.

Fix a θ as above. Evaluating the equation (2.11) on zn for φθ, we get

π1(φθ)T1zn = e
−i

(
n+1+λ1

2

)
θ

T1zn .

This proves that T1 is a weighted shift operator with respect to the orthonormal basis
{

zn

‖zn‖1

}
.

Let {un} be the weight sequence of T1.

Similarly, it may be shown that T2 is a weighted shift operator with respect to the or-

thonormal basis
{

zn

‖zn‖2

}
. Let {vn} be the weight sequence of T2.

Evaluating the equation (2.12) on zn and putting φ=φθ, we obtain

π1(φθ)S1zn = e
−i

(
n+1+λ2

2

)
θ

S1zn . (2.15)

If λ1 6= λ2, then the equation (2.15) implies that S1zn = 0, n ∈ Z. Consequently, S1 = 0. Sim-

ilarly, it can be shown that S2 = 0, whenever λ1 6= λ2. Therefore, the proof, in this case, is

complete and we may assume, without loss of generality, that λ :=λ1 =λ2.

The existence of a sequence {αn : n ∈ Z} such S1e2
n = αne1

n+1, where e i
n = zn

‖zn‖i
, i = 1,2,

follows from the equation (2.15). Now evaluating equation (2.12) on the vector e2
m , putting

φ=φa and then taking inner product with e1
n , we get

αn−1
〈
π2(φa)e2

m ,e2
n−1

〉+αm
〈
π1(φa)e1

m+1,e1
n

〉
= aαmun−1

〈
π1(φa)e1

m+1,e1
n−1

〉+avmαn−1
〈
π2(φa)e2

m+1,e2
n−1

〉
.
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Using the matrix coefficient of Rλ,µi (φa) (see [9, p. 316]), we obtain

αn−1
‖zn−1‖2

‖zm‖2
|φ′

a(0)|µ2
∑

k≥(m−n+1)+
C 2

k (m,n−1)r k−αm
‖zn‖1

‖zm+1‖1
|φ′

a(0)|µ1
∑

k≥(m−n+1)+
C 1

k (m+1,n)r k

= vmαn−1
‖zn−1‖2

‖zm+1‖2
|φ′

a(0)|µ2
∑

k≥(m−n+2)+
C 2

k (m +1,n −1)r k

+αmun−1
‖zn−1‖1

‖zm+1‖1
|φ′

a(0)|µ1
∑

k≥(m−n+2)+
C 1

k (m +1,n −1)r k , (2.16)

where C i
k (m,n) =

(
−λ−µi −m

k +n −m

)(
−µi +m

k

)
, i = 1,2. Putting m = n −1, we have

αn−1(1− r )(µ2−µ1)
∑
k≥0

C 2
k (n −1,n −1)r k −αn−1

∑
k≥0

C 1
k (n,n)r k

= vn−1αn−1
‖zn−1‖2

‖zn‖2
(1− r )(µ2−µ1)

∑
k≥1

C 2
k (n,n −1)r k

+αn−1un−1
‖zn−1‖1

‖zn‖1

∑
k≥1

C 1
k (n,n −1)r k .

Differentiating this equation with respect to r and then substituting r = 0, we get

vn−1αn−1
‖zn−1‖2

‖zn‖2
(−µ2 +n)+αn−1un−1

‖zn−1‖1

‖zn‖1
(−µ1 +n)

=αn−1[(µ2 −µ1)(λ+µ2 +µ1 −1)+ (λ+2n −1)].

It follows that if αn−1 6= 0, then

vn−1
‖zn−1‖2
‖zn‖2

(−µ2+n)+un−1
‖zn−1‖1
‖zn‖1

(−µ1+n) = (µ2−µ1)(λ+µ2+µ1−1)+(λ+2n−1),n ∈Z. (2.17)

The existence of a sequence {βn} such that S2e1
n = βne2

n+1, n ∈Z, follows from a similar com-

putation. As before, for the sequence βn−1, we also have

vn−1βn−1
‖zn−1‖2

‖zn‖2
(−µ2 +n)+βn−1un−1

‖zn−1‖1

‖zn‖1
(−µ1 +n)

=βn−1[(µ1 −µ2)(λ+µ2 +µ1 −1)+ (λ+2n −1)].

It follows that if βn−1 6= 0, then

vn−1
‖zn−1‖2
‖zn‖2

(−µ2+n)+un−1
‖zn−1‖1
‖zn‖1

(−µ1+n) = (µ1−µ2)(λ+µ2+µ1−1)+(λ+2n−1),n ∈Z. (2.18)

Equating the right hand sides of equations (2.17) and (2.18), we get µ1 = µ2, contradicting

our hypothesis that µ1 6= µ2. Therefore, we can find an integer n such that either αn−1 = 0 or

βn−1 = 0. Assume that αp = 0, for some integer p.
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Now putting m = n in the equation (2.16), we get

αn−1
‖zn−1‖2

‖zn‖2
(1− r )(µ2−µ1)

∑
k≥1

C 2
k (n,n −1)r k −αn

‖zn‖1

‖zn+1‖1

∑
k≥1

C 1
k (n,n −1)r k

= vnαn−1
‖zn−1‖2

‖zn+1‖2
(1− r )(µ2−µ1)

∑
k≥2

C 2
k (n +1,n −1)r k

+αn vn−1
‖zn−1‖1

‖zn+1‖1

∑
k≥2

C 1
k (n +1,n −1)r k .

Differentiating with respect to r, then putting r = 0 and substituting the values of C 2
1 (n,n −1)

and C 1
1 (n,n −1), we get

αn−1
‖zn−1‖2

‖zn‖2
(−µ2 +n) =αn

‖zn‖1

‖zn+1‖1
(−µ1 +n).

In this recursion, for all n ∈ Z, the coefficients of αn−1, αn are non zero. Thus if αp = 0 for

some integer p, then αn = 0 for all n ∈Z and consequently, S1 = 0.

Similarly, if βp = 0 for some p, then S2 = 0. This completes the proof of the first part of

the Theorem.

Now assume that S2 = 0. Then [5, Proposition 2.4] implies that Ti ’s are homogeneous

operators with associated representation πi . Since all the homogeneous shifts are known, the

weights of T1 and T2 are therefore known.

Suppose S1 6= 0. Then one of the weights of S1 must be non-zero. Choose, without loss

of generality, αn−1 6= 0 for some n ∈Z. For this choice of αn−1, we have equation (2.17).

(a) Assume that both π1 and π2 are from the Complementary series, that is, πi =Cλ,σi , where

0 <σi < 1
2 (1−|λ|) and µi = 1−λ

2 +σi , i = 1,2. In this case, we have
‖zn−1‖2

i

‖zn‖2
i

= λ+µi+n−1
−µi+n , i =

1,2. Since Ti are homogeneous operators with associated representation Cλ,σi , T −1
i

∗
is

also homogeneous with the same associated representation and we have the following

possibilities for the weight sequences.

(i) For n ∈Z, assume that un−1 = ‖zn‖1
‖zn−1‖1

and vn−1 = ‖zn‖2
‖zn−1‖2

. Substituting these values

of un−1 and vn−1 in the equation (2.17) we get

(σ2 +σ1)(σ2 −σ1 +1) = 0.

This is a contradiction since 0 <σi < 1
2 (1−|λ|) by assumption.

(ii) For all n ∈ Z, assume that un−1 = ‖zn−1‖1
‖zn‖1

and vn−1 = ‖zn‖2
‖zn−1‖2

. Substituting these

values of un−1 and vn−1 in the equation (2.17), we get

(µ2 −µ1)(σ1 +σ2 +1) = 0.

This is a contradiction since µ1 6=µ2 and σ1 +σ2 +1 > 0.
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(iii) For all n ∈ Z, assume that un−1 = ‖zn‖1
‖zn−1‖1

and vn−1 = ‖zn−1‖2
‖zn‖2

. Substituting these

values of un−1 and vn−1 in the equation (2.17), we get

(σ2 −σ1)(σ1 +σ2 −1) = 0.

This is a contradiction since σ2 −σ1 6= 0 and σ2 +σ1 −1 < 0.

(iv) For all n ∈ Z, assume that un−1 = ‖zn−1‖1
‖zn‖1

and vn−1 = ‖zn−1‖2
‖zn‖2

. Substituting these

values of un−1 and vn−1 in the equation (2.17), we get

σ2 −σ1 = 1.

This is a contradiction since 0 <σi < 1
2 (1−|λ|).

Combining (i) – (iv), we find that there does not exists any n for which αn−1 6= 0 and we

conclude that S1 = 0 in this case.

(b) Let π1 =Cλ,σ for some 0 < σ< 1
2 (1−|λ|) and π2 = Pλ,s where s is purely imaginary. Now,

µ1 = 1−λ
2 +σ and µ2 = 1−λ

2 + s. Since the representation space of π2 is L2(T), ‖zn‖2 = 1,

for all n ∈Z.

Recall that there are two homogeneous operators whose associated representation is

π2, one is the unweighted bilateral shift and the other one is the weighted shift with

weight sequence
{

vn−1 = −µ2+n+2s
−µ2+n

}
. As before, we consider four different possibilities

that arise in this case. In each of these cases, a contradiction is obtained by noting that

s is purely imaginary.

(i) For all n ∈Z, assume that vn−1 = 1 and un−1 = ‖zn‖1
‖zn−1‖1

. Substituting these values of

un−1 and vn−1 in the equation (2.17) we get s2 −σ2 +σ+ s = 0.

(ii) For all n ∈Z, assume that vn−1 = 1 and un−1 = ‖zn−1‖1
‖zn‖1

. Substituting these values of

un−1 and vn−1 in the equation (2.17) we get (s −σ)(s +σ+1) = 0.

(iii) For all n ∈ Z, assume that vn−1 = −µ2+n+2s
−µ2+n and un−1 = ‖zn‖1

‖zn−1‖1
. Substituting these

values of un−1 and vn−1 in the equation (2.17) we get s2 −σ2 +σ− s = 0.

(iv) For all n ∈ Z, assume that vn−1 = −µ2+n+2s
−µ2+n and un−1 = ‖zn−1‖1

‖zn‖1
. Substituting these

values of un−1 and vn−1 in the equation (2.17) we get s2 −σ2 −σ− s = 0.

Combining (i) - (iv), again in this case, we see that S1 = 0.

(c) For i = 1,2, assume that πi = Pλ,si are two Principal series representations. We have the

following four cases to consider.
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(i) For all n ∈Z, assume that un−1 = −µ1+n+2s1
−µ1+n and vn−1 = 1. Substituting these values

of un−1 and vn−1 in the equation (2.17) we get (s2 − s1)(s2 + s1 + 1) = 0. This is a

contradiction since s1 6= s2.

(ii) For all n ∈ Z, assume that un−1 = 1 and vn−1 = −µ2+n+2s1
−µ2+n . Substituting these val-

ues of un−1 and vn−1 in the equation (2.17) we get s2
2 − s2

1 + s1 − s2 = 0. This is a

contradiction since s1 6= s2.

(iii) For all n ∈ Z, assume that un−1 = −µ1+n+2s1
−µ1+n and vn−1 = −µ2+n+2s1

−µ2+n . Substituting

these values of un−1 and vn−1 in the equation (2.17) we get s2
2 − s2

1 = s2 + s1. Since

s1 6= s2 and both of them are purely imaginary, it follows, from the preceding equa-

tion, that s2 =−s1.

(iv) For all n ∈Z, assume that un−1 = 1 and vn−1 = 1. Substituting these values of un−1

and vn−1 in the equation (2.17), we get s2
2−s2

1+s2+s1 = 0. We conclude that s2 =−s1

exactly as before.

The proof is complete by putting together the results of the three cases (a) - (c).

Proposition 2.14. Let Pλ,s be a representation from the Principal series with s 6= 0. If S is any

operator on L2(T) such that

SPλ,s(φ)−e iθPλ,s(φ)S = aB(s)Pλ,s(φ)S +aSPλ,s(φ)B(s), φ ∈ Möb, (2.19)

then S = 0.

Proof. The operator S must be an weighted shift with respect to the orthonormal basis {zn :

n ∈Z} in L2(T) as before. Let {αn} be the weight sequence of S. In the equation (2.19), substi-

tuting φ=φa , evaluating on zm and taking inner product with zn , we obtain

αn−1
〈

Pλ,s(φa)zm , zn−1〉+αm
〈

Pλ,s(φa)zm+1, zn〉= a(αm wn−1+wmαn−1)
〈

Pλ,s(φa)zm+1, zn−1〉 .

Using the matrix coefficients of Pλ,s(φa) and putting m = n −1, we get

αn−1
∑
k≥0

Ck (n −1,n −1)r k −αn−1
∑
k≥0

Ck (n,n)r k = 2αn−1wn−1
∑
k≥1

Ck (n,n −1)r k .

Now comparing the coefficient of r, we have 2αn−1s = 0. Since s 6= 0, it follows that αn−1 = 0.

This implies that S = 0.

Corollary 2.15. If T is a homogeneous operator with associated representation Pλ,s⊕Pλ,s , where

s 6= 0, then, upto unitary equivalence, T must be of the form[
B(s) α(B(s)−B)

0 B

]
,

[
B(s) 0

0 B(s)

]
or

[
B 0

0 B

]
.
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Proof. Let T be a homogeneous operator with associated representation Pλ,s ⊕Pλ,s . Recall

that Pλ,s and Pλ,−s are unitarily equivalent via the unitary operator Uλ,s . Clearly, the opera-

tor
(
I ⊕Uλ,s

)
T

(
I ⊕U∗

λ,s

)
is homogeneous with associated representation Pλ,s ⊕Pλ,−s . Then

Theorem 2.13 implies that
(
I ⊕Uλ,s

)
T

(
I ⊕U∗

λ,s

)
is of the form

[
T̃1 S̃1

0 T̃2

]
on L2(T)⊕L2(T),

therefore the operator T is also of the form

[
T1 S1

0 T2

]
on L2(T)⊕ L2(T). Now [5, Proposi-

tion 2.4] and [5, Lemma 2.5] imply that T1 and T2 are homogeneous operators with associated

representation Pλ,s and S satisfies

Sπλ,s(φ)−e iθπλ,s(φ)S = aT1πλ,s(φ)S +aSπλ,s(φ)T2.

Since B(s) and B are the only homogeneous operators with associated representation Pλ,s ,

the proof is complete applying Proposition 2.3, Proposition 2.8 and Proposition 2.14.

Now we characterize all homogeneous operators whose associated representation is

Pλ,0 ⊕Pλ,0 with λ 6= 1.

Letσ= Pλ,0⊕Pλ,0. For all i , j ∈Z, letσi , j = Piσ|H( j ) where Pi is the orthogonal projection

of L2(T)⊕ L2(T) onto H(i ), the K-isotypic subspace of σ as in Theorem 2.5. Then σi , j is a

map from H( j ) to H(i ), i , j ∈ Z. Let P i , j
λ,0 be the map from the subspace of L2(T) spanned

by the vector
{

z j
}

to the subspace of L2(T) spanned by the vector
{

zi
}

defined by P i , j
λ,0(z j ) =〈

P i , j
λ,0z j , zi

〉
zi . Then

σi , j (φ)

(
az j

bz j

)
=

〈
Pλ,0(φ)z j , zi

〉(
azi

bzi

)
, (2.20)

for all a,b ∈C. Recall that the matrix coefficient of Pλ,0 is〈
Pλ,0(φa)zm , zn〉= c(−1)n(a)n−m

∑
k≥(m−n)+

Ck (m,n)r k (2.21)

where r = |a|2, c =φ′
a(0)λ/2|φ′

a(0)|µ and Ck (m,n) =
(
−λ−µ−m

k +n −m

)(
−µ+m

k

)
.

Definition 2.16. Let Am,n ⊂ (−1,1) be the set of all zeros of the power series
∑

k≥(m−n)+
Ck (m,n)r k .

Since for every n,m ∈Z, the radius of convergence of the power series
∑

k≥(m−n)+
Ck (m,n)r k

is 1, it follows Am,n is countable. Thus the set A = ⋃
m,n∈Z

Am,n is also countable. Therefore,

there exists b ∈ (0,1) \ A such that
〈

Pλ,0(φb)zm , zn
〉 6= 0, for all n,m ∈Z. In the following, we fix

this φb and let en denote the function zn .

Now assume that u0, v0 are two non-zero mutually orthogonal vectors in H(0). Define

un =σn,0(φb)u0, vn =σn,0(φb)v0 for all n 6= 0. Then each of the vectors un , vn are non-zero.
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Lemma 2.17. The set of vectors {un , vn}n∈Z is a complete orthogonal set of L2(T)⊕L2(T).

Proof. As un , vn ∈ H(n) for every n ∈Z and H(n) is orthogonal to H(m), so {un , vn} is orthog-

onal to {um , vm}, if n 6= m. Now we will show that un is orthogonal to vn , n ∈ Z. From the

definition of σn,0(φb) : H(0) → H(n) obtained from (2.20) and a similar one for σn,0(φb)∗ :

H(n) → H(0), we have

σn,0(φb)∗σn,0(φb) = |〈Pλ,0(φb)e0,en
〉 |2I d .

Consequently,

〈un , vn〉 =
〈
σn,0(φb)u0,σn,0(φb)v0

〉
= 〈

σn,0(φb)∗σn,0(φb)u0, v0
〉

= |〈Pλ,0(φb)e0,en
〉 |2 〈u0, v0〉 = 0.

Since H(n) is spanned by {un , vn} and L2(T)⊕L2(T) =⊕n∈ZH(n), it follows that {un , vn}n∈Z is

a complete orthogonal set.

Now let H1 be the subspace of L2(T)⊕L2(T) spanned by the set of vectors {un}n∈Z and

H2 be the subspace of L2(T)⊕L2(T) spanned by the set of vectors {vn}n∈Z.

Lemma 2.18. The subspaces H1 and H2 are invariant under σ. Moreover, σ|Hi is equivalent to

Pλ,0 for i = 1,2.

Proof. Let K be the set of all rotations in Möb. If k ∈ K, then σ(k) is a scalar multiple of the

identity on each H(n). Thus each Hi is invariant under σ(k), k ∈K.

Pick a ψ in Möb which is not inK. For all i , j , note that
〈

Pλ,0(φb)z j , zi
〉 6= 0, and

σi , j (ψ) =
〈

Pλ,0(ψ)e j ,ei
〉〈

Pλ,0(φb)e j ,ei
〉σi , j (φ).

Since

σ0, j (φb)σ j ,0(φb) = 〈
Pλ,0(φb)e0,e j

〉〈
Pλ,0(φb)e j ,e0

〉
Id,

it follows that σ0, j (φb)u j is in the span of {u0}. Therefore,

σi , j (φb)u j =
〈

Pλ,0(φb)e j ,ei
〉〈

Pλ,0(φb)e j ,e0
〉〈

Pλ,0(φb)e0,ei
〉σi ,0(φb)σ0, j (φb)u j

is a scalar multiple of ui . This implies that

σi , j (ψ)u j =
〈

Pλ,0(ψ)e j ,ei
〉〈

Pλ,0(φb)e j ,ei
〉σi , j (φb)u j
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is a scalar multiple of ui . We conclude that σ(ψ)u j =
∑

i∈Zσi , j (ψ)u j is in H1, proving that H1

is invariant under σ. A similar argument shows that H2 is invariant under σ.

Let tn ∈R be such that
〈

Pλ,0(φb)e0,en
〉

= e i tn |〈Pλ,0(φb)e0,en
〉 |. Now if ψ is any element

in Möb, then

〈
σ(ψ)u j ,ui

〉= 〈
σi , j (ψ)u j ,ui

〉= 〈
Pλ,0(ψ)e j ,ei

〉〈
Pλ,0(φb)e0,e j

〉〈
Pλ,0(φb)e0,ei

〉‖u0‖2

= 〈
Pλ,0(ψ)e j ,ei

〉
e i t j |〈Pλ,0(φb)e0,e j

〉 | e−i ti |〈Pλ,0(φb)e0,ei
〉 |‖u0‖2.

Find a,b ∈C, such that u0 =
(ae0

be0

)
and note that

un =σn,0(φb)u0 =
〈

Pλ,0(φb)e0,en
〉(

aen

ben

)
and ‖un‖ = |〈Pλ,0(φb)e0,en

〉 |‖u0‖.

The set of vectors {ûi }, ûi = e−i ti ui
‖ui ‖ is an orthonormal basis of H1. From the preceding com-

putation, we see that
〈
σ(ψ)û j , ûi

〉
=

〈
Pλ,0(ψ)e j ,ei

〉
. It is now evident thatσ|H1 is equivalent to

Pλ,0. Similarly, it can be seen that σ|H2 is equivalent to Pλ,0.

Suppose T is a homogeneous operator with associated representation σ. Since H(n) is

a K-isotypic subspace of σ and σ is associated with T , therefore, we have T (H(n)) ⊆ H(n +1)

( [9, Theorem 5.1]). Let Tn := T|H(n). We first prove that each Tn is invertible.

Lemma 2.19. For every n ∈Z, the operator Tn is invertible.

Proof. Let ψ(z) = e iθ z−a
1−az . The homogeneity of T implies that

e iθσ(ψ)T −ae iθσ(ψ) = Tσ(ψ)−aTσ(ψ)T.

From this equation, using the orthogonality of the subspaces H(n), we have

e iθσi+1,n+1(ψ)Tn −ae iθσi+1,n(ψ) = Tiσi ,n(ψ)−aTiσi ,n+1(ψ)Tn , (2.22)

for all i ,n ∈Z.

For all i , j ∈ Z, the operator σi , j (φb) is invertible. Substituting i = n and ψ = φb in the

equation (2.22), we get

bσn+1,n(φb)+σn+1,n+1(φb)Tn = Tnσn,n(φb)−bTnσn,n+1(φb)Tn .

If there exists hn ∈ H(n) such that Tnhn = 0, then from the equation appearing above, we have

bσn+1,n(φb)hn = 0

and consequently, hn = 0. This proves that Tn is invertible.
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Theorem 2.20. Suppose T is a homogeneous operator with associated representation σ. Then

there exists H1 and H2 such that L2(T)⊕L2(T) = H1⊕H2, T (H1) ⊆ H1. The subspaces Hi , i = 1,2,

are invariant under σ and σ|Hi is unitarily equivalent to Pλ,0.

Proof. There existsλ0 ∈C and a pair of orthonormal vectors u0, v0 in H(0) such that the vector

u0 is an eigenvector for the operator σ1,0(φb)−1T0 with eigenvalue λ0, that is,

σ1,0(φb)−1T0u0 =λ0u0.

Now, define

un =σn,0(φb)u0, vn =σn,0(φb)v0

for all n ∈ Z. Suppose H1 and H2 are the closed subspaces spanned by {un}n∈Z and {vn}n∈Z,

respectively. Then by Lemma 2.17, L2(T)⊕L2(T) = H1 ⊕ H2 and by Lemma 2.18, each Hi is

invariant under σ such that σ|Hi is equivalent to Pλ,0. Now we show that T (H1) ⊆ H1.

We have T0u0 = λ0σ1,0(φb)u0, which is a scalar multiple of the vector u1. An inductive

argument given below shows that Tnun is a scalar multiple of the vector un+1 for every n ∈Z.

Assume that Tk uk = λk+1uk+1 for some λk+1 ∈ C, k ≥ 0. Let Ak = ⋃
0≤i , j≤k+2

Ai , j , where

Ai , j are described in Definition 2.16. Since 0 is not a limit point of any Ai , j , there exists rk ∈
(0,1) such that

〈
Pλ,0(φa)z j , zi

〉 6= 0, 0 ≤ i , j ≤ k +2, for all a ∈ D with 0 < |a| < rk . Combining

the two equalities

σk+1,0(φb) =
〈

Pλ,0(φb)e0,ek+1
〉〈

Pλ,0(φb)e0,ek
〉〈

Pλ,0(φb)ek ,ek+1
〉σk+1,k (φb)σk,0(φb)

and

σk+1,k (φb) =
〈

Pλ,0(φb)ek ,ek+1
〉〈

Pλ,0(φa)ek ,ek+1
〉σk+1,k (φa), |a| < rk ,

we have Tk uk =λk+1(a)σk+1,k (φa)uk , where

λk+1(a) =λk+1

〈
Pλ,0(φb)e0,ek+1

〉〈
Pλ,0(φb)ek ,ek+1

〉〈
Pλ,0(φb)e0,ek

〉〈
Pλ,0(φb)ek ,ek+1

〉〈
Pλ,0(φa)ek ,ek+1

〉 .

