Homogeneous Operators

A dissertation
submitted in partial fulfilment
of the requirements for the award of the
degree of

Totrn o Tiitbryitty

by
Somnath Hazra

Department of Mathematics
Indian Institute of Science
Bangalore - 560012
July 2017






Declaration

I hereby declare that the work reported in this thesis is entirely original and has been carried
out by me under the supervision of Prof. Gadadhar Misra at the Department of Mathemat-
ics, Indian Institute of Science, Bangalore. I further declare that this work has not been the
basis for the award of any degree, diploma, fellowship, associateship or similar title of any
University or Institution.

Somnath Hazra
S.R. No. : 01-01-00-10-11-12-1-09645

Indian Institute of Science,
Bangalore,
July, 2017.

Prof. Gadadhar Misra
(Research advisor)






DEDICATED TO MY PARENTS, TEACHERS AND MY WIFE

iii






Acknowledgement

Undertaking this Ph.D. has been a nice experience for me and it would not have been pos-
sible to do without the support and guidance that I received from many people. I take this
opportunity to express my deeply-felt thanks to all of those who helped me to carry on.

It is my pleasure to thank my advisor Prof. Gadadhar Misra for the continuous support
of my Ph.D study and related research, for his patience, warm encouragement, enthusiasm
and immense knowledge. His guidance helped me in all the time of research and writing of
this thesis. Having him as an advisor was a wonderful experience for me.

Special thanks to Dr. Cherian Varughese for carefully reading a preliminary draft of my
thesis and making innumerable corrections. I am most grateful to him for many fruitful dis-
cussion and suggestions.

I express my sincere thanks to Prof. Adam Koranyi for several useful suggestions.

I am grateful to all the instructors of the courses that I have taken at the Department of
Mathematics in IISc. I benefited a lot from these courses.

I also thank Dr. Subrata Shyam Roy, Dr. Shibanada Biswas, Dr. Dinesh Keshari, Dr.
Avijit Pal, Dr. Rajeev Gupta, Dr. Ramiz Reza and Dr. Surjit Kumar for many hours of delightful
mathematical discussion.

I would like to thank the administrative staff and the Librarian at the Department of
Mathematics for making my life easy by taking care of many complicated administrative mat-
ters and formalities.

My heart-felt thanks go to my student colleagues for providing me a stimulating and
fun-filled environment. My special thanks go to Monojit, Soumitra, Anwoy, Vikram, Prahllad
Da, Dr. Haripada, Samrat for having fruitful discussion with me. I also thank Amardeep,
Samarpita, Dr. Kartick, Dr. Arpan, Dr. Bidhan, Sourav, Dr. Ratna, Dr. Laxmi, Dr. Sayani,
Dr. Sayan, Aiyappan, Sharat, Paramita, Subhajit, Somnath Pradhan, Anindya, Rahul, Ramesh,
Abu for spending a great time with me. I must thank all my friends in IISc for creating many
memorable moments in my life.



vi

I take this opportunity to thank Prof. Subiman Kundu for giving his valuable time to
discuss mathematics with me when I was a student at IIT Delhi. I also thank my friends at IIT
Delhi who made my stay there a pleasant one.

I thank all my school and college friends for all their support and love. Special thanks
go to my childhood teachers Dr. Raghu Chikkala and Bapi Da from whom I started learning
Mathematics.

I must acknowledge Indian Institute of Science(IISc) and Council of Scientific and In-
dustrial Research (CSIR) for providing me the funding and fellowship to pursue research at
IISc.

Last but not the least, I would like to thank my family: my parents Biswajit Hazra and
Manju Hazra, my sister Sathi Hazra for the support they provided me through my entire life.
I should thank my wife Uma who always shared all my disappointments and frustrations.
Without their love and encouragement, this thesis would not have been possible.



Abstract

A bounded operator T on a complex separable Hilbert space is said to be homogeneous
if @(T) is unitarily equivalent to T for all ¢ in M6b, where Mo6b is the Mobius group. A
complete description of all homogeneous weighted shifts was obtained by Bagchi and Misra.

The first examples of irreducible bi-lateral homogeneous 2-shifts were given by Kordnyi. For
0 < a< b< 1, the bi-lateral shifts T(a, b) and T (b, a) with weights \/% and %Z, respec-
tively, are homogeneous and the associated representation is the Complementary series C) ,

T(a,b) a(T(a,b)—T(b,a))
0 T(b,a) ) ya>0,

is homogeneous. It has been proved by Koranyi that these are all irreducible homogeneous

where A = a+b—1and o = (b—a)/2. Consequently, the operator (

operators, modulo unitary equivalence, whose associated representation is a direct sum of
two copies of a Complementary series representation. We describe all irreducible homoge-
neous 2-shifts up to unitary equivalence completing the list of homogeneous 2-shifts of Ko-
ranyi.

After completing the list of all irreducible homogeneous 2-shifts, we show that every
homogeneous operator whose associated representation is a direct sum of three copies of a
Complementary series representation, is reducible. Moreover, we show that such an operator
is either a direct sum of three bi-lateral weighted shifts, each of which is a homogeneous op-
erator or a direct sum of a homogeneous bi-lateral weighted shift and an irreducible bi-lateral
2-shift.

It is known that the characteristic function 67 of a homogeneous contraction T with an
associated representation x is of the form

Or(a)=01(pa) 070)0r(Da),

where o and oy are projective representations of the Mobius group Méb with a common
multiplier. We give another proof of the “product formula”.

We point out that the defect operators of a homogeneous contraction in B (D) are not
always quasi-invertible (recall that an operator T is said to be quasi-invertible if T is injective
and ran(7T) is dense).

We prove that when the defect operators of a homogeneous contraction in B, (D) are
not quasi-invertible, the projective representations oy and o are unitarily equivalent to the

vii



viii

. . . . + +
holomorphic Discrete series representations Dy _, and Dy,

when the defect operators of a homogeneous contraction in B, (D) are quasi-invertible, the

, respectively. Also, we prove that,

two representations o and o are unitarily equivalent to certain known pairs of representa-
tions Dy 1, and Dy 1y, respectively. These are described explicitly.

Let G be either (i) the direct product of n-copies of the bi-holomorphic automorphism
group of the disc or (ii) the bi-holomorphic automorphism group of the polydisc D".

A commuting tuple of bounded operators T = (T3, T»,..., Ty,) is said to be homogeneous
with respect to G if the joint spectrum of T lies in D" and ¢(T), defined using the usual func-
tional calculus, is unitarily equivalent to T for all ¢ € G.

If the tuple of multiplication operators on a reproducing kernel Hilbert space is homo-
geneous with respect to G, then we prove that the curvature obeys a transformation rule. This
transformation rule is the key to identifying the equivalence classes of homogeneous opera-
tors in B; (D"). However, the commuting tuples of homogeneous operators in B, (D") cannot
be classified using the curvature since it is not a complete invariant when m > 1. Nevertheless,
the commuting tuples of homogeneous operators in B, (D") have been classified here.

We show that a commuting tuple T in the Cowen-Douglas class of rank 1 is homo-
geneous with respect to G if and only if it is unitarily equivalent to the tuple of the multi-
plication operators on either the reproducing kernel Hilbert space with reproducing kernel

" m or 1%, m, where A, ;, 1 <i < n, are positive real numbers, according as
Gis asin (i) or (ii).

Let T :=(Ty,...,Ty—1) be an (n —1)-tuple of rank 1 Cowen-Douglas class operators and
homogeneous with respect to G, where G is the direct product of (n — 1)-copies of the bi-
holomorphic automorphism group of the disc. Let 7' be an irreducible homogeneous (with
respect to the bi-holomorphic group of automorphisms of the disc) operator in the Cowen-
Douglas class on the disc of rank 2. We show that every irreducible homogeneous operator
with respect to G, G as in (i), of rank 2 must be of the form

(®lg,...,Ta1® I, In®T).

We also show that if G is chosen to be the group as in (ii), then there are no irreducible
operators of rank 2 which is homogeneous with respect to G.
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Chapter 1

Introduction

Let Mob denote the Mébius group of all biholomorphic automorphisms ¢ of the unit disc

D:={z€C: |zl <1}. These are of the form ¢(2) = e’ Z=%, 0 € R, a € D.

Definition 1.1. A bounded linear operator T on a complex separable Hilbert space H is said
to be homogeneous if the spectrum of T is contained in D, the closed unit disc and O(T) is
unitarily equivalent to T for every ¢ in Mdb.

These assumptions on an operator T and the Hilbert space H, namely that the operator
is linear and bounded, the Hilbert space is complex and separable will be in force throughout
this thesis.

The definition of a homogeneous operator while ensuring the existence of a unitary op-
erator Uy intertwining ¢(T) with T does not impose any additional condition on the map
¢ — U,. To investigate some of these properties, we recall some basic notions from the repre-
sentation theory of locally compact second countable (lcsc) groups, in particular, the Mobius
group. Most of what follows is from [7,9].

Definition 1.2. Let G be a locally compact second countable group, H be a Hilbert space and
% (H) be the group of unitary operators on H. A Borel function 7 : G — % (H) is said to be a
projective representation of G on the Hilbert space H, if

n(1)=1, n(gh)=m(g, Nnr(g)nr(h); g, heG
where m: G x G — T is a Borel function.

The function m associated with a projective representation 7 is called the multiplier of
7 and satisfies the equations

m(g,1)=m(l,8) =1, m(g1, g2)m(g182,83) = m(g1,8283)m(g2, &3)
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for all g, 81,82 and g3 in G. Two multipliers m and m are said to be equivalent if there is a
Borel function f: G — T such that m(g, h) = %nﬁ(g, h), g,heG.

Let m; and 7, be two projective representations of G on Hilbert spaces H; and H, re-
spectively. The representations 7; and 7, are called equivalent if there exists a unitary opera-

tor U : Hy — H> and a Borel function f : G — T such that

m(g) = f(@U m2(g)U
holds for all gin G.

Definition 1.3. Let T be a homogeneous operator on a Hilbert space H. If there is a projective
representation 7 of M6b on H with the property

O(T) = ()" Tr(¢h), ¢ € Mbb,
then 7 is said to be the representation associated with the operator T.

A homogeneous operator need not possess an associated representation. However, the
following theorem says that for every irreducible homogeneous operator, there exists a unique
(upto equivalence) projective representation associated with it.

Theorem 1.4. [9, Theorem 2.2] If T is an irreducible homogeneous operator, then T has a
unique (upto equivalence) projective representation of Mob associated with it.

Clearly, to describe the homogeneous operators, we need a complete set of unitary in-
variants. For example, the spectral theorem for normal operators provides such a complete
set of unitary invariants. It is possible to describe all the homogeneous operators which are
normal using these invariants, see [7, Theorem 6.6].

In this thesis, we use the characteristic function for a contraction introduced by Sz.-
Nagy and Foias as well as the curvature invariant introduced by Cowen and Douglas to inves-
tigate homogeneous operators which are not necessarily normal. We therefore recall these
notions below and then describe our main results.

An operator T on a Hilbert space H is said to be a contraction if | T|| < 1 and T is said
to be a pure contraction if | Tx|| < || x|l, x € H. Given a contraction T, the operators D7 =
I-r* T)% and D+ = (I - TT*)% are called the defect operators of T. The closed subspaces
91 =Dy H and @1+ = D+ H are called the defect spaces.

Given a Hilbert space £, let sz( be a Hilbert space consisting of £ valued square in-
tegrable function on T and H% be the vector valued Hardy space consisting of £ valued
holomorphic functions on D. Every element of Hfl, has square integrable boundary value on
T (cf. [32, pp. 185]). Therefore, HLZZ, is naturally identified with a subspace of L?Z.



Given two Hilbert spaces £ and £, let 0 : D — B(X%, %) be a bounded holomorphic
function. In [32, pp. 187], it has been proved 0(e'") =1lim6O(z) (z — €' non tangentially) exists
almost everywhere. Therefore 6 naturally defines O : sz( — L?%) by

©f) ) =0(e') fle'), fel?.

Since 0 is holomorphic, it follows that ® maps Hi, to HQZ%, The function 6 is said to be pure
contractive if 6(0) is pure contractive and inner if © is an isometry.

Two bounded holomorphic functions 0; : D — B(£1, %)) and 03 : D — B(A>, ZL») are
said to be coincide, if there exists two unitary operator n: £ — %> and 7 : £, — £ such that
01(z) =102(2)n, zeD.

Given a contraction T, define 07 : D — %B(97,927+) by

Or(a) = —Tig, + aDr-(I—aT*) ' Dryg,, a€D.

In [32, pp. 239], it has been proved that 07 is a purely contractive holomorphic function. Given
a contraction T, the purely contractive holomorphic function 67 is called the characteristic
function of T. A contraction T on a Hilbert space H is said to be completely non-unitary (cnu)
if there does not exists any non-trivial reducing subspace L of H such that 7| is unitary. The
following theorem says that the unitary equivalence class of a cnu contraction is determined
by the characteristic function.

Theorem 1.5. [32, Theorem 3.4, Chapter VI] Let T and T be two cnu contractions and 07 and
07 be the characteristic functions of T and T, respectively. The operators T and T are unitarily
equivalent if and only if Ot and 07 coincide.

A contraction T on a Hilbert space H is said to C, if T*""x — 0 as n — oo for all x in H.
In [32, Proposition 3.5, Chapter VI], it has been proved that a cnu contraction T is C if and
only if the characteristic function 67 of T is inner.

Let0:D — B(X,%Z) be an inner function and O : sz, — L?Z be the operator induced
by 0. Suppose M is the operator of multiplication by the coordinate function z on the Hilbert
space Hf% Let ./ be the range of the operator ® and T = P ;1 M, ,1, where P ;. is the pro-
jection of Hip onto .#*. From [32, Theorem 3.1, Chapter VI] and [32, Proposition 3.5, Chapter
VI], it follows that the operator T is C and the characteristic function of T coincides with 6.

This completes the preliminaries needed from the Sz.-Nagy-Foias model theory for con-
tractions for our work. Now, we recall another important class of operators, introduced by
Cowen and Douglas, studied extensively over the past five decades.

Definition 1.6. Let 2 be an open and connected subset of C. An operator T acting on a com-
plex separable Hilbert space H is said to be in the Cowen-Douglas class of rank m, denoted
by B,,(Q), if it meets the following requirements:



4 1. Introduction

1. ran(T—wl)=H, weq,
2. dimker(T - wl) =m, we,and
3. Vyeaker(T—wlI) = H.

The definition of the Cowen-Douglas class ensures that, if an operator T is in B,,(Q2),
then there exists a rank m Hermitian holomorphic vector bundle over Q* :={w: w € Q}

Er={(w,h)eQ* x H: heker(T — wD}and p(w, h) = w

which is a sub-bundle of the trivial bundle Q* x H. The following theorem says that the uni-
tary equivalence class of a rank m Cowen-Douglas operator is determined by the associated
Hermitian holomorphic vector bundle.

Theorem 1.7. [12, Theorem 1.14] Let T and T be two operators in B, (Q). The operators T and
T are unitarily equivalent if and only if the associated Hermitian holomorphic vector bundles
Er and Ej5 are equivalent.

Given an operator T on a Hilbert space H in B;,(Q2), the Hermitian structure of the
bundle E7 at w in Q" is obtained from that of the subspace ker(T — wI) of H. It is shown
in [12, Proposition 1.11] that if an operator T on a Hilbert space H is in B,,(Q), then there ex-
ists a holomorphic map w € Q* — y(w) := (y1(w), y2(w),...,ym(w)) such that ker(T — wl) =
span{y;(w):1 < i< mj}. Let h(w) = (({y;(w),yi(w)))). The curvature of the Ky of the bundle
Er with respect to the frame y is given by the following formula ( [34, Proposition 1.11])

) )
Kr(w) = — [h(w) ' =—h(w)|dw A dw.
ow ow

Like in the case of pure contractions, Cowen and Douglas show that the curvature Kr(w) is a
complete invariant for operators T in B; (Q2).