For every φa with |a| < rk , this proves the existence of λk+1(a) ∈C such that

Tk uk =λk+1(a)σk+1,k (φa)uk .

Now, for every φa with |a| < rk , substituting n = k, i = k +1 in the equation (2.22), and then

evaluating on the vector uk , we get

aσk+2,k (φa)uk −λk+1(a)σk+2,k+1(φa)σk+1,k (φa)uk

= Tk+1σk+1,k (φa)uk −aλk+1(a)
〈

Pλ,0(φa)ek+1,ek+1
〉

Tk+1σk+1,k (φa)uk .
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The equality below is easily verified using the definition of the σi , j :

σk+2,k (φa) =
〈

Pλ,0(φa)ek ,ek+2
〉〈

Pλ,0(φa)ek ,ek+1
〉〈

Pλ,0(φa)ek+1,ek+2
〉σk+2,k+1(φa)σk+1,k (φa).

In consequence, we have

(
a

〈
Pλ,0(φa)ek ,ek+2

〉〈
Pλ,0(φa)ek ,ek+1

〉〈
Pλ,0(φa)ek+1,ek+2

〉 −λk+1(a)

)
σk+2,k+1(φ)a)φk+1,k (φa)uk

= (
1−aλk+1(a)

〈
Pλ,0(φa)ek+1,ek+1

〉)
Tk+1σk+1,k (φa)uk . (2.23)

Suppose (
a

〈
Pλ,0(φa)ek ,ek+2

〉〈
Pλ,0(φa)ek ,ek+1

〉〈
Pλ,0(φa)ek+1,ek+2

〉 −λk+1(a)

)
6= 0

and (
1−aλk+1(a)

〈
Pλ,0(φa)ek+1,ek+1

〉) 6= 0

for all φa with |a| < rk . Then we have

|a|2 〈
Pλ,0(φa)ek ,ek+2

〉〈
Pλ,0(φa)ek+1,ek+1

〉= 〈
Pλ,0(φa)ek ,ek+1

〉〈
Pλ,0(φa)ek+1,ek+2

〉
for all |a| < rk .

Now, using the matrix coefficient for Pλ,0(φa), we obtain

r

( ∑
n≥0

Cn(k,k +2)r n
)( ∑

n≥0
Cn(k +1,k +1)r n

)
=

( ∑
n≥0

Cn(k,k +1)r n
)( ∑

n≥0
Cn(k +1,k +2)r n

)

for all 0 ≤ r ≤ r 2
k . Putting r = 0 we arrive at a contradiction.

We can therefore find φa with 0 < |a| < rk such that

(
a

〈
Pλ,0(φa)ek ,ek+2

〉〈
Pλ,0(φa)ek ,ek+1

〉〈
Pλ,0(φa)ek+1,ek+2

〉 −λk+1(a)

)
6= 0

and hence (
1−aλk+1(a)

〈
Pλ,0(φa)ek+1,ek+1

〉) 6= 0

as both σk+2,k+1(φa) and Tk+1 are invertible. Since 0 < |a| < rk , it follows from (2.23) that

Tk+1uk+1 is a scalar multiple of the vector uk+2 completing half the induction argument.

A similar but slightly different proof gives the other half of the induction argument,

namely, T −1−n u−n+1 is a scalar multiple of {u−n} for all n ∈N.
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Corollary 2.21. If T is a homogeneous operator with associated representation Pλ,0⊕Pλ,0, then

T is unitarily equivalent to one of the following operator[
B αS[λ]

0 B

]
,

[
B 0

0 B

]
,

where S[λ] is the weighted shift on L2(T) with respect to the orthonormal basis
{

zn : n ∈Z}
with

weight sequence
{ 1
λ+2n+1 : n ∈Z}

.

Proof. The proof follows form Theorem 2.20 and Proposition 2.8

2.2 The associated representation is the direct sum of three

irreducible representations

Now, we will prove that every homogeneous operator whose associated representation is π=
π1⊕π2, whereπ1 is from the irreducible Continuous series representations andπ2 is the direct

sum of a holomorphic and an anti-holomorphic Discrete series representation, is reducible.

Let π1 = Rλ,µ and H1 be the representation space of π1. Let e1
n = zn

‖zn‖1
. Recall that {e1

n : n ∈Z} is

an orthonormal basis of the representation space H1. Let π2 = D+
λ1

⊕D−
λ2

for a pair of positive

real numbers λ1,λ2. However, the multipliers of all the three representations π1, D+
λ1

and D−
λ2

must be the same. In consequence, λ1 +λ2 is an even integer (see Corollary 1.15), therefore

λ1 =λ+2m and λ2 = 2−λ+2k, −1 <λ≤ 1.

Let H (λ+2m) be the representation space of D+
λ+2m and H (2−λ+2k) be the representation

space of D−
2−λ+2k . Let H2 = H (λ+2m) ⊕H (2−λ+2k). Define

e2
n :=

(
zn

‖zn‖λ+2m

0

)
, n ≥ 0 and e2

−n :=
(

0
zn−1

‖zn−1‖2−λ+2k

)
, n ≥ 1.

The set of vectors {e2
n : n ∈Z} is an orthonormal basis of H2. Let φθ be a rotation in Möb. Then

π1(φθ)e1
n = e

−i
(
n+λ

2

)
θ

e1
n , n ∈Z.

Also, it is easy to see that

π2(φθ)e2
n = e

−i
(
n+m+λ

2

)
θ

e2
n , n ≥ 0 and π2(φθ)e2

−n = e
i
(
n+k−λ

2

)
θ

e2
−n , n ≥ 1.

Clearly, there exists a θ such that e
−i

(
n+m+λ

2

)
θ 6= e

i
(
p+k−λ

2

)
θ

for all n ≥ 0, p ≥ 1 and if n1 6= n2,

then e
−i

(
n1+λ

2

)
θ 6= e

−i
(
n2+λ

2

)
θ

.
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Theorem 2.22. Suppose T =
[

T1 S1

S2 T2

]
is a homogeneous operator with associated represen-

tation π1 ⊕π2, where π1 = Rλ,µ is from the Continuous series excluding P1,0 and π2 = D+
λ+2m ⊕

D−
2−λ+2k . Then S1 = 0.

Proof. Homogeneity of T implies that the operators Ti and Si satisfy equations (2.11), (2.12),

(2.13) and (2.14). Repeating an argument similar to the one in Theorem 2.13, we find that T1

and T2 are weighted shifts with respect to the orthonormal basis {e1
n} and {e2

n}, respectively.

Let {un} and {vn} be the weight sequences of T1 and T2, respectively. It is easy to see that

v−1 = 0 unless either m = 0, k = 0, λ> 0 or m = 1, k =−1, λ< 0 .

Substituting φ=φθ in the equation (2.12), we obtain

π1(φθ)S1e2
n = e

−i
(
n+1+m+λ

2

)
θ

S1e2
n , n ≥ 0; π1(φθ)S1e2

−n = e
i
(
n−2+k+λ

2

)
θ

S1e2
−n , n ≥ 1.

In consequence,

(a) for n ≥ 0, there exists αn ∈C such that S1e2
n =αne1

n+m+1.

(b) for n ≥ 1, there exists α−n ∈C such that S1e2−n =α−ne1
−n−k+1.

Substituting φ = φa in the equation (2.12) and then evaluating at the vector e2
n , n ≥ 0, we

obtain

S1π2(φa)e2
n +αnπ1(φa)e1

n+m+1 = aαnT1π1(φa)e1
n+m+1 +avnS1π2(φa)e2

n+1.

For any integer p > 1, since S∗
1 e1

−p−k+1 is a scalar multiple of e2−p , it follows that〈
S1π2(φa)e2

n ,e1
−p−k+1

〉
=

〈
π2(φa)e2

n ,S∗
1 e1

−p−k+1

〉
= 0.

Taking inner product with e1
−p−k+1 and using the matrix coefficients of π1(φa), we get

αn‖z−p−k+1‖1
∑

i≥n+m+p+k
C 1

i (n +m +1,−p −k +1)r i

=−αnu−p−k‖z−p−k‖1
∑

i≥n+m+p+k+1
C 1

i (n +m +1,−p −k)r i .

Comparing the coefficient of r n+m+p+k , we get

αn‖z−p−k+1‖1C 1
n+m+p+k (n +m +1,−p −k +1) = 0

and this implies that αn = 0, because ‖z−p−k+1‖1C 1
n+m+p+k−1(n +m +1,−p −k +1) 6= 0. This

proves that S1e2
n = 0 for all n ≥ 0.
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To prove that S1e2−n = 0, n ≥ 1, we repeat the previous algorithm, namely, substitute

φ=φa in the equation (2.12), evaluate at the vector e2−n , n ≥ 1, take inner product with e1
p for

some positive integer p and finally, use the matrix coefficients of π1(φa) to conclude

α−n‖zp‖1
∑
k≥0

C 1
k (−n −k +1, p)r k =−α−nup−1‖zp−1‖1

∑
k≥0

C 1
k (−n −k +1, p −1)r k .

Equating the constant term on both sides of this equation, we get

α−n

[
up−1

‖zp−1‖1

‖zp‖1
+ (−λ−µ−p +1)

(p +n +k −1)

]
= 0.

Now, suppose there exists a subsequence (nm) such that α−nm 6= 0. Then

up−1
‖zp−1‖1

‖zp‖1
+ (−λ−µ−p +1)

(p +nm +k −1)
= 0,

for all nm . Therefore taking m →∞, we see that up−1
‖zp−1‖1
‖zp‖1

= 0. Hence α−n = 0 for all n ≥ 1,

leading to a contradiction, since we have assumed that α−nm 6= 0 for all m ≥ 1. Thus there

is no subsequence {nm} such that α−nm 6= 0, or in other words, there exists a natural number

N such that α−n = 0 for all n ≥ N . Repeating the algorithm of substituting φ = φa in the

equation (2.12), evaluating at the vector e2−n , 1 ≤ n < N , taking inner product with e1
−n−l−k+2,

where l : l > N −n, using the matrix coefficients of π1(φa) and finally comparing coefficients

of r l , we have

α−n‖z−n−l−k+1‖1C 1
l (−n −k +1,−n − l −k +1) = 0.

It follows that α−n = 0 for all 1 ≤ n < N . Therefore we have proved that S1 = 0.

Theorem 2.23. Suppose T =
[

T1 0

S2 T2

]
is a homogeneous operator and π1 ⊕π2 is the associ-

ated representation. Then S2 satisfies the equation (2.13). If π1 = Rλ,µ is from the Continuous

series representation excluding P1,0 and π2 = D+
λ+2m ⊕D−

2−λ+2k , then S2 = 0.

Proof. Substituting φ=φθ in the equation (2.13), we have

π2(φθ)S2e1
n = e

−i
(
n+1+λ

2

)
θ

S2e1
n , n ∈Z. (2.24)

Case I (m ≥ 1): Assume m ≥ 1. From the equation (2.24), only the following possibilities occur.

(a) There exists αn ∈C such that S2e1
n =αne2

n+1−m , n ≥ m −1 and S2e1
n = 0, 0 ≤ n < m −1.

(b) There exists α−n ∈C such that S2e1−n =α−ne2
−n+k+1, n > k +1 and S2e1−n = 0, 1 ≤ n ≤ k +1.
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Substituting φ = φa in the equation (2.13), evaluating at the vector e1
0, taking inner product

with e2
−n+k+1 for n > k +1 and lastly, using the matrix coefficient of π1(φa), we get

α−n‖z0‖−1
1

∑
k≥n

C 1
k (0,−n)r k =α−nu0‖z1‖−1

1

∑
k≥n+1

C 1
k (1,−n)r k .

Comparing the coefficients of r n , we see thatα−n = 0. Thus for every n ≥ 1, we have S2e1−n = 0.

To complete the proof, we have to show that S2e1
n = 0, n ≥ 0.

Substituting φ=φa in the equation (2.13), evaluating at the vector e1
−1, putting S2e1

−1 =
0, taking inner product with e1

n+1−m , for n ≥ m − 1 and then using the matrix coefficient of

π1(φa), we get

αn‖z−1‖−1
1

∑
k≥0

C 1
k (−1,n)r k =αnu−1‖z0‖−1

1

∑
k≥0

C 1
k (0,n)r k ,

Comparing the constant coefficients and the coefficients of r, respectively, we get

αn(−λ−µ+1)

‖z−1‖1(n +1)
= αnu−1

‖z0‖1
and

αn(µ+1)(−λ−µ+1)

‖z−1‖1(n +2)
= αnµu−1

‖z0‖1
.

These two equations together give

αn

[
(µ+1)

(n +2)
− µ

(n +1)

]
= 0.

Since (µ+1)
(n+2) 6=

µ
(n+1) , n ≥ 0, we must have αn = 0 for all n ≥ 0. This proves that S2e1

n = 0, n ≥ 0.

Case II (m = 0): Assume m = 0. In this case, λ> 0. From the equation (2.24), we see that

(a) there exists αn ∈C such that S2e1
n =αne2

n+1, n ≥−1;

(b) there existsα−n ∈C such that S2e1−n =α−ne2
−n+k+1, n > k+1 and S2e1−n = 0, 2 ≤ n ≤ k+1.

Repeating a similar computation as in the case of (m ≥ 1), we conclude that S2e1−n = 0, n ≥ 2.

Now we prove that αn = 0 for all n ≥ −1. Substituting φ = φa in the equation (2.13),

evaluating at the vector e1
−2, putting S2e1

−2 = 0, taking inner product with e2
n+1 and then using

the matrix coefficient of π1(φa), we get

αn‖z−2‖−1
1

∑
k≥0

C 1
k (−2,n)r k =αnu−2‖z−1‖−1

1

∑
k≥0

C 1
k (−1,n)r k .

Comparing the constant coefficient and the coefficient of r respectively, we obtain

αn(−λ−µ+2)

‖z−2‖1(n +2)
= αnu−2

‖z−1‖1
and

αn(µ+2)(−λ−µ+2)

‖z−2‖1(n +3)
= αn(µ+1)u−2

‖z−1‖1
.

These two equations together give

αn

[
(µ+2)

(n +3)
− (µ+1)

(n +2)

]
= 0.

Since π1 6= P1,0, it follows that µ is not in [0,∞). This implies that αn = 0 for all n ≥−1. There-

fore we have proved that S2 = 0 in this case.
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Remark 2.24. Suppose T =
[

T1 S1

S2 T2

]
is a homogeneous operator with associated representa-

tion π1 ⊕π2, where π1 is an irreducible Continuous series representation and π2 = P1,0. Re-

peating the computations of Theorem 2.22 and Theorem 2.23, we obtain that S1 = S2 = 0.

2.3 The associated representation is the direct sum of four ir-

reducible representations

In this section, we prove that every homogeneous operator with associated representation

π1 ⊕π2, where π1 = D+
λ1

⊕D−
λ2

and π2 = D+
λ3

⊕D−
λ4

, is reducible. If D+
λ1

⊕D−
λ2

⊕D+
λ3

⊕D−
λ4

is

a representation, then the multipliers of all the four representations D+
λ1

, D−
λ2

, D+
λ3

and D−
λ4

must be the same. In consequence, λ1 =λ+2a, λ2 = 2−λ+2b, λ3 =λ+2m and λ4 = 2−λ+2p

for some real λ with 0 <λ≤ 2 and some non negative integers a,b,m, p.

Let λ ∈ (0,2] and a,b,m, p be any non-negative integers. Let π1 = D+
λ+2a ⊕D−

2−λ+2b and

π2 = D+
λ+2m ⊕D−

2−λ+2p . Then the representation space of π1 is H1 := H (λ+2a) ⊕H (2−λ+2b) and

the representation space of π2 is H2 := H (λ+2m) ⊕H (2−λ+2p). Define

e1
n =

(
zn

‖zn‖λ+2a

0

)
,n ≥ 0 and e1

−n =
(

0
zn−1

‖zn−1‖2−λ+2b

)
,n ≥ 1.

Also, define

e2
n =

(
zn

‖zn‖λ+2m

0

)
,n ≥ 0 and e2

−n =
(

0
zn−1

‖zn−1‖2−λ+2p

)
,n ≥ 1.

Then the vectors e i
n ,n ∈Z form an orthonormal basis of Hi , i = 1,2. If φθ is a rotation in Möb,

then

π1(φθ)e1
n = e

−i
(
n+a+λ

2

)
θ

e1
n ,n ≥ 0; π1(φθ)e1

−n = e
i
(
n+b−λ

2

)
θ

e1
−n ,n ≥ 1

and

π2(φθ)e2
n = e

−i
(
n+m+λ

2

)
θ

e2
n ,n ≥ 0; π2(φθ)e2

−n = e
i
(
n+p−λ

2

)
θ

e2
−n ,n ≥ 1.

We can, therefore, find θ such that π1(φθ) and π2(φθ) have distinct eigenvalues with one di-

mensional eigenspaces described as above.

Theorem 2.25. Let T =
[

T1 S1

S2 T2

]
be a homogeneous operator with associated representation

π1 ⊕π2, where π1 = D+
λ+2a ⊕D−

2−λ+2b and π2 = D+
λ+2m ⊕D−

2−λ+2p . Then the following holds:

(a) For n ∈ Z, there exist un ∈ C such that T1e1
n = une1

n+1, where u−1 = 0 unless a = 0 and

b = 0.
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(b) For n ∈ Z, there exists vn ∈ C such that T2e2
n = vne2

n+1, where v−1 = 0 unless m = 0 and

p = 0.

(c) For n ≥ 0, S1e2
n belongs to the span closure of the set of vectors {e1

q : q ≥ 0} and for n ≥ 2,

S1e2−n belongs to the span closure of the set of vectors {e1−q : q ≥ 1}. The vector S1e2
−1 be-

longs to the span closure of the set {e1−q : q ≥ 1} unless p = 0 and a = 0.

(d) For n ≥ 0, S2e1
n belongs to the span closure of the set of vectors {e2

q : q ≥ 0} and for n ≥ 2,

S2e1−n belongs to the span closure of the set {e2−q : q ≥ 1}. The vector S2e1
−1 belongs to the

span closure of the set {e2−q : q ≥ 1} unless b = 0 and m = 0.

Proof. Homogeneity of T implies that Ti and Si satisfy equations (2.11), (2.12), (2.13) and

(2.14). Substituting φ=φθ in the equation (2.11), we get

π1(φθ)T1e1
n = e

−i
(
n+1+a+λ

2

)
θ

T1e1
n ,n ≥ 0 and π1(φθ)T1e1

−n = e
i
(
n−2+b+λ

2

)
θ

T1e1
−n ,n ≥ 1.

Therefore, for each n ∈ Z, there exists un ∈ C such that T1e1
n = une1

n+1, u−1 = 0, unless a = 0

and b = 0.

Similarly, we can show that for all n ∈ Z, there exists vn ∈ C such that T2e2
n = vne2

n+1,

v−1 = 0, unless m = 0 and p = 0. Substituting φ=φθ in equation (2.12), we obtain

π1(φθ)S1e2
n = e

−i
(
n+1+m+λ

2

)
θ

S1e2
n ,n ≥ 0 and π1(φθ)S1e2

−n = e
i
(
n−2+p+λ

2

)
θ

S1e2
−n ,n ≥ 1.

We, therefore, see that

1. for each n ≥ 0, S1e2
n belongs to the span closure of the set of vectors {e1

q : q ≥ 0},

2. for each n ≥ 2, S1e2−n belongs to the span closure of the set of vectors {e1−q : q ≥ 1} and

3. except when p = 0 and a = 0, S1e2
−1 belongs to the span closure of the set of vectors

{e1−q : q ≥ 1}.

Similarly, we can show that (i) for n ≥ 0, S2e1
n belongs to the span closure of the set

of vectors {e2
q : q ≥ 0}, (ii) for n ≥ 2, S2e1−n belongs to the span closure of the set of vectors

{e2−q : q ≥ 1} and (iii) except when b = 0 and m = 0, S2e1
−1 belongs to the span closure of the set

of vectors {e2−q : q ≥ 1}.

Theorem 2.26. Suppose T =
[

T1 S1

S2 T2

]
is a homogeneous operator with associated represen-

tation π1 ⊕π2, where π1 = D+
λ+2a ⊕D−

2−λ and π2 = D+
λ
⊕D−

2−λ+2p , for a pair a, p of positive

integers. Then T is reducible. Furthermore, T = T̃1 ⊕ T̃2 where T̃1 is a homogeneous operator

with associated representation D+
λ+2a ⊕D+

λ
and T̃2 is a homogeneous operator with associated

representation D−
2−λ⊕D−

2−λ+2p .
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Proof. Homogeneity of T implies that the operators Ti and Si satisfy equations (2.11), (2.12),

(2.13) and (2.14). Since a 6= 0 and p 6= 0, from Theorem 2.25, it follows that

(a) for n ≥ 0, Ti e2
n is in the span closure of {e i

q : q ≥ 0}, i = 1,2,

(b) for n ≥ 1, Ti e i−n is in the span closure of {e i−q : q ≥ 1}, i = 1,2,

(c) for n ≥ 0, S1e2
n is in the span closure of {e1

q : q ≥ 0} and

(d) for n ≥ 1, S1e2−n is in the span closure of {e1−q : q ≥ 1},

Substituting φ=φθ in the equation (2.13), we obtain

π2(φθ)S2e1
n = e

−i
(
n+1+a+λ

2

)
θ

S2e1
n ,n ≥ 0; π2(φθ)S2e1

−n = e
i
(
n−1−λ

2

)
θ

S2e1
−n ,n ≥ 1.

This implies that (i) for all n ≥ 0, there exists αn ∈ C such that S2e1
n = αne2

n+1+a , (ii) for all

n ≥ p+2 there existsα−n ∈C such that S2e1−n =α−ne1
−n+p+1, (iii) for all 2 ≤ n ≤ p+1, S2e1−n = 0

and (iv) there exists α−1 ∈C such that S2e1
−1 =α−1e2

0.

Now substituting φ = φa in the equation (2.13), evaluating at the vector e1
−1 and then

taking inner product with e2
0, we obtain

α−1
〈

D+
2−λ(φ∗

a)z0, z0〉+α−1
〈

D+
λ (φa)z0, z0〉= 0.

If a is real, thenφ∗
a =φa . An easy computation shows that

〈
D+

2−λ(φa)z0, z0
〉+〈

D+
λ

(φa)z0, z0
〉 6=

0, a ∈ (0,1). In consequence α−1 = 0.

Let H̃1 and H̃2 be the closed subspaces of H spanned by the orthonormal set of vectors{(
e1

n

0

)
,

(
0

e2
n

)
: n ≥ 0

}
,

{(
e1−n

0

)
,

(
0

e2−n

)
: n ≥ 1

}
(2.25)

respectively.

We have T = T̃1⊕T̃2, where T̃i is an operator on H̃i , i = 1,2. Also note that H̃i is invariant

under π. So, T̃1 is a homogeneous operator with associated representation D+
λ+2a ⊕D+

λ
and T̃2

is a homogeneous operator with associated representation D−
2−λ⊕D−

2−λ+2p .

Theorem 2.27. Suppose T =
[

T1 S1

S2 T2

]
is a homogeneous operator with associated represen-

tation π1 ⊕π2, where π1 = D+
λ
⊕D−

2−λ and π2 = D+
λ
⊕D−

2−λ+2p and p is some positive integer.

Then T is reducible. Furthermore, T = T̃1 ⊕ T̃2, where T̃1 is a homogeneous operator with asso-

ciated representation D+
λ
⊕D+

λ
and T̃2 is a homogeneous operator with associated representation

D−
2−λ⊕D−

2−λ+2p or T = T1 ⊕T2.
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Proof. Homogeneity of T implies that the operators Ti and Si satisfy equations (2.11), (2.12),

(2.13) and (2.14). Recall that T1 and T2 are weighted shifs with respect to the orthonormal

basis {e1
n} and {e2

n}, respectively by virtue of Theorem 2.25. Let {un} and {vn} be the corre-

sponding weights for T1 and T2, respectively. Since p > 0, it follows form Theorem 2.25 that

v−1 = 0.

Substituting φ=φθ in the equation (2.13), we get

π2(φθ)S2e1
n = e

−i
(
n+1+λ

2

)
θ

S2e1
n , n ∈Z.

This implies that (i) for all n ≥−1 there existβn ∈C such that S2e1
n =βne2

n+1, (ii) for all n ≥ p+2

there exists β−n ∈C such that S2e1−n =β−ne2
−n+p+1 and (iii) S2e2−n = 0, for all 1 < n < p +2.

Substituting φ = φa in the equation (2.13), evaluating at the vector e1
n , for n ≥ −1 and

taking inner product with e2
0, we get

β−1
〈
π1(φa)e1

n ,e1
−1

〉+βn
〈
π2(φa)e2

n+1,e2
0

〉= 0.

Now, if n ≥ 0, then from the preceding equation, we find that βn
〈
π2(φa)e2

n+1,e2
0

〉 = 0 and

therefore βn = 0 for all n ≥ 0. For n =−1, from the same equation, we have

β−1
〈
π1(φa)e1

−1,e1
−1

〉+β−1
〈
π2(φa)e2

0,e2
0

〉= 0.

However, it is easily verified that
〈
π1(φa)e1

−1,e1
−1

〉+〈
π2(φa)e2

0,e2
0

〉 6= 0. Therefore, β−1 = 0.

Substituting φ= φa in the equation (2.13), evaluating at the vector e1
−1 and then taking

inner product with e2
−n+p+1, n ≥ p +2, we get

β−n
〈
π1(φa)e1

−1,e1
−n

〉= 0.

Consequently, we have β−n = 0, for n ≥ p + 2. This proves that S2e1−n = 0, for all n ≥ 2 and

therefore S2 = 0.

Substituting φ=φθ in the equation (2.12), we obtain

π1(φθ)S1e2
n = e

−i
(
n+1+λ

2

)
θ

S1e2
n ,n ≥ 0; π1(φθ)S1e2

−n = e
i
(
n−1+p−λ

2

)
θ

S1e2
−n ,n ≥ 1.

Thus (i) for all n ≥ 0, there exists αn ∈ C such that S1e2
n = αne1

n+1 and (ii) for all n ≥ 1, there

exists α−n ∈C such that S1e2−n =α−ne1
−n−p+1.

Substituting φ = φa in the equation (2.12), evaluating at the vector e2
n , for n ≥ 0, taking

inner product with e1
0 and using S∗

1 e1
0 = 0, we get

αn
〈
π1(φa)e1

n+1,e1
0

〉= 0.

Consequently, for all n ≥ 0, we see that αn = 0. This proves that S1e2
n = 0, n ≥ 0 .
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Again, substituting φ = φa in the equation (2.12), evaluating at e2−n , for n ≥ 1, taking

inner product with e1
0 and using S∗

1 e1
0 = 0, we get

α−nu−1

〈
π1(φa)e1

−n−p+1,e1
−1

〉
= 0.

It follows that α−nu−1 = 0, n ≥ 1. Hence if u−1 6= 0, then for all n ≥ 1, we see that α−n = 0

and therefore S1 = 0. Putting all of these together, we infer that T = T1 ⊕T2, where T1 is a

homogeneous operator with associated representation π1 and T2 is a homogeneous operator

with associated representation π2.

Let T̃1, T̃2 be the operators which were constructed in Theorem 2.26. If u−1 = 0, then we

have T = T̃1 ⊕ T̃2. The operators T̃1 and T̃2 are homogeneous, and in this case, the associated

representations are D+
λ
⊕D+

λ
and D−

2−λ⊕D−
2−λ+2p , respectively.

Theorem 2.28. Let T =
[

T1 S1

S2 T2

]
be a homogeneous operator with associated representation

π1 ⊕π2 where π1 = D+
λ
⊕D−

2−λ and π2 = D+
λ
⊕D−

2−λ. Then S1 = 0 and S2 = 0.

Proof. In this case π1 = π2. Denote π1 = π2 = π and e1
n = e2

n = en . Homogeneity of T implies

that the operators Ti and Si satisfy equations (2.11), (2.12), (2.13) and (2.14). Repeating an

argument similar to the one in Theorem 2.25, we find that T1, T2, S1 and S2 are weighted

shifts with respect to the orthonormal basis {en}. Let {un}, {vn}, {αn} and {βn} be the weights

for T1, T2, S1 and S2, respectively.

Now we prove that S1 = 0. Substituting φ = φa in the equation (2.12), evaluating at the

vector en , for n ≥ 0 and then taking inner product with e0, we obtain

αn
〈
π(φa)en+1,e0

〉= 0.

This implies that αn = 0, n ≥ 0.

Substituting φ= φa in the equation (2.12), evaluating at the vector e−1 and then taking

inner product with en+1, for n ≤−1, we get

αn
〈
π(φa)e−1,en

〉+α−1
〈
π(φa)e0,en+1

〉= 0.

This implies that αn = 0, n ≤ −1, proving that S1 = 0. A similar computation shows that S2 =
0.

Theorem 2.29. Suppose T =
[

T1 S1

S2 T2

]
is a homogeneous operator with associated represen-

tation π1⊕π2 where π1 = D+
λ+2a ⊕D−

2−λ+2b and π2 = D+
λ+2m ⊕D−

2−λ+2p . Then either T = T̃1⊕ T̃2,

where T̃1 is a homogeneous operator with associated representation D+
λ+2a ⊕D+

λ+2m and T̃2 is

a homogeneous operator with associated representation D−
2−λ+2b ⊕D−

2−λ+2p or T = T1 ⊕T2. In

particular, T is reducible.
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Proof. We divide the proof into several cases and discuss each case separately. Let H̃1, H̃2 be

as in (2.25) and T̃i = T|H̃i
, i = 1,2.

(i) Assume that none of the a,b,m, p are zero. Then from Theorem 2.25, it follows that

T = T̃1 ⊕ T̃2. Also note that H̃i is invariant under π. So, T̃1 is a homogeneous operator

with associated representation D+
λ+2a ⊕D+

λ+2m and T̃2 is a homogeneous operator with

associated representation D−
2−λ+2b ⊕D−

2−λ+2p .

(ii) Assume that exactly one of a,b,m, p is non-zero. Then from Theorem 2.25, it follows

that T = T̃1 ⊕ T̃2.

(iii) It follows from Theorem 2.25 that T = T̃1 ⊕ T̃2 if either a = 0,b 6= 0,m = 0, p 6= 0 or a 6=
0,b = 0,m 6= 0, p = 0.

(iv) The case of a 6= 0,b = 0, p 6= 0,m = 0 is precisely Theorem 2.26.

(v) Assume that a = 0,b 6= 0,m 6= 0, p = 0. Since T ∗ is a homogeneous operator with associ-

ated representation π#
1 ⊕π#

2, the proof follows by applying Theorem 2.26 to T ∗.

(vi) Assume that a = 0,b = 0,m 6= 0, p 6= 0. The associated representation of the operator

T is D+
λ
⊕D−

2−λ⊕D+
λ+2m ⊕D−

2−λ+2p =
(
D+
λ
⊕D−

2−λ+2p

)
⊕ (

D+
λ+2m ⊕D−

2−λ
)
. Now, the proof

follows form Theorem 2.26.

(vii) Assume that a 6= 0,b 6= 0,m = 0, p = 0. This is same as (vi).

(viii) The cases of a = 0,b = 0,m = 0, p 6= 0 and a = 0,m = 0, p = 0,b 6= 0 are covered in Theo-

rem 2.27.

(ix) In case, b = 0,m = 0, p = 0, a 6= 0 or a = 0,b = 0, p = 0,m 6= 0, the proof is completed by

applying the Theorem 2.27 to T ∗.

(x) Assume a = 0,b = 0,m = 0, p = 0. This case is exactly Theorem 2.28.

This is an enumeration of all the sixteen possibilities (each of the integers a,b,m, p is either

zero or positive) completing the proof.

Now we prove that there is no irreducible homogeneous operator with associated rep-

resentation π := P1,0⊕D+
1+2m ⊕D−

1+2k . The representation space of π is H := L2(T)⊕H (1+2m)⊕
H (1+2k).

Theorem 2.30. Suppose T =
[

T1 S1

S2 T2

]
is a homogeneous operator with associated representa-

tion π1 ⊕π2, where π1 = P1,0 and π2 = D+
1+2m ⊕D−

1+2k , m,k ≥ 0. Then we have the following.
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(a) The operators T1 and T2 are weighted shifts with respect to the orthonormal basis {e1
n} and

{e2
n} with weights {un} and {vn}, respectively. Also T2e2

−1 = 0 except when m = 0 and k = 0.

(b) If k ≥ 1, then for all n ≥ 0, S1e2
n = 0, and for all n ≥ 1, S1e2−n = α−ne1

−n−k+1 such that

u−1α−n = 0 where α−n ∈ C. If k = 0, then S1e2
n = 0 for all n 6= −1 and S1e2

−1 = α−1e1
0 for

some α−1 ∈C.

(c) If m > 1, then S2 = 0. If m = 1, then for n ≤ −1, S2e1
n = 0 and for n ≥ 0, there exists βn ∈ C

such that S2e1
n =βne2

n and u−1βn = 0. If m = 0, then S2e1
n = 0, for all n 6= −1 and S2e1

−1 =
β−1e2

0 for some β−1 ∈C.

Proof. (a) Homogeneity of T implies that the operators Ti and Si satisfy equations (2.11),

(2.12), (2.13) and (2.14). Using the equations (2.11) and (2.12), we find that T1 and T2 are

weighted shifts with respect to the orthonormal basis {e1
n} and {e2

n}, respectively. Let {un} and

{vn} be the weights of T1 and T2, respectively. It is easy to see that that v−1 = 0 except when

m = 0 and k = 0.

(b) Restricting the equation (2.12) to the rotation group, we obtain

π1(φθ)S1e2
n = e−i

(
n+1+m+ 1

2

)
θS1e2

n ,n ≥ 0 (2.26)

and

π1(φθ)S1e2
−n = e i

(
n−1+k− 1

2

)
θS1e2

−n ,n ≥ 1. (2.27)

It follows that there exists a sequence {αn} such that

S1e2
n =αne1

n+m+1,n ≥ 0 and S1e2
−n =α−ne1

−n−k+1,n ≥ 1. (2.28)

Substituting φ=φa in the equation (2.12) and then evaluating at e2
n , n ≥ 0, we get

S1π2(φa)e2
n +αnπ1(φa)e1

n+m+1 = aαnT1π1(φa)e1
n+m+1 +avnS1π2(φa)e2

n+1.

The equation (2.28) implies that if k > 0, then S∗
1 e1

0 = 0 and if k = 0, then S∗
1 e1

0 = α−1e2
−1.

Therefore, taking inner product with e1
0, we have

αn
〈
π1(φa)e1

n+m+1,e1
0

〉= 0.

In consequence, αn = 0 for all n ≥ 0.

k ≥ 1 : Substituting φ = φa in the equation (2.12), evaluating it at e2−n and then taking inner

product with e1
0, we have

āα−nu−1
〈
π1(φa)e1

−n−k+1,e1
−1

〉= 0,

which implies that α−nu−1 = 0 for all n ≥ 1.
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k = 0 : Substituting φ = φa in the equation (2.12), evaluating it at e2
−1 and then taking inner

product with e1
−n+1, we get

α−n
〈
π2(φa)e2

−1,e2
−n

〉+α−1
〈
π1(φa)e1

0,e1
−n+1

〉= 0.

This implies that α−n = 0 for all n ≥ 2.

(c) Restricting the equation (2.13) to the rotation group, we obtain

π2(φθ)S2e1
n = e−(

n+1+ 1
2

)
θS2e1

n , n ∈Z. (2.29)

Equation (2.29) implies that

(i) for all n,n ≥ max{m − 1,0}, there exist βn ∈ C such that S2e1
n = βne2

−m+n+1 and for all

n,0 ≤ n < max{m −1,0}, S2e1
n = 0,

(ii) for all n,n ≥ k+2, there exist β−n ∈C such that S2e1−n =β−ne2
−n+k+1 and for all n,2 ≤ n <

k +2, S2e1−n = 0,

(iii) there exists β−1 ∈C such that S2e1
−1 =β−1e2

0 where β−1 = 0 if m 6= 0.

Substituting φ = φa in the equation (2.13), evaluating at e1
−1 and then taking inner product

with e2
−n+k+1, for n ≥ k +2, we see that β−n = 0 since

β−n
〈
π1(φa)e1

−1,e1
−n

〉= 0.

Thus, we have S2e1−n = 0 for all n ≥ 2.

m > 1 : Substituting φ=φa in the equation (2.13), evaluating at e1
n , n ≥ m−1 and then taking

inner product with e2
0, we obtain

βn
〈
π2(φa)e2

−m+n+1,e2
0

〉= 0.

Thus, for n ≥ m −1, βn = 0. Consequently, S2 = 0.

m = 1 : Substituting φ = φa in the equation (2.13), evaluating at e1
−1 and then taking inner

product with e2
n , n ≥ 0, we obtain

āβnu−1
〈
π2(φa)e1

0,e1
n

〉= 0.

Thus, for n ≥ 0, u−1βn = 0.
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m = 0 : Substituting φ = φa in the equation (2.13), evaluating at e1
n , n ≥ −1, and then taking

inner product with e2
0, we obtain

β−1
〈
π1(φa)e1

n ,e1
−1

〉+βn
〈
π2(φa)e2

n+1,e2
0

〉= 0.

This implies that βn = 0, n ≥ 0.

Theorem 2.31. Suppose T =
[

T1 S1

S2 T2

]
is a homogeneous operator with associated representa-

tion π=π1 ⊕π2, where π1 = P1,0 and π2 = D+
1+2m ⊕D−

1+2k , m,k ≥ 0. Then T is reducible.

Proof. It follows from Theorem 2.30(a) that the operators T1 and T2 are weighted shifts with

respect to the orthonormal basis {e1
n} and {e2

n}, respectively. Let {un} and {vn} be the corre-

sponding weights, where v−1 = 0 except when m = 0 and k = 0.

m > 1, k ≥ 1 : We have v−1 = 0. From Theorem 2.30(b), we see that S1e2
n = 0, n ≥ 0, and

S1e2−n = α−ne1
−n−k+1, α−n ∈ C, n ≥ 1. Here u−1α−n = 0. Thus either u−1 = 0 or α−n = 0

for all n ≥ 1.

Also, Theorem 2.30(c) shows that S2 = 0

If u−1 = 0, then the closed subspace H̃1 (defined in (2.25)) is a reducing subspace of T .

If α−n = 0 for all n ≥ 1, then S1 = 0 and therefore T is reducible in this case as well.

m = 1, k ≥ 1 : We have v−1 = 0. From Theorem 2.30(b), we see that S1e2
n = 0, n ≥ 0, and

S1e2−n =α−ne1
−n−k+1, α−n ∈C, n ≥ 1. Here u−1α−n = 0.

Theorem 2.30(c) shows that S2e1−n = 0, n ≥ 1 and S2e1
n = βne2

n , βn ∈ C, n ≥ 0. Here

u−1βn = 0.

Consequently, either u−1 = 0 or α−n = 0 for all n ≥ 1 and βn = 0 for all n ≥ 0.

If u−1 = 0, then the subspace H̃1 is a reducing subspace of T .

If u−1 6= 0, then S1 = 0 and S2 = 0.

m = 0, k ≥ 1 : We have v−1 = 0. From Theorem 2.30(b), we see that S1e2
n = 0, n ≥ 0, and

S1e2−n =α−ne1
−n−k+1, α−n ∈C, n ≥ 1. Here u−1α−n = 0.

Furthermore, from Theorem 2.30(c), we see that for n 6= −1, S2e1
n = 0 and S2e1

−1 =β−1e2
0

for some β−1 ∈C.

If u−1 = 0, then the closed subspace spanned by the set of vectors

{(
e1

n

0

)
: n ≥ 0

}
is a

reducing subspace of T .
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If α−n = 0 for all n ≥ 1, then the closed subspace of H spanned by the orthonormal set{(
0

e2
n

)
: n ≤−1

}
is a reducing subspace of T .

m > 1, k = 0 : We have v−1 = 0. From Theorem 2.30(b), we see that S1e2
−1 = α−1e1

0 for some

α−1 ∈C and S1e2
n = 0, n 6= −1.

Also, Theorem 2.30(c) shows that S2 = 0.

Consequently, the closed subspace spanned by the orthonormal set

{(
0

e2
n

)
: n ≥ 0

}
is a

reducing subspace of T .

m = 1, k = 0 : We have v−1 = 0. From Theorem 2.30(b), we see that S1e2
−1 = α−1e1

0 for some

α−1 ∈C and S1e2
n = 0, n 6= −1.

Theorem 2.30(c) shows that S2e1−n = 0, n ≥ 1 and S2e1
n = βne2

n , βn ∈ C, n ≥ 0. Here

u−1βn = 0.

If u−1 = 0, then the closed subspace spanned by the orthonormal set

{(
e1

n

0

)
: n ≤−1

}
is

a reducing subspace of T .

If βn = 0 for all n ≥ 0, then the closed subspace of H spanned by the orthonormal set{(
0

e2
n

)
: n ≥ 0

}
is a reducing subspace of T .

m = 0, k = 0 : From Theorem 2.30(b), we see that for n 6= −1, S1e2
n = 0 and S2e1

n = 0. Clearly,

H̃1 is invariant under T . Let A := T|H̃1
and B := PT|H̃2

, where H̃2 is defined in (2.25)

and P is the projection of H onto H̃2. Since H̃1 and H̃2 are invariant under π, it fol-

lows from [5, Proposition 2.4] that A and B are homogeneous operators with associated

representations π|H̃1
and π|H̃2

, respectively. Since π|H̃1
is equivalent to D+

1 ⊕ D+
1 and

S1e2
n = 0, S2e1

n = 0 for all n ≥ 0, it follows, using homogeneity of A, that un = 1, vn = 1

for all n ≥ 0. Similarly, it follows that un = 1, vn = 1 for all n ≤ −2. Therefore T must be

reducible.

This completes the proof since we have shown that the operator T is reducible in every pos-

sible combination of the associated representation.

Theorem 2.32. Suppose T is a homogeneous operator on L2(T)⊕L2(T) with associated repre-

sentation π= P1,0 ⊕P1,0. Then T is reducible.

Proof. Let H+ and H− be closed subspaces of the Hilbert space L2(T) spanned by the or-

thonormal sets
{

zn : n ≥ 0
}

and
{

zn : n < 0
}
, respectively. Suppose H(n) is the subspace of



52 2. Irreducible Homogeneous 2-shifts

L2(T)⊕L2(T) spanned by the orthonormal set Bn = {(
zn

0

)
,
(

0
zn

)}
. Since H(n)’s are K-isotypic

subspaces of the representation P1,0⊕P1,0, it follows, form [9, Theorem 5.1], that T maps H(n)

to H(n +1). Consequently, H+⊕H+ is an invariant subspace of T . Let
[

A S
0 B

]
be the represen-

tation of T with respect to the decomposition of L2(T)⊕L2(T) as (H+⊕H+)⊕ (H−⊕H−). We

note that S maps H(−1) to H(0) and is 0 elsewhere. Since H+⊕H+ and H−⊕H− are invariant

under π, it follows, from [5, Proposition 2.4], that A and B are homogeneous operators with

associated representations π|H+⊕H+ and π|H−⊕H− , respectively.

Using a similar argument as in Theorem 2.30, we infer that H+ and H− are reducing

subspaces of A and B , respectively. Since π|H+⊕H+ and π|H−⊕H− are equivalent to D+
1 ⊕D+

1 and

D−
1 ⊕D−

1 , respectively and A, B are homogeneous, it follows that A is a two-fold direct sum

of the forward unilateral shift and B is a two-fold direct sum of the backward unilateral shift.

Therefore, T is reducible.
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Chapter 3

Homogeneous 3-shifts

The first examples of irreducible (bi-lateral) homogeneous 2-shifts were given by Korányi

in [20]. Recall, from Theorem 1.11, that if π(φ)∗Tiπ(φ) = φ(Ti ), i = 1,2, for some represen-

tation of Möb, then the operator
(

T1 α(T1−T2)
0 T2

)
, α> 0, is homogeneous. It was shown in [9, List

4.1(4)] that for 0 < a < b < 1, the bi-lateral shift T (a,b) with weights
√

n+a
n+b is homogeneous

and the associated representation is the Complementary series π = Cλ,σ, where λ = a +b −1

and σ = (b − a)/2. It follows from [9, Proposition 2.1] that the operator T (a,b)∗−1 = T (b, a)

is also homogeneous with the same associated representation, namely, Cλ,σ. Consequently,

the operator
(

T (a,b) α(T (a,b)−T (b,a))
0 T (b,a)

)
is homogeneous. In the paper [20], Korányi shows that (a)

these operators are irreducible and (b) unitarily inequivalent. Also, he proved, modulo unitary

equivalence, these are the only homogeneous operators for which the associated representa-

tion is Cλ,σ⊕Cλ,σ.

In Chapter 2, we completed these earlier results of Korányi by describing all the irre-

ducible homogeneous 2-shifts. In this chapter, we prove that all homogeneous operators

whose associated representation is a direct sum of three copies of a Complementary series

representation, is reducible. Consequently, in this case, the important question of the exis-

tence of an irreducible homogeneous 3 - shift remains unanswered.

Let π = Cλ,σ be a Complementary series representation of Möb acting on the Hilbert

space Hλ,σ and η=π⊕π⊕π. The representation space of η is H := Hλ,σ⊕Hλ,σ⊕Hλ,σ.

Lemma 3.1. For i = 1,2,3, let Ti , Si be bounded operators on some Hilbert space H and Ui be

unitary representations of Möb on the same Hilbert space H. Then the operator

T =

 T1 S1 S2

0 T2 S3

0 0 T3


is homogeneous with associated representation U1 ⊕U2 ⊕U3 if and only if Ti is homogeneous
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with associated representation Ui , i = 1,2,3, and forφθ,a in Möb, the following three conditions

are meet.

(a) S1U2(φθ,a)−e iθU1(φθ,a)S1 = āT1U1(φθ,a)S1 + āS1U2(φθ,a)T2;

(b) S3U3(φθ,a)−e iθU2(φθ,a)S3 = āT2U2(φθ,a)S3 + āS3U3(φθ,a)T3 and

(c) S2U3(φθ,a)−e iθU1(φθ,a)S2 = āT1U1(φθ,a)S2 + āS2U3(φθ,a)T3 + āS1U2(φθ,a)S3.

Proof. Let T be a homogeneous operator with associated representation U1⊕U2⊕U3. From [5,

Lemma 2.5], it follows that

[
T1 S1

0 T2

]
is a homogeneous operator with associated represen-

tation U1⊕U2 and T3 is a homogeneous operator with associated representation U3. Again [5,

Lemma 2.5] implies that Ti , i = 1,2, is a homogeneous operator with associated representa-

tion Ui , i = 1,2, respectively and S1 satisfies the following equation

S1U2(φθ,a)−e iθU1(φθ,a)S1 = āT1U1(φθ,a)S1 + āS1U2(φθ,a)T2 (3.1)

for allφθ,a in Möb. Once again using Proposition [5, Lemma 2.5], we obtain that

[
T2 S3

0 T3

]
is

a homogeneous operator with associated representation U2⊕U3 and S3 satisfies the following

equation

S3U3(φθ,a)−e iθU2(φθ,a)S3 = āT2U2(φθ,a)S3 + āS3U3(φθ,a)T3 (3.2)

for all φθ,a in Möb. Now a direct computation, using homogeneity of T , gives us

S2U3(φθ,a)−e iθU1(φθ,a)S2 = āT1U1(φθ,a)S2 + āS2U3(φθ,a)T3 + āS1U2(φθ,a)S3, φθ,a ∈ Möb.

(3.3)

Now we prove the converse. The given conditions imply that

e iθ (
U1(φθ,a)⊕U2(φθ,a)⊕U3(φθ,a)

)
(T −aI )

= T (U1(φθ,a)⊕U2(φθ,a)⊕U3(φθ,a))(I − āT ), φθ,a ∈ Möb.

Thus there exists an open set containing the identity element of Möb for which the following

equation holds:

φθ,a(T ) = (
U1(φθ,a)⊕U2(φθ,a)⊕U2(φθ,a)

)∗ T (U1(φθ,a)⊕U2(φθ,a)⊕U3(φθ,a)).