Theorem 1.8. [12, Theorem 1.17] Let T and T be two operators in B1(Q). The operators T and
T are unitarily equivalent if and only if Ky(w) = K#(w) for all w in Q*.

Let K : Q x Q — .#,, be a positive definite kernel which is holomorphic in the first and
anti-holomorphic in the second variable. The linear span of the vectors

(KC(,w)x:xeC™ weQ}
equipped with the inner product

(K(-, w2)x, K(-, w1) y) = (K(w1, w2)x, y»



is a pre-Hilbert space. The completion is a Hilbert space, say Hxk, of holomorphic functions
on Q. For each fixed but arbitrary w € Q, the vector K(-, w)x, x € C'™, is in Hgx and has the
reproducing property:

<f)K(') W)x> = <f(W),x>, fEHK

Given an operator T in B,,(Q), there exists a reproducing kernel Hilbert space Hx possessing
a reproducing kernel K : Q x Q — ., such that T is unitarily equivalent to M}, where M, is
the operator of multiplication by the co-ordinate function z on Hk (see [14, Theorem 4.12]).

Soon afterwards, Cowen and Douglas isolated a class of commuting tuples of bounded
linear operators B,,(Q2), QcC”, which, like in the one variable case, determines and is deter-
mined by a certain class of holomorphic Hermitian vector bundles, see [13, 14]. As in the
case of one variable, these operators can be realized as the adjoint M* := (M7,..., M} ) of
the commuting tuple of multiplication by the co-ordinate functions on a Hilbert space H of
holomorphic functions defined on Q possessing a reproducing kernel K : Q x Q — ;. In this
case, the joint eigenspace &, := N?"_ ker(M, — w;)*, by assumption, is of constant dimension
m for all w in Q. The vector bundle is then Ep+ := {(w, h) : h € &, w € Q}, where the map
si:w— K(,w)e;, 1 <i<m, weQ,serves as an anti-holomorphic frame on Q. Consequently,
the Hermitian structure of the vector bundle E);« is given by K (w, w). Now, the curvature K(w)
of this vector bundle is defined by the formula

n -_—
Kw)= 3 0 [Kw, w)™'3;K(w, w)| dw; A dib;.
ij=1

A study of commuting tuples of operators homogeneous with respect to the bi-holomorphic
automorphism group of an irreducible bounded symmetric domain was begun in [28], where
a transformation rule for the curvature was established in the case: m = 1. This transforma-
tion rule is the key to identify the equivalence classes of homogeneous operators in B (Q).
The study of commuting tuples of homogeneous operators has been continued in [3, 4, 24].
However, the cases of bounded symmetric domains like the polydisc D", which are reducible,
were left out so far. A study of homogeneous operators with respect to the bi-holomorphic au-
tomorphism group of D" is begun here. The transformation rule for the curvature of a com-
muting tuple of homogeneous operators in B;(Q2) is independent of whether the bounded
symmetric domain € is reducible or irreducible. Thus using the transformation rule, we clas-
sify all commuting tuples of homogeneous operators in B; (D").

However, the commuting tuples of homogeneous operators in B,,(D") cannot be classi-
fied using the curvature since it is not a complete invariant when m > 1. Nevertheless, build-
ing on existing techniques from [22], the commuting tuples of homogeneous operators in
B,(D") have been classified.
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Finally, we point out that there are some situations, where tools from the well-known
theory of representations of Mob appear to be more effective than the use of unitary invari-
ants. This situation is described later.

Definition 1.9. A bounded operator T on a Hilbert space H is said to be a shift if H admits a
direct sum decomposition of the form &;¢;H;, where each H; is a closed subspace of H and
T maps H; into H;41, i € I. The operator T is a bi-lateral, forward or backward shift according
aslequalsZ,{neZ:n=np}or{neZ:n< nyl.

The realization of an irreducible operator as a block shift is uniquely determined, that
is, there is exactly one possible decomposition of the Hilbert space on which T acts as a shift
(see [9, Lemma 2.2]).

Definition 1.10. An irreducible operator T is said to be an n-shift if dim H; = n, forall i € I
except for finitely many of them.

All irreducible homogeneous forward (and consequently backward) 2-shifts were de-
scribed by Kordnyi and Misra in [22]. First example of an irreducible homogeneous bilateral
2-shift was given by Korédnyi in [20]. In [20], a three parameter family of irreducible homo-
geneous bilateral 2-shifts was constructed by Kordnyi using the following theorem which is
proved by combining [7, Theorem 5.3] and [5, Proposition 2.4.].

Theorem 1.11. Let m be a representation of Méb and T;, i = 1,2 be homogeneous operators
with associated representation n. Then the operator ( {)1 “(TlT;TZ)), a € C, is homogeneous with

associated representation w & 7.

1.0.1 Main results

A complete list of the three parameter family of bi-lateral 2-shifts, discovered by Korédnyi, is
given at the end of this introductory chapter. In chapter 2, we describe all irreducible ho-
mogeneous 2-shifts up to unitary equivalence completing the list of homogeneous 2-shifts of
Koranyi.

In chapter 3, we show that every homogeneous operator whose associated representa-
tion is a direct sum of three copies of a Complementary series representation, is reducible.
Moreover, we show that such an operator is either a direct sum of three bi-lateral weighted
shifts, each of which is a homogeneous operator or a direct sum of a homogeneous bi-lateral
weighted shift and an irreducible bi-lateral 2-shift.

In chapter 4, we describe the characteristic functions of all homogeneous contractions
in By(D). In [2], it has been proved that the characteristic function 61 of a homogeneous



contraction T with an associated representation x is of the form

Or(a)=01(pa) 0700)0r(Da),

where o and o are projective representations of Méb with a common multiplier. We give
another proof of the “product formula”.

We point out that the defect operators of a homogeneous contraction in Bz (D) are not
always quasi-invertible (recall that an operator T is said to be quasi-invertible if T is injective
and ran(7) is dense).

We prove that when the defect operators of a homogeneous contraction in B, (D) are
not quasi-invertible, the projective representations o and o are unitarily equivalent to the

holomorphic Discrete series representations Dy _, and D7 _ ,, respectively. Also, we prove that

when the defect operators of a homogeneous contractiolgsin B> (D) are quasi-invertible, the
two representations oy and o are unitarily equivalent to certain known pair of representa-
tions D1 4, and Dy, respectively. These are described explicitly.

In chapter 5, we show that a commuting tuple (77, T»,..., T;) in the Cowen-Douglas class
ofrank 1is homogeneous with respect to G if and only if it is unitarily equivalent to the tuple of
the multiplication operators on either the reproducing kernel Hilbert space with reproducing
kernel ]'[;.1:1 m or ]'[;?:1 m, where A, A;, 1 < i < n, are positive real numbers, ac-
cording as G is (i) the direct product of n-copies of the bi-holomorphic automorphism group
of the disc, denoted by Mo6b” or (ii) the bi-holomorphic automorphism group of the poly-
disc D", denoted by Aut(D"). Finally, we show that a commuting tuple (71, T»,..., T) in the
Cowen-Douglas class of rank 2 is homogeneous with respect to Mob” if and only if it is uni-
tarily equivalent to the tuple of the multiplication operators on the reproducing kernel Hilbert
space whose reproducing kernel is a product of n — 1 rank one kernels and a rank two kernel.
We also show that there is no irreducible tuple of operators in B, (D"), which is homogeneous

with respect to the group Aut(D").

1.0.2 Preliminaries

For any projective representation 7 of Méb, let n* be the representation of Méb defined by
n#(d)) =n(¢*) where ¢p*(z) = gﬁ, z €D, for every ¢ in Mob.

Proposition 1.12. /9, Proposition 2.1] Suppose T is a homogeneous operator and 1 is an asso-
ciated representation of T. Then the adjoint, T*, is also homogeneous and n* is an associated
representation of T*. If T is invertible, then T™! is also homogeneous and n* is an associated
representation of T™'. In particular, T and T* ™1 have the same associated representation.

To fix notation and terminology, we reproduce below a complete list of irreducible pro-
jective representations of M6b from [9].
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0]

(i)

(iii)

(iv)

Holomorphic Discrete series representations D', A > 0 : The holomorphic Discrete se-
ries representation, denoted by D7, acts on the reproducing kernel Hilbert space HW
determined by the positive definite kernel — _) ———, z,w €D, by the rule

A
(D; @™ Hf) (2= (¢'(2)% (fod)(2), peMob, fe HY, zeD.

Anti-holomorphic Discrete series representations D}, A > 0: The anti-holomorphic Dis-
crete series representation is denoted by D . The representation space for D} is the re-
producing kernel Hilbert space HY. The representation Dy is defined by D := (Dj{)#.

Principal series representations P, 5, —1 < A < 1, s purely imaginary: The representation
space of each P) ; is L%(T). The action of Py son [2(T)is given by

(Prs(@™Df) (2 = (¢ (z)) |6'(@|" (fop)(2), p €MD, feL*(T), zeT,
where u = % + 5. We point out that the representations P, ; and P, _, are equivalent.

Complementary series representations Cy 5, - 1<1<1,0<0 < %(1 —|A]) : The repre-
sentation space of C) ; is the Hilbert space spanned by the orthogonal set of vectors
{fn T-Cl| fula)= Zn}nEZ where || f,,Il = r(ilt+—m’ nez, pu= % + 0. The action of the
representation C, , on the Hilbert space H™ A is given by

A
(Cro@™Mf) (2 =(¢'2)2 ¢ @|" (fod)(2), peMbb, fe H, zeT.

Note that the Complementary series representations and Principal series representations are

together called Continuous series representations.

Remark 1.13. It is known that all the Principal series representations are irreducible except

P o. The representation P  is a direct sum of two irreducible representations, one of which

is equivalent to the holomorphic Discrete series representation D} and the other one is equiv-

alent to the anti-holomorphic Discrete series representation Dy .

Let n: Mob x M6b — Z be the measurable function defined by

nir ¢;" )— (arg(¢2¢1) (0) —arg ¢ (0) —arg s (1(0))), ¢p1,¢p2 € Mob.

Using the chain rule, it is easy to check that 7 is an integer valued function. For any w € T,
define m,, : M6b x Mob — T by

Moy (P, o) = W P12, (1.1)



Theorem 1.14. [9, Theorem 3.2] (a) For each w in T, the map m,, is a multiplier of Mob. Up
to equivalence, these are all multipliers of M6b. Furthermore, these are mutually inequivalent
multipliers and therefore H?(Mob, T) is naturally isomorphic to T via the map w — [my].

(b) For each representation of Méb in the above list, the associated multiplier is m,, where
w = '™, except for the anti-holomorphic Discrete series representations for which w = e”"™,
Corollary 1.15. /9, Corollary 3.2] Let m and o be two representations from the above list of
irreducible representations of Mob. The multipliers of m and o are either equal or inequivalent.
If both or neither of t and o are from the anti-holomorphic Discrete series representations, then
they have same multiplier if and only if their A parameters differ by an even integer. If exactly
one of m and o is from the anti-holomorphic Discrete series representations, then they have the
same multiplier if and only if their A parameters add to an even integer.

A projective representation 7 of Mob on a Hilbert space H, containing a dense subspace
A consisting of functions on some set X, is called a multiplier representation if

(@) (x) =@, ) (fod)(x), peMbb, fe.l, xeX
where ¢ is a non-vanishing measurable function on Méb x X.

Theorem 1.16. /9, Theorem 2.3] Suppose there is a multiplier representation m of M6b on a
Hilbert space H, containing a dense subspace # consisting of functions on some set X. Suppose
the operator T given on 4 by

(THX =xf(x), fed, xeX

leaves 4 invariant and has a bounded extension to H. Then the extension of T is homogeneous
and 1 is associated with T .

From the list of the irreducible projective representations of Mob, we see that every ir-
reducible projective representation of M6b is a multiplier representation. Therefore Theorem
1.16 says that if the multiplication by the coordinate function on the representation space of
an irreducible projective representation of Mob is bounded, then it must be homogeneous.
Indeed this is true. The following list of homogeneous operators is given in [9, List 4.1].

(i) The Principal series example: The unweighted bilateral shift B is homogeneous. To
prove this, apply Theorem 1.16 to any Principal series representation. Up to unitary
equivalence, the operator B is the only weighted shift which is reducible [9, Theorem
2.1].
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(ii) The Holomorphic Discrete series examples: For any positive real number A > 0, the
multiplication operator, M), on the reproducing kernel Hilbert space HW with repro-
ducing kernel m, z, w € D, is homogeneous. Applying Theorem 1.16, we see that
the holomorphic Discrete series representation D} is associated with it. These are irre-
ducible operators.

(iii) The anti-Holomorphic Discrete series examples: Since the adjoint of a homogeneous
operator is homogeneous, it follows that M (M*, A > 0, is homogeneous. Proposition
1.12 implies that the representation D} is associated with M @,

(iv) The Complementary series examples: For any two real numbers a, b in (0,1), let T'(a, b)
be the bilateral weighted shift with weight sequence {\/% ‘ne Z}. Ifo<a<b<l,
then applying Theorem 1.16 to the Complementary series representation C, , with A =
a+b-lando = %, it follows that T'(a, b) is homogeneous with associated representa-
tion C, ;. Since T'(b,a) = T(a,b)* ~1 using Proposition 1.12 it follows that the operator
T(b, a) is also a homogeneous operator with associated representation C) .. These are
irreducible operators.

(v) The Constant Characteristic examples: For x > 0, let By be the bilateral weighted shift
with weight sequence {...,1,1,x,1,1,...}, where x is the zeroth weight. In [5], it has been
proved that the operator B, is homogeneous with associated representation P; o. For
x # 1, the operator By is irreducible. For 0 < x < 1, the operator By is completely non
unitary and the characteristic function of By is constant.

Remark 1.17. The operators given in the above list are not unitarily equivalent (see [9, 31]).
Also note that the only contractions in the above list of homogeneous operators are MV, A > 1
(consequently MW ) and By, 0 < x < 1.

The following theorem completes the description of all homogeneous shifts which was
obtained by Bagchi and Misra in [9].

Theorem 1.18. [9, Theorem 5.2] Up to unitary equivalence, the only homogeneous scalar
weighted shifts with non-zero weights are the ones given in the above list of homogeneous
weighted shifts.

The first examples of irreducible bi-lateral homogeneous 2-shifts were given by Koranyi

in [20]. Recall from Theorem 1.11 that if 7(¢p)* Ti () = $(T3), i = 1,2, for some representation

of M&b, then the operator ( ](;1 “(TIT;T”) , a >0, is homogeneous. From the above list of homo-

geneous weighted shifts, we see that for 0 < a < b < 1, the bi-lateral shifts T'(a, b) and T(b, a)

with weights | /2=¢ and Z%Z, respectively, are homogeneous and the associated represen-

tation is the Complementary series Cy o, where A = a+ b -1 and o = (b - a)/2. Consequently,
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the operator (T(‘g'b) “(T(a’Tl?b_aT)(b'm )), a € C, is homogeneous. In [20], Kordnyi shows that the
family
T ,b T )b - T b)
¢ =1T@ba=| (@D al@h=-Thay) , 1 as0
0 T(b,a)

contains all irreducible homogeneous operators, modulo unitary equivalence, whose associ-
ated representationis Cy s ® C) 4.
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Chapter 2

Irreducible Homogeneous 2-shifts

A bounded operator T on a Hilbert space H, which is always assumed to be complex and
separable, is said to be a shift if H admits a direct sum decomposition of the form &;c;H;,
where each H; is a closed subspace of H and T maps H; into H;;, i € I. The operator T is a
bi-lateral, forward or backward shift accordingas I equals Z, {n € Z: n= np} or {n € Z: n < ng}.
Also, the realization of an irreducible operator as a block shift is uniquely determined, that is,
there is exactly one possible decomposition of the Hilbert space on which T acts as a shift
(see [9, Lemma 2.2]). An irreducible operator T is said to be an n-shift if dim H; = n, for all
i € I except for finitely many of them.

Let T be an irreducible homogeneous operator acting on a Hilbert space H. Then there
exists a projective unitary representation m of Mob on H, associated with the operator T as
shown in [9], that is, ¢(T) = n(p)* Tr(¢p) for all ¢ in the group Mo6b. Indeed this associated
representation m is uniquely determined up to unitary equivalence.

Let K be the maximal compact subgroup consisting of those elements of Méb which fix
the point 0. Recall that a subspace

V,(m):=th:n(k)h=k™"h, ke K}

of the representation space H is said to be K-isotypic. Setting I(7) = {n € Z: dim V,,() # 0},
we note that the operator T must be a shift from V,,(7) to V},41(), n € I(x) by virtue of [9,
Theorem 5.1]. The set I(r) is said to be connected if for any three elements a, b, c in Z with
a<b<canda,ce I(n),then be I(n).

Theorem 2.1. Suppose T is an irreducible 2-shift homogeneous operator. Then the associated
representation 1 is the direct sum of two or three or at most four irreducible representations.

Proof. Let T be an irreducible homogeneous 2 - shift and 7 be the associated representation.
Since the K-isotypic subspace of an irreducible projective representation is one dimen-
sional (cf. [9]), it follows that 7 cannot be irreducible.
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Thus we may assume without loss of generality that 7 is a direct sum of two non-trivial
representations, say, oo ® m22. If both of them are irreducible, then we are done.

If not, one of them, say, myo must be reducible. Then 7 is the direct sum of two non-
trivial representations, namely, 7oy = 7o) ® m2;. Hence m = mg; & 12 ® 722, If all of them are
irreducible, then we are done.

If not, one of them, say g, is reducible. Then 7¢; is the direct sum of two non-trivial
representations, namely, 7y, = 71, ® 112. Then

MT=TM11DPTT12DT21 ®TT2.

Now, we claim that each summand in 7 must be irreducible. If not, then one of them,
say, 11 is reducible. Then 7;; = 0 @ p, where o and p are non-trivial representations. There-
fore, we have the decomposition

MT=0@PpOT12® T2 ®T2.

Now [9, Lemma 3.2] says that connected component of each (o), I(p), I(m12), 1(m21)
and I(m»») is unbounded. Therefore, each of (), I(p), I(m12), I(21) and I(m22) contains a tail
of Z. This implies that one tail of Z must occur three times. Therefore, dim V},(r) = 3 for all
those n in that tail of Z which occurs three times in I(;r). This contradicts the assumption that
the operator T is a 2 - shift. Therefore each of 711,712, 121 and 722 must be irreducible. O

The following theorem lists the possibilities of the associated representation for an irre-
ducible homogeneous 2-shift T.

Theorem 2.2. If T is an irreducible homogeneous 2-shift and t is the associated representation,
then m must be of the form

T = @?Zlni : In this case, the only possibilities for m, and m, are that they must be si-
multaneously one of the holomorphic Discrete series, anti-holomorphic Discrete series or
Continuous series representations.

m = @>_,7; : In this case, one of the summands must be a Continuous series representa-
tion. Among the other two, one of them must be a holomorphic Discrete series and the
other one an anti-holomorphic Discrete series representation.

= @?zlni : In this case, two of the summands must be holomorphic Discrete series rep-
resentations while the other two summands must be anti-holomorphic Discrete series
representations simultaneously.
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Proof. Now suppose 7 is a direct sum of two irreducible representations, say, 7 = m; ® m,. If
one of them is a holomorphic Discrete series representation then the other one also has to
be a holomorphic Discrete series representation. Suppose not, then there is at least one tail
& of Z such that the dimension of V},(7), n € .#, is one. Similarly, if one of them is an anti-
holomorphic Discrete series representation then the other one has to be an anti-holomorphic
Discrete series representation. It follows that if one of these representations is from the Con-
tinuous series, then the other one cannot be either the holomorphic or the anti-holomorphic
Discrete series representation. This completes the proof of the first case.

If  is a direct sum of three irreducible representations, then one of them must be from
the Continuous series representations. If not, all the three summands are from the Discrete
series representations. In consequence, the existence of a tail .# in Z such that dimension of
Va(m), n € ., is either one or three follows. This contradiction proves our claim. If one of the
summands is a Continuous series representation, then the other two cannot be simultane-
ously holomorphic or anti-holomorphic Discrete series representations. If not, we find a tail
% in Z for which the dimension of V,,(r), n € .#, is 3, which is a contradiction.

Now suppose 7 is the direct sum of four irreducible representations, say 7, ®7m @3 ®74.
If one of them is a Continuous series representation, then there exists a tail of Z for which
the dimension of V() is greater than or equal to 3. So, none of the representations r;,
1 < i <4, are from the Continuous series representations. Thus each one of the represen-
tations 71,72, 3, T4 must be from the Discrete series. Now if three of them are either from
the holomorphic or anti-holomorphic Discrete series representations, then the dimension of
V,, () must be greater than or equal to 3 for n in some tail of Z. Therefore if 7 is a direct sum
of four irreducible representation, then two of them have to be holomorphic Discrete series
representations and the other two have to be anti-holomorphic Discrete series representa-
tions. O

Each of the three cases enumerated in Theorem 2.2 is discussed below in three different
Sections.

2.1 The associated representation is the direct sum of two rep-

resentations from the Continuous series

In this section, we find all the irreducible homogeneous operators for which the associated
representation is a direct sum of two Continuous series representations. This naturally splits
into several cases. In the paper [20], the case when the associated representation x is the
direct sum C, , ® C) 4, is discussed. Here we begin with the case when 7 = 7, @ 7o, 7,7 are
form the Principal series.
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2.1.1 n= P;L,SEBP,LS

In this subsection, we find all the irreducible homogeneous operators for which the associated
representation 7 is of the form P, ; @ P, ;. It is convenient to separate two cases, namely, the
case of s =0 and that of s #0.

The case “s #0”:

In what follows, we assume s # 0. Let B(s) be the bounded linear transformation on L2(T)
obtained by requiring that

1+1
n+ A 45
B(s)z"= —=2—2z"" nez.
n+ A _g

n+ g

Thus it is the weighted bilateral shift with weight sequence { wy = } . Let B be the mul-

n+ 1A _s
tiplication by the co-ordinate function on L?(T). The operator B is thze unweighted bi-lateral
shift. Both the operators B(s) and B are known to be homogeneous [9, Theorem 5.2]. Each of
the Principal series representations P, ; may be taken to be the associated representation for
both of these operators.

Proposition 2.3. For all ¢ in Méb, suppose that
SPys() — " Py s()S =aB(5) Py 5(h) S+ aSPy 5(¢) B, 2.1
for some operator S on L*(T). Then S = a (B(s) — B) for some a € C.

Proof. Using homogeneity of B(s) and B it is easy to see that a(B(s) — B) satisfies (2.1) for all
a € C. We show that these operators are the only solutions of the equation (2.1).

For the proof, let S be any operator for which (2.1) holds. Restricting the equation (2.1)
to the subgroup of rotations of the form ¢y, we see that S is a weighted shift operator with

respect to the orthonormal basis {z"} in L?(T). Let {a,} be the weight sequence of S. Now
zZ—a

we find the value of a,,. Let ¢4(2) = —7=,

z € D be the set of involutions in the group Méb.
Restricting to these in (2.1), we obtain

SP) (pa) + Py s(pa)S=aB(s)Py s(pa)S+aSPy s(p,)B.
Evaluating on the vector z”", we have
SP) s(pa) 2™ + Py s(pa)Sz™ =aB(s)Py s(pa)Sz™ +aSPy s(pa)Bz™.
Therefore it follows that

SP) (pa) 2™ + APy s(pa) 2™ = GamB(s)Py (o) 2™ +aSP) (o) 2™
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Consequently, we obtain

(P s(pa) 2™, S 2"y + @ (Py s (pa) 2™, 2"y =

A (Ps(pa) 2", B(5) 2"y + APy s (pa) 2™, S* 2").
Since $*z" = @,_12"" ! and B(s)*z" = w,_12"*"}, it follows that

A1 (PP 2™, 2" Y + apm(Prs(P) 2™, 2" = @@ mwn_1 + an_1){Py () 2™, 2" 1)

(2.2)
The matrix coefficients of P, ¢(¢,) are given in [9, p. 316]:
(Pos@d) fn fn) = c=D"@" "I ful® Y. Crlm,myr, 2.3)
k=(m-n)*
! ! _A/_ - - +
where f,, = 2", 1 = |al?, ¢ = ¢ ,(0)"?|¢,(0)|* and Cy(m, n) = pom pom . Using
k+n-m k

these matrix coefficients, we may rewrite the equation (2.2) in the form

An-1 Y, Crim,n-1r*—a,, Y Ci(m+ 1,n)rk

k=(m-n+1)* k=(m-n+1)*
= @nWn-1+An-1) Y Cy(m+1,n-1Drk.

k=(m—n+2)*
Now putting m = n, we get
ano1 Y Crmyn—Dr*—a, ¥ Cen+1,mr* = (@uwp- + ap-1) Y Cr(n+1,n -1k,
k=1 k=1 k=2

Comparing the coefficient of r, we have

a,.1Ci(n,n-1)—a,Ci(n+1,n) =0.

Since Ci(n,n—1)=(—pu+n),Ci(n+1,n)=(—pu+n+1)and u = 1%’1 + s, we finally obtain

1-1 1-1
Ap-1 —T—s+n —Qp —T—s+n+1 =0,

which implies
O 1A+2n-1-28)=a,A+2n+1-25s).

n+lth s

An easy induction argument shows that a, = a ( — - 1) for some a € C. This shows that

1+4
S5-s
S = (X(B(S) _B) fOI‘ some a € G:

O
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B(s) a(B(s)—B)

Corollary 2.4. The operator B

is homogeneous with associate representa-

tion Py s® Py .
Proof. The proof follows from Theorem 1.11. O

It is evident that [ 5{Y *B&-5)] and [B(()s) pB (;)'B)] are unitarily equivalent when |a| =

B(s) a(B(s)-B) B a(B-B(s))
[ 0 B Jand [ B(s)

are unitarily equivalent. We show that these are irreducible, which is very similar to the proof
of [20, Theorem 1.2].

|Bl. A particular case of what is proved in [20, Lemma 1.1] is that

B(s) a(B(s)—B)
0 B

Theorem 2.5. For a fixed but arbitrary a > 0, the operator T := is irre-

ducible.

Proof. Let H(n) be the subspace of L?(T) @ L?(T) spanned by the orthonormal set

AT

Clearly, T sends H(n) to H(n+1). Let Tj, := T|x(»). The matrix representations of T, T, with
respect to %8, and %,,;, are of the form

II}n 0
)

0 1 a(w,—-1) 1

w, alw,—1) }

respectively. The operators A, = T,, T, and B, = T,_1 T,,_, map H(n) to H(n), their matrix
representation with respect to the orthonormal basis 98, is easy to compute, namely,

1 a(l—wy,)

A, =
" al-wy) 1+a?lw, -1

and B,, =
" a(iy_1—1) 1

1+a?|wy-1 - 17 a(wp-1-1) ]

Since determinant of A, is 1, and A, # I, it follows that the eigenvalues of An are of the form
AZ

2, /12 for some real number A,, > 1. Consequently, the trace of A, is 1% + n. Thus A}, + = =

2 1)? 2 2 '
2+ a?|w, — 1/° and therefore (An_/l_,,) =a|lw, -1

Now suppose there exists n, m such that |w,, — 112 = |lw,, — 1/°. Then putting the value

of w, and wy,, we get |n + 3~ 1” s> = |m+ 24 ”’1 — s|2. Since s = ia, equivalently, (n+ ﬂ) +

a® = (m + ”A) +a® and it follows that n=morn+m+1+A1=0. Consequently, if A is not
an integer, then 1, # A,, for n # m. Since —1 < A < 1, the possible integer values of A are
eitherOor 1. If A=0then A, =A_,_;andif A =1, then 1,, = A_,_». Note that A, # A,

if n#mand n,m=0. Let A\ = 12, and A% = Pick an orthonormal basis {v}’, v?’} of

AZ
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H(n) which makes A, diagonal. Then A, v, D = A0y Let 4D = T, v (l) . Then B,u? =
Ty T Tpa vy ) = A Tav) =AY u (’) . Also it is easily checked that u(l) and uff) are

orthogonal. So, {ug), U, )} isan orthogonal ba51s of H(n) which makes B,, diagonal.

Suppose u' = cv)’ for ¢ € C, then we show that u? = dv'? for some d € C. Find

di,d, € C such that u(Z) d; v(l) +d> U(Z) Taking inner product of v(l) with u(Z) we see that

d; = 0 using the equality v = uﬁ}) and the orthogonality of the two vectors ul, u'? . Thus

) is a scalar multlple of v(z).

@ 5

we conclude that u(2

Similarly, we can show that if '}’ is a scalar multiple of v'?, then ©\? is a scalar multiple

of vV, This shows that if one of {vﬁ,l), v?} is a scalar multiple of one of {u'Y’, u!}, then the
same is true of the other one. If this statement is true for all n, then we must have A,,B;, —
B, A, =0 for all n. But an easy computation shows that A, B, # B, A, forany n = 1.

Now let £ be a reducing subspace of T. Then % is an invariant subspace of both TT*
and T* T and therefore, for f € %, the projections of f onto any eigenspacesof TT* and T*T

are also in #£'.

A#0,1: Let o, ; be the space spanned by the vector v(”. It is the eigenspace of T* T with

eigenvalue '”. Then L2(T®L3(T) = ® ez i=1,29n ;. Let f € & . Then f = Y. ap, v
neZ,i=1,2

Since f is non-zero, we can find n, i such that a,; # 0. Therefore, the vector U,(j) is in

A . This implies that £ N H(n) # @, for some ne Z.

A=0: Let &, ;, be the space spanned by the two vectors v,(f), v(” . It is the eigenspace of

T* T with eigenvalue /1%). Then L?(T) & L*(T) = @nzo,lzlygdn,l. Now suppose [ € £ .
Then
f= Z An,ihni,
n=0,i=1,2
where h,,; is in «/, ;. Since f # 0, we can find «, ; # 0 for some n,i. Also there exist
@) +5v(’). Since v(’) , € H-n-1) and v e H(n),
applying T"*? we see that T”+2hn,, = 7hy + 6 honyo for some h; € H(1) and hy,40 €

H(2n+2). Therefore, there are scalars y1,y2,01,02, such that h; = y; vil) + 72 viz)

1 2
h2n+2 = 61 U;_r2+2 +52 vén)+2' So,

scalars y,6 such that hy,; = yv_,

and

2 1 2 S 1 S 2
T2 hyi = Jriv” + Fyov® + 56105, +6620%),,.