Now using the [5, Lemma 2.2], we conclude that T is a homogeneous operator.
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Lemma 3.2. Assume that T1 and T2 are homogeneous operators with the same associated rep-

resentation U . Then for any pair of scalars α,γ ∈C, the operator

A(α,γ) =

 T1 α(T1 −T2) γ(T1 −T2)

0 T2 0

0 0 T2


is homogeneous with associated representation U ⊕U ⊕U .

Proof. The proof follows easily from Lemma 3.1. However, we give a different proof below

which is similar to [20, Lemma 2.1]. The invertible operator

S =

 I αI γI

0 I 0

0 0 I


commutes with U ⊕U ⊕U and A(α,γ) = S−1(T1 ⊕T2 ⊕T2)S. Suppose φ ∈ Möb, then

φ(A(α,γ)) = S−1(φ(T1)⊕φ(T2)⊕φ(T2))S

= S−1(U (φ)∗⊕U (φ)∗⊕U (φ)∗)(T1 ⊕T2 ⊕T2)(U (φ)⊕U (φ)⊕U (φ))S

= (U (φ)∗⊕U (φ)∗⊕U (φ)∗)S−1(T1 ⊕T2 ⊕T2)S(U (φ)⊕U (φ)⊕U (φ))

= (U (φ)∗⊕U (φ)∗⊕U (φ)∗)A(α,γ)(U (φ)⊕U (φ)⊕U (φ)).

This proves that A(α,γ) is a homogeneous operator with associated representation U ⊕U ⊕
U .

Lemma 3.3. If |α1| = |α2| and |γ1| = |γ2|, then A(α1,γ1) and A(α2,γ2) are unitarily equivalent.

Proof. We have |α1| = |α2| and |γ1| = |γ2|. So there exist t , s ∈ T such that α1 = tα2 and γ1 =
sγ2. Now, the operator

V =

 t I 0 0

0 I 0

0 0 t s̄ I


is unitary. Since A(α1,γ1) =V A(α2,γ2)V ∗, the proof is complete.

Recall that { fn = zn}n∈Z is a complete orthogonal set in the Hilbert space Hλ,σ. For n ∈Z,

let en = fn
‖ fn‖ and H(n) be the span of {(en ,0,0)t , (0,en ,0)t , (0,0,en)t }. Let ηn,m = Pnη|H(m) where

Pn is the orthogonal projection of H onto H(n). Then ηn,m is a map from H(m) to H(n) for all

n,m ∈Z. Forφ ∈ Möb, let πn,m(φ) be the map defined by πn,m(φ)(em) = 〈
π(φ)em ,en

〉
en . Then

ηn,m(φ)(aem ,bem ,cem)t = 〈
π(φ)em ,en

〉
(aen ,ben ,cen)t
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and

ηn,m(φ)∗(aen ,ben ,cen)t = 〈
π(φ)em ,en

〉
(aem ,bem ,cem)t ,

for all a,b,c ∈ C. It is useful to define the set Am,n , analogous to the ones in Definition 2.16,

replacing the representation Pλ,0 by the representation π. Thus, if the matrix coefficient of π

is 〈
π(φa)zm , zn〉= c(−1)n(ā)n−m

∑
k≥(m−n)+

Ck (m,n)r k , (3.4)

where r = |a|2, c =φ′
a(0)λ/2|φ′

a(0)|µ and the coefficients Ck (m,n) are explicitly determined as

in [9, p. 316].

Definition 3.4. Let Am,n ⊆ (−1,1) be the set of all zeros of the power series
∑

k≥(m−n)+ Ck (m,n)r k

and A =∪m,n∈ZAm,n .

The sets Am,n are countable and therefore so is A. Take b ∈ (0,1)\A. Then
〈
π(φb) fm , fn

〉 6=
0, for all n,m ∈Z. Fix φb in Möb. Now assume that u0, v0, w0 are three non-zero mutually or-

thogonal vectors in H(0). For n 6= 0, define un =σn,0(φb)u0, vn =σn,0(φb)v0, wn =σn,0(φb)w0.

Then each of the vectors un , vn , wn is non-zero.

Lemma 3.5. The set of vectors {un , vn , wn}n∈Z is a complete orthogonal set in H.

Proof. The proof is similar to that of Lemma 2.17.

Let H1, H2 and H3 be the close subspaces spanned by the sets of vectors {un : n ∈ Z},

{vn : n ∈Z} and {wn : n ∈Z}, respectively.

Lemma 3.6. The subspaces H1, H2 and H3 are invariant under η. Moreover, η|Hi
is equivalent

to π for all i = 1,2,3.

Proof. The proof is similar to that of Lemma 2.18.

Suppose T is a homogeneous operator with associated representation η. Since H(n) are

K-isotypic subspaces of η, it follows, from [9, Theorem 5.1], that T maps H(n) to H(n +1) for

each n ∈Z. Let Tn := T|H(n).

Lemma 3.7. For every n ∈Z, Tn is invertible.

Proof. Homogeneity of T implies that the following equation holds for everyψ in Möb where

ψ(z) = e iθ z−a
1−āz , z ∈D :

e iθηi+1,n+1(ψ)Tn −ae iθηi+1,n(ψ) = Tiηi ,n(ψ)− āTiηi ,n+1(ψ)Tn , (3.5)

The proof is completed following arguments similar to the ones appearing in the proof of

Lemma 2.19.
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Theorem 3.8. Suppose T is a homogeneous operator with associated representation η. Then

there exist closed subspaces H1, H2 and H3 such that H = H1⊕H2⊕H3 and T (H1) ⊆ H1,T (H2) ⊆
H1 ⊕H2. For each i = 1,2,3, the subspace Hi is invariant under η and η|Hi is equivalent to π.

Proof. Sinceη1,0(φb)−1T0 is an operator on H(0), there exist three non-zero mutually orthonor-

mal vectors u0, v0, w0 in H(0) such that η1,0(φb)−1T0u0 = a0u0 and η1,0(φb)−1T0v0 = b0u0 +
c0v0 for some a0,b0,c0 ∈C.

For every n ∈ Z \ {0}, define un = ηn,0(φb)u0, vn = ηn,0(φb)v0 and wn = ηn,0(φb)w0. Let

H1, H2 and H3 be the close subspaces spanned by the sets of vectors {un : n ∈ Z}, {vn : n ∈ Z}

and {wn : n ∈ Z}, respectively. From Lemma 3.5, we have H = H1 ⊕ H2 ⊕ H3. It follows, from

Lemma 3.6, that for each i = 1,2,3, Hi is invariant under η and η|Hi is equivalent with π. We

show that T (H1) ⊆ H1,T (H2) ⊆ H1 ⊕H2.

We have T0u0 = a0η1,0(φb)u0 which is a scalar multiple of the vector u1. Using an argu-

ment similar to the one appearing in the proof of Theorem 2.20, it follows that Tun is a scalar

multiple of un+1 for every n ∈Z.

(a) We show that Tn vn is in the subspace spanned by the set of vectors {un+1, vn+1},

n ∈N.

The claim is easily verified for n = 0 : T0v0 = b0η1,0(φb)u0+c0η1,0(φb)v0. For an inductive

proof, assume that Tk vk is in the subspace spanned by the set of vectors {uk+1, vk+1} for some

k ≥ 0.

Let Ak = ⋃
0≤i , j≤k+2

Ai , j , where Ai , j are described in Definition 3.4. Since 0 is not a limit

point of any Ai , j , there exists rk ∈ (0,1) such that for 0 ≤ i , j ≤ k + 2,
〈
π(φa)e j ,ei

〉 6= 0 for all

a ∈Dwith 0 < |a| < rk . Substituting n = k, i = k +1 in the equation (3.5), we get

aηk+2,k (φa)−ηk+2,k+1(φa)Tk = Tk+1ηk+1,k (φa)− āTk+1ηk+1,k+1(φa)Tk (3.6)

for every φa in Möb with |a| < rk .

A similar argument to that in the proof of Theorem 2.20 implies that for everyφa in Möb

with |a| < rk , there exist bk+1(a),ck+1(a) ∈C such that

Tk vk = bk+1(a)ηk+1,k (φa)uk + ck+1(a)ηk+1,k (φa)vk+1 (3.7)

holds. Since Tk+1uk+1 is a scalar multiple of uk+2, for every φa , there exists λk+2(a) ∈ C such

that

Tk+1ηk+1,k (φa)uk =λk+2(a)ηk+2,k+1(φa)ηk+1,k (φa)uk . (3.8)
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Combining the equations (3.6), (3.7) and (3.8), we get

(
a

〈
π(φa)ek ,ek+2

〉〈
π(φa)ek ,ek+1

〉〈
π(φa)ek+1,ek+2

〉 − ck+1(a)

)
ηk+2,k+1(φa)ηk+1,k (φa)vk

+ (
āλk+2(a)

〈
π(φa)ek+1,ek+1

〉−1
)

bk+1(a)ηk+2,k+1(φa)ηk+1,k (φa)uk

= (
1− āck+1(a)

〈
π(φa)ek+1,ek+1

〉)
Tk+1ηk+1,k (φa)vk (3.9)

for all 0 < |a| < rk . It is not hard to verify that ηk+2,k+1(φa)ηk+1,k (φa)uk is a scalar multiple of

the vector uk+2 and ηk+2,k+1(φa)ηk+1,k (φa)vk is a scalar multiple of the vector vk+2. Therefore,

the two vectors ηk+2,k+1(φa)ηk+1,k (φa)uk and ηk+2,k+1(φa)ηk+1,k (φa)vk are linearly indepen-

dent. Now, if (
1− āck+1(a)

〈
π(φa)ek+1,ek+1

〉)= 0

for every φa with 0 < |a| < rk , then we have(
a

〈
π(φa)ek ,ek+2

〉〈
π(φa)ek ,ek+1

〉〈
π(φa)ek+1,ek+2

〉 − ck+1(a)

)
= 0,

(
āλk+2(a)

〈
π(φa)ek+1,ek+1

〉−1
)

bk+1(a) = 0

for every φa with 0 < |a| < rk . Suppose for every φa with 0 < |a| < rk ,

(
1− āck+1(a)

〈
π(φa)ek+1,ek+1

〉)= 0 and ck+1(a)− a
〈
π(φa)ek ,ek+2

〉〈
π(φa)ek ,ek+1

〉〈
π(φa)ek+1,ek+2

〉 = 0.

Then combining these two equations, we get

|a|2 〈
π(φa)ek ,ek+2

〉〈
π(φa)ek+1,ek+1

〉= 〈
π(φa)ek ,ek+1

〉〈
π(φa)ek+1,ek+2

〉
Now, using the matrix coefficient of π(φa) and then comparing the constant coefficient, we

arrive at a contradiction. So, there exists φa with 0 < |a| < rk such that(
1− āck+1(a)

〈
π(φa)ek+1,ek+1

〉) 6= 0.

Thus from equation (3.9), we see that Tk+1vk+1 is in the space spanned by the set of vectors

{uk+2, vk+2}.

(b) Now we prove that T −1−n v−n+1 is in the subspace spanned by {u−n , v−n} for all n ∈
N∪ {0}.

The claim for n = 0 follows from what we have said before, namely, combine the two

statements: T0v0 = b0η1,0(φb)u0 + c0η1,0(φb)v0 and T −1
0 u1 is a scalar multiple of u0.

Assume that there exists p ∈ N∪ {0} such that T −1−p v−p+1 is in the subspace spanned by

the set of vectors {u−p , v−p }. Let Ap = ⋃
−p−1≤i , j≤0

Ai , j . Then, since 0 is not a limit point of Ap ,

there exists rp ∈ (0,1) such that
〈
π(φa)e j ,ei

〉 6= 0, −p −1 ≤ i , j ≤ 0 and 0 < |a| < rp .
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Since T−p v−p is in the subspace spanned by the set of vectors {u−p+1, v−p+1}, it follows

that for every φa with 0 < |a| < rp , there exists b−p+1(a),c−p+1(a) in C such that

T−p v−p = b−p+1(a)η−p+1,−p (φa)u−p + c−p+1(a)η−p+1,−p (φa)v−p . (3.10)

Substituting φ=φa , i =−p −1,n =−p in the equation (3.5), evaluating at the vector v−p and

then using equation (3.10), we get

T −1
−p−1

[
a

〈
π(φa)e−p ,e−p

〉
v−p − c−p+1(a)η−p,−p+1(φa)η−p+1,−p (φa)v−p

]
−b−p+1(a)T −1

−p−1

(
η−p,−p+1(φa)η−p+1,−p (φa)u−p

)= η−p−1,−p (φa)v−p

− āb−p+1(a)η−p−1,−p+1(φa)η−p+1,−p (φa)u−p

− āc−p+1(a)η−p−1,−p+1(φa)η−p+1,−p (φa)v−p . (3.11)

We know that the vector b−p+1(φa)T −1
−p−1

(
η−p,−p+1(φa)η−p+1,−p (φa)u−p

)
is a scalar multiple

of u−p−1. Therefore, we can find α(a) ∈C such that

b−p+1(φa)T −1
−p−1

(
η−p,−p+1(φa)η−p+1,−p (φa)u−p

)
− āb−p+1(a)η−p−1,−p+1(φa)η−p+1,−p (φa)u−p =α(a)u−p−1. (3.12)

Using the equalities

η−p,−p+1(φa)η−p+1,−p (φa) = 〈
π(φa)e−p ,e−p+1

〉〈
π(φa)e−p+1,e−p−1

〉
I d ,

η−p−1,−p+1(φa)η−p+1,−p (φa) =
〈
π(φa)e−p ,e−p+1

〉〈
π(φa)e−p+1,e−p−1

〉〈
π(φa)e−p ,e−p−1

〉 η−p−1,−p (φa)

and then combining with the equations (3.11), (3.12), we get

[
a

〈
π(φa)e−p ,e−p

〉− c−p+1(a)
〈
π(φa)e−p ,e−p+1

〉〈
π(φa)e−p+1,e−p

〉]
T −1
−p−1v−p

=α(a)u−p−1 +
[

1− āc−p+1(a)

〈
π(φa)e−p ,e−p+1

〉〈
π(φa)e−p+1,e−p−1

〉〈
π(φa)e−p ,e−p−1

〉 ]
η−p−1,−p (φa)v−p .

(3.13)

The two vectors u−p−1 and η−p−1,−p (φa)v−p are orthogonal. Therefore, if

a
〈
π(φa)e−p ,e−p

〉− c−p+1(a)
〈
π(φa)e−p ,e−p+1

〉〈
π(φa)e−p+1,e−p

〉= 0

for all φa with 0 < |a| < rp , then

α(a) = 0 and 1− āc−p+1(a)

〈
π(φa)e−p ,e−p+1

〉〈
π(φa)e−p+1,e−p−1

〉〈
π(φa)e−p ,e−p−1

〉 = 0
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for every φa with 0 < |a| < rp . This gives us

|a|2 〈
π(φa)e−p ,e−p

〉〈
π(φa)e−p+1,e−p−1

〉= 〈
π(φa)e−p+1,e−p

〉〈
π(φa)e−p ,e−p−1

〉
for all φa with 0 < |a| < rp . Now, using the matrix coefficient of π(φa) and then comparing the

coefficients of r 3, we arrive at a contradiction. So, there exists φa with 0 < |a| < rp such that

a
〈
π(φa)e−p ,e−p

〉− c−p+1(a)
〈
π(φa)e−p ,e−p+1

〉〈
π(φa)e−p+1,e−p

〉 6= 0.

Thus, from equation (3.13), we conclude that T −1
−p−1v−p is in the subspace spanned by the set

of vectors {u−p−1, v−p−1}.

Let 0 < a < b < 1 and T (a,b), T (b, a) be the weighted shifts defined by T (a,b)en = tnen+1

and T (b, a)en = 1
tn

en+1 where tn = ‖ fn+1‖
‖ fn‖ =

√
n+a
n+b . Recall that T (a,b) and T (b, a) are the only

homogeneous operators whose associated representation is π=Cλ,σ, where λ= a +b−1 and

σ= b−a
2 .

Lemma 3.9. Let T1 and T2 be two homogeneous operators with associated representationπ and

S be an operator on Hλ,σ such that S satisfies the following equation

Sπ(φ)−e iθπ(φ)S = āT1π(φ)S + āSπ(φ)T2 (3.14)

for all φ=φθ,a in Möb. Then S =α(T1 −T2), for some α ∈C.

Proof. First assume that T1 = T (a,b), T2 = T (b, a). It follows from [7, Theorem 5.3] and [9,

Lemma 2.5] that α(T1 −T2) satisfies equation (3.14) for all α ∈C.

Restricting the equation (3.14) to the group of rotations, we see that S is a weighted shift

with respect to the orthonormal basis {en} of Hλ,σ. Let {αn} be the weight sequence of S.

Substituting φ=φa in the equation (3.14), evaluating at em , taking inner product with en and

then using the matrix coefficient of π(φa), we obtain

αn−1tm
∑

k≥(m−n+1)+
Ck (m,n −1)r k −αm tn−1

∑
k≥(m−n+1)+

Ck (m +1,n)r k

=
(
αm tn−1 + αn−1

tm

) ∑
k≥(m−n+2)+

Ck (m +1,n −1)r k .

Taking m = n and comparing the coefficient of r , we get

αn tn−1(n +a) =αn−1tn(n −1+a).

Now applying induction, we find that for n ∈ Z, αn = α
(
tn − 1

tn

)
for some α ∈ C. This shows

that if T1 = T (a,b) and T2 = T (b, a), then the solution of the equation (3.14) is α(T1 −T2), for

some α ∈C.
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Similarly, we can show that if T1 = T (b, a) and T2 = T (a,b), then also the solution of

equation the (3.14) is α(T1 −T2), for some α ∈C.

Now assume that T1 = T (a,b) and T2 = T (a,b). In this case, we show that S = 0. Again

restricting the equation (3.14) to the group of rotations, we see that S is a weighted shift with

respect to the orthonormal basis {en} of Hλ,σ. Let {αn} be the weights of S.

Substituting φ = φa in the equation (3.14), evaluating at em , taking inner product with

en and then using the matrix coefficient of π(φa), we obtain

αn−1tm
∑

k≥(m−n+1)+
Ck (m,n −1)r k −αm tn−1

∑
k≥(m−n+1)+

Ck (m +1,n)r k

= (αm tn−1 +αn−1tm)
∑

k≥(m−n+2)+
Ck (m +1,n −1)r k

Putting m = n −1 and equating the coefficient of r , we get

αn−1tn−1(λ+2µ−1) = 0.

Since λ= a +b −1 and µ= 1−a, so λ+2µ−1 = b −a, which is different from 0. Also we know

that tn−1 6= 0, for all n ∈Z. This implies that αn = 0 for all n ∈Z. This shows that if T1 = T (a,b),

T2 = T (a,b) and S satisfies equation (3.14), then S must be 0.

Similarly, we can prove that if T1 = T (b, a), T2 = T (b, a) and S satisfies equation (3.14),

then also S = 0.

Now, we describe all homogeneous operators whose associated representation is η. De-

note

T (a,b,α,β) :=

 T (a,b) α(T (a,b)−T (b, a)) β(T (a,b)−T (b, a))

0 T (b, a) 0

0 0 T (b, a)


and

T (b, a,α,β) :=

 T (b, a) α(T (a,b)−T (b, a)) β(T (a,b)−T (b, a))

0 T (a,b) 0

0 0 T (a,b)

 .

Theorem 3.10. Up to unitary equivalence, T (a,b,α,β), T (b, a,α,β), T (a,b)⊕T (a,b)⊕T (a,b)

and T (b, a)⊕T (b, a)⊕T (b, a) are the only homogeneous operators with associated representa-

tion η.

Proof. Let T be a homogeneous operator with associated representation η. In view of Theo-

rem 3.8, we may assume, without loss of generality, that

T =

 T1 S1 S2

0 T2 S3

0 0 T3

 .
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Now, Lemma 3.1 implies that Ti , i = 1,2,3, are homogeneous with associated representation

π and Si , i = 1,2,3, satisfy equations (3.1), (3.2) and (3.3). We divide the proof into several

cases and give the proof in each of these cases separately.

(i) First assume that T1 = T (a,b) and T2 = T3 = T (b, a). The operators S1 and S3 satisfy

the equations (3.1) and (3.2), respectively. Lemma 3.9 shows that S1 = α(T1 −T2) for some

α ∈C and S3 = 0. Substituting S3 = 0 in the equation (3.3), we obtain

S2π(φθ,a)−e iθπ(φθ,a)S2 = āT1π(φθ,a)S2 + āS2π(φθ,a)T2, φθ,a ∈ Möb.

Again, Lemma 3.9 implies that S2 =β(T1 −T2) for some β ∈C and therefore T = T (a,b,α,β).

(ii) Assume T1 = T (b, a) and T2 = T3 = T (a,b). Repeating the argument given in (i), it

follows that T = T (b, a,α,β).

(iii) Assume T2 = T (b, a) and T1 = T3 = T (a,b). Since S1 satisfies equation (3.1), Lemma

3.9 applies and we see that S1 = α(T1 −T2) for some α ∈ C. Using arguments similar to the

ones in the proof of Lemma 3.3, we can take α> 0. Consider the unitary operator

Uα := 1p
α2 +1

[
−αI I

I αI

]
.

Clearly,

U

[
T1 α(T1 −T2)

0 T2

]
U∗ =

[
T2 α(T2 −T1)

0 T1

]
.

Let V =Uα⊕ I where I is the identity operator on Hλ,σ. Then V is a unitary operator and

V T V ∗ =

 T2 α(T2 −T1) Ŝ2

0 T1 Ŝ3

0 0 T3

 .

Now repeating the same argument as in the proof of (i), we see that V T V ∗ = T (b, a,α,β).

(iv) Assume that T2 = T (a,b) and T1 = T3 = T (b, a). In this case, T is unitarily equivalent

to T (a,b,α,β) for some α,β ∈C. The proof is similar to that of (iii).

(v) If T1 = T2 = T3, then applying Lemma 3.3 repeatedly, we find that S1 = S2 = S3 = 0.

Theorem 3.11. Every homogeneous operator with associated representation η is reducible.

Proof. Theorem 3.10 provides a list of all the homogeneous operators with associated repre-

sentation η. All of these are evidently reducible except T (a,b,α,β) and T (b, a,α,β). Therefore,

it is enough to show that these are reducible.

Let H(n) be the subspace spanned by the set of vectors {(en ,0,0)t , (0,en ,0)t , (0,0,en)t },

n ∈ Z. Since T (a,b,α,β) and T (b, a,α,β) are homogeneous operators, it follows that both

T (a,b,α,β) and T (b, a,α,β) map H(n) to H(n +1), n ∈Z. Let us define

un = (en ,0,0)t , vn = (0,βen ,−αen)t and wn = (0,αen ,βen)t .
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Then un , vn and wn are three mutually orthogonal elements of H(n). It is easy to verify that

T (a,b,α,β)un = tnun+1,

T (a,b,α,β)vn = 1
tn

vn+1,

T (a,b,α,β)wn = (α2 +β2)
(
tn − 1

tn

)
un+1 + 1

tn
wn+1

and

T (b, a,α,β)un = 1
tn

un+1,

T (b, a,α,β)vn = tn vn+1,

T (b, a,α,β)wn = (α2 +β2)
(
tn − 1

tn

)
un+1 + tn wn+1.

This shows that T (a,b,α,β) and T (b, a,α,β) are reducible operators. In fact, this shows that

the operator T (a,b,α,β) is unitarily equivalent to the operatorT (b, a) 0 0

0 T (a,b) (T (a,b)−T (b, a))

0 0 T (b, a)


and similarly, the operator T (b, a,α,β) is unitarily equivalent to the operatorT (a,b) 0 0

0 T (b, a) (T (a,b)−T (b, a))

0 0 T (a,b)

 .
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Chapter 4

Characteristic function of homogeneous

contractions

A bounded operator T is said to be a contraction if ‖T ‖ ≤ 1. A very successful model theory

for such operators were developed by Sz.-Nagy and Foias. In particular, the model theory

provides a complete unitary invariant, namely, the characteristic function θ of the operator T.

To define θ, let us recall that DT = (I −T ∗T )
1
2 and DT ∗ = (I −T T ∗)

1
2 are the defect operators of

T and DT = closranDT and DT ∗ = closranDT ∗ . Then DT and DT ∗ are the defect spaces. Now,

define the characteristic function θT :D→B(DT ,DT ∗) to be the holomorphic function:

θT (a) =−T|DT +aDT ∗(I −aT ∗)−1DT |DT , a ∈D.