Note that v(l) €1,V v? e 2, véln)ﬂ € lop+2,1 and U2n+2 € alop+2,2. Each of these cor-
respond to distinct eigenspaces of T*T. Since h,, ; is non-zero, so is T""*?h,, ;. There-
fore one of the coefficients of this sum must be non zero. This implies that one of

on 2 a0 ) :
V)V, Uy OF Uy o isin A . Tt follows that H(n) N A # @ for some n.

A =1: Asimilar calculation as in the case of A = 0 ensures the existence of some n with £ N
H(n) # @.
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These three cases ensure the existence of n such that £ n H(n) # @. Since each T, is
invertible, by applying T* for sufficiently large k it follows that there exists m > 0 such that
A N H(m) # @. Pick a non-zero element h,, from £ n H(m). Then h,, = avﬁ,ll) + ﬁvﬁ,%) =
yuﬁ,ll) +6u?). We have already shown that A,,B,;, — B Am # 0, therefore either a8 # 0 or Y6 #
0. If aB # 0, then v, v? € # since vV, v? are in different eigenspaces of T*T. Similarly,
u%), u%) e X if y6 # 0. We conclude that H(m) < .#. Now since T}, is invertible for all n,
applying T" and T*" on H(m), we find that H(k) < # for all k. This implies that £ = L2(Me

L2(T) completing the proof. O

B(s) a(B(s)—B
Let B(A, s, ) denote the operator (() ) ( (B) ) . Now we show that the unitary

equivalence class of B(A, s, a) depends only on A, |al, (where s = ia) and |«a]|.

Theorem 2.6. The operators B(A1, s1,a1) and B(A,, $2, a») are unitarily equivalent if and only if
A =A2, a1 = ay and a; = ay for any choice of a pair of purely imaginary numbers s1 = iay, S» =
ias, a1, ax >0, and aq,a» > 0.

Proof. The operators B(A;, s;,a;) are homogeneous with associated representation Py, ;. &
P, s for i =1,2, see Corollary 2.4. If A, # A, then the multipliers of Py, 5, ® Py, 5, and Py, 5, ®
P,, s, are inequivalent [9, Corollary 3.2]. Therefore P, ; ® Py, and Py, ,, ® Py, ;, are in-
equivalent. Since the representation associated with an irreducible homogeneous operator is
uniquely determined, it follows that B(A1, s1, @) and B(A,, s2, a2) cannot be inequivalent and
consequently 1 = A,.

Now, setting 11 = 1, = A, we show that if B(A, s, a1) and B(A, sz, @) are equivalent, then
s1=sand aj = as.

The set of singular values of the operators B(A11, s1,a1) and B(A», s2, a») are

|2$1|2 |232|2
yl::{a%—:nez and #:={a5—————————:neZy,
1+1 2 1+1 2
In+ 35— 5| In+ 5= — sl

respectively. Since B(A, s1, 1) and B(A, s, a) are equivalent, it follows that the set of singular
values of these two operators must be the same, that is, # = .%. To complete the proof, we
discuss three cases.

A <0: In this case the maximum of the sets .4 and .%, which is achieved at n = 0 in both
cases, must be equal, that is,

2.2 2.2
40,’1611 3 4a2a2

14A\2 , 2 (l+Ay2 , 2"
() +ay (FH)+a;

(2.4)
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Removing this maximum from both .4 and .5, again, the maximum in each of them is
achieved at n = —1 and they must be equal, that is,

2.2 2.2
4a1a1 3 4a2a2

1+A\2 , 2 1+Ay2 , 2°
(_1+T) +a1 (_1+T) +612

(2.5)

Combining equations (2.4) and (2.5), we obtain the equation

a’at = asas.
Using this relationship in (2.4), we find that a? = a5. Since both a; and a, are positive,
it follows that a; = a,. Therefore a; = as.

A =0: Asbefore, in this case, the maximum and the second maximum value of % and .% are
achieved at n =0 and n = 1, respectively. So, equating these two values, we get

4a%a% 4a§a§ 4a%a% 4a§a§
= and =

1 271 2 9 279 2°
4+6l1 4+a2 4+6l1 4+6l2

A similar calculation, as in the case of A <0, implies that a; = a; and a; = as.

A >0: One last time, we note that the maximum and the second maximum of the two sets .#;
and %, are achieved at n = —1 and n = 0, respectively. Equating these values, we have
the equations:

4ata? ~ 4asa;

1ol A2, 2 142, 2
(1+2)+a1 (1+2)+a2

and 2 2 )
4a1a1 3 4a2a2

14A\2 , 2 (l+Ay2 |, ,2°
(55 +ay  (SFH)+a;

But these two equations are identical to the equations we had obtained in the case of
A < 0. Therefore we conclude that a; = a; and a; = as.

Thus B(A1, s1, a1) and B(Ay, 52, ap) are equivalentifand onlyif 1, = Ay, a1 = axand a; = ap. 0O

[(n+132 )

If Uy s : L*(T) — L2(T) is the operator Uy sz = z", then from [9, p. 318], we

T(n+32+s)
have

U,,s 1s unitary,
_ %
U/L_S - U]L,s’

Py, _sUps = UpsPys,
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and B(s) = Uy (BUjs.

Replacing s by —s, we see that B(—s) = U _ BU, ;. Thisis the same as B(-s) = Uy sBUj ..

Consequently, Uy ;& Uy, ; intertwines [ 5{Y “BE=H ] and K “(BB_(I_B g)—s))] . It follows, after conju-

gating with a permutation, that [ 5" ®BQ=B] and [ (9 «BEI-B] are equivalent. Hence

|

is a mutually unitarily inequivalent set of homogeneous operators with associated represen-

B(s) a(B(s)—B)
0 B

:A,s:ia,a>0,a>0}

tation Py s ® Py .
The associated representation of the family of irreducible homogeneous operators

T(a,b) a(T(a,b)—-T(b,a))

€ = {T(a,b,a) =
0 T(b,a)

:0<a<b<1,a>0}

is the direct sum of two copies of a Complementary series representation [20].
We now show that these two sets of homogeneous operators are mutually unitarily in-
equivalent.

Theorem 2.7. The homogeneous operators in the two sets &2 and € are mutually unitarily
inequivalent.

Proof. Let T(a, b, a) and B(A4, s, B) be unitarily equivalent for some
(a,b,a):0<a<b<l a>0;
(A1,B,8):=1<A; =<1, >0and s, k=Im(s) >0.

The associated representation of the operator T'(a,b,a) is Cy s ® C) o, where A = a+b -1,
o= % (cf. Theorem 1.11) and the associated representation of B(A1, s, B) is Py, s ® Py, s, see
Corollary 2.4. Since the representation associated with an irreducible homogeneous operator
is uniquely determined, it follows that C, , ® Cy 4, and P, s ® P, s must be equivalent. This,
in particular, implies that their multipliers are equivalent and, therefore, 1; must be equal to
A. For the remaining portion of the proof, we therefore assume that 1, = A without loss of
generality.

We know that T'(a, b, ®) and B(A, s, B) are 2-shifts. Let A, %ﬂ be the singular values of the
n-th block of T'(a, b, @) for each n € Z. From [20, p. 227], we have

( 1 )2_ (1+a?)(a—b)?

T ey

2 2
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For ne Z, let u,, t be the singular values of the n-th block of B(A, s, ). We have shown (see
Theorem 2.5) that

e -2

Un—— 2 .
1+1
n+ %) + k?
Since T'(a, b, «) and B(A, s, B) are unitarily equivalent, it follows that the two sets

1 2 _bZ 4 2k2
A= (1+a7)a-5) ‘neZ y and S = P ‘ne’z

(e 152~ (52 (e 252 vk

must be equal. The proof naturally splits into three separate cases.

A <0: Since ¥ and %, are equal, their maximum (which is achieved at n = 0 in both of these
sets) must be the same. Equating these, we get

290 2 272
(+a¥)@a-b?* _  4pk 26

() (=) (3) e

Removing the maximal element from . and .%,, we must get two equal sets and again
the maximum in each of them, which is achieved at n = —1, must be equal, that is,
1+a®)(a-b?* Ap°k*

(s (e

(2.7)

Putting A = a+b—1 in the equations (2.6) and (2.7), after a little simplification, we obtain
4%k ab

(1+a*)(a-b)*= —
B

2

and
4B%K*(1—a)(1 - b)

[

Equating these two values of (1 + a?)(a— b)?, we get (a— b)? +4k? = 0, which is a contra-

(1+a®)(a-b)* =

diction since a < b.

A>0: As in the case of A < 0, equating the maximum of .4 and .%,, which is achieved at
n = —1 for both the sets, we get
1+a®)(a-b?* _  Ap°k*

R I R
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Like before, removing the maximal elements from both the sets .4 and %, the maxi-
mum of these two sets, which is achieved at n = 0, are again equal, that is,

A+a®)(a-b?>  4p°k*

R

These two equations are the same as in the case of A < 0. Thus repeating the same cal-
culation as in that case, we arrive at a contradiction.

A =0: For a third time, equating the maximum of the two sets .4 and .%, which is achieved

at n =0 for both of them, we get

(1+a®)(a-b)* 4Pk

1_(a=b?2 1,2’
1 4 4

Equate the maximum of the sets .#] and .% after removing the maximal elements. This
new maximum is achieved at n = 1, and we obtain

1+a®)(a-b?* 4p*k?

9_(la=b? 92"
4 4 4

Now, equating the value of (1 + a?)(a— b)?, we have

2 2
4ﬁ2k2(i_(a_4b) ) 4’32k2(%_(a—4b) )
+ + '

This is equivalent to 4k? + (a— b)? = 0. But this is a contradiction since a < b.

It follows that T'(a, b, @) is not equivalent to B(A,, s, ) for any choice of (a, b, @) and

(A],S,ﬁ)- O

The case of “s =0":

Having disposed of the case of s # 0, in what follows, we assume s = 0 with one exception in

the Proposition below.

Proposition 2.8. Suppose S is an operator on L?(T) for which the equation

SPy,s(®) — €O Py 5($)S = ABPy,5($)S +aSPy s(¢) B, §p € Mib, 2.8)

holds. Then
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(a) ifs#0, then S =0;

(b) ifs=0andA#1, then S is a weighted shift operator on L?>(T) with respect to the orthonor-
mal basis {z"} with weight sequence {a,, = ﬁ} and

(c) ifs=0andA =1, then S is a weighted shift operator on L2(T) with respect to the orthonor-
mal basis {z"*} with weight sequence {a,} where each a,, =0 except a_,.

Proof. Restricting the equation (2.8) to the subgroup of rotations of the group Mob, we see
that S is a weighted shift operator with respect to the orthonormal basis {z"} in L2(T). Let

{an} be the weight sequence of S. Let ¢, € M&b be an involution, i.e., ¢,4(2) = —{=-, z € D.
Restricting the equation (2.8) to involutions of the form ¢,, evaluating on the vector z" and

then taking inner product with the vector z*, we obtain
an-1(Pas(@a) 2™, 2" 1) + am(Pas(Pa) 2™, 2" = lam + an_1)(Pa s () 2™, 2" 1)

Using the matrix coefficients of the representation P, ¢(¢,) from the equation (2.3), we have
the equality

A1 Z Ck(m,n—l)rk—am Z Ck(m—i-l,n)rk

k=(m-n+1)* k=(m-n+1)*
=@m+tap1) Y Crm+Ln-Drf (2.9
k=(m-n+2)*
Proof of (a) : Substituting m = n—1 in the equation (2.9) and comparing the coefficient of r*,
k=1, we get

ap-1Cc(n—1,n-1)—a,-1Cx(n,n) =2a,-1Cx(n,n—-1).

Substituting the values of Cx(n—1,n - 1), Cx(n, n) and Ci(n, n — 1), we obtain the equa-
tion
ap-1(A+2u—-1)=0.

Since p = % + s, it follows that
28sa,-1=0.

Therefore, if s # 0, then @, = 0 for all n € Z. This completes the proof of (a).

Proof of (b) : Putting m = n in the equation (2.9) and comparing the coefficient of r, we have

ap-1A+2n-1)=a,A+2n+1) (2.10)

after substituting the values Cy(n,n—1) and C,(n+ 1, n). If A = 1, then putting n = 0 we
get ap = 0. This recursion makes a, = 0 for all n except for n = —1. Thus a_; remains
arbitrary completing the proof of part (b).
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Proof of (¢) : Now assume that A #1. Then a,, = is a solution to the recursion (2.10).

N
A+2n+1
Equating the coefficient of r* in the equation (2.9) and substituting the values of C.(m, n—
1), Cx(m+1,n), C(m+1,n-1), we obtain

ap-1A+2n-1D=a,,A+2m+1).

Thus a, = is a solution of this recursion. This shows that S satisfies (2.8) for any

1
A+2n+1
involution ¢4, a € D. Also S satisfies (2.8) for the subgroup of rotations ¢y. Since any
elements of M6b is composition of ¢g and ¢, for some 6 and a, it follows that S satisfies

(2.8) for every element of Mob. This completes the proof of part (c).

O

Let S[A] be the weighted shift operator on L2(T) with respect to the orthonormal basis
{z"} with weight sequence {1} . Also, let

B aS[A]

B\, @) : L>(T) & L*(T) — L>(T) @ L*(T), B\, ) := B

, ¢ €C.

Corollary 2.9 (Theorem 1.11). The operator B(A, a) is homogeneous with associated represen-
tation Py o ® Py with A # 1.

Theorem 2.10. For every fixed but arbitrary A, « with—1 < A <1 and a > 0, the operator B(A, @)
is irreducible.

Proof. Let H(n) and 98,, be as in Theorem 2.5. Clearly, T maps H(n) to H(n+1). Let T, :=
T\an)- The matrix representation of T}, is of the form

a
1 A+2n+1

0 1

Let A, =T, T,and B, = T, 1 T,_,. Then both A, and B, are operators on H(n). The matrix
representation of A, with respect to the orthonormal basis %, is

o
1 A+2n+1

a a
A+2n+1 (A+2n+1ﬂ.+1

Since determinant of A, is 1 and A, # I, the eigenvalues of A, are of the form )Li and 7%31
1 _
=
m. This implies that if A # 0, then A, are distinct and if A =0, then 1,, = -A1_,_;. Also
from a straight forward computation we see that A, B,—B, A, #0, for all n = 1. Now repeating

2
2 a? 1 _
for some real number A, > 1. Then A% + 2+ T2nii? and consequently (/ln - /l_n) =

the same argument as in Theorem 2.5 we conclude that B(A, @) must be irreducible. O
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Now we have another class of irreducible homogeneous operators, {B(A,a) : -1 <A < 1,a},
whose associated representation is Py o®P; o. Clearly, B(A, @) and B(A, |a|) are unitarily equiv-
alent.

Proposition 2.11. Leta,az >0 and -1 < Ay, A2 < 1. The operators B(A1,a1) and B(A;, a») are
unitarily equivalent if and only if A, = 1, and a; = as.

Proof. Assume that the operators B(A;, a1) and B(A,, a») are unitarily equivalent. We infer,
from a similar argument as in Theorem 2.6, that A, = A,.

Since the set of singular values of B(A,a;) and B(A, @2) must be the same, it follows
af | ay . -
m : I’lEZ} and {ml’leZ}, which
are achieved at n = 0, must be the same. Therefore equating them we have a; = as. O

that the maximal elements of the two sets {

We have therefore shown that the set of homogeneous operators
Po={Bh,a):-1<A<1l,a>0}

is irreducible and mutually unitarily inequivalent. In summary, we have proved the following
theorem.

Theorem 2.12. (a) The homogeneous operators in the two sets & and %y are mutually uni-
tarily inequivalent.

(b) The homogeneous operators in the two sets € and &%y are mutually unitary inequivalent.