A very deep theorem, due to Sz.-Nagy and Foias, says that two pure contractions T and T̃ are

unitarily equivalent if and only if θT (a) = τθT̃ (a)η, a ∈D, for some pair of unitaries τ : DT̃ ∗ →
DT ∗ and η : DT →DT̃ .

In the following, we will let φa , φa(w) := a−w
1−āw , a ∈ D, denote an involutive automor-

phism of the unit discD. It has been proved by Bagchi and Misra (see [2]) that the characteris-

tic function θT of a homogeneous contraction T with an associated representation π is of the

form

θT (a) =σL(φa)∗θT (0)σR (φa).

Also, σL and σR are projective representations of Möb with common multiplier, which are

explicitly determined from π. In the first section of this chapter, we give another proof of the

“product formula”. In [8], it has been proved that

(a) the defect operators of M (λ), λ> 1, the multiplication operator on the reproducing ker-

nel Hilbert space H (λ) with reproducing kernel 1
(1−zw̄)λ

, z, w ∈ D, are quasi-invertible

and
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(b) the representations σL and σR for the operator M (λ), λ> 1, are equivalent to the repre-

sentations D+
λ−1 and D+

λ+1, respectively.

Since the operators M (λ) are in the Cowen-Douglas class B1(D) , it is natural to ask what hap-

pens to homogeneous contractions in B2(D). In this chapter, we show that the defect oper-

ators of an irreducible homogeneous contraction in B2(D) need not be quasi-invertible. We

also identify the representations σL and σR for an irreducible homogeneous contraction in

B2(D).

4.1 Product formula

Let T be a homogeneous contraction with an associated representationπ and ΓT be the mini-

mal unitary dilation of the operator T. The original proof of the product formula of the charac-

teristic function θT was obtained by first extending the representation π to the dilation space

of ΓT , say π̂, and then verifying that

π̂(φ)∗ΓT π̂(φ) =φ(ΓT ), φ ∈ Möb.

Thus the minimal unitary dilation ΓT of the operator T is homogeneous whenever T is ho-

mogeneous with an associated representation π. The restriction of π̂ to the subspaces DT and

DT ∗ defines the representations σR and σL , respectively. The proof of the product formula

given below is obtained without going to the dilation space.

Lemma 4.1. Let T be a homogeneous contraction with an associated representation π. Let

φ ∈ Möb. Then Dφ(T ) = π(φ)∗DTπ(φ) and Dφ(T )∗ = π(φ)∗DT ∗π(φ). In particular π(φ) maps

Dφ(T ) and Dφ(T )∗ to DT and DT ∗ , respectively.

Proof. Let φ ∈ Möb. Homogeneity of T implies that φ(T ) =π(φ)∗Tπ(φ). Using this relation it

is easy to see that D2
φ(T ) =π(φ)∗D2

Tπ(φ) and D2
φ(T )∗ =π(φ)∗D2

T ∗π(φ). This implies that Dφ(T ) =
π(φ)∗DTπ(φ) and Dφ(T )∗ = π(φ)∗DT ∗π(φ). It follows that π(φ) maps Dφ(T ) and Dφ(T )∗ to DT

and DT ∗ , respectively.

Let φα(z) = e iαz, z ∈D and let Tα denote the operator φα(T ) = e iαT. It is easy to see that

DTα = DT and DT ∗
α
= DT ∗ . Lemma 4.1 implies that DT and DT ∗ are invariant under π(φα).

Lemma 4.2. Let θTα and θT be the characteristic function of Tα and T, respectively. Then

θTα(z) =π(φα)∗|DT∗θT (z)π(φα)|DT and θTα(z) = e iαθT (e−iαz), z ∈D.
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Proof. Using homogeneity of the operator T, we have

θTα(z) =−Tα|DT
+ zDT ∗

α
(I − zT ∗

α )−1DTα |DT

=−π(φα)∗Tπ(φα)|DT
+ zπ(φα)∗DT ∗π(φα)(I − zπ(φα)∗T ∗π(φα))−1π(φα)∗DTπ(φα)|DT

=π(φα)∗|DT∗θT (z)π(φα)|DT
.

This proves the first part. Also,

θTα(z) =−Tα|DT
+ zDT ∗

α
(I − zT ∗

α )−1DTα |DT

=−e iαT|DT + zDT ∗(I −e−iαzT ∗)−1DT |DT

= e iαθT (e−iαz).

This completes the proof of the lemma.

Let ρa(z) = z−a
1−az , for all z ∈D. Let Ta denote the operator ρa(T ). Following Sz.-Nagy and

Foias [32, p. 240], define Z (a) : DTa → DT and Z∗(a) : DT ∗
a
→ DT ∗ by Z (a)DTa h = DT Sah and

Z∗(a)DT ∗
a

h = DT ∗S∗
ah, respectively, where Sa = (1−|a|2)

1
2 (I − āT )−1. Then Z (a) and Z∗(a) are

unitary operators. Also, from the definition of Z (a) and Z∗(a), we have

Z (a)DTa = DT Sa and Z∗(a)DT ∗
a
= DT ∗S∗

a .

Lemma 4.3. Let T be a homogeneous contraction with associated representation π. For φ in

Möb of the form φ(z) = e iα z−a
1−āz , z ∈D, we have

(θT ◦φ−1)(z) = (e−i α2 Z∗(a)π(φ)∗|DT∗ )θT (z)(e−i α2 π(φ)|Dφ(T ) Z (a)∗), z ∈D.

Proof. Clearly, φ(T ) = e iαTa . From [32, p. 241], it follows that

θT (ρ−1
a (z)) = Z∗(a)θTa (z)Z (a)∗. (4.1)

Substituting e−iαz for z in the equation (4.1), we obtain

θTa (e−iαz) = Z∗(a)∗θT (ρ−1
a (e−iαz))Z (a). (4.2)

Now, Lemma 4.2 implies that

θφ(T )(z) = e iαθTa (e−iαz), z ∈D. (4.3)

Homogeneity of T and Lemma 4.1 gives us

θφ(T )(z) =−φ(T )|Dφ(T ) + zDφ(T )∗(I −aφ(T )∗)−1Dφ(T )|Dφ(T )

=−π(φ)∗|DT∗ Tπ(φ)|Dφ(T )

+ zπ(φ)∗|DT∗ DT ∗π(φ)
(
I − zπ(φ)∗T ∗π(φ)

)−1
π(φ)∗DTπ(φ)|Dφ(T )

=π(φ)∗|DT∗θT (z)π(φ)|Dφ(T ) . (4.4)
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Combining equation (4.2), equation (4.3) and equation (4.4), we get

(θT ◦φ−1)(z) = (e−i α2 Z∗(a)π(φ)∗|DT∗ )θT (z)(e−i α2 π(φ)|Dφ(T ) Z (a)∗)

completing the proof.

Theorem 4.4. Let T be a homogeneous contraction with associated representation π. For φ

in Möb of the form φ(z) = e iα z−a
1−āz , z ∈ D, define σL(φ) = e i α2 π(φ)|Dφ(T )∗ Z∗(a)∗ and σR (φ) =

e−i α2 π(φ)|Dφ(T ) Z (a)∗. Suppose m1 and m are the multipliers of D+
1 and π, respectively. Then σL

and σR are projective representations of Möb with common multiplier m1m. Also, we have the

following relationships:

σL(φ)DT ∗ = DT ∗π(φ)((φ′)−
1
2 (T ))∗, σR (φ)DT = DTπ(φ)(φ′)−

1
2 (T ), φ ∈ Möb.

Proof. First, we prove the second part of the Theorem using the formulas Z (a)DTa = DT Sa ,

Z∗(a)∗DT ∗ = DT ∗
a

(S∗
a)−1 from [32, p. 240] and Lemma 4.1. Let φ ∈ Möb be such that φ(z) =

e iα z−a
1−āz , z ∈D. Then

σL(φ)DT ∗ = e i α2 π(φ)|DT∗
a

Z∗(a)∗DT ∗

= e i α2 π(φ)|DT∗
a

DT ∗
a

(S∗
a)−1

= e i α2 DT ∗π(φ)(S∗
a)−1

= DT ∗π(φ)((φ′)−
1
2 (T ))∗

and

σR (φ)DT = e−i α2 π(φ)|DTa
Z (a)∗DT

= e−i α2 π(φ)|DTa
DTa S−1

a

= e−i α2 DTπ(φ)S−1
a

= DTπ(φ)(φ′)−
1
2 (T ).

Now, we prove that σL and σR are projective representations. Clearly, σL and σR are Borel

maps. Let φ1 and φ2 be any two elements in Möb. Then

σL(φ1)σL(φ2)DT ∗ =σL(φ1)DT ∗π(φ2)((φ′
2)−

1
2 (T ))∗

= DT ∗π(φ1)((φ′
1)−

1
2 (T ))∗π(φ2)((φ′

2)−
1
2 (T ))∗

= DT ∗π(φ1)π(φ2)((φ′
1)−

1
2 (φ2(T )))∗((φ′

2)−
1
2 (T ))∗.

Also, we have

σL(φ1φ2)DT ∗ = DT ∗π(φ1φ2)(((φ1φ2)′)−
1
2 (T ))∗

= m1(φ1,φ2)m(φ1,φ2)DT ∗π(φ1)π(φ2)((φ′
1)−

1
2 (φ2(T )))∗((φ′

2)−
1
2 (T ))∗.
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This proves that

σL(φ1φ2) = m1(φ1,φ2)m(φ1,φ2)σL(φ1)σL(φ2).

Now,

σR (φ1)σR (φ2)DT =σR (φ1)DTπ(φ2)(φ′
2)−

1
2 (T )

= DTπ(φ1)(φ′
1)−

1
2 (T )π(φ2)(φ′

2)−
1
2 (T )

= DTπ(φ1)π(φ2)(φ′
1)−

1
2 (φ2(T ))(φ′

2)−
1
2 (T ).

Also, we have

σR (φ1φ2)DT = DTπ(φ1φ2)((φ1φ2)′)−
1
2 (T )

= m1(φ1,φ2)m(φ1,φ2)DTπ(φ1)π(φ2)(φ′
1)−

1
2 (φ2(T ))(φ′

2)−
1
2 (T ).

Thus

σR (φ1φ2) = m1(φ1,φ2)m(φ1,φ2)σR (φ1)σR (φ2).

This shows that σL and σR are projective representations of Möb and the multiplier of σL and

σR is m1m.

Combining the Theorem we have just proved and Lemma 4.3, we obtain the following

Theorem which gives the product formula for the characteristic function of a homogeneous

contraction with an associated representation.

Theorem 4.5. Let φa in Möb be of the form φa(z) = − z−a
1−āz , z ∈ D. The characteristic function

of a homogeneous contraction T with an associated representation π, is given by

θT (a) =σL(φa)∗θT (0)σR (φa), a ∈D,

where σL and σR are as in Theorem 4.4.

4.2 Characteristic function of an irreducible homogeneous con-

traction of rank 2

In this section, we explicitly compute the characteristic function of an irreducible homoge-

neous contraction in the Cowen-Douglas class of rank 2. This, however, naturally splits into

two cases which we discuss separately.

For the rest of this chapter, we denote the defect operators DT and DT ∗ of T by D and

D∗, respectively. Similarly, we let D and D∗ denote the defect spaces DT and DT ∗ , respectively.
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Let M (λ) be the multiplication operator on H (λ) and i be the inclusion map of H (λ) to

H (λ+2). Let fn(z) = zn and eλn = fn
‖ fn‖λ . Recall that {eλn}n≥0 is a complete orthonormal set of H (λ).

For µ> 0, following [21], define Γλ,µ : H (λ) ⊕H (λ+2) → Hol(D,C2) by

Γλ,µ( f , g )t =
(

f ,
1

λ
f ′+µg

)t

. (4.5)

Clearly, Γλ,µ is an injective linear map. Let H (λ,µ) be the range of Γλ,µ. Define an inner product

on H (λ,µ) so as to make Γλ,µ unitary. It is known (cf. [21]) that H (λ,µ) is a reproducing kernel

Hilbert space with reproducing kernel 1
(1−zw)λ

z
(1−zw)λ+1

w
(1−zw)λ+1

1
λ+µ2+zw

(1−zw)λ+2

 .

Also, it has been proved ( [21, Theorem 3.1]) that the representation Dλ,µ = Γλ,µ(D+
λ
⊕D+

λ+2)Γ∗
λ,µ

is a multiplier representation on H (λ,µ) with multiplier

J (λ)(φ, z) =
[

(φ′(z))
λ
2 0

−cφ(φ′(z))
λ+1

2 (φ′(z))
λ
2 +1

]
, (4.6)

where cφ is a scalar depending on φ such that φ′′(z) = −cφ(φ′(z))3/2. Let Mz be the multi-

plication by z operator on H (λ,µ). From Theorem 1.16, it follows that Mz is a homogeneous

operator with associated representation Dλ,µ. It is easy to see that the off-diagonal entry of

the operator Γ∗
λ,µMzΓλ,µ, given in [15, p. 2255], is a scalar multiple of the inclusion map i from

H (λ) into H (λ+2). Therefore, it follows that

Γ∗λ,µMzΓλ,µ =
[

M (λ) 0

− 1
λµ i M (λ+2)

]
.

It is shown in [22] that these are the only irreducible homogeneous operators in B2(D). The as-

sociated representation of
(

M (λ) 0
− 1
λµ i M (λ+2)

)
is D+

λ
⊕D+

λ+2. Let M(η) denote the operator
(

M (λ) 0
ηi M (λ+2)

)
.

It can be easily proved that if |η1| = |η2|, then M(η1) and M(η2) are unitarily equivalent. So,

we consider M(η) with η≥ 0.

Lemma 4.6. The operator M(η) is a contraction if and only if λ ≥ 1 and 0 ≤ η2 ≤ λ−1
λ . Defect

operators of M(η) are quasi-invertible if and only if 0 ≤ η2 < λ−1
λ .

Proof. Since M (λ) is a contraction only when λ≥ 1, we infer that if M(η) is a contraction, then

λ ≥ 1. Let H(0) be the subspace spanned by the vector (eλ0 ,0)t and for n ≥ 1, let H(n) be the

subspace spanned by the set of vectors {(eλn ,0)t , (0,eλ+2
n−1)t }. The operator M(η) maps H(n) to

H(n +1).
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It is easy to see that ‖M(η)(eλn ,0)t‖2 ≤ 1 for all n ≥ 0 if and only if η2 ≤ λ−1
λ

. Let Tn :=
T|H(n), for n ≥ 0. Then T ∗

n Tn maps H(n) to H(n). Suppose [T ∗
n Tn] is the matrix representation

of T ∗
n Tn with respect to the basis

{
(eλn ,0)t , (0,eλ+2

n−1)t
}

of H(n), n ≥ 1. Then we have

[T ∗
n Tn] =

 n+1
λ+n + η2(λ+1)λ

(λ+n+1)(λ+n)
η
p

nλ(λ+1)
(λ+n+1)

p
(λ+n)

η
p

nλ(λ+1)
(λ+n+1)

p
(λ+n)

n
(λ+n+1)

 .

A straight forward computation shows that the eigenvalues of [T ∗
n Tn] are less than or equal to

1 if and only if 0 ≤ η2 ≤ λ−1
λ . From this, it follows that T is a contraction if and only if λ≥ 1 and

0 ≤ η2 ≤ λ−1
λ

.

Also, it is easy to see that if one of the eigenvalues of [T ∗
n Tn] is 1, then η2 = λ−1

λ . This

shows that D is quasi-invertible if and only if 0 ≤ η2 < λ−1
λ . For η2 = λ−1

λ , (In −T ∗
n Tn) has one

dimensional kernel for all n ≥ 1, where In is the identity operator on H(n).

A similar computation shows that D∗ is quasi-invertible if and only if 0 ≤ η2 < λ−1
λ . For

η2 = λ−1
λ

, (In −TnT ∗
n ) has one dimensional kernel for all n ≥ 1.

4.2.1 The defect operators are not quasi-invertible

Given any two Hilbert spaces K , L and a contractive holomorphic function θ :D→B(K ,L ),

the operator Θ : H 2
K → H 2

L
, defined by the formula Θ f (z) = θ(z) f (z), z ∈D, f ∈ H 2

K , is a con-

traction. The two Hilbert spaces H 2
K and H 2

L
can be naturally identified with H (1) ⊗K and

H (1)⊗L , respectively. If K is a Hilbert space consisting of holomorphic functions defined on

D, then there is a natural realization of the Hilbert space H (1) ⊗K as a space of holomorphic

functions in two variables. One way to achieve this is to take f ⊗ g ∈ H (1) ⊗K to the function

(z, w) 7→ f (z)g (w), z, w ∈D. Similarly, we realize the Hilbert space H (1)⊗L as a space of holo-

morphic functions onD2, whenever L is a Hilbert space consisting of holomorphic functions

on D.

Recall (see [8, Theorem 3.1]) that the characteristic function of the operator M (λ), λ >
1, coincides with the purely contractive holomorphic function θλ : D −→ B(H (λ+1), H (λ−1)),

where

θλ(z) = 1p
λ(λ−1)

D+
λ−1(φz)∗∂∗D+

λ+1(φz).

Here, ∂ : H (λ−1) → H (λ+1) is the map defined by ∂ f = f ′. The characteristic function θλ deter-

mines, as above, an operator Θλ : H (1) ⊗H (λ+1) → H (1) ⊗H (λ−1). The formula given below for

Θ∗
λ

is from [8]:

(
Θ∗
λ f

)
(z, w) = 1p

λ(λ−1)

∂

∂w
f (z, w)−

√
λ−1

λ

f (z, w)− f (w, w)

z −w
, z, w ∈D, f ∈ H (1) ⊗H (λ−1).

(4.7)
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For λ > 2, let θ : D −→ B(H (λ+2), H (λ−2)) be the map defined by θ(z) = θλ−1(z)θλ+1(z), z ∈ D.

The map θ induces an operatorΘ from H (1)⊗H (λ+2) to H (1)⊗H (λ−2). From the definition of θ,

it follows thatΘ=Θλ−1Θλ+1.

Let ∆ := {(z, z) : z ∈ D} be the diagonal subset of the bi-disc D2. For λ > 0, let sλ(1) :={
f ∈ H (1) ⊗H (λ) : f|∆ = 0

}
and sλ(2) := {

f ∈ H (1) ⊗H (λ) : f|∆ = 0, ∂z f|∆ = 0
}
. Both sλ(1), sλ(2) are

closed subspaces of H (1) ⊗H (λ) with sλ(2) ⊆ sλ(1).

Recall that
{

wn

‖wn‖λ : n ≥ 0
}

, ‖w n‖2
λ
= (n+λ−1

n

)−1
is an orthonormal basis of H (λ). Suppose

Homλ(p) is the space of all homogeneous polynomial of degree p in H (1)⊗H (λ). Then we have

H (1) ⊗H (λ) =⊕p≥0Homλ(p). Let

f (λ)
p,1 (z, w) =

p∑
l=0

zp−l w l

‖w l‖2
λ

and f (λ)
p,2 (z, w) =

p∑
l=0

(b(λ)
p + l a(λ)

p )

‖w l‖2
λ

zp−l w l , (4.8)

where a(λ)
p = −

p∑
l=0

1

‖w l‖2
λ

and b(λ)
p =

p∑
l=0

l

‖w l‖2
λ

. From [15], we know that f (λ)
p,1 is in sλ−2(1)⊥

and f (λ)
p,2 is in sλ(1)∩ sλ(2)⊥. Therefore the set of vectors

{
f (λ)

p,1 , f (λ)
p,2

}
is an orthogonal basis of

sλ(2)⊥∩Homλ(p).

Lemma 4.7. For λ> 2, the operator Θ∗
λ−1 maps sλ−2(2) to sλ(1) and sλ−2(2)⊥ to sλ(1)⊥.

Proof. From the definition of Θ∗
λ−1, it is easy to see that Θ∗

λ−1 (sλ−2(2)) is contained in sλ(1).

It takes a little more work to show that Θ∗
λ−1

(
sλ−2(2)⊥

)
is contained in sλ(1)⊥. First, using the

formula (see [8, Equation 4.3])

l∑
j=0

(
j +λ−3

j

)
=

(
l +λ−2

l

)
,

it is easy to prove that

a(λ−2)
p =−

(
p +λ−2

p

)
and b(λ−2)

p = (λ−2)

(
p +λ−2

p −1

)
.

It then follows that

b(λ−2)
p =−p

(
λ−2

λ−1

)
a(λ−2)

p . (4.9)

Since f (λ−2)
p,2 |∆ = 0, it follows that f (λ−2)

p,2 (z, w) = (z −w)
p−1∑
l=0

αl zp−1−l w l , where αl ∈ C, 0 ≤ l ≤
p −1. Comparing the coefficients of zp−l w l from the two sides of this equality and then using

the equation (4.9), we get

αl =
l∑

k=0

b(λ−2)
p +ka(λ−2)

p

‖w k‖2
λ−2

= (λ−2)

(λ−1)
(p − l )a(λ−2)

p a(λ−2)
l . (4.10)
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Now, from the formula (4.7) given forΘ∗
λ

, we have

√
(λ−1)(λ−2)Θ∗

λ−1 f (λ−2)
p,2 (z, w) = ∂

∂w
f (λ−2)

p,2 (z, w)− (λ−2)
f (λ−2)

p,2 (z, w)

z −w

=
p∑

l=1

(
b(λ−2)

p + l a(λ−2)
p

‖w l‖2
λ−2

− (λ−2)αl−1

)
zp−l w l−1.

Using the value of αl−1 from the equation (4.10) and the identity
(
λ+l−3

l

) = (λ−2)
l

(
λ+l−3

l−1

)
, we

obtain

(b(λ−2)
p + l a(λ−2)

p )l

‖w l‖2
λ−2

− (λ−2)αl−1 = (λ−2)

(
λ+ l −3

l −1

)[
−p

(
λ−2

λ−1

)
a(λ−2)

p

+l a(λ−2)
p + (λ−2)

(λ−1)
a(λ−2)

p (p − l +1)

]
= (λ−2)

(
λ+ l −3

l −1

)
a(λ−2)

p
(λ+ l −2)

(λ−1)

= (λ−2)a(λ−2)
p

(
λ+ l −2

l −1

)

= (λ−2)a(λ−2)
p

‖w l−1‖2
λ

.

For the third equality, we have used the identity (λ+l−2)
(λ−1)

(
λ+l−3

l−1

)= (
λ+l−2

l−1

)
. Therefore, it follows

that

√
(λ−1)(λ−2)

(
Θ∗
λ−1 f (λ−2)

p,2

)
(z, w) = (λ−2)a(λ−2)

p

p−1∑
l=0

zp−1−l w l

‖w l‖2
λ

= (λ−2)a(λ−2)
p f (λ)

p−1,1(z, w).

Consequently, the vectorΘ∗
λ−1 f (λ−2)

p,2 is in sλ(1)⊥∩Homλ(p−1) showing thatΘ∗
λ−1 maps sλ−2(2)⊥

into sλ(1)⊥.

Theorem 4.8. Let θ :D−→B(H (λ+2), H (λ−2)) be defined by θ(z) = θλ−1(z)θλ+1(z). Then θ coin-

cides with the characteristic function of

[
M (λ−1) 0√

λ−2
λ−1 i M (λ+1)

]
.

Proof. Since θλ−1 and θλ+1 are purely contractive, it follows that θ = θλ−1θλ+1 is also purely

contractive. Let Θ : H (1) ⊗ H (λ+2) −→ H (1) ⊗ H (λ−2) be the operator induced by θ. Then Θ =
Θλ−1Θλ+1 and therefore θ is an inner function.

Let M be the range of Θ and T = PM⊥M (1) ⊗ I|M⊥ , where M (1) is the multiplication

operator on H (1) and PM⊥ is the projection of H (1) ⊗ H (λ−2) onto M⊥. It follows, from [32],

that the characteristic function of T coincides with θ. Since M = ranΘ, so M⊥ = ker Θ∗.
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Now [8, Theorem 3.2] implies that ker Θ∗
λ+1 = sλ(1)⊥ and therefore, by Lemma 4.7, we have

ker Θ∗ = sλ−2(2)⊥.

From [15], it follows that T is unitarily equivalent to the operator

[
M (λ−1) 0√

λ−2
λ−1 i M (λ+1)

]
and

therefore the characteristic function of

[
M (λ−1) 0√

λ−2
λ−1 i M (λ+1)

]
coincides with θ(z).

4.2.2 The defect operators are quasi-invertible

Lemma 4.6 implies that the defect operators of Mz defined on H (λ,µ) are quasi-invertible if

and only if λ > 1 and µ2 > 1
λ(λ−1) . Now we describe the characteristic function of Mz in this

case.

Let H(0) be the subspace of H (λ,µ) spanned by the vector (1,0)t and for n ≥ 1, H(n) be

the subspace of H (λ,µ) spanned by the set of vectors
{
(zn , n

λ
zn−1)t , (0,µzn−1)t

}
. Then Mz maps

H(n) to H(n +1) for all n ≥ 0. Note that H (λ,µ) is densely contained in H (λ+1,µ′) for all µ′ > 0,

because H (λ1) is densely contained in H (λ2) if λ1 <λ2.

Lemma 4.9. There exist c > 0 andµ1 > 0 such that
〈

D f ,Dg
〉= c

〈
f , g

〉
λ+1,µ1

for all f , g ∈ H (λ,µ),

where 〈., .〉λ+1,µ1 is the inner product on H (λ+1,µ1) and D is the defect operator (I −M∗
z Mz)1/2.

Proof. Since Mz maps H(n) to H(n +1), each H(n) is invariant under D . Because H(n)’s are

orthogonal in H (λ,µ), so it is enough to prove the above equality on each H(n) with some c

and µ1 which independent of n.

For n ≥ 0, we have

‖D(0,µzn)t‖2 = ‖zn‖2
λ+2 −‖zn+1‖2

λ+2 =
n!(λ+1)

(λ+n +2) · · · (λ+2)
.

Suppose there exist c > 0 and µ1 > 0 such that ‖D(0,µzn)t‖2 = c‖(0,µzn)t‖2
λ+1,µ1

, then we

obtain

n!(λ+1)

(λ+n +2) · · · (λ+2)
= c‖Γλ+1,µ1 (0,

µ

µ1
zn)t‖2

λ+1,µ1
= c‖ µ

µ1
zn‖2

λ+3 = c
µ2

µ2
1

(
λ+n +2

n

)−1

,

which gives us
λ+1

λ+2
= c

µ2

µ2
1

. (4.11)

Suppose that the statement of the Theorem is valid with this c and µ1. Then we have

‖D(zn ,
n

λ
zn−1)t‖2 = c‖(zn ,

n

λ
zn−1)t‖2

λ+1,µ1
, n ≥ 1. (4.12)

But

‖D(zn ,
n

λ
zn−1)t‖2 = ‖zn‖2

λ−‖(zn+1,
n

λ
zn)t‖2. (4.13)
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Since (
zn+1,

n

λ
zn

)t
=

(
zn+1,

n +1

λ
zn

)t

− 1

λµ
(0,µzn)t ,

it follows that

‖(zn+1,
n

λ
zn)t‖2 = ‖zn+1‖2

λ+
1

λ2µ2
‖zn‖2

λ+2 =
(
λ+n

n +1

)−1

+ 1

λ2µ2

(
λ+n +1

n

)−1

.

Substituting the value of ‖(zn+1, n
λ

zn)t‖2 in the equation (4.13), we obtain

‖D(zn ,
n

λ
zn−1)t‖2 = n!

(λ+n)(λ+n +1) · · · (λ+2)

[
λ−1

(λ+1)λ
− 1

λ2µ2(λ+n +1)

]
.

Now let us calculate ‖(zn , n
λzn−1)t‖2

λ+1,µ1
. Since

(zn ,
n

λ
zn−1)t = (zn ,

n

λ+1
zn−1)t + n

µ1λ(λ+1)
(0,µ1zn−1)t ,

it follows that

‖(zn ,
n

λ
zn−1)t‖2

λ+1,µ1
= ‖(zn ,

n

λ+1
zn−1)t‖2

λ+1,µ1
+ n2

(λ+1)2λ2µ2
1

‖(0,µ1zn−1)t‖2
λ+1,µ1

= ‖zn‖2
λ+1 +

n2

(λ+1)2λ2µ2
1

‖zn−1‖2
λ+3

= n!

(λ+n) · · · (λ+3)

[
1

(λ+2)(λ+1)
+ n

λ2µ2
1(λ+1)2(λ+n +1)

]
.

Now substituting the values of ‖(zn , n
λ

zn−1)t‖2
λ+1,µ1

and ‖D(zn , n
λ

zn−1)t‖2 in the equation (4.12),

we get

c = λ−1

λ
− 1

λ2µ2
. (4.14)

Quasi-invertibility of the defect operators of Mz imply that λ−1
λ − 1

λ2µ2 > 0 and therefore c > 0.

Putting the value of c in the equation (4.11), we obtain µ1.

Now to check if this choice of c and µ1 works, we need to verify the equality

〈
D(zn ,

n

λ
zn−1)t ,D(0,µzn−1)t

〉
= c

〈
(zn ,

n

λ
zn−1)t , (0,µzn−1)

〉
λ+1,µ1

, n ≥ 1.
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For n ≥ 1,〈
D(zn ,

n

λ
zn−1)t ,D(0,µzn−1)t

〉
=

〈
(I −M∗

z Mz)(zn ,
n

λ
zn−1)t , (0,µzn−1)t

〉
=

〈
(zn ,

n

λ
zn−1)t , (0,µzn−1)t

〉
−

〈
(zn+1,

n

λ
zn)t , (0,µzn)t

〉
=−

〈
(zn+1,

n

λ
zn)t , (0,µzn)t

〉
=−

〈
(zn+1,

n +1

λ
zn)t − 1

λµ
(0,µzn)t , ((0,µzn)t )

〉
= 1

λµ

〈
(0,µzn)t , (0,µzn)t〉

= 1

λµ
‖zn‖2

λ+2 =
1

λµ

(
λ+n +1

n

)−1

.

Again, we have〈
(zn ,

n

λ
zn−1)t , (0,µzn−1)t

〉
λ+1,µ1

=
〈

(zn ,
n

λ+1
zn−1)t + n

µ1λ(λ+1)
(0,µ1zn−1)t ,

µ

µ1
(0,µ1zn−1)t

〉
λ+1,µ1

= nµ

µ2
1λ(λ+1)

〈
(0,µ1zn−1)t , (0,µ1zn−1)t 〉

λ+1,µ1

= nµ

µ2
1λ(λ+1)

‖zn−1‖2
λ+3 =

nµ

µ2
1λ(λ+1)

(
λ+n +1

n −1

)−1

.

Now, using the equation (4.11), it is easy to see that〈
D(zn ,

n

λ
zn−1)t ,D(0,µzn−1)t

〉
= c

〈
(zn ,

n

λ
zn−1)t , (0,µzn−1)t

〉
λ+1,µ1

.

Also, it is easy to prove that
〈

D(1,0)t ,D(1,0)t
〉 = c

〈
(1,0)t , (1,0)t

〉
λ+1,µ1

. Since we have c and

µ1, independent of n, it follows that
〈

D f ,Dg
〉= c

〈
f , g

〉
λ+1,µ1

for all f , g ∈ H (λ,µ).

From Theorem 4.5, it follows that the characteristic function of Mz on H (λ,µ) is θ(a) =
σL(φa)∗θ(0)σR (φa), a ∈ D, where φa(z) = − z−a

1−āz and σL ,σR are representations of Möb with

common multiplier on the Hilbert space H (λ,µ). Also, Theorem 4.4 implies that

σR (φ)D = DDλ,µ(φ)(φ′)−1/2(T ) and σL(φ)∗D∗ = D∗(φ′)1/2(T )∗Dλ,µ(φ)∗, φ ∈ Möb.

The following Lemma along with its proof is an adaptation of a similar result from the unpub-

lished manuscript [2].

Lemma 4.10. Suppose that the defect operators D and D∗ of Mz on H (λ,µ) are quasi-invertible.

Then there exist two positive real numbers µ1 and µ2 such that σR and σL are unitarily equiv-

alent to Dλ+1,µ1 and Dλ−1,µ2 , respectively.
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Proof. Recall that the reproducing kernel K of the Hilbert space H (λ,µ) is of the form

K (z, w) =
 1

(1−zw̄)λ
z

(1−zw̄)λ+1

w̄
(1−zw̄)λ+1

1
λ+µ2+zw̄

(1−zw̄)λ+2

 , z, w ∈D.

Let µ2
2 =µ2 + 1

λ
− 1
λ−1 . Since the defect operators of Mz are quasi-invertible, using Lemma 4.6,

we have µ2
2 > 0. Define

K +(z, w) = (1− zw̄)K (z, w) =
 1

(1−zw̄)λ−1
z

(1−zw̄)λ

w̄
(1−zw̄)λ

1
λ−1+µ2

2+zw̄

(1−zw̄)λ+1

 .

Then K + is the kernel of the Hilbert space H (λ−1,µ2). Note that H (λ−1,µ2) is densely contained

in H (λ,µ). Let i+ be the inclusion map of H (λ−1,µ2) into H (λ,µ). Then (i+)∗ is a map from H (λ,µ)

to H (λ−1,µ2) such that

(i+)∗K (., w)ξ= K +(., w)ξ, w ∈D, ξ ∈C2. (4.15)

Also, it is easy to see that

〈D∗K (., w1)ξ1,D∗K (., w2)ξ2〉 =
〈

(i+)∗K (., w1)ξ1, (i+)∗K (., w2)ξ2
〉
λ−1,µ2

for all w1, w2 ∈C and ξ1,ξ2 ∈C2. This implies that〈
D∗ f ,D∗g

〉= 〈
(i+)∗ f , (i+)∗g

〉
λ−1,µ2

(4.16)

for all f , g ∈ H (λ,µ). Define V : H (λ,µ) → H (λ−1,µ2) by V D∗ f = (i+)∗ f for all f ∈ H (λ,µ). Since

D∗ is quasi-invertible, equation (4.16) implies that V is an isometry. Also, by definition of V ,

we have V D∗ = (i+)∗. Taking adjoint both sides of this equation, we obtain D∗V ∗ = i+ which

implies that kerV ∗ = {0}. This proves that V is an unitary operator. We have

D∗σL(φ) = Dλ,µ(φ)(φ′)1/2(T )D∗.

Using Theorem 4.4, we obtain

D∗σL(φ) f (z) = J (λ−1)(φ−1, z)D∗ f (φ−1(z)), f ∈ H (λ,µ).

Therefore for g in H (λ−1,µ2), we have

i+VσL(φ)V ∗g (z) = D∗σL(σ)V ∗g (z) = J (λ−1)(φ−1, z)(D∗V ∗g )(φ−1(z))

= J (λ−1)(φ−1, z)(i+g )(φ−1(z)) = J (λ−1)(φ−1, z)g (φ−1(z)).

This implies that

VσL(φ)V ∗g (z) = J (λ−1)(φ−1, z)g (φ−1(z)), g ∈ H (λ−1,µ2).
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Therefore, VσL(φ)V ∗ = Dλ−1,µ2 (φ), φ in Möb.

From Theorem 4.4, we know that σR (φ)D = DDλ,µ(φ)(φ′)−1/2(T ). Lemma 4.9 implies

that there exist two positive real numbers c and µ1 such that〈
D f ,Dg

〉= c
〈

f , g
〉
λ+1,µ1

, f , g ∈ H (λ,µ),

where 〈., .〉λ+1,µ1 is the inner product of H (λ+1,µ1). Let i− be the inclusion map form H (λ,µ) into

H (λ+1,µ1). Define U : H (λ,µ) → H (λ+1,µ1) by U D f =p
ci− f , f ∈ H (λ,µ). Quasi-invertibility of D

implies that U is a unitary operator. Theorem 4.4 shows that

σR (φ)D f (z) = D J (λ+1)(φ−1, z) f (φ−1(z)), f ∈ H (λ,µ), φ ∈ Möb.

Thus for f in H (λ,µ), we have

UσR (φ)U∗i− f (z) = 1p
c

UσR (φ)D f (z)

= 1p
c

U D J (λ+1)(φ−1, z) f (φ−1(z))

= i− J (λ+1)(φ−1, z) f (φ−1(z)),

which implies that

UσR (φ)U∗ f (z) = J (λ+1)(φ−1, z) f (φ−1(z)) = Dλ+1,µ(φ) f (z), f ∈ H (λ,µ). (4.17)

Since H (λ,µ) is densely contained in H (λ+1,µ1), from equation (4.17) it follows that UσR (φ)U∗ =
Dλ+1,µ(φ) for all φ in Möb.

From Lemma 4.10, it follows that the characteristic function of Mz on H (λ,µ) coincides

with Dλ−1,µ2 (φa)∗V θ(0)U∗Dλ+1,µ1 (φa), where U and V are the two unitary operators defined

as above, whenever µ > 1p
λ(λ+1)

. To concretely realize the characteristic function, set T :=
U M∗

z V ∗ and compute Γ∗
λ+1,µ1

TΓλ−1,µ2 explicitly. Note that for λ > 0, the map ∂ : H (λ) →
H (λ+2), defined by ∂ f = f ′, is a bounded operator.

Lemma 4.11. The operator Γ∗
λ+1,µ1

TΓλ−1,µ2 : H (λ−1) ⊕H (λ+1) → H (λ+1) ⊕H (λ+3) is given by the

formula

Γ∗λ+1,µ1
TΓλ−1,µ2 =

 p
c

λ−1∂ −
p

c
µ2(λ−1) I

p
c

µ1λ(λ2−1)
∂2

p
cµ2

µ1(λ+1)∂

 .

Proof. Using the equation (4.15), the relations V ∗(i+)∗ = D∗, MzD = D∗Mz and U D =p
c i−,

we obtain

T K +(., w)ξ=U M∗
z V ∗K +(., w)ξ

=U M∗
z V ∗(i+)∗K (., w)ξ=U M∗

z D∗K (., w)ξ

=U DM∗
z K (., w)ξ=p

c i−M∗
z K (., w)ξ

=p
c wK (., w)ξ, (4.18)
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for any w ∈C and ξ ∈C2. Differentiating k times both sides of the equation (4.18) with respect

to w̄ at 0, we get

T (∂̄k K +(.,0)ξ) =p
c k∂̄k−1K (.,0)ξ. (4.19)

A direct computation shows that

∂̄k K +(z,0) =


(
λ+k −2

k

)
k !zk

(
λ+k −1

k

)
k !zk+1(

λ+k −2

k −1

)
k !zk−1

( 1
λ
+µ2

)( λ+k

k

)
k !zk +

(
λ+k −1

k −1

)
k !zk


and

∂̄k K (z,0) =


(
λ+k −1

k

)
k !zk

(
λ+k

k

)
k !zk+1(

λ+k −1

k −1

)
k !zk−1

( 1
λ
+µ2

)( λ+k +1

k

)
k !zk +

(
λ+k

k −1

)
k !zk

 .

Evaluating the equation (4.19) at ξ= (1,0)t , we obtain

T

(
zk ,

k

λ−1
zk−1

)t

=
p

c

(λ−1)

(
kzk−1,

k(k −1)

λ
zk−2

)t

.

and consequently,

TΓλ−1,µ2 ( f ,0)t = T

(
f ,

1

λ−1
f ′

)t

=
p

c

(λ−1)

(
f ′,

1

λ
f ′′

)t

, f ∈ H (λ−1). (4.20)

Now, evaluating (4.19) at ξ= (0,1)t , we get

T

(
zk+1,

(
1

λ
+µ2

)
(λ+k)

λ
zk + k

λ
zk

)t

=
p

c

λ

(
kzk ,

(
1

λ
+µ2

)
(λ+k)

(λ+1)
kzk−1 + k(k −1)

(λ+1)
zk−1

)t

.

(4.21)

Using µ2
2 =µ2 + 1

λ − 1
λ−1 , it is easy to see that(

zk+1,

(
1

λ
+µ2

)
(λ+k)

λ
zk + k

λ
zk

)t

=
(

zk+1,
k +1

λ−1
zk

)t

+
(

k

λ
+1

)(
0,µ2

2zk
)t

.

Equation (4.20) and (4.21) together imply that

1p
c

(
k

λ
+1

)
T

(
0,µ2

2zk
)t =

((
k

λ
− k +1

λ−1

)
zk ,

{
(

1

λ
+µ2)

k(λ+k)

λ(λ+1)
+ k(k −1)

λ(λ+1)
− k(k +1)

λ(λ−1)

}
zk−1

)t

.

(4.22)

If c,d ∈C such that((
k

λ
− k +1

λ−1

)
zk ,

{
(

1

λ
+µ2)

k(λ+k)

λ(λ+1)
+ k(k −1)

λ(λ+1)
− k(k +1)

λ(λ−1)

}
zk−1

)t

= c

(
zk ,

k

λ
zk−1

)t

+d
(
0,µ2zk−1

)t
,
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then we get c = k
λ
− k+1
λ−1 =− (λ+k)

λ(λ−1) and d = (λ+k)k
λ(λ+1) . Consequently, equation (4.22) gives us

T (0,µ2
2zk )t =

p
c

(λ+1)
(0,µ2kzk−1)t −

p
c

(λ−1)
(zk ,

k

λ
zk−1)t ,

which implies that

TΓλ−1,µ2 (0, g )t =
p

c

µ2(λ+1)
(0,µ2g ′)t −

p
c

µ2(λ−1)
(g ,

1

λ
g ′)t , g ∈ H (λ+1). (4.23)

Therefore, combining equations (4.20) and (4.23), the proof is complete.

The following theorem gives the formula for the characteristic function of a homoge-

neous operator in this case (defect operators are quasi-invertible) explicitly.

Theorem 4.12. The characteristic function of Mz , assuming that the defect operators are quasi-

invertible, on H (λ,µ) coincides with

−pc


√

λ
λ−1θλ(a) θλ(a)θλ+2(a)√

(λ−1)
(
µ2(λ−1)− 1

λ

)
− I√

(λ−1)
(
µ2(λ−1)− 1

λ

) √
λ
λ−1θλ+2(a)

 ,

where θλ(a) = 1p
(λ−1)λ

D+
λ−1(φa)∗∂∗D+

λ+1(φa) and θλ+2(a) = 1p
(λ+1)(λ+2)

D+
λ+1(φa)∗∂∗D+

λ+3(φa).

Proof. Theorem 4.5 shows that the characteristic function θ of Mz is of the form

θ(a) =σL(φa)∗θ(0)σR (φa), a ∈D.

Since the defect operators of Mz on H (λ,µ) are quasi-invertible, it follows, from Lemma 4.10,

that

V θ(a)U∗ =−Dλ−1,µ2 (φa)∗T ∗Dλ+1,µ1 (φa),

where U and V are the two unitary operators defined in Lemma 4.10. So

Γ∗λ−1,µ2
V θ(a)U∗Γλ+1,µ1

=−
(
Γ∗λ−1,µ2

Dλ−1,µ2 (φa)Γλ−1,µ2

)∗ (
Γ∗λ+1,µ1

TΓλ−1,µ2

)∗ (
Γ∗λ+1,µ1

Dλ+1,µ1 (φa)Γλ+1,µ1

)
=−

[
D+
λ−1(φa)∗ 0

0 D+
λ+1(φa)∗

] p
c

λ−1∂
∗

p
c

µ1λ(λ2−1)
(∂∗)2

−
p

c
µ2(λ−1) I

p
cµ2

µ1(λ+1)∂
∗

[
D+
λ+1(φa) 0

0 D+
λ+3(φa)

]

=−pc


√

λ
λ−1θλ(a)

p
λ+2

µ1

p
λ(λ2−1)

θλ(a)θλ+2(a)

− 1
µ2(λ−1) I µ2

p
λ+2

µ1
p
λ+1

θλ+2(a)

 .
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Now, using the equations (4.11), (4.14) and µ2
2 =µ2 − 1

λ(λ−1) , we obtain

Γ∗λ−1,µ2
V θ(a)U∗Γλ+1,µ1 =−pc


√

λ
λ−1θλ(a) θλ(a)θλ+2(a)√

(λ−1)(µ2(λ−1)− 1
λ )

− I√
(λ−1)(µ2(λ−1)− 1

λ )

√
λ
λ−1θλ+2(a)

 .

This completes the proof of the theorem.

Since the characteristic function θ coincides with Γ∗
λ−1,µ2

V θ(a)U∗Γλ+1,µ1 , we use the

same symbol θ to denote this operator and call it the characteristic function of the operator

Mz .

We conclude this chapter by describing the invariant subspace determined by the char-

acteristic operatorΘ :

Θ=−pc


√

λ
λ−1Θλ

ΘλΘλ+2√
(λ−1)(µ2(λ−1)− 1

λ )

− I√
(λ−1)(µ2(λ−1)− 1

λ )

√
λ
λ−1Θλ+2

 ,

which is just the range of the operatorΘ. We have

Θ∗ =−pc


√

λ
λ−1Θ

∗
λ

− I√
(λ−1)(µ2(λ−1)− 1

λ )

Θ∗
λ+2Θ

∗
λ√

(λ−1)(µ2(λ−1)− 1
λ )

√
λ
λ−1Θ

∗
λ+2

 .

It follows, from Lemma 4.7, that ker Θ∗ = {(
f , a

bΘ
∗
λ

f
)

: f ∈ sλ−1(2)⊥
}

, where a = −
√

cλ
λ−1 and

b = −pc√
(λ−1)(µ2(λ−1)− 1

λ )
.

By the model theory of Sz.-Nagy and Foias, the operator PkerΘ∗
(
M (1)⊗(Iλ−1⊕Iλ+1)

)
|kerΘ∗ ,

where Iλ±1 is the identity operator on H (λ±1), is unitarily equivalent to the operator Mz on

H (λ,µ). Recall that M (1) is the multiplication by the coordinate function on the Hardy space

H (1). The operator M (1) ⊗ (Iλ−1 ⊕ Iλ+1) is clearly a homogeneous operator with the associated

representation D+
1 ⊗ (

D+
λ−1 ⊕D+

λ+1

)
.

We show that the subspace ker Θ∗ is also left invariant by the representation (D+
1 ⊗

D+
λ−1)⊕ (D+

1 ⊗D+
λ+1). This would give another proof that Mz on H (λ,µ), µ > 1p

λ(λ−1)
, is ho-

mogeneous.

The following Lemma is the first step in proving that ker Θ∗ is also left invariant by the

representation D+
1 ⊗ (

D+
λ−1 ⊕D+

λ+1

)= (D+
1 ⊗D+

λ−1)⊕ (D+
1 ⊗D+

λ+1).

Lemma 4.13. For φ ∈ Möb, we have Θ∗
λ

D+
1 (φ)⊗D+

λ−1(φ) = D+
1 (φ)⊗D+

λ+1(φ)Θ∗
λ

.
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Proof. Let θ̃(z) = 1p
λ(λ+1)

D+
λ+1(φz)∗∂D+

λ−1(φz). Then θ̃(z) induces an operator Θ̃ from L2(T)⊗
H (λ−1) to L2(T) ⊗ H (λ+1). Here, we view the elements of L2(T) ⊗ H (λ−1) and L2(T) ⊗ H (λ+1)

as complex valued functions defined on T×D. Then for every f ∈ L2(T)⊗ H (λ−1), from [8,

Theorem 3.2], we have

(Θ̃ f )(z, w) = 1p
λ(λ−1)

[
∂

∂w
f (z, w)− (λ−1)

z̄

1− z̄w
f (z, w)

]

for all z ∈T and w ∈D.