Proof. The proof of the statement in (a) is similar to the proof of the Theorem 2.6 and the
proof of the statement in (b) is similar to the proof of the Theorem 2.7. O

2.1.2 Classification

Theorem 2.13. Let my = Ry, and 12 = Ry, ,, be two representations from the continuous
series excluding P o acting on the Hilbert spaces H, and H,, respectively. Assume that (A1, 1) #
(A2, U2). Suppose

I S
S2 Tp

T =

is a homogeneous operator on H = H, ® H, with associated representation m; ® . Then either
81 =0 or S =0. Furthermore, S; =0 and S = 0 except when Ry, ,,, = Py s and Ry, ,, = Py, ;.

Proof. Since T is a homogeneous operator with associated representation m; ® 7, we have

G(T) = (m1(P)" & 72 (P) ™) T (7r1(¢p) @ 72(h)), ¢ € MED.
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For ¢y , in MODb, this is equivalent to the four equations listed below:

0711 (Pg,a) (T1 — al) = Ty 1 (Pg,o) I — ATy) — GS172(Pg,a) So (2.11)
S1702(g,a) — €011 (P, 0)S1 = ATy 701 (g, 0) S1 + AS172(Pg, ) To (2.12)
Samt1 (o) — €012 (o, a)So = AS2m1 (g, o) T1 + ATom2 (g, a) So (2.13)
0115 (pp, o) (To — al) = Tomy(Pg,a) I —ATy) — GSa7) (Pg.a) St (2.14)

Let (.,.); denote the inner product of H;. We know that {z" : n € Z} is an orthogonal basis of
H;. Let ¢pg € M6b be such that ¢y (z) = €% z. Then

—i[n+M

forallne Zandi=1,2. Since -1 < @ < 1, the only possible integer value for % is 0, it
follows that there exists a 0 such that

A2

_i("MTl)H # e_i(m+7)0, whenever 17 # 1»;

(i) foranypairn,meZ, e

. —i(n+ﬁ)0 —i(m+ﬁ]9 .
(ii) e 2)" #e 2)” for i = 1,2, whenever n # m.
Fix a 6 as above. Evaluating the equation (2.11) on z" for ¢g, we get

—i(n+1+;L2—1]9

T1(pe)T1 2" =e T z".

This proves that T is a weighted shift operator with respect to the orthonormal basis {ﬁ}
Let {u,} be the weight sequence of T;.

Similarly, it may be shown that T, is a weighted shift operator with respect to the or-
thonormal basis {ﬁ} Let {v,} be the weight sequence of T>.

Evaluating the equation (2.12) on z”" and putting ¢ = ¢, we obtain

—i(n+1+22)0
(r1+)

nl((pg)Slz”:e Slz”. (2.15)

If A; # A,, then the equation (2.15) implies that S;z"” = 0, n € Z. Consequently, S; = 0. Sim-
ilarly, it can be shown that S, = 0, whenever 1; # A,. Therefore, the proof, in this case, is

complete and we may assume, without loss of generality, that 1 := 1, = A,.

1
n+1’

follows from the equation (2.15). Now evaluating equation (2.12) on the vector e, putting

The existence of a sequence {a, : n € Z} such Sle,% =a,e where ef1 = ”ZZ—:”i, i=1,2,
¢ = ¢4 and then taking inner product with e}, we get

Opn-1 <n2((p(l)e;2n) e?l—1> + Om <7I1 ((Pa) e}:n.yly e;l>

— 1 1 — 2 2
=admUp-1 <7T1((,ba)em+1y en_1> tavmanp- <7‘[2((,ba)em+1, en—l> :
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Using the matrix coefficient of Ry ,, (¢4) (see [9, p. 316]), we obtain

Iz 2"
Ap———|pL O Y Cimn-Drf-a m+11 Lo Y Chm+1,mr*
122 k=2(m-n+1)* ” (51 k=(m-n+1)*
_ 12" 1l o ) ‘
= Un@p-1 7= |, (0)] Y Cim+1l,n-Dr

[F2ad P
k=(m-n+2)*

nl
+amun1” Hll%(O)l’“ Y Clm+1,n-Drf, (216

Il zm+
k=(m—n+2)*

. “A—p;— —; +
WhereC,’C(m,n):( Hi m)( u’km),i:1,2.Puttingm:n—1,wehave

k+n-m

ap1 (=) i N CE(n-1,n- Drf—a, Y Cin, nrk

k=0 k=0
||Zn_1||2 (Ho—p11) 2 k
=Vp @1 ———(1—7) Y Cin,n-1r
2" l2 =1
121, 1
+Ap-1Up-1——" ” n”l kz"lC( , N — l)r .
>

Differentiating this equation with respect to r and then substituting r = 0, we get

-1 -1
12" l2 12" 1l
Up-10p-1——— (2 +n)+apup_1——— (1 + 1)

12" |2 1z"11
=ap1(—p)A+u+um—-D+A+2n-1)].

It follows that if @, # 0, then

12" ll2 2" iy

Vn-1"17, (—o+m)+up—; 7T (—p1+n) = (- A+ e+ —D)+A+2n-1),ne Z. (2.17)

The existence of a sequence {,} such that Sze = Bne’_ ., n€ Z, follows from a similar com-

n+1’
putation. As before, for the sequence ,,—;, we also have

-1 -1
12"z 12"
Uno1 Brot e (= i+ 1) + Pt Ut o (— gy + 1)
1270 1271

= Bn-1l(ur — ) A+ +puy — 1) + (A+2n-1)].

It follows that if §,-1 # 0, then

12" ll2 2" iy

Vn-1"T7, (—o+m)+up—; 7T (—p1+n) =1 —p2) A+ e+ —1)+(A+2n-1),ne Z. (2.18)

Equating the right hand sides of equations (2.17) and (2.18), we get y; = up, contradicting
our hypothesis that p; # pp. Therefore, we can find an integer n such that either a,_; =0 or
Brn-1=0. Assume that ), = 0, for some integer p.
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Now putting m = n in the equation (2.16), we get

1272 ) 2 A E )
———(1-7) Y Cimn=1r"—ay——— ZC( n,n—-1r*
12" 1l2 =1 II I =
||Zn_1||2 (H2—p1) 2 k
= vnan_lT(l—r) Z Ck(n+1,n—1)r
12"l =2
2"
+anvn_1TZCi(n+1,n—l)rk.
12" =

Differentiating with respect to r, then putting r = 0 and substituting the values of Cf (n,n—1)
and Cll(n, n-1), we get

12"~ 1l [

(—p2+n)=a

L
12" 1l 2"+

(—[Jl +n).

In this recursion, for all n € Z, the coefficients of a;,_;, @, are non zero. Thus if a;, = 0 for
some integer p, then a, = 0 for all n € Z and consequently, S; =0

Similarly, if 5, = 0 for some p, then S, = 0. This completes the proof of the first part of
the Theorem.

Now assume that S = 0. Then [5, Proposition 2.4] implies that T;’s are homogeneous
operators with associated representation ;. Since all the homogeneous shifts are known, the
weights of T; and T>» are therefore known.

Suppose S; # 0. Then one of the weights of S; must be non-zero. Choose, without loss
of generality, @, # 0 for some 7n € Z. For this choice of a,,—;, we have equation (2.17).

(a) Assume that both 77 and 7 are from the Complementary series, thatis, 7; = Cy 4,, where
127712 A+pi+n-1

1212 —pi+n

0<o;< 2(1—|/1|) andu,— +01,z—1 2. In this case, we have , 1=
1,2. Since T; are homogeneous operators with associated representation C) 5, T; s
also homogeneous with the same associated representation and we have the following
possibilities for the weight sequences.

2" 2
[P

2" 11
2=ty

of u,-; and v,_; in the equation (2.17) we get

() For n € Z, assume that u,, 1 =

and v, 1 = . Substituting these values

(o2+01)(02—01+1) =

This is a contradiction since 0 < g; < l(1 — |A]) by assumption.

_ 12"
12" l11

values of u,_; and v,_; in the equation (2.17), we get

2" 12

(i) For all n € Z, assume that u,_; = B

and v, = Substituting these

(2 —p1)(o1+0o2+1) =

This is a contradiction since y; # yp and oy +02+1>0.
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n-1
and v, = ”ﬁz”llgz' Substituting these

(iii) For all n € Z, assume that u,_; = ”!f:ﬂhl

values of u,,_; and v,_; in the equation (2.17), we get
(0'2—0'1)(0'1+0'2—1) =0.

This is a contradiction since 0, —07 Z0and o, +0; — 1 <0.

n-1
(iv) For all n € Z, assume that u,_; = ||ﬁzn”|1|1

values of u,_; and v,_; in the equation (2.17), we get

d _ 2",
and Un-1 = “pzay,”

Substituting these

O2—01 = 1.
This is a contradiction since 0 < o; < (1 —[A]).

Combining (i) — (iv), we find that there does not exists any n for which a,_; # 0 and we
conclude that S; = 0 in this case.

(b) Let 11 = Cy 4 for some 0 < 0 < %(1 —|Al) and 7, = Py s where s is purely imaginary. Now,

Y1 = % +0and yp = % + s. Since the representation space of m is L2, 12", = 1,

forallneZ.

Recall that there are two homogeneous operators whose associated representation is
72, one is the unweighted bilateral shift and the other one is the weighted shift with
weight sequence {v,_; = —232

g q n-1-— _u2+n

that arise in this case. In each of these cases, a contradiction is obtained by noting that

}. As before, we consider four different possibilities

s is purely imaginary.

n
(i) Forall ne Z, assume that v,_; =1 and u,_; = %

u,_1 and v,,_; in the equation (2.17) we get s> — 02 + o + s = 0.

. Substituting these values of

-1
(ii) Forall n€ Z, assume that v,,_.; =1 and u,,_1 = ”IZIZTIILH Substituting these values of

up-1 and v,_; in the equation (2.17) we get (s—o)(s+0+1) =0.
(iii) For all n € Z, assume that v,,_; = % and u,_; = ||£i|1||1|1
values of u,,_1 and v,_; in the equation (2.17) we get s> — o2+ 0 — s =0.

. Substituting these

; —lo+n+2s n-1
(iv) For all n € Z, assume that v,,_; = 2222 and u,,_; = ”ﬁznnllll

—H2tn
values of u,,_; and v,_; in the equation (2.17) we get s> — 0> -0 — s =0.

. Substituting these

Combining (i) - (iv), again in this case, we see that §; = 0.

(c) For i = 1,2, assume that ; = P, ;; are two Principal series representations. We have the
following four cases to consider.
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(i)

(i)

(iii)

(iv)

For all n € Z, assume that u,,_; = ZHIFNA2S and vy—1 = 1. Substituting these values

—mitn
of u,—y and v,_, in the equation (2.17) we get (sp — s1)(s2 +s; +1) = 0. Thisis a
contradiction since s; # s».

For all n € Z, assume that u,_; = 1 and v,_; = %’Tjsl Substituting these val-
ues of u,_; and v,_; in the equation (2.17) we get sg - sf +51—5 =0. Thisis a
contradiction since s; # $s.

_ —u1+n+2sy _ —Uptn+2s;

For all n € Z, assume that u,_; = ~—mtn and v, = i Substituting

these values of u,_; and v,_; in the equation (2.17) we get sg - s% = §» + 5;. Since

s1 # s2 and both of them are purely imaginary;, it follows, from the preceding equa-
tion, that s, = —s;.

For all n € Z, assume that u,_; =1 and v,,—; = 1. Substituting these values of u,,_;
and v,_; in the equation (2.17), we get sg - sf +$>+ 51 = 0. We conclude that s, = —s;
exactly as before.

The proof is complete by putting together the results of the three cases (a) - (c). O

Proposition 2.14. Let P, s be a representation from the Principal series with s # 0. If S is any

operator on L*(T) such that

then S=0.

SPy () — 9Py (p)S = AB(s) Py s()S + aSPy () B(s), ¢ € Mdb, (2.19)

Proof. The operator S must be an weighted shift with respect to the orthonormal basis {z" :

n € Z} in L*(T) as before. Let {a,,} be the weight sequence of S. In the equation (2.19), substi-

tuting ¢ = ¢, evaluating on z” and taking inner product with z", we obtain

Ap-1 <P/1,s((,ba)zm» Zn_l>+am <P/1,s((pa)zm+l, Zn> =al@mWp-1+Wna,_1) <P/l,s((l)a)zm+l; Zn_l>-

Using the matrix coefficients of P, ;(¢,) and putting m = n—1, we get

A1 Z Ci(n—-1,n- l)rk— A1 Z Cr(n, nrk = 20,1 Wn-1 Z Cr(n,n— Drk.

k=0 k=0 k=1

Now comparing the coefficient of r, we have 2a,_,s = 0. Since s # 0, it follows that a,_; = 0.
This implies that S = 0. O

Corollary 2.15. If T is a homogeneous operator with associated representation Py ;® P, s, where

s #0, then, upto unitary equivalence, T must be of the form

B(s) a(B(s)—B)
0 B

B(s)y O
0 B(s)

B 0
0 B

)
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Proof. Let T be a homogeneous operator with associated representation P, ; ® P, ;. Recall
that P, s and P, _ are unitarily equivalent via the unitary operator U, ;. Clearly, the opera-
tor (IeUy) T (I oU ;Lks) is homogeneous with associated representation P, s ® Py _s. Then
Ty S

2

Theorem 2.13 implies that (Ie Uy ) T (IEB U; S) is of the form on L*(T) @ L*(T),

S

therefore the operator T is also of the form on L*(T) @ L*(T). Now [5, Proposi-

2
tion 2.4] and [5, Lemma 2.5] imply that 77 and T, are homogeneous operators with associated

representation P, ; and S satisfies
S5 (@) = €7 s(P)S = ATy s(P)S+AST A 5(P) T

Since B(s) and B are the only homogeneous operators with associated representation P, i,
the proof is complete applying Proposition 2.3, Proposition 2.8 and Proposition 2.14. O

Now we characterize all homogeneous operators whose associated representation is
Pyo® Pyowith A # 1.

Leto = Pyo®P)o.Foralli, je Zleto; ;= P;o|y(;) where P; is the orthogonal projection
of L2(T) @ L>(T) onto H(i), the K-isotypic subspace of ¢ as in Theorem 2.5. Then ojjisa
map from H(j) to H(i), i,j € Z. Let P% be the map from the subspace of L?(T) spanned
by the vector {z/} to the subspace of L?(T) spanned by the vector {z'} defined by P;"{)(zj ) =

<P;’{)zj,z"> z!. Then

| = (Pro@)2l,2") az (2.20)
o-l,] (P sz - A,O ()b Z )Z bzl ) .
for all a, b € C. Recall that the matrix coefficient of P, g is
(Pro(da)z™ 2"y =c(-D"@"™ Y Crlmmr* (2.21)
k=(m-n)*

/ / -A-pu—-m —-u+m
whererzlalz,c:(pa(O)lecpa(O)l“ande(m,n):( enm )( . )

Definition 2.16. Let A, , < (—1,1) be the set of all zeros of the power series Z Cr(m,n) rk.

k=(m—-n)*

Since for every n, m € Z, the radius of convergence of the power series Z Cr(m,n) rk
k=(m—-n)*
is 1, it follows A, , is countable. Thus the set A = U Am,n is also countable. Therefore,
m,nez

there exists b € (0,1) \ A such that (PA,O((/)b)zm, z”) # 0, for all n, m € Z. In the following, we fix
this ¢;, and let e,, denote the function z".

Now assume that u, vy are two non-zero mutually orthogonal vectors in H(0). Define
Up = 05,0(Pp)Uo, Vn = 05,0(Pp) Vg for all n # 0. Then each of the vectors u,, v, are non-zero.
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Lemma 2.17. The set of vectors {u,, Uy} ez is a complete orthogonal set of L?(T) & L?(T).

Proof. As uy, v, € H(n) for every n € Z and H(n) is orthogonal to H(m), so {uy, v,} is orthog-
onal to {u;,, vy}, if n # m. Now we will show that u, is orthogonal to v,, n € Z. From the
definition of 0,(¢p) : H(0) — H(n) obtained from (2.20) and a similar one for o ,,0(¢pp)* :
H(n) — H(0), we have

Tn0(Pp)*TnolPp) = 1{Proldpp)eg, en) *1d.

Consequently,

(Un, n) = (0 n,0(bp) U0, T n,0(Pp) Vo)
= <Un,0 (1) "0 n,0(Pp) Uo, V0>

= {Px0(Pp)eo, en ) |* (ug, vo) = 0.

Since H(n) is spanned by {u,, v,,} and L?(T) ® L?(T) = ®,,cz7 H(n), it follows that {1, v} 4c7 is
a complete orthogonal set. O

Now let H; be the subspace of L2(T) e [(T) spanned by the set of vectors {u,},cz and
H, be the subspace of L?(T) @ L?(T) spanned by the set of vectors {v,} ,,c7.

Lemma 2.18. The subspaces Hy and Hj are invariant under o. Moreover, 0|y, is equivalent to
Py fori=1,2.

Proof. Let K be the set of all rotations in Mob. If k € K, then o (k) is a scalar multiple of the
identity on each H(n). Thus each H; is invariant under o (k), k € K.
Pick a ¥ in M6b which is not in K. For all i, j, note that (P/lyo((/)b)zf, zi> #0,and

<P/1,0(17U)ej) ei>
(Propplej, ei)

0;jw)= 0i,j(P).

Since
00,j (Pp)T j0(Pp) = (Pro(Pp)en, ej)(Prolpple;j, eo)1d,
it follows that 0, j (¢pp) u; is in the span of {ug}. Therefore,

(Pro(Pplej,ei)
(Pro(pplej,en)(Prolpp)eo, ei)

0i,j(ppu;= 0i,0(pp)oo,j(Pp)u;j

is a scalar multiple of u;. This implies that

_ <PA,O(UI)ej)ei>
THiU = <P/1,0(<Pb)ej,ei>0l’] o)t
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is a scalar multiple of u;. We conclude that o(y)u; =3 ;ez 0 j(W)u; is in Hy, proving that H;
is invariant under o. A similar argument shows that H, is invariant under o.

Let t,, € R be such that (P o (p)eo, en) = €' | {Pyo(Pp)eo, en) |. Now if y is any element
in Mob, then

(o uj,u;)= (o ;@uj,u;)=(ProW)e;,e;)(Paoldpeo, e;){Pro(dp)eo, ei)lluoll®
={(Pro)ej, e;)e'i [(Pyo(dp)en,e;)] e [{Prolpp)eo, e llugll.

Find a, b € C, such that ug = (Z;"g) and note that

aey,
Up = 0 n0(Pp)to = (Paroldpp)eo, en) (be ) and lluyll = 1{Px,0(Pp)eo, en) gl

The set of vectors {il;}, il; = e ' ”Zﬁ is an orthonormal basis of H;. From the preceding com-

putation, we see that (o ()i}, il;) = (Pa,0(W)e;, e;) . It is now evident that o, is equivalent to
Py . Similarly, it can be seen that oy, is equivalent to Py g. O

Suppose T is a homogeneous operator with associated representation o. Since H(n) is
a [K-isotypic subspace of o and o is associated with T, therefore, we have T(H(n)) < H(n+1)
([9, Theorem 5.1]). Let T, := T|n(n). We first prove that each T, is invertible.

Lemma 2.19. For every n € Z, the operator T,, is invertible.
Proof. Lety(z) = e {=". The homogeneity of T implies that
o) T-aeoy)=Tow)-aTow)T.
From this equation, using the orthogonality of the subspaces H(n), we have
0111 W) T — ae™ 0111 n W) = Ti0 10 (W) = GTi0 1,1 W) T, (2.22)

foralli,neZ.
For all i, j € Z, the operator o; j(¢p) is invertible. Substituting i = n and ¥ = ¢}, in the
equation (2.22), we get

b0n+1,n((,bb) + O'n+1,n+l((/)b) T, = Tnan,n((pb) _ETnan,n+l((,bb) Ty.

If there exists h, € H(n) such that T),h,, = 0, then from the equation appearing above, we have

b0n+1,n(¢b) h,=0

and consequently, /1,, = 0. This proves that T}, is invertible. O
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Theorem 2.20. Suppose T is a homogeneous operator with associated representation o. Then
there exists Hy and H, such that [*(T)e L*(T) = Hy® H,, T(H;) < H;. The subspaces H;, i = 1,2,
are invariant under o and oy, is unitarily equivalent to P) .

Proof. There exists 1g € C and a pair of orthonormal vectors uy, vp in H(0) such that the vector
Uy is an eigenvector for the operator 01,0((/);7)‘1 Tp with eigenvalue Ay, that is,

01,0(pp) " Toug = Aottg.

Now, define
Up = Un,O((,bb) Uy, Un = Un,O((Pb) Vo

for all n € Z. Suppose H; and H, are the closed subspaces spanned by {u,} ez and {v,} ez,
respectively. Then by Lemma 2.17, L?(T) @ L?>(T) = H; ® H, and by Lemma 2.18, each H; is
invariant under o such that o}y, is equivalent to P . Now we show that T(H;) € Hj.

We have Toug = Ago1,0(¢p) U, which is a scalar multiple of the vector ;. An inductive
argument given below shows that T, u, is a scalar multiple of the vector u,; for every n € Z.

Assume that Tpuy = Aps1Upy; for some A €C, k= 0. Let A = U Aj j, where
0<i,j<k+2
A; j are described in Definition 2.16. Since 0 is not a limit point of any A; ;, there exists ry €

(0,1) such that (P o(¢,)z/,2') #0,0<i,j < k+2, for all a € D with 0 < |a| < rr. Combining
the two equalities

(Pro(dp)eo, ex+1)
(Pro(dp)eo, ex){Pro(pp) ek, ex+1)

Ok+1,0(Pp) = Ok+1,k(Pp) Ok, 0(Pp)

and
(Ppo(dp)ek, exs1)

(Pro(da)ex, err1)
we have Tiug = Ag41(@)0 k41,1 (Pa) Uk, where

Ok+1,k(Pp) = Ok+1,k(Pa), lal <ry,

(Pro(pp)eo, ex+1) (Pro(Pp)ek, exs1)
(P1o(dp)eo, ex) {Pao(dp) ek, exs1){ProlPa)er, exs1)

For every ¢, with |a| < ry, this proves the existence of A1 (a) € C such that

Aks1(@) = Ags1

Trug = A1 (@) O 41,k (Do) Uk

Now, for every ¢, with |a| < r, substituting n = k,i = k+ 1 in the equation (2.22), and then
evaluating on the vector uy, we get

ac 42,k (Do)t — A1 (@O k42, k41 (Pa) T k+1,k (Do) Uk

= Ti+10k+1,k(@Pa) Uk — A i1 (@) (Pro (@) ek+1 €kr1) Thr10 k41, k(Pa) Uk
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The equality below is easily verified using the definition of the g ;

(Pro(da)er, exr2)
(Pro(Pa)ek, eir1) (Pro(@a)er+1, ekr2)

Ok+2,k(Pa) = Ok+2,k+1 (PO k+1,k(Pa)-

In consequence, we have

a(Pyo(pa)ek, ex+2)
(Pro(da)ex, ex1)(Pro(Pa)ers1, €k+2)
= (1-aA k1@ (Pro(@a)ek+1, €k+1)) Tkr10k+1,k (D) k. (2.23)

—A+1(@) | O k12, k41 (D) D) Prer1, k(P a) Uk

Suppose
a(Pyo(pa)er, ex+2)
(Pro(@a)er ex+1) (Pro(Pa)eks1, esz)

—Ak+1(@)|#0

and
(1= Ak (@) (Pro(@a)ers1, exs1)) #0

for all ¢, with |a| < r¢. Then we have

lal? (Pro(da)ex, exr2)(Pro@a)ers+1,ek+1) = {Pro(Pa)er, ex+1) {Pro(Pa)er+1,€kr2)

forall |a| < ry.

Now, using the matrix coefficient for P, ¢(¢,), we obtain

r(z Cn(k,k+2)r”) (Z Cnlk+1,k+ l)r”) = (Z Cn(k, k+ 1)r”) (Z Cnlk+1,k+2)r"

n=0 n=0 n=0 n=0

forall0<r=< r,%. Putting r = 0 we arrive at a contradiction.
We can therefore find ¢, with 0 < |a| < r such that

( a(Pyo(Pa)er, ex+2)

-A (a)) Z0
(Pro@a)er ek ) (Pro@aerss, exsa)

and hence
(1-aAks1 (@ (Pro(paersr, exs1)) #0

as both o2 1+1(¢ps) and Ti4 are invertible. Since 0 < |al < ry, it follows from (2.23) that
Ti+1Uk+1 is a scalar multiple of the vector u,, completing half the induction argument.

A similar but slightly different proof gives the other half of the induction argument,
namely, T_‘,% U-_p+1 is a scalar multiple of {u_,} for all n e N. O
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Corollary 2.21. If T is a homogeneous operator with associated representation Py o ® P, o, then
T is unitarily equivalent to one of the following operator

B aS[A]
0 B

B 0
0 B

) )

where S[A] is the weighted shift on L*(T) with respect to the orthonormal basis {z" : n € Z} with
weight sequence { - : n€Z}.

Proof. The proof follows form Theorem 2.20 and Proposition 2.8 O

2.2 The associated representation is the direct sum of three

irreducible representations

Now, we will prove that every homogeneous operator whose associated representation is 7 =
1 &1y, where 1, is from the irreducible Continuous series representations and 7 is the direct

sum of a holomorphic and an anti-holomorphic Discrete series representation, is reducible.
Let m1 = Ry, and H be the representation space of ;. Let e,11 = ﬁ Recall that {e,ll tne”Z}is

an orthonormal basis of the representation space H;. Let 7, = DL ®D} for a pair of positive
real numbers A, 1. However, the multipliers of all the three representations 71, DL and D/{Z
must be the same. In consequence, 1; + A, is an even integer (see Corollary 1.15), therefore
M=A+2mand A, =2-A1+2k, -1<A<1.

Let H**2™ be the representation space of D} , and H® **?Y be the representation

spaceof D, ., .Let Hy = HW2m) g R-A+2K) Define

=z @
27 lo-p+2k

2 ||z"ﬁn 2 0

The set of vectors {e,21 : n € Z} is an orthonormal basis of H,. Let ¢pg be a rotation in Mob. Then

—i(n+%)9 1

n1(¢9)e}1:e e,ne’z.

Also, it is easy to see that

4o i(n+k-24)0
"+m+2) efl,nanndﬂg((pg)e%n:el(nJr 2] e

on=1

2 () e’ = el

—i(n+m+%)0 y ei(p+k—%)

Clearly, there exists a 8 such that e 0 foralln =0, p=1andif n; # ny,

then e—i(n1+%]9 ;é e—i(l’l2+%)9'
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T
Theorem 2.22. Suppose T = Sl Tl is a homogeneous operator with associated represen-
2 12
tation 7wy & 73, where w1 = Ry, is from the Continuous series excluding Py o and 7> = DI+2m &
D, 3,0 ThenS; =0.

Proof. Homogeneity of T implies that the operators 7; and S; satisfy equations (2.11), (2.12),
(2.13) and (2.14). Repeating an argument similar to the one in Theorem 2.13, we find that T}
and T, are weighted shifts with respect to the orthonormal basis {e}} and {e?}, respectively.
Let {u,} and {v,} be the weight sequences of T; and T3, respectively. It is easy to see that
v_1 =0unless either m=0,k=0,A>00rm=1,k=-1,A<0.

Substituting ¢ = ¢g in the equation (2.12), we obtain

n+1+m+%] i(n—2+k+%]
e

m1(y)S1€5 = e_i( 9516,21, n=0; m(pg)S1€%, = GSIeEn, n=1.

In consequence,

(a) for n =0, there exists a,, € C such that S1e3 = aze), ...
(b) for n > 1, there exists a_, € C such that S;e?,, = a_neln_kﬂ.

2

Substituting ¢ = ¢, in the equation (2.12) and then evaluating at the vector e7,

n =0, we
obtain

2 1 — 1 - 2
Sima(paey, + anmi(pale, o = aanTimy(Pa)e,, g + avpS172(Pale;, -

1

k4 is a scalar multiple of e? , it follows that

For any integer p > 1, since S} e “p
<51n2(¢a)e?,,e£p_k+l> - <n2(<pa)e$l,s>{ eip_k+1> ~ 0.

Taking inner product with efp_ . and using the matrix coefficients of 771 (¢4), we get

k

apllz?P* Y Clmrm+1,-p-k+ D1

izn+m+p+k
:—anu_p_kllz_p_klll > Cl-l(n+m+1,—p—k)ri.
izn+m+p+k+1
Comparing the coefficient of r*™+P*k we get
Az PN, k(M mA L —p—k+1)=0
and this implies that a,, = 0, because ||z~ P~**1||; C! (n+m+1,—p—k+1)#0. This

n+m+p+k-1
proves that S;e2 =0 for all n > 0.
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To prove that Sle%n =0, n = 1, we repeat the previous algorithm, namely, substitute
¢ = ¢, in the equation (2.12), evaluate at the vector e? »» 1 =1, take inner product with e}, for
some positive integer p and finally, use the matrix coefficients of 7 (¢,) to conclude

a_nlz’Ih Y. Cil-n—k+1,p)r*=—a_,up 11271 Y. Ci(-n—k+1,p-1r*.
k=0 k=0

Equating the constant term on both sides of this equation, we get

12" My CA-—p-p+D] _

_ =0.
PzP T (ptn+k-1)

a_,|u

Now, suppose there exists a subsequence (n,,) such that a_,,, # 0. Then

IzP~ 1, N (“A-p-p+D) _
PNzl (p+ it k—1)

)

2P~
(B

leading to a contradiction, since we have assumed that a_;, # 0 for all m = 1. Thus there

for all n,,. Therefore taking m — oo, we see that u,_; =0.Hence a_,, =0foralln =1,

is no subsequence {n,,} such that a_,,, # 0, or in other words, there exists a natural number

N such that @_,, = 0 for all » = N. Repeating the algorithm of substituting ¢ = ¢, in the

2

equation (2.12), evaluating at the vector €2, 1 < n < N, taking inner product with e!

n—l-k+2’
where [ : I > N — n, using the matrix coefficients of 7, (¢,) and finally comparing coefficients

of r!, we have

a_pllz” T Cl(~n—k+1,-n—1-k+1) =0.

It follows that a_;, =0 for all 1 < n < N. Therefore we have proved that S; = 0. O
7 O ) , .
Theorem 2.23. Suppose T = S, T is a homogeneous operator and i, & 1, is the associ-
2 12
ated representation. Then S, satisfies the equation (2.13). If my = Ry ,, is from the Continuous
series representation excluding Py o and my = Dj{ wom @ D5 iop then S, = 0.
Proof. Substituting ¢ = ¢y in the equation (2.13), we have
1 —i(n+1+%)9 1
72(pg)S2e, =€ S.e,, ne”Z. (2.24)

Casel (m = 1): Assume m = 1. From the equation (2.24), only the following possibilities occur.

(a) There exists a; € C such that Sge,l,t =a,e ,n=m-—1and Sge}l =0,0sn<m-1.

n+l-m

(b) There exists @_,, € C such that S, eln =q_,é

2 apN>k+land Szel, =0, 1<n<k+1.
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Substituting ¢ = ¢, in the equation (2.13), evaluating at the vector e(l), taking inner product

with e?

= ike1 fOr n>k+1 and lastly, using the matrix coefficient of 7; (¢4), we get

a-nll 2217t Y. CLO,—mrF = a,uell2 It Y. i, —mrk.
k=n k=n+1
Comparing the coefficients of r”*, we see that @_,, = 0. Thus for every n = 1, we have S, el »=0.
To complete the proof, we have to show that 826711 =0,n=0.

Substituting ¢ = ¢, in the equation (2.13), evaluating at the vector ell, putting S, ell =

1

0, taking inner product with e, ,_,

71 (), we get

for n = m -1 and then using the matrix coefficient of

anllz 7Y CL=L,mr* = apu 111217 Y CHO,mrF,
k=0 k=0
Comparing the constant coefficients and the coefficients of r, respectively, we get
ap(—A—p+1)  apu an ap(u+D(A-pu+1)  appu
Iz~ (n+1) 12%111 Iz~ 1 (n+2) 1200,

These two equations together give

(L+1) %
an - =
(n+2) ((n+1)
Since EZI; # (nﬁl), n =0, we must have a, = 0 for all 7> 0. This proves that S,el, =0, n> 0.

Case Il (m = 0): Assume m = 0. In this case, A > 0. From the equation (2.24), we see that

2

(a) there exists a, € C such that Sge,l1 =ane;.

n=-1;

2

_n+k+1,n>k+1and82€£n20,25nsk+l.

(b) there exists a_,, € C such that Szel_n =a_pe

Repeating a similar computation as in the case of (m = 1), we conclude that Sgeln =0,n=2.
Now we prove that a, = 0 for all n = —1. Substituting ¢ = ¢, in the equation (2.13),
evaluating at the vector elz, putting Sy el_2 =0, taking inner product with 6121 +1 and then using
the matrix coefficient of 1 (¢,), we get
anllz 217t Y Ch-2,mr* = ayu_slz T Y Cr(-1,myrE.
k=0 k=0
Comparing the constant coefficient and the coefficient of r respectively, we obtain

an(—A—p+2) anup Wp(+2)(-A—pu+2) ap(p+u_

= an
Iz=2li(n+2)  llz7'h lz=21l1(n +3) Iz~

These two equations together give

+2 +1
o, (p+2) W+ _
(n+3) (n+2)
Since 7} # Py, it follows that p is not in [0,00). This implies that a, = 0 for all n = —1. There-
fore we have proved that S, = 0 in this case. O
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1 o1, . .

Remark 2.24. Suppose T = S, T is a homogeneous operator with associated representa-
2 12

tion 7; @ 2, where 7; is an irreducible Continuous series representation and 7o = P;o. Re-

peating the computations of Theorem 2.22 and Theorem 2.23, we obtain that S; = S, = 0.

2.3 The associated representation is the direct sum of four ir-

reducible representations

In this section, we prove that every homogeneous operator with associated representation
e - _ Dt - : + - + -
7T, ® 79, where 7 = D;Ll ® D]L2 and 75 = DA3 ® DM’ is reducible. If D/,ll ® D;L2 ® D;L3 ® D;L4 is
a representation, then the multipliers of all the four representations D:{ , Dy, Dj{ and Dy
1 2 3 4
must be the same. In consequence, 1; =A+2a, Ay =2-A14+2b, As=A+2mand A4 =2-A+2p
for some real A with 0 < A <2 and some non negative integers a, b, m, p.
Let A € (0,2] and a, b, m, p be any non-negative integers. Let 7y = DLM ®D, ;. . and
T = DLZm ® DZ_—/I+2p' Then the representation space of 7, is H; := HA+2a) g gR-A+2b) apd
the representation space of 7, is H, := HA*+2™ ¢ H2-A+2P) Define

=z
12"l p+2p

X 2" ) 0
er = 12" 1+24 n=>0ande . = n—-1 n=1.
n 0 ’ -n ’

Also, define

2 IIZ”ﬁn 2 0
e, = 8*2'" ,n=0and e, = 21 ,n=1.

12" Tl av2p

Then the vectors efl, n € Z form an orthonormal basis of H;, i = 1,2. If ¢by is a rotation in Mdb,
then

_; ) o A
7rl(<p9)e,l1 =e l("+a+2)0e,lq,n =0; ﬂl((,bg)eln = el(mb Z)Beln, nx=1

and R .
7'[2(4)9)6,21 = e_l(n+m+fjee,21, n=0; n2(<p9)e§n = el(nw_fJge%n, n=1.

We can, therefore, find 0 such that 7, (¢g) and 72 (¢g) have distinct eigenvalues with one di-
mensional eigenspaces described as above.

n & . . .
Theorem 2.25. Let T = T be a homogeneous operator with associated representation
2 1>
my ® 7y, wheremy =D; ., ®D, , , andmy, =Dy , Dz‘_sz. Then the following holds:

1

(a) For n € Z, there exist u, € C such that Tle,l1 = Upe,,

b=0.

where u_1 = 0 unless a = 0 and
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(b) For n € Z, there exists v,, € C such that Tge% =v,e%

- 1> Where v_y =0 unless m = 0 and
p=0.

(c) Forn=0, Sye2 belongs to the span closure of the set of vectors {eé :q =0} and for n=2,
S1€%,, belongs to the span closure of the set of vectors {e* g * q = 1}. The vector Si1e? | be-
longs to the span closure of the set {e! g-q=1} unlessp=0anda=0.

(d) Forn=0, Syel, belongs to the span closure of the set of vectors {e?] :q =0} and forn =2,
Sael,, belongs to the span closure of the set {* g : 4= 1}. The vector S, ell belongs to the
span closure of the set {e%q :q =1} unless b=0 and m =0.

Proof. Homogeneity of T implies that T; and S; satisfy equations (2.11), (2.12), (2.13) and
(2.14). Substituting ¢ = ¢y in the equation (2.11), we get

—i(n+1+a+%) i(”_z‘”"*%)

T (pe) Tiel = e “Tiel, n=0and m (pg) Tye', = e “Tie',,n=1.

Therefore, for each n € Z, there exists u,, € C such that Tle,11 = une}wl, u_1=0,unlessa=0
and b =0.

Similarly, we can show that for all n € Z, there exists v, € C such that T efl = Uy efl 410
v_1 =0, unless m =0 and p = 0. Substituting ¢ = ¢g in equation (2.12), we obtain

—i(n+1+m+’%) i(n—2+P+%)9

Sle2 n=1.

Hslei,nEOandnl((pg)SleEn=e .

77,'1(([)9)816,21 =e
We, therefore, see that
1. foreachn=0, Sle,z1 belongs to the span closure of the set of vectors {e}7 :q =0},

2. for each n =2, S;e?, belongs to the span closure of the set of vectors {e* q:9g=1tand

3. except when p = 0 and a = 0, S;e? , belongs to the span closure of the set of vectors
el q=1}.

Similarly, we can show that (i) for n = 0, Sze}z belongs to the span closure of the set
of vectors {ef7 1 g =0}, (ii) for n = 2, Syel ,, belongs to the span closure of the set of vectors
{e? ¢°q =1} and (iii) except when b = 0 and m = 0, Sgel1 belongs to the span closure of the set

of vectors {e? ;1 g = 1}. O
I : . .
Theorem 2.26. Suppose T = T is a homogeneous operator with associated represen-
2 Iz
tation my & 7o, where my = Dy, ® D, , and my = D] & Dz_—)t+2p' for a pair a, p of positive

integers. Then T is reducible. Furthermore, T = T, ® T, where T; is a homogeneous operator

with associated representation DI 120 ® D;[ and T, is a homogeneous operator with associated

representation D,_, & D2—7L+2p'
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Proof. Homogeneity of T implies that the operators 7; and S; satisfy equations (2.11), (2.12),
(2.13) and (2.14). Since a # 0 and p # 0, from Theorem 2.25, it follows that

(a) for n=0, T;é? is in the span closure of{eg :q=0},i=1,2,

(b) forn=1, Tiein is in the span closure of{efq q=1},1=1,2,

(c) for n=0, S;e;, is in the span closure of {e; : g = 0} and

(d) for n=1, Sye2,, is in the span closure of {el ,: g =1},
Substituting ¢ = ¢y in the equation (2.13), we obtain

n+1+a+%)

_ (1A
nz(gbg)Sge,l,l:e l( Hsge,ll,nzo; ng(cpg)Sgeln:el(n ! ZJBSZeln,nzl.

This implies that (i) for all n = 0, there exists a,, € C such that Sye}, = ane?, ., (ii) for all
n = p+2 there exists a_, € C such that Sye! , = a_ne£n+p+1, (iii) forall2<n< p+1, Sel , =0
and (iv) there exists @_; € C such that S, ell = a_le(z).

Now substituting ¢ = ¢, in the equation (2.13), evaluating at the vector ell and then

taking inner product with e7, we obtain
a_1(D;_,@nz",2°) +a_1 (D} (¢pa)2°,2°) = 0.

If ais real, then ¢, = ¢ 4. An easy computation shows that (D} (¢4)2°,2°)+(D7 (pa)2°,2°) #
0, a€(0,1). In consequence a_; = 0.
Let H, and H, be the closed subspaces of H spanned by the orthonormal set of vectors

(A S B (Rl P G

We have T = T; @ T», where T; is an operator on H;, i = 1,2. Also note that H; is invariant

respectively.

under 7. So, T; is a homogeneous operator with associated representation D;.,,®Dj and T

is a homogeneous operator with associated representation D, _, & D

2-A+2p°
0
n S |, . .
Theorem 2.27. Suppose T = T is a homogeneous operator with associated represen-
2 Iz
tation w1 ® my, where m, = Dj{ ®D, , and 1y = D;[ ® DZ_—/l+2p and p is some positive integer.

Then T is reducible. Furthermore, T = Ty ® Ty, where T} is a homogeneous operator with asso-
ciated representation D;[ EBD/{ and T is a homogeneous operator with associated representation

D2_—/1€BD2_—)L+2p orT=TT.
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Proof. Homogeneity of T implies that the operators 7; and S; satisfy equations (2.11), (2.12),
(2.13) and (2.14). Recall that T; and T» are weighted shifs with respect to the orthonormal
basis {e.} and {e?}, respectively by virtue of Theorem 2.25. Let {u,} and {v,} be the corre-
sponding weights for T; and T>, respectively. Since p > 0, it follows form Theorem 2.25 that
v_1=0.

Substituting ¢ = ¢g in the equation (2.13), we get

A
I’l+1+§)

ﬂz(CPe)Sze}l:e_i( 9828111’ neZ.

This implies that (i) for all n > —1 there exist §,, € C such that S,e}, = fpe? |, (ii) forall n = p+2
there exists _, € C such that Sye! , = ,B_ne%nﬂ”l and (iii) S»e?,, =0, foralll<n< p+2.
Substituting ¢ = ¢, in the equation (2.13), evaluating at the vector e}, for n > —1 and

taking inner product with e3, we get

Boi(mi@aley, el )+ Bu(ma(da)e?,y,e5) = 0.

Now, if n = 0, then from the preceding equation, we find that f, (m2($a)e?,,, €5) = 0 and

therefore 3, = 0 for all n = 0. For n = —1, from the same equation, we have

Bo1{mi (e, ety)+ B (malpa)es, el) =0.

However, it is easily verified that (7 (¢pg)e’ |, el ) + (72 ((,ba)e(z), eé) # 0. Therefore, f_1 = 0.
Substituting ¢ = ¢, in the equation (2.13), evaluating at the vector ell and then taking

inner product with e? n=p+2, we get

n+p+1’
Bn(m(Ppa)el el ) =0.

Consequently, we have $_, = 0, for n = p +2. This proves that Syel, = 0, for all n > 2 and
therefore S, = 0.
Substituting ¢ = ¢g in the equation (2.12), we obtain

: A
—l(n+1+§)

il n— _A
nl((pg)Sle,zl =e gSlei, n=0; nl((,bg)SleEn = el(n +p 2)98193,1,11 =>1.

Thus (i) for all n = 0, there exists a; € C such that Slefl = ane}l +1 and (ii) for all n = 1, there

1
-n—p+1°

Substituting ¢ = ¢, in the equation (2.12), evaluating at the vector e, for n > 0, taking

exists a_, € C such that Slegn =a_pe

inner product with ej and using S} e; = 0, we get
11\ _
an(mi(pa)en.1, ) =0.

Consequently, for all n = 0, we see that a,, = 0. This proves that Sle,z1 =0,n=0.
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Again, substituting ¢ = ¢, in the equation (2.12), evaluating at ¢?,, for n = 1, taking
inner product with eé and using S; e(l) =0, we get

A_nl-1 <7Tl(¢a)e£n—p+l’ ell> =0.

It follows that a_,u_1 =0, n = 1. Hence if u_; #0, then for all » = 1, we see that a_,, = 0
and therefore S; = 0. Putting all of these together, we infer that T = T; & T, where T; is a
homogeneous operator with associated representation 7; and 7> is a homogeneous operator
with associated representation ;.

Let Ty, T> be the operators which were constructed in Theorem 2.26. If u_; = 0, then we
have T = T; @ T>. The operators T; and T, are homogeneous, and in this case, the associated

. + + p— — .
representations are Dy @ Dy and D, , @ D,_, 1op respectively. O

T, S
S, T
m @y whereny =Dy @D, , andny,=D; ®D, ,. ThenS;=0and S, = 0.

Theorem 2.28. Let T = be a homogeneous operator with associated representation

Proof. In this case m; = m,. Denote 7, = 12 = 7w and e,l1 = e,21 = e;,. Homogeneity of T implies
that the operators T; and S; satisfy equations (2.11), (2.12), (2.13) and (2.14). Repeating an
argument similar to the one in Theorem 2.25, we find that T, T>, S; and S, are weighted
shifts with respect to the orthonormal basis {e,}. Let {u,}, {v,}, {a,} and {B,} be the weights
for Ty, T», S and S, respectively.

Now we prove that S; = 0. Substituting ¢ = ¢, in the equation (2.12), evaluating at the
vector ey, for n = 0 and then taking inner product with ey, we obtain

an{m(pa)ent1, o) =0.

This implies that ¢, =0, n = 0.
Substituting ¢ = ¢, in the equation (2.12), evaluating at the vector e_; and then taking
inner product with e, 1, for n < -1, we get

An <7T((Pa) -1, en> +ta_1 <7T((Pa) €0, en+1> =0.

This implies that a,, =0, n < —1, proving that S; = 0. A similar computation shows that S, =
0. O
T S
S2 T
®D, )., andm, =D

Theorem 2.29. Suppose T = is a homogeneous operator with associated represen-

® D . Then either T =Ty & T>,

: — Dt +
tation w1 ® o, wherem; = D A2m @ o140

A+2a

T . . . . + + T .
where T is a homogeneous operator with associated representation Dy ., & D, , and T is
a homogeneous operator with associated representation D, 49D, 4 +2p OF T=TeTl. In

particular, T is reducible.
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Proof. We divide the proof into several cases and discuss each case separately. Let H;, H, be
asin (2.25) and T; = Tg,i=12

(i) Assume that none of the a, b, m, p are zero. Then from Theorem 2.25, it follows that
T = Ty @ T». Also note that H; is invariant under n. So, T; is a homogeneous operator

with associated representation DY . & D7 and T5 is a homogeneous operator with

A+2a A+2m

associated representation D, 40,905, 1op°

(ii) Assume that exactly one of a, b, m, p is non-zero. Then from Theorem 2.25, it follows
that T = Tl 2 Tg.