Let ρb be an element of Möb such that ρb(z) = z−b
1−b̄z

. We know that {an w m}n∈Z,m≥0 is an

orthogonal basis of L2(T)⊗H (λ−1). Let f (a, w) = an w m where a ∈T and w ∈D. Then

((D+
1 (ρ−1

b )⊗D+
λ+1(ρ−1

b ))Θ̃ f )(a, w)

= 1p
λ(λ−1)

D+
1 (ρ−1

b )⊗D+
λ+1(ρ−1

b )

[
∂

∂w
an w m − (λ−1)

ā

1− āw
an w m

]
= 1p

λ(λ−1)
D+

1 (ρ−1
b )⊗D+

λ+1(ρ−1
b )

[
man w m−1 − (λ−1)an−1w m

∞∑
k=0

āk w k

]

= 1p
λ(λ−1)

D+
1 (ρ−1

b )⊗D+
λ+1(ρ−1

b )

[
man w m−1 − (λ−1)

∞∑
k=0

an−k−1w m+k

]

= (ρ′
b(a))1/2(ρ′

b(w))
λ+1

2

p
λ(λ−1)

[
m(ρb(a))n(ρb(w))m−1 − (λ−1)

∞∑
k=0

(ρb(a))n−k−1(ρb(w))m+k

]

= (ρ′
b(a))1/2(ρ′

b(w))
λ+1

2 (ρb(a))n(ρb(w))m−1

p
λ(λ−1)

[
m − (λ−1)

(ρb(w))

(ρb(a))

1

(1− (ρb(a))(ρb(w)))

]

= (ρ′
b(a))1/2(ρ′

b(w))
λ+1

2 (ρb(a))n(ρb(w))m−1

p
λ(λ−1)

[
m − (λ−1)

ρb(w)

ρb(a)−ρb(w)

]

= (ρ′
b(a))1/2(ρ′

b(w))
λ+1

2 (ρb(a))n(ρb(w))m−1

p
λ(λ−1)

[
m − (λ−1)

(w −b)(1− b̄a)

(a −w)(1−|b|2)

]

The fifth and the sixth equalities are obtained by noting that if a ∈T, then ρb(a) ∈T. Now,

(Θ̃D+
1 (ρ−1

b )⊗D+
λ−1(ρ−1

b ) f )(a, w)

= Θ̃D+
1 (ρ−1

b )⊗D+
λ−1(ρ−1

b )an w m

= Θ̃((ρ′
b(a))1/2(ρb(a))n(ρ′

b(w))
λ−1

2 (ρb(w))m)

= (ρ′
b(a))1/2(ρb(a))n

p
λ(λ−1)

[
∂

∂w
(ρ′

b(w))
λ−1

2 (ρb(w))m − (λ−1)
ā

(1− āw)
(ρ′

b(w))
λ−1

2 (ρb(w))m
]
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From this equation, using ρb(w) = w−b
1−b̄w

,ρ′
b(w) = 1−|b|2

(1−b̄w)2 and ρ′′
b(w) = 2b̄(1−|b|2)

(1−b̄w)3 , we see that

(Θ̃ (D+
1 (ρ−1

b )⊗D+
λ−1(ρ−1

b )) f )(a, w)

= (ρ′
b(a))1/2(ρ′

b(w))
λ+1

2 (ρb(a))n(ρb(w))m−1

p
λ(λ−1)

[
m − (λ−1)

(w −b)(1− b̄a)

(a −w)(1−|b|2)

]
.

This shows that

(D+
1 (ρ−1

b )⊗D+
λ+1(ρ−1

b )) Θ̃= Θ̃ (D+
1 (ρ−1

b )⊗D+
λ−1(ρ−1

b )).

Since ρ−1
b = ρ−b for all b ∈D, it follows that

(D+
1 (ρb)⊗D+

λ+1(ρb)) Θ̃= Θ̃ (D+
1 (ρb)⊗D+

λ−1(ρb)).

Let φθ be an element of Möb such that φθ(z) = e iθz. Then it is easy to see that

(D+
1 (φθ)⊗D+

λ+1(φθ)) Θ̃an w m = Θ̃ (D+
1 (φθ)⊗D+

λ−1(φθ))an w m , n ∈Zm ≥ 0.

Since {an w m}n∈Z,m≥0 is an orthonormal basis of L2(T)⊗H (λ−1), it follows that

(D+
1 (φθ)⊗D+

λ+1(φθ)) Θ̃= Θ̃ (D+
1 (φθ)⊗D+

λ−1(φθ)).

The multipliers of the two representations D+
1 ⊗D+

λ−1 and D+
1 ⊗D+

λ+1 are same. Hence we have

(D+
1 (φ)⊗D+

λ+1(φ)) Θ̃= Θ̃ (D+
1 (φ)⊗D+

λ−1(φ)), φ ∈ Möb.

Let P be the projection of L2(T)⊗H (λ+1) onto H (1)⊗H (λ+1). Since H (1)⊗H (λ+1) is an invariant

subspace of the representation D+
1 ⊗D+

λ+1, so P commutes with D+
1 (φ)⊗D+

λ+1(φ) for all φ in

Möb. AsΘ∗
λ
= PΘ̃|H (1)⊗H (λ−1) , so we get that

(D+
1 (φ)⊗D+

λ+1(φ))Θ∗
λ =Θ∗

λ (D+
1 (φ)⊗D+

λ−1(φ))

for all φ in Möb.

Theorem 4.14. For any t ∈C, the subspace M⊥
t = {

( f , t Θ∗
λ

f ) : f ∈ sλ−1(2)⊥
}

is invariant under

the representation (D+
1 ⊗D+

λ−1)⊕ (D+
1 ⊗D+

λ+1). Consequently, the subspace ker Θ∗ is invariant

under (D+
1 ⊗D+

λ−1)⊕ (D+
1 ⊗D+

λ+1) as well.

Proof. The subspace sλ−1(2)⊥ is invariant under D+
1 ⊗D+

λ−1. Thus, for f in sλ−1(2)⊥ and φ in

Möb, (D+
1 (φ)⊗D+

λ−1(φ)) f is in sλ−1(2)⊥. Now, using Lemma 4.13, we get

(D+
1 (φ)⊗D+

λ−1(φ))⊕ (D+
1 (φ)⊗D+

λ+1(φ))( f , t Θ∗
λ f )

= (
(D+

1 (φ)⊗D+
λ−1(φ)) f , t (D+

1 (φ)⊗D+
λ+1(φ))Θ∗

λ f
)

= (
(D+

1 (φ)⊗D+
λ−1(φ)) f , t Θ∗

λ(D+
1 (φ)⊗D+

λ−1(φ)) f )
)
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Since (D+
1 (φ)⊗D+

λ−1(φ)) f is in sλ−1(2)⊥, it follows that

(D+
1 (φ)⊗D+

λ−1(φ))⊕ (D+
1 (φ)⊗D+

λ+1(φ))( f , t Θ∗
λ f ) ∈M⊥

t .

This shows that M⊥
t is invariant under (D+

1 ⊗D+
λ−1)⊕ (D+

1 ⊗D+
λ+1).

Clearly, ker Θ∗ = M⊥
t for some t ∈ C, therefore ker Θ∗ is invariant under the represen-

tation (D+
1 ⊗D+

λ−1)⊕ (D+
1 ⊗D+

λ+1).
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Chapter 5

Homogeneous tuples in the

Cowen-Douglas class of the polydisk

The notion of a homogeneous operator has a natural generalization to commuting tuple of

operators. In this chapter, we consider the case of a commuting tuple which is homogeneous

with respect to either the automorphism group Aut(Dn) of the polydisc Dn or the subgroup

Möbn := Aut(D)× ·· ·×Aut(D) ⊆ Aut(Dn). We note that Aut(Dn) = Möbn nSn , where Sn is the

permutation group on a set of n elements. Throughout this chapter, we let G denote one of

these two groups.

Definition 5.1. A commuting tuple of operators (T1,T2, . . . ,Tn) is said to be homogeneous

with respect to the group G , if the joint spectrum of (T1,T2, . . . ,Tn) lies inDn andϕ(T1,T2, . . . ,Tn)

is unitarily equivalent to (T1,T2, . . . ,Tn) for all ϕ ∈G .

Combining the change of variable formula with the transformation rule of the curvature

forced by homogeneity, we write down the curvature (1,1) form explicitly for a homogeneous

operator. Since the curvature is a complete unitary invariant for an n-tuple of operators in the

Cowen-Douglas class of the polydisc B1(Dn), we obtain a list of unitarily inequivalent homo-

geneous tuples from the curvature. Determining the class of homogeneous tuples in Bm(Dn)

is much more challenging when the rank m > 1. We have succeeded in obtaining a complete

list of inequivalent homogeneous tuples only in the case of m = 2.

Let K :Dn ×Dn →Mm be a positive definite kernel which is holomorphic in the first and

anti-holomorphic in the second variable. The linear span of the set of vectors

{K (z, w)x : x ∈Cm , w ∈Dn}

equipped with the inner product

〈K (z, w2)x,K (z, w1)y〉 = 〈K (w1, w2)x, y〉
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is a pre-Hilbert space. The completion is a Hilbert space, say HK , of holomorphic functions

on Dn . For each fixed but arbitrary w ∈ Dn , the vector K (·, w)x, x ∈ Cm , is in HK and has the

reproducing property:

〈 f ,K (·, w)x〉 = 〈 f (w), x〉, f ∈ HK .

Let Mzi be the operator of multiplication by the coordinate function zi , 1 ≤ i ≤ n. Given

any commuting tuple of operators (T1,T2, . . . ,Tn) in Bm(Dn), there exists a reproducing ker-

nel Hilbert space HK such that (T1,T2, . . . ,Tn) is unitarily equivalent to (M∗
z1

, M∗
z2

, . . . , M∗
zn

),

(see [14, Theorem 4.12]). Thus we will assume without loss of generality that a commuting

tuple of operators in Bm(Dn) has been realized as (M∗
z1

, M∗
z2

, . . . , M∗
zn

) on some reproducing

kernel Hilbert space HK . Conversely, with mild assumptions on the kernel K , one may assume

the commuting tuple (M∗
z1

, M∗
z2

, . . . , M∗
zn

) is in Bm(Dn) (cf. [14]). Throughout this chapter, we

mandate that these assumptions are in force.

Definition 5.2. For g ∈ G , let Jg : Dn → GL(m,C) be holomorphic. A kernel K : Dn ×Dn →
Mm is said to be quasi-invariant with respect to J if for all g ∈ G and z, w ∈ Dn , the kernel K

transforms as follows:

K (z, w) = Jg (z)K (g z, g w)Jg (w)∗.

In practice, the factor J is assumed to be a cocycle, that is,

J (g h, z) = J (h, z)J (g ,hz), g ,h ∈G ; z ∈Dn .

Here J (g , z) := Jg (z), g ∈G , z ∈Dn .

Suppose HK is a reproducing kernel Hilbert space and Jg : Dn → GL(m,C), g ∈ G , is

holomorphic. Then U : G → Hol(Dn ,Cm), defined by

(Ug f )(z) = J (g−1, z) f (g−1z); f ∈ Hol(Dn ,Cm), g ∈G ,

is a unitary representation of G on HK if and only if K is quasi-invariant and J is a cocycle.

Let e1, . . . ,em be the standard unit vectors in Cm . For 1 ≤ i ≤ m, define si : Dn → HK to

be the anti-holomorphic map: si (w) := K (·, w)ei , w ∈ Dn . Clearly, (s1, . . . , sm) defines a trivial

anti-holomorphic Hermitian vector bundle E of rank m on Dn . The fiber of E at w is the m

- dimensional subspace
{
K (·, w)x : x ∈ Cm

}
and the Hermitian structure at w is given by the

positive definite matrix K (w, w). Thus the the curvature K of the vector bundle E is a (1,1)

form given by the formula:

K(w) =
n∑

i , j=1
∂i

[
K (w, w)−1∂̄ j K (w, w)

]
d wi ∧d w̄ j .
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Although, not very common, we will let

K (w) = ((
K i j (w)

))
, w ∈Dn ,

where K i j (w) := ∂i
[
K (w, w)−1∂̄ j K (w, w)

]
is the co-efficient of d wi ∧d w̄ j in K. We obtain a

transformation rule for the curvature whenever the kernel K is quasi-invariant.

Proposition 5.3. Let Jϕ : Dn → GL(m,C), ϕ ∈ G , be holomorphic and K : Dn ×Dn → Mm be a

kernel. If K is quasi-invariant with respect to J , then we have

K (z) = (
Dϕ(z)t ⊗ (J (ϕ, z)∗)−1)K (ϕ(z))

(
Dϕ(z)⊗ J (ϕ, z)∗

)
for ϕ ∈G and z, w ∈Dn .

Proof. Letϕ ∈G and Kϕ :Dn×Dn →Mm be the kernel Kϕ(z, w) = K (ϕz,ϕw). Since K is quasi-

invariant with respect to J , we have

K (z, w) = J (ϕ, z)K (ϕz,ϕw)J (ϕ, w)∗

for all ϕ ∈G and z, w ∈Dn . Now,

K
i j
ϕ (z) = ∂i

[
Kϕ(z, z)−1∂̄ j Kϕ(z, z)

]
= ∂i

[{
J (ϕ, z)−1K (z, z)

(
J (ϕ, z)∗

)−1
}−1

∂̄ j

{
J (ϕ, z)−1K (z, z)

(
J (ϕ, z)∗

)−1
}]

= ∂i

[
J (ϕ, z)∗K (z, z)−1 J (φ, z)

{
J (ϕ, z)−1∂̄ j K (z, z)

(
J (ϕ, z)∗

)−1

+ J (ϕ, z)−1K (z, z)∂̄ j
(

J (ϕ, z)∗
)−1

}]
= ∂i

[
J (ϕ, z)∗K (z, z)−1∂̄ j K (z, z)

(
J (ϕ, z)∗

)−1 + J (ϕ, z)∗∂̄ j
(

J (ϕ, z)∗
)−1

]
= J (ϕ, z)∗∂i

[
K (z, z)−1∂̄ j K (z, z)

](
J (ϕ, z)∗

)−1

= J (ϕ, z)∗K i j (z)
(

J (ϕ, z)∗
)−1 .

This gives us

Kϕ(z) = (
I ⊗ J (ϕ, z)∗

)
K (z)

(
I ⊗ (J (ϕ, z)∗)−1) . (5.1)

Also using the chain rule, we obtain

Kϕ(z) = (
Dϕ(z)t ⊗ I

)
K (ϕ(z))

(
Dϕ(z)⊗ I

)
. (5.2)

Combining (5.1) and (5.2), we have

K (z) = (
Dϕ(z)t ⊗ (J (ϕ, z)∗)−1)K (ϕ(z))

(
Dϕ(z)⊗ J (ϕ, z)∗

)
.

verifying the transformation rule for the curvature K .
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Since G acts transitively on Dn , there is a ϕz in G with ϕz(z) = 0. Substituting ϕz in the

transformation rule for the curvature obtained in Proposition 5.3, we see that the curvature at

any z ∈Dn , is determined from its value at 0.

Corollary 5.4. With notations and assumptions as in Proposition 5.3, we have

K (z) = (
Dϕz(z)t ⊗ (J (ϕz , z)∗)−1)K (0)

(
Dϕz(z)⊗ J (ϕz , z)∗

)
where ϕz is in G with ϕz(z) = 0.

5.1 Homogeneous tuples in B1(Dn)

First we prove a lemma for a kernel K which is quasi-invariant with respect to Jg : Dn → C,

which is assumed to be holomorphic and g → Jg is assumed to be Borel. We show that J must

be a co-cycle if K is assumed to be quasi-invariant with respect to J .

Lemma 5.5. Suppose ϕ→ Jϕ is Borel and for each ϕ ∈G , Jϕ is holomorphic. If

K (z, w) = J (ϕ, z)K (ϕz,ϕw)J (ϕ, w); ϕ ∈G , z, w ∈Dn ,

then J is a projective cocycle.

Proof. Let ϕ,ψ ∈G . By the given condition, we have

K (z, w) = J (ϕψ, z)K (ϕψz,ϕψw)J (ϕψ, w).

Again using the given condition repeatedly, we have

K (z, w) = J (ψ, z)K (ψz,ψw)J (ψ, w)

= J (ψ, z)J (ϕ,ψz)K (ϕψz,ϕψw)J (ϕ,ψw)J (ψ, w).

Equating these two values of K (z, w) and then cancelling K (ϕψz,ϕψw) from the both side,

we get

J (ϕψ, z)J (ϕψ, w) = J (ψ, z)J (ϕ,ψz)J (ϕ,ψw)J (ψ, w)

Since for each ϕ in G , J (ϕ, ·) is holomorphic, it follows that

J (ϕψ, z) = m(ϕ,ψ)J (ϕ,ψz)J (ψ, z) (5.3)

where m(ϕ,ψ) is a constant of modulus 1. Since J is Borel in first variable, so m is also a Borel

map on G ×G . Now, we show that m is a multiplier.
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Let ϕ,ψ,η ∈G . Then equation (5.3) implies that

J (ϕψη, z) = m(ϕ,ψη)J (ϕ,ψηz)J (ψη, z)

= m(ϕ,ψη)m(ψ,η)J (ϕ,ψηz)J (ψ,ηz)J (η, z).

Again equation (5.3) implies that

J (ϕψη, z) = m(ϕψ,η)J (ϕψ,ηz)J (η, z)

= m(ϕψ,η)m(ϕ,ψ)J (ϕ,ψηz)J (ψ,ηz)J (η, z).

Equating these two values of J (ϕψη, z), we obtain

m(ϕ,ψη)m(ψ,η) = m(ϕψ,η)m(ϕ,ψ).

This shows that m is a multiplier and therefore J is a projective cocycle.

To describe the homogeneous tuples in B1(Dn), realized as a tuple of adjoint of mul-

tiplication operators on a reproducing kernel Hilbert space, we first prove a useful Lemma

showing that the reproducing kernel in this case must be quasi-invariant. The proof of the

Lemma is given for G = Aut(Dn). The proof in the case G = Möbn then follows.

Lemma 5.6. Let K :Dn ×Dn →Mm be a reproducing kernel. Assume that the tuple of multipli-

cation operators is in Bm(Dn) and homogeneous with respect to G. Then for each ϕ ∈ G , there

exists a holomorphic map Jϕ :Dn →GL(m,C) such that K is quasi-invariant with respect to J .

Proof. If gσ ∈ Aut(Dn), then gσ(z1, z2, . . . , zn) = (g1(zσ1 ), g2(zσ2 ), . . . , gn(zσn )), gi ∈ Möb and σ ∈
Sn . Since (Mz1 , Mz2 , . . . , Mzn ), where Mzi denotes the multiplication by the coordinate function

zi on the reproducing kernel Hilbert space HK , is homogeneous, it follows that

gσ(Mz1 , Mz2 , . . . , Mzn ) =
(
Mg1(zσ1 ), Mg2(zσ2 ) . . . , Mgn (zσn )

)
is unitarily equivalent to (Mz1 , Mz2 , . . . , Mzn ).

Let Kgσ : Dn ×Dn → Mm be the kernel Kgσ(z, w) = K (g−1
σ z, g−1

σ w). It is easy to check

that U : HK → HKgσ
defined by U K (·, w)ξ = Kgσ(·, gσw)ξ, w ∈ Dn and ξ ∈ Cm , is unitary. Let

M̃zi denote the multiplication by zi on the Hilbert space HKgσ
. The following computation

shows that K (·, w)ξ is an eigenvector for (U∗M̃z1U , . . . ,U∗M̃znU ) with the joint eigenvalue

(g1(wσ1 ), . . . , gn(wσn )):

U∗M̃zi U K (·, w)ξ=U∗M̃zi Kgσ(·, gσw)ξ

= gi (wσi )U∗Kgσ(·, gσw)ξ

= gi (wσi )K (·, w)ξ.
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Since the linear span of the vectors K (·, w)ξ, w ∈ Dn , ξ ∈ Cm , are dense in HK , we conclude

that

U∗(M̃1, M̃2, . . . , M̃n)U = gσ(Mz1 , Mz2 , . . . , Mzn ).

This, together with the homogeneity assumption, proves that the tuples (M̃z1 , M̃2, . . . , M̃zn )

and (Mz1 , Mz2 , . . . , Mzn ) are unitarily equivalent. Since (Mz1 , Mz2 , . . . , Mzn ) is in Bm(Dn), it fol-

lows, from [14, Theorem 3.7], that there exists a holomorphic map Jg−1
σ

:Dn →GL(m,C) such

that

K (z, w) = Jg−1
σ

(z)Kgσ(z, w)Jg−1
σ

(w)∗.

This shows that there exists a holomorphic map Jgσ :Dn →GL(m,C), gσ ∈ Aut(Dn), such that

K is quasi-invariant with respect to J .

The following theorem describes all the tuples in B1(Dn) which are homogeneous with

respect to (a) the group Möbn and (b) the full automorphism group Aut(Dn).

Theorem 5.7. Assume that the n - tuple of multiplication operators (Mz1 , Mz2 , . . . , Mzn ), defined

on a reproducing kernel Hilbert space HK , is in the Cowen-Douglas class B1(Dn). Then

(a) the n - tuple (Mz1 , Mz2 , . . . , Mzn ) is homogeneous with respect to Möbn if and only if

K (z, w) = h(z)
( n∏

i=1

1

(1− zi w̄i )λi

)
h(w), z, w ∈Dn , λi > 0,

for some holomorphic function h :Dn →C;

(b) the n - tuple (Mz1 , Mz2 , . . . , Mzn ) is homogeneous with respect to Aut(Dn) if and only if

K (z, w) = h(z)
( n∏

i=1

1

(1− zi w̄i )λ

)
h(w), z, w ∈Dn , λ> 0,

for some holomorphic function h :Dn →C.

Proof. (a) It is well-known that the n-tuple (M∗
z1

, . . . , M∗
zn

) on the Hilbert space HK , K (z, w) =∏n
i=1

1
(1−zi w̄i )λi

is in B1(Dn). It is also easy to verify that these are homogeneous with respect to

Möbn . This is the proof in one direction.

For the proof in the other direction, note that the existence of a holomorphic map Jϕ,

ϕ ∈ Möbn , such that

K (z, w) = J (ϕ, z)K (ϕz,ϕw)J (ϕ, w), z, w ∈Dn , ϕ ∈ Möbn

follows from Lemma 5.6.

Since J is scalar valued, it follows from Proposition 5.3 that

K (z) = Dϕ(z)tK (ϕ(z))Dϕ(z) (5.4)
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where K is the curvature of K .

Now, let k ∈ Möbn be such that k(z1, z2, . . . , zn) = (k1z1,k2z2, . . . ,kn zn) for (z1, z2, . . . , zn)

inDn where each ki is a constant of modulus 1. Then Dk(0) = diag(k1,k2, ...,kn). Let ai j be the

(i , j )-th entry of K (0). Evaluating the equation (5.4) for ϕ= k and z = 0, we see that ai j = 0 if

i 6= j . This shows that K (0) = diag(a11, a22, . . . , ann). Now Corrolary 5.4 gives

K (z) = Dϕz(z)tK (0)Dϕz(z) = diag

(
a11

(1−|z1|2)2
,

a22

(1−|z2|2)2
, . . . ,

ann

(1−|zn |2)2

)
.

Let λi = ai i , 1 ≤ i ≤ n. Recalling that K1 =K2 if and only if K2 = hK1h̄ for some holomorphic

function h, we conclude that K (z, w) = h(z)
(∏n

i=1
1

(1−zi w̄i )λi

)
h(w), h is holomorphic on Dn .

Since K is a positive definite kernel, it follows that λi > 0, 1 ≤ i ≤ n.

(b) The proof in the forward direction follows from the proof in the same direction of

part (a).

For the other direction, note that the existence of a holomorphic map Jϕ, ϕ ∈ Aut(Dn),

such that

K (z, w) = J (ϕ, z)K (ϕz,ϕw)J (ϕ, w), z, w ∈Dn , ϕ ∈ Aut(Dn)

follows from Lemma 5.6. On the other hand, Proposition 5.3 gives

K (z) = Dϕ(z)t K (ϕ(z))Dϕ(z), z ∈Dn ϕ ∈ Aut(Dn). (5.5)

Since Möbn is a subgroup of Aut(Dn), it follows that (Mz1 , Mz2 , . . . , Mzn ) is homogeneous

with respect to the group Möbn . Therefore, K (0) = diag(a11, a22, . . . , ann) where ai i > 0, 1 ≤
i ≤ n.

Let σk ∈ Aut(Dn) be such that σk (z1, z2, . . . , zn) = (k2z2,k1z1, . . . ,kn zn) for (z1, z2, . . . , zn)

in Dn , where each ki is a constant of modulus 1. Then

Dσk (0) =


0 k2 0 . . . 0

k1 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . kn

 .

Evaluating the equation (5.5) for ϕ= σk and z = 0 and equating (1, 2) entry, we get a11 = a22.

Similarly, ai i = a11 for all i . Putting λ = a11, we have K (0) = diag(λ,λ, . . . ,λ). Now, Corollary

5.4 gives

K (z) = Dϕz(z)t K (0)Dϕz(z) = diag

(
λ

(1−|z1|2)2
,

λ

(1−|z2|2)2
, . . . ,

λ

(1−|zn |2)2

)
, z ∈Dn ,

which implies that K (z, w) = h(z)
(∏n

i=1
1

(1−zi w̄i )λ

)
h(w) for some holomorphic function h on

Dn .