(iii) It follows from Theorem 2.25 that T = T @ T if either a = 0,b # 0,m = 0, p#0ora#
0,b=0,m#0,p=0.

(iv) The caseof a#0,b=0,p #0,m =0 is precisely Theorem 2.26.

(v) Assumethata=0,b#0,m#0,p=0.Since T* is a homogeneous operator with associ-
ated representation n’f ® n’;, the proof follows by applying Theorem 2.26 to T*.

(vi) Assume that a =0,b =0,m # 0,p # 0. The associated representation of the operator
TisDjeD, ,®D} , D, , , =(DieD; ,,, )&(D},,,®D; ). Now the proof
follows form Theorem 2.26.

(vii) Assume that a#0,b # 0,m =0, p =0. This is same as (vi).

(viii) The casesofa=0,b=0,m=0,p#0and a=0,m=0,p =0,b # 0 are covered in Theo-
rem 2.27.

(ix) Incase, hb=0,m=0,p=0,a#0o0ra=0,b=0,p=0,m # 0, the proof is completed by
applying the Theorem 2.27 to T*.

(x) Assume a=0,b=0,m =0, p=0. This case is exactly Theorem 2.28.

This is an enumeration of all the sixteen possibilities (each of the integers a, b, m, p is either
zero or positive) completing the proof. O

Now we prove that there is no irreducible homogeneous operator with associated rep-

resentation 7w := P1g® D} _, @ D7, ,,. The representation space of 7 is H:= L?(T) ® H!*?>M g

1+2m 1+2k°
H(1+2k)

Theorem 2.30. Suppose T = is a homogeneous operator with associated representa-

2 I

tion my & 7y, wherem; = Py g andn, =D7,, & D7

L+2m ® D1, 01 M, k = 0. Then we have the following.
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(@) The operators Ty and T, are weighted shifts with respect to the orthonormal basis {e}.} and
{e,%} with weights {u,} and {v,}, respectively. Also T, e%l =0 except when m =0 and k = 0.

(b) If k = 1, then for all n = 0, Sye, = 0, and for all n = 1, S1e?, = a_,e' | such that
U_10_p =0 where a_, € C. Ifk =0, then S1e =0 forall n # -1 and Sy €*, = a_ e, for

somea_y €C.

©Ifm>1,thenS, =0. Ifm =1, then for n < -1, Sye, = 0 and for n > 0, there exists 5, € C
such that Sye}, = Pne’ and u_1f, =0. [fm =0, then Sye}, =0, foralln # -1 and Sye' | =
ﬁ_le(z) forsome 3_; € C.

Proof. (a) Homogeneity of T implies that the operators T; and S; satisfy equations (2.11),
(2.12), (2.13) and (2.14). Using the equations (2.11) and (2.12), we find that T; and T, are
weighted shifts with respect to the orthonormal basis {e.} and {e?}, respectively. Let {u,,} and
{v,} be the weights of T and T, respectively. It is easy to see that that v_; = 0 except when
m=0and k=0.

(b) Restricting the equation (2.12) to the rotation group, we obtain

1 (g)S1 02 = e i lem3)0g 02 1y > (2.26)

and
ﬂl((Pe)Sle%n = ei("_1+k_%)981e2 n=1. (2.27)

_n’
It follows that there exists a sequence {a,} such that
S1€4=auen, mi,n=0and Sye%, = a_nefn_kﬁ, n=1l. (2.28)
Substituting ¢ = ¢, in the equation (2.12) and then evaluating at 2, n >0, we get

2 1 — 1 — 2
Sima(pa)e, + anmi(Pa)e, . e = axnTimti(Pa)e, . ey + aVnS172(Paler .

The equation (2.28) implies that if k > 0, then S{ey = 0 and if k = 0, then Sjej = a_1€?,.
Therefore, taking inner product with e, we have

A (M1 (Pa) ey €g) = 0.
In consequence, a, =0 forall n=0.

k=1: Substituting ¢ = ¢, in the equation (2.12), evaluating it at €2, and then taking inner
product with e}, we have

- 1 1
aa_pu-1(m@ael, r,el)=0,

which implies that a_,,u_; =0forall n > 1.
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k=0: Substituting ¢ = ¢, in the equation (2.12), evaluating it at e? , and then taking inner
product with eln L1 We get

a-p(m2(Pa)eZy, e2,) + a1 (T (pa)e, elyp) = 0.
This implies that a_,, =0 for all n = 2.
(c) Restricting the equation (2.13) to the rotation group, we obtain
72 () Szl = e (114200 8,0l e 7. (2.29)
Equation (2.29) implies that

(i) for all n,n = max{m — 1,0}, there exist §, € C such that Sye;, = fpe*, ., ., and for all
n,0 < n<max{m-1,0}, Spel. =0,

(i) forall n,n = k+2, there exist f_, € C such that S,e! , = f_,e*  andforalln,2<n<
k+2,S.el, =0,

(iii) there exists _; € C such that Szell = ﬁ_le(z) where f_; =0if m #0.

Substituting ¢ = ¢, in the equation (2.13), evaluating at ell and then taking inner product

withe? ., forn=k+2, wesee that f_, =0 since

Bon{mi(pa)er,,el,)=0.
Thus, we have Sgeln =0forall n=2.

m>1: Substituting ¢ = ¢, in the equation (2.13), evaluating at e}, n > m — 1 and then taking
inner product with e, we obtain

Brn{ma(ba)e® s nitr€5) = 0.
Thus, for n = m-1, §,, = 0. Consequently, S, = 0.

m =1: Substituting ¢ = ¢, in the equation (2.13), evaluating at ell and then taking inner
product with €2, n > 0, we obtain

aPnu-1{ma(pa)ey ey) =0.

Thus, forn=0, u_,6,=0.
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m=0: Substituting ¢ = ¢, in the equation (2.13), evaluating at el, n > -1, and then taking
inner product with eg, we obtain

B-1{mi(paley, ely) + B (ma(¢a)en,y, e5) =0.
This implies that 8, =0, n = 0.

O

Theorem 2.31. Suppose T = is a homogeneous operator with associated representa-

2 I
tionm =m @7y, wheremy = Py andmny, =D

D7 m,k=0. Then T is reducible.

+
1+2m 1+2k’

Proof. It follows from Theorem 2.30(a) that the operators T; and 7T, are weighted shifts with
respect to the orthonormal basis {el} and {e2}, respectively. Let {u,} and {v,} be the corre-
sponding weights, where v_; = 0 except when m =0 and k = 0.

m>1,k=1: We have v_; = 0. From Theorem 2.30(b), we see that Sle% =0,n=0, and
Sle%n = a_neln_kﬂ, a_,€C,n=1.Here u_ya_, =0. Thus either u_; =0ora_, =0
foralln=1.

Also, Theorem 2.30(c) shows that S, =0

If u_; = 0, then the closed subspace H; (defined in (2.25)) is a reducing subspace of T.

Ifa_, =0forall n=1, then S; = 0 and therefore T is reducible in this case as well.

m=1,k=1: We have v_; = 0. From Theorem 2.30(b), we see that Sle‘,% =0, n=0, and

1
-n—k+1’

Theorem 2.30(c) shows that Sgeln =0,n=1and Sze}z = ﬁne,%, Bn € C, n=0. Here
u_lﬁn = O.

Consequently, either u_; =0ora_, =0foralln=1and §,=0forall n=0.

S18%, =a_pe a_,€C,n=1.Here u_ja_,=0.

If u_; = 0, then the subspace H; is a reducing subspace of T.

Ifu_q1 #0,then S; =0and S, =0.

m=0,k=1: We have v_; = 0. From Theorem 2.30(b), we see that Slefl =0, n=0, and

1

2 _
S1€Zp,=a-ne_, .y

a_,€Cn=1.Hereu_ja_, =0.
Furthermore, from Theorem 2.30(c), we see that for n # -1, Sye), = 0and Sye' | = f_1 €3
for some f_; € C.
1
e
If u_y =0, then the closed subspace spanned by the set of vectors {( 0”) n= 0} is a

reducing subspace of T'.
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If a_, =0 for all n =1, then the closed subspace of H spanned by the orthonormal set

0
{ (62) ‘n< —1} is a reducing subspace of T.

n

m>1,k=0: We have v_; = 0. From Theorem 2.30(b), we see that Slegl =a_ eé for some
a_1eCand Slei =0,n#-1.

Also, Theorem 2.30(c) shows that S, = 0.

0
Consequently, the closed subspace spanned by the orthonormal set { ( 2) nz 0} isa
en

reducing subspace of T.

m=1,k=0: We have v_; = 0. From Theorem 2.30(b), we see that S;e?; = a_; e, for some
a_1eCand Sle,% =0,n#-1.

Theorem 2.30(c) shows that S;el, =0, n > 1 and S,el, = €2, B, € C, n = 0. Here
u_lﬁn = O.

1
If u_; =0, then the closed subspace spanned by the orthonormal set { (60”) ‘n< —1} is
areducing subspace of T.

If B, = 0 for all n = 0, then the closed subspace of H spanned by the orthonormal set

{ (e.él) n= 0} is a reducing subspace of T.

m=0, k=0: From Theorem 2.30(b), we see that for n # —1, S;e? = 0 and S,e}, = 0. Clearly,
H is invariant under T. Let A:= T,z and B := PT,,, where H, is defined in (2.25)
and P is the projection of H onto H,. Since H; and H, are invariant under 7, it fol-
lows from [5, Proposition 2.4] that A and B are homogeneous operators with associated
representations 7,z and 7z, respectively. Since 7z is equivalent to Di @ D and
S1€4 =0, Sye), = 0 for all n = 0, it follows, using homogeneity of A, that u, =1, v, = 1
for all n = 0. Similarly, it follows that u, =1, v, = 1 for all n < —2. Therefore T must be
reducible.

This completes the proof since we have shown that the operator T is reducible in every pos-
sible combination of the associated representation. O

Theorem 2.32. Suppose T is a homogeneous operator on L*>(T) & L?(T) with associated repre-
sentationn = P1o® Py o. Then T is reducible.

Proof. Let H, and H_ be closed subspaces of the Hilbert space L?(T) spanned by the or-
thonormal sets {z" : n = 0} and {z" : n < 0}, respectively. Suppose H(n) is the subspace of
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L?(T) @ L?(T) spanned by the orthonormal set 98,, = {(ZOH) ) (Zon)}. Since H(n)’s are K-isotypic
subspaces of the representation P; o ® P , it follows, form [9, Theorem 5.1], that T maps H(n)
to H(n+1). Consequently, H, ® H, is an invariant subspace of T. Let [4 3] be the represen-
tation of T with respect to the decomposition of L?(T) @ L?(T) as (H, ® H,) ® (H_ & H_). We
note that S maps H(—1) to H(0) and is 0 elsewhere. Since H; @ H; and H_ & H_ are invariant
under 7, it follows, from [5, Proposition 2.4], that A and B are homogeneous operators with
associated representations 7|y, ¢ g, and m|g_eH_, respectively.

Using a similar argument as in Theorem 2.30, we infer that H, and H_ are reducing
subspaces of A and B, respectively. Since 7|y, sz, and m|g_ g are equivalent to DI’ ® DI“ and
D; & Dy, respectively and A, B are homogeneous, it follows that A is a two-fold direct sum
of the forward unilateral shift and B is a two-fold direct sum of the backward unilateral shift.
Therefore, T is reducible. O
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Chapter 3

Homogeneous 3-shifts

The first examples of irreducible (bi-lateral) homogeneous 2-shifts were given by Kordnyi
in [20]. Recall, from Theorem 1.11, that if n(¢p)* T;(p) = ¢(T3), i = 1,2, for some represen-

tation of M6b, then the operator ( n “(TlT; TZ)) , @ >0, is homogeneous. It was shown in [9, List

4.1(4)] that for 0 < a < b < 1, the bi-lateral shift T'(a, b) with weights \/% is homogeneous
and the associated representation is the Complementary series 7 = C) ,, where A =a+b—1
and o = (b— a)/2. It follows from [9, Proposition 2.1] that the operator T(a, b* ' =T, a)
is also homogeneous with the same associated representation, namely, C, ;. Consequently,
the operator (T(g’b) “(T(“'TI&TQT)U”’“))) is homogeneous. In the paper [20], Koranyi shows that (a)
these operators are irreducible and (b) unitarily inequivalent. Also, he proved, modulo unitary
equivalence, these are the only homogeneous operators for which the associated representa-
tionis Cy ; ® Cy o

In Chapter 2, we completed these earlier results of Kordnyi by describing all the irre-
ducible homogeneous 2-shifts. In this chapter, we prove that all homogeneous operators
whose associated representation is a direct sum of three copies of a Complementary series
representation, is reducible. Consequently, in this case, the important question of the exis-
tence of an irreducible homogeneous 3 - shift remains unanswered.

Let m = Cy , be a Complementary series representation of Mob acting on the Hilbert
space H"? and n) = m @ m ® . The representation space of ) is H := H»’ @ H»? @ HM7.

Lemma 3.1. Fori=1,2,3, let T;, S; be bounded operators on some Hilbert space H and U; be
unitary representations of Méb on the same Hilbert space H. Then the operator

T, S S»
T=| 0 T, S
0 0 T;

is homogeneous with associated representation Uy ® U, ® Us if and only if T; is homogeneous
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with associated representation U, i = 1,2,3, and for ¢y , in M0D, the following three conditions
are meet.

(@ S1Us(g,q) — e Uy (pg.a)S1 = GT1 U1 (g o) S1 + @S1Us (g, 0) To;
() S3Us(pg,q) — € Us(pg,q)S3 = GToUa(pg,q) S3 + @SsUs(¢pg,) T3 and
(©) S2U3(¢g,a) — efuy (Po,a)S2 = aT1U1(pg,q) S2 + aS2U3(g,q) T3 + aS1U2(¢g,4) S3.

Proof. Let T be ahomogeneous operator with associated representation U; & U, ® Us. From [5,

I S

Lemma 2.5], it follows that is a homogeneous operator with associated represen-

1
tation U; ® U and T3 is a homogeneous operator with associated representation Us. Again [5,

Lemma 2.5] implies that 7;, i = 1,2, is a homogeneous operator with associated representa-
tion U;, i = 1,2, respectively and S, satisfies the following equation

S1Us(e,q) — e Uy (g,0)S1 = aT1 Uy (g, 0) S1 + @S1 U (g, 0) T (3.1

Tg 83
I3
ahomogeneous operator with associated representation U, ® Uz and S3 satisfies the following

for all ¢y , in M6b. Once again using Proposition [5, Lemma 2.5], we obtain that

equation
S3Us((g,a) — €0 Uy (g,4)S3 = AToUs (g, a) S3 + aS3Us (g, a) T (3.2)

for all ¢pg, , in MOb. Now a direct computation, using homogeneity of T, gives us

S,Us ((Pﬁ,a) - eie U, ((Pﬁ,a) S, =aT,U; ((Pﬁ,a) So+aS,Us ((bH,a) Ts5+aS U, ((nga)s\o,, (PB,a € Mob.
(3.3)
Now we prove the converse. The given conditions imply that

e (U1 (pg,) ® Ua (g, ) ® Us (g, o)) (T — al)
= T(Ur(dg,a) ® Uz(Po,a) ® Us(g,q)) (I — aT), ¢pg,q € MED.

Thus there exists an open set containing the identity element of M6b for which the following
equation holds:

$0,a(T) = (