This completes the description of homogeneous operators in Cowen-Douglas class B1(Dn).
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5.2 Irreducible Homogeneous tuples in B2(Dn)

In this section, we describe all irreducible homogeneous tuples in B2(Dn) with respect to the

group G , which is taken to be either Möbn or Aut(Dn) as before. First, we describe all irre-

ducible tuples in B2(Dn) which are homogeneous with respect to Möbn , then we show that

there are no irreducible tuples in B2(Dn), which are homogeneous with respect to Aut(Dn).

Definition 5.8. Let (T1,T2, . . . ,Tn) be a commuting tuple of bounded operators. If there does

not exist any non-trivial projection which commutes with each Ti , then (T1,T2, . . . ,Tn) is said

to be irreducible.

Let H (α) denote the reproducing kernel Hilbert space, consisting of holomorphic func-

tions on the unit disc D, determined by the kernel K (α)(z, w) = 1
(1−zw̄)α defined on D. Also, let

M (α) denote the operator of multiplication by the coordinate function z on H (α). Finally, let

H (λ,µ) be the reproducing kernel Hilbert space determined by the kernel

K (λ,µ)(z, w) =
 1

(1−zw̄)λ
z

(1−zw̄)λ+1

w̄
(1−zw̄)λ+1

1
λ+µ+zw̄

(1−zw̄)λ+1


defined onD. The operator M (λ,µ) is the multiplication by the coordinate function z on H (λ,µ).

An homogeneous operator in B1(D) must be unitarily equivalent to M (α)∗ for some α> 0 (see

[26]) and every irreducible homogeneous operators in B2(D) must be unitarily equivalent to

M (λ,µ)∗ for some λ,µ> 0 (see [22, 35]).

We prove that the tuple (Mz1 , Mz2 , . . . , Mzn ) of multiplication by the coordinate functions

acting on the Hilbert space H (α1) ⊗·· ·⊗H (αn−1) ⊗H (λ,µ) ⊆ Hol(Dn ,C2) is irreducible. First, we

prove a useful lemma.

Lemma 5.9. Let H1 and H2 be two Hilbert spaces and Ti be an irreducible operator on Hi for

i = 1,2. Suppose P is a projection defined on H1 ⊗H2.

(a) If P commutes with I ⊗T2, then there exists a projection P1, defined on H1, such that P =
P1 ⊗ I .

(b) If P commutes with T1 ⊗ I , then there exists a projection P2, defined on H2, such that P =
I ⊗P2.

Proof. (a) Assume that dim H1 = N , where N can be ∞. Let {ei : 1 ≤ i ≤ N } be an orthonormal

basis of H1. Define U : H1 ⊗H2 →⊕N
i=1 H2 by U (ei ⊗ y) = (0,0, . . . , y,0, . . . ,0), y ∈ H2, where y is

in the i -th position. Then U is a unitary operator and U (I ⊗T2)U∗ =⊕N
i=1 T2.

Let P̃ =U PU∗. Suppose ((P̃i j )) is the matrix representation of P̃ as an operator on the

Hilbert space ⊕N
i=1H2, where P̃i j is an operator on H2. Since P̃ is a projection, it follows that

P̃∗
i j = P̃ j i for all i , j .
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Since P and I ⊗T2 commutes, the operators P̃ and ⊕N
i=1T2 also commute. This implies

that P̃i j commutes with T2 for each i , j . Since T2 is irreducible and P̃∗
i j = P̃ j i , P̃i j both com-

mute with T2, it follows that P̃i j =αi j I , for some αi j ∈C.

Thus, we have P̃ = ((
αi j I

))
. Let P1 be the operator on H1, whose matrix representa-

tion with respect to the orthonormal basis {ei : 1 ≤ i ≤ N } is
((
αi j

))
. Since P̃ = ((

αi j I
))

is a

projection, it follows that P1 is also a projection and P = P1 ⊗ I .

(b) Let V : H1⊗H2 → H2⊗H1 be the unitary operator, defined by V (h1⊗h2) = h2⊗h1, h1 ∈
H1, h2 ∈ H2. Conjugating P , T1 ⊗ I by V and applying (a), the proof of (b) follows.

Theorem 5.10. The tuple (Mz1 , Mz2 , . . . , Mzn ) of multiplication by the coordinate functions, act-

ing on the Hilbert space H (α1) ⊗·· ·⊗H (αn−1) ⊗H (λ,µ) ⊆ Hol(Dn ,C2) is irreducible.

Proof. Evidently, the tuple (Mz1 , Mz2 , . . . , Mzn ) is simultaneously unitarily equivalent to the tu-

ple

(M (α1) ⊗·· ·⊗ I ⊗ I , . . . , I ⊗·· ·⊗M (αn−1) ⊗ I , I ⊗·· ·⊗ I ⊗M (λ,µ))

acting on H (α1) ⊗·· ·⊗H (αn−1) ⊗H (λ,µ).

Let P be a projection which commutes with M (α1)⊗·· ·⊗I ⊗I . Then there exists a projec-

tion P2, defined on H (α2) ⊗·· ·⊗H (αn−1) ⊗H (λ,µ), such that P = I ⊗P2, by virtue of Lemma 5.9.

Now, P commutes with I ⊗M (α2)⊗·· ·⊗I . This implies that P2 commutes with M (α2)⊗I ⊗·· ·⊗I .

Again applying Lemma 5.9, we obtain a projection P3 such that P2 = I ⊗P3.

Continuing in this manner, we see that P = I ⊗ I ⊗ ·· · ⊗ Pn , where Pn is a projection

defined on H (λ,µ) and it commutes with M (λ,µ). Since M (λ,µ) is irreducible, it follows that Pn

must be either 0 or I . This proves that the given tuple is irreducible.

Recall that D+
α is the holomorphic Discrete series representation of Möb on H (α) and

Dλ,µ is the multiplier representation of Möb on H (λ,µ) given by the cocycle

J (ϕ, z) =
 (ϕ′(z))

λ
2 0

ϕ′′(0)

2(ϕ′(0))
3
2

(ϕ′(z))
λ+1

2 (ϕ′(z))
λ
2 +1


It is easy to see that the tuple of multiplication by the coordinate functions (Mz1 , Mz2 , . . . , Mzn )

acting on the Hilbert space H (α1) ⊗ ·· ·⊗ H (αn−1) ⊗ H (λ,µ) is homogeneous under the action of

Möbn with associated representation D+
α1

⊗D+
α2

⊗·· ·⊗Dλ,µ of Möbn .

Lemma 5.11. Let Jϕ : Dn → GL(2,C), ϕ ∈ Möbn , be holomorphic and K : Dn ×Dn → M2 be a

kernel. If K is quasi-invariant with respect to J , then K i j (0) = 0 whenever i 6= j .

Proof. Since K is quasi-invariant with respect to J , it follows from Lemma 5.3 that

K (z) = (
Dϕ(z)t ⊗ (J (ϕ, z)∗)−1)K (ϕ(z))

(
Dϕ(z)⊗ J (ϕ, z)∗

)
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for allϕ in Möbn and z inDn . Let k ∈ Möbn be such that k(z1, z2, . . . , zn) = (k1z1, k2z2,. . . , kn zn)

for (z1, z2, . . . , zn) in Dn where modulus of each ki is 1. Then Dk(0) = diag(k1,k2, . . . ,kn). Now

replacing ϕ by k and z by 0 in the equation appearing above, we get

K (0) = (
Dk(0)t ⊗ (J (k,0)∗)−1)K (0)

(
Dk(0)⊗ J (k,0)∗

)
,

which is equivalent to the equation:(
Dk(0)⊗ J (k,0)∗

)
K (0) =K (0)

(
Dk(0)⊗ J (k,0)∗

)
.

Now, equating the (i , j )-th block from both sides, we get

k̄i J (k,0)∗K i j (0) = k̄ j K
i j (0)J (k,0)∗.

Thus if i 6= j , K i j (0) is similar to ki k̄ j K
i j (0) for all ki ,k j in the unit circle. This means that

the set of eigenvalues of K i j (0) must be invariant under the circle action. This is not possible

unless K i j (0) = 0.

Lemma 5.12. Let Jϕ :Dn →GL(2,C), ϕ ∈ Aut(Dn), be holomorphic and K :Dn ×Dn →M2 be a

kernel. If K is quasi-invariant with respect to J , then K i j (0) = 0 if i 6= j and K i i (0), K j j (0)

are similar for all i , j , 1 ≤ i , j ≤ n.

Proof. Since K is quasi-invariant with respect to J , therefore K is also quasi-invariant with

respect to J |Möbn×Dn . It then follows, from Lemma 5.11, that K i j (0) = 0 if i 6= j .

Letσk ∈ Aut (Dn) be the automorphism such thatσk (z1, z2, . . . , zn) = (k2z2,k1z1, . . . ,kn zn)

for (z1, z2, . . . , zn) in Dn , where each ki is in the unit circle. Then

Dσk (0) =


0 k2 0 . . . 0

k1 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . kn

 .

Replacing ϕ by σk and z by 0 in Lemma 5.3, we obtain

Dσk (0)⊗ J (σk ,0)∗K (0) =K (0)Dσk (0)⊗ J (σk ,0)∗.

Equating the (1,2) block from both sides of the equation, we get

J (σk ,0)∗K 22(0) =K 11(0)J (σk ,0)∗.

Since J (σk ,0)∗ is invertible, it follows that K 11(0) and K 22(0) are similar. Similar reasoning

shows that K i i (0) and K i+1 i+1(0) are similar for all i .
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Theorem 5.13. Let λ,µ,αi be positive real numbers where i = 1,2, . . . ,n −1. The tuple of mul-

tiplication by the coordinate functions (Mz1 , Mz2 , . . . , Mzn ), acting on the Hilbert space H (α1) ⊗
·· ·⊗H (αn−1) ⊗H (λ,µ), is not homogeneous under the action of Aut(Dn).

Proof. The reproducing kernel of the Hilbert space H (α1) ⊗·· ·⊗H (αn−1) ⊗H (λ,µ) is

K (α,λ,µ)(z, w) =
(

n−1∏
i=1

1

(1− zi w̄i )αi

) 1
(1−zn w̄n )λ

zn

(1−zn w̄n )λ+1

w̄n

(1−zn w̄n )λ+1

1
λ+µ+zn w̄n

(1−zn w̄n )λ+1

 ,

where α represents the vector (α1,α2, . . . ,αn−1). Since the tuple is homogeneous, it follows,

from Lemma 5.6, that for each ϕ ∈ Aut(Dn) there exists a holomorphic map Jϕ :Dn →GL(2,C)

such that K (α,λ,µ) is quasi-invariant with respect to J . Then Lemma 5.12 implies that K 11(0)

and K nn(0) are similar. But it is easy to see that

K 11(0) =
[
α1 0

0 α1

]
and K nn(0) =

[
λ− ( 1

λ −µ2
)−1

0

0 λ+2+ ( 1
λ −µ2

)−1

]
.

This implies that K 11(0) and K nn(0) can not be similar. This proves that the given tuple is

not homogeneous under the action of Aut(Dn).

Now, we obtain all irreducible homogeneous tuples in B2(Dn) under the action of Möbn .

If an irreducible tuple in B2(Dn) is homogeneous under the action of Möbn , then it is associ-

ated with an irreducible rank two Hermitian holomorphic vector bundle which admits an

action of the universal covering group G̃n of Möbn , where G̃ is the universal covering group of

Möb. Indeed, even if we drop the assumption of irreducibility, the proof from [23, Theorem

2.1] goes through.

Also, recall that if (T1,T2, . . . ,Tn) is in B2(Dn), then it is unitarily equivalent to the tuple

(M∗
z1

, M∗
z2

, . . . , M∗
zn

) acting on a Hilbert space consisting of holomorphic functions taking val-

ues inC2, defined onDn , possessing a reproducing kernel K . Next, if the tuple (M∗
z1

, M∗
z2

. . . , M∗
zn

)

is homogeneous with respect to Möbn , then K must be quasi-invariant relative to some family

of holomophic functions Jϕ, ϕ ∈ Möbn . Finally, if we assume that the tuple (M∗
z1

, M∗
z2

. . . , M∗
zn

)

is irreducible, then the map J : Möbn×Dn →GL(2,C), J (ϕ, z) := Jϕ(z), is Borel and satisfies the

projective cocycle property:

J (ϕψ, z) = m(ϕ,ψ)J (ψ, z)J (ϕ,ψ(z)), where m : Möbn ×Möbn → T is a multiplier,

that is, m is a Borel map satisfying the multiplier identities

1. m(e,ϕ) = m(ϕ,e) = 1, ϕ in Möbn and e is the identity element of Möbn .

2. m(ϕ1,ϕ2)m(ϕ1ϕ2,ϕ3) = m(ϕ1,ϕ2ϕ3)m(ϕ2,ϕ3) holds for allϕ1,ϕ2,ϕ3 in Möbn .
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Therefore to find all the irreducible homogeneous n-tuples in B2(Dn), it is enough to find all

the cocycles J̃ : G̃n ×Dn →GL(2,C) and positive diagonal matrix K (0,0) such that it commutes

with J̃ (k̃,0) for each k̃ fixing 0 and so that the polarization of

K (z, z) := J̃ (g̃z , z)K (0,0) J̃ (g̃z , z)∗, (5.6)

where g̃z maps z to 0, is positive definite. Once we find these, we show that K is quasi-

invariant with respect to J̃ and the adjoint of the tuple of multiplication operators on HK is in

B2(Dn).

Now, we shall compute all the two dimensional cocycles on G̃n×Dn . Recall that SU (1,1)

is the 2-fold covering group of Möb and let G̃ be the universal covering group of SU (1,1). The

unit disc D admits an action of the group SU (1,1) by the rule,

g (z) = az+b
b̄z+ā

, g =
(

a b
b̄ ā

)
∈ SU (1,1), z ∈D.

Therefore the direct product of n copies of the group SU (1,1), denoted by SU (1,1)n , acts

on Dn . Consequently, composing with the covering map, an action of the universal covering

group of Möbn on Dn is evident.

In the discussion below, we follow the notation of [23]. The Lie algebra g of SU (1,1) is

spanned by

X1 = 1

2

[
0 1

1 0

]
, X0 = 1

2

[
i 0

0 −i

]
and Y = 1

2

[
0 i

−i 0

]
.

Let gC be the complexification of g. Then gC is the Lie algebra of the complexification of

the group SU (1,1), which is SL(2,C). The Lie algebra gC is spanned by

h =−i X0 = 1

2

[
1 0

0 −1

]
, x = X1 + i Y =

[
0 1

0 0

]
and y = X1 − i Y =

[
0 0

1 0

]
.

The subgroups KC =
{[

z 0

0 1
z

]
: z ∈C\ {0}

}
, P+ =

{[
1 z

0 1

]
: z ∈C

}
and P− =

{[
1 0

z 1

]
: z ∈C

}

of SL(2,C) have corresponding Lie algebras tC =
{[

c 0

0 −c

]
: c ∈C

}
, p+ =

{[
0 c

0 0

]
: c ∈C

}
and

p− =
{[

0 0

c 0

]
: c ∈C

}
, respectively, whereK is the subgroup of SU (1,1) which stabilzes 0. Let

b denote the Lie algebra spanned by {h, y}. Then b is the Lie algebra of the groupKCP−, which

is a closed subgroup of SL(2,C). Now, every rank two cocycles on G̃n ×Dn is obtained from a

two dimensional indecomposable representation of b⊕b⊕·· ·⊕b (see [23]).

Let K̃ be the subgroup of G̃ which stabilize 0. Then K (0,0) is invariant under the action

of K̃n . Thus, we have to find all the cocycles of rank 2, which are obtained from two dimen-

sional indecomposable representations ρ of b⊕b⊕·· ·⊕b such that ρ is diagonalizable on the
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sub-algebra spanned by the set {(h,0, . . . ,0), (0,h, . . . ,0), . . . , (0,0, . . . ,h)}. Let bi denote the sub-

algebra 0⊕·· ·⊕b⊕·· ·⊕0, where b is in the i -th position. Similarly, set hi := (0, . . . ,h, . . . ,0) and

yi := (0, . . . , y, . . . ,0), where h and y are in the i -th position in the tuple.

Theorem 5.14. Suppose ρ : b⊕b⊕·· ·⊕b→M2 is a two dimensional indecomposable represen-

tation such that ρ(hi ) is diagonalizable for all i . Then there exists k such that ρ|bk is indecom-

posable. Furthermore, ρ(h j ) =α j I2 and ρ(y j ) = 0 for all j 6= k where α j ∈C.

Proof. Since hi and h j commute, it follows that ρ(hi ) and ρ(h j ) also commute for all i , j .

Therefore ρ(h1), ρ(h2), . . . ,ρ(hn) are simultaneously diagonalizable. Let {v1, v2} be a basis of

C2 such that

ρ(hi )v j =λ j
i v j

for all i = 1,2, . . . ,n and j = 1,2. The relation

[
ρ(hi ),ρ(yi )

]=−ρ(yi )

implies that

ρ(hi )ρ(yi )v j = (λ j
i −1)ρ(yi )v j . (5.7)

Suppose λ1
i 6= λ2

i ± 1 for all i . Then equation (5.7) implies that ρ(yi ) = 0 for all i . But this is

a contradiction, since ρ is indecomposable. Thus, there must exists k such that either λ1
k =

λ2
k −1 or λ2

k =λ1
k −1.

Without loss of generality, we can assume that λ2
k = λ1

k − 1. Then (5.7) implies that

ρ(yk )v1 =αv2 for some α ∈C and ρ(yk )v2 = 0.

Now, we claim that α 6= 0.

Suppose α = 0. Then ρ(yk ) must be 0. Since ρ is indecomposable, there must exists

some i with 1 ≤ i ≤ n, such that ρ(yi ) 6= 0. Again, equation (5.7) implies that either λ1
i =λ2

i −1

or λ2
i = λ1

i −1. If we assume that λ2
i = λ1

i −1, then Equation (5.7) implies that ρ(yi )v1 = αi v2

for some αi 6= 0 and ρ(yi )v2 = 0. Since ρ(yi ) and ρ(hk ) commute, in this case, it follows that

λ1
k =λ2

k , which contradicts the assumption that λ2
k =λ1

k −1. If we assume λ1
i =λ2

i −1, then we

arrive at a similar contradiction.

Now, since ρ(hi ) and ρ(yk ) commutes for all i 6= k, we must have λ1
i = λ2

i and then

Equation (5.7) gives us ρ(yi ) = 0 for all i 6= k.

This shows that ρ|bk is indecomposable, ρ(hi ) =λ1
i I2 and ρ(yi ) = 0 for all i 6= k.

Now we describe all the cocycles.
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Theorem 5.15. Let J : SU (1,1)n ×Dn →GL(2,C) be a projective cocycle such that J (k,0) is diag-

onal for all k ∈Kn . Then there exists αi , i = 1,2, . . . ,n −1 and λ 6= 0 such that

J (g , z) =
n−1∏
i=1

g
′
i (zi )αi


(
g

′
n(zn)

)λ
0

g
′′
n (0)

2
(
g
′
n (0)

) 3
2

(
g

′
n(zn)

)λ+ 1
2

(
g

′
n(zn)

)λ+1

 ,

where g = (g1, g2, . . . , gn) ∈ SU (1,1)n and z = (z1, z2, . . . , zn) ∈Dn .

Proof. If J : SU (1,1)n ×Dn → GL(2,C) be a projective cocycle, then there exists a two dimen-

sional indecomposable representation ρ of b⊕b⊕·· ·⊕b such that

J (g , z) = ρ(s(z)−1g−1s(g · z)),

where s :Dn → SL(2,C)n is a holomorphic section. If J (k,0) is also diagonal for all k ∈Kn , then

ρ is diagonalizable on the sub-algebra spanned by {h1,h2, . . . ,hn}. Let s : Dn → SL(2,C)n be a

holomorphic section, defined by

s(z) =
((

1 z1

0 1

)
,

(
1 z2

0 1

)
, . . . ,

(
1 zn

0 1

))
.

Suppose ρ is a two dimensional indecomposable representation of b⊕b⊕ ·· · ⊕b. Applying

Theorem 5.14, we assume that there exists αi , i = 1,2, . . . ,n −1 and λ 6= 0 such that

ρ(hi ) =αi I2, ρ(yi ) = 0,

for i = 1,2, . . . ,n −1 and

ρ(hn) =
[
−λ 0

0 −λ−1

]
, ρ(yn) =

[
0 0

1 0

]
.

Let g =
((

ai bi

ci di

))n

i=1

∈ SU (1,1)n . Then

J (g , z) = ρ(s(z)−1g−1s(g · z))

= ρ
(
exp

(( −c1

c1z1 +d1

)
y1

)
exp

((
2log(c1z1 +d1)

)
h1

)
exp

(( −c2

c2z2 +d2

)
y2

)
exp

((
2log(c2z2 +d2)

)
h2

) · · ·exp

(( −cn

cn zn +dn

)
yn

)
exp

((
2log(cn zn +dn)

)
hn

))
= exp

(( −c1

c1z1 +d1

)
ρ(y1)

)
exp

((
2log(c1z1 +d1)

)
ρ(h1)

)
exp

(( −c2

c2z2 +d2

)
ρ(y2)

)
exp

((
2log(c2z2 +d2)

)
ρ(h2)

) · · ·exp

(( −cn

cn zn +dn

)
ρ(yn)

)
exp

((
2log(cn zn +dn)

)
ρ(hn)

)
.
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Now, substituting the values of ρ(hi ) and ρ(yi ), we get that

J (g , z) =
n−1∏
i=1

g
′
i (zi )αi


(
g

′
n(zn)

)λ
0

g
′′
n (0)

2
(
g
′
n (0)

) 3
2

(
g

′
n(zn)

)λ+ 1
2

(
g

′
n(zn)

)λ+1

 .

This completes the proof.

We denote the (projective) cocycle

n−1∏
i=1

g
′
i (zi )αi


(
g

′
n(zn)

)λ
0

g
′′
n (0)

2
(
g
′
n (0)

) 3
2

(
g

′
n(zn)

)λ+ 1
2

(
g

′
n(zn)

)λ+1


by Jα,λ where α= (α1,α2, . . . ,αn−1). Now, we find possible values of αi and λ for which there

exists a diagonal matrix K (0,0) such that

(a) the polarization of K (z, z), defined by the equation (5.6) is a quasi-invariant kernel with

respect to Jα,λ and

(b) the tuple of multiplication operators is in B2(Dn).

Suppose there exists a positive diagonal matrix K (0,0) such that the polarization of

K (z, z), defined by the equation (5.6), is a quasi-invariant kernel with respect to Jα,λ under

the action of the group Möbn . Then the function 1
(1−zi w̄i )αi must define a positive definite ker-

nel on D, for each i = 1,2, . . . ,n −1. This implies that αi must be positive for each i . Also, it is

easy to see that the polarization of

Jα,λ((0,0, . . . , gz); (0,0, . . . , z)K (0,0)Jα,λ((0,0, . . . , gz); (0,0, . . . , z))∗

is a positive definite kernel on D, where gz maps z to 0. It has been shown in [22] that the

polarization of

Jα,λ((0,0, . . . , gz); (0,0, . . . , z)K (0,0)Jα,λ((0,0, . . . , gz); (0,0, . . . , z))∗

is a positive definite kernel on D, only when λ is positive and

K (0,0) =
[

1 0

0 1
λ +µ

]
,

where µ is any positive real number. This implies that

K (α,λ,µ)(z, w) =
(

n−1∏
i=1

1

(1− zi w̄i )αi

) 1
(1−zn w̄n )λ

zn

(1−zn w̄n )λ+1

w̄n

(1−zn w̄n )λ+1

1
λ+µ+zn w̄n

(1−zn w̄n )λ+1


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is the only kernel on Dn such that the tuple of multiplication operators is in B2(Dn) and ho-

mogeneous under the action of Möbn , where α = (α1,α2, . . . ,αn−1) is a tuple of positive real

numbers and λ,µ> 0. Now, Theorem 5.13 implies that there are no irreducible tuple of oper-

ators in B2(Dn) which are homogeneous with respect to the group Aut(Dn).
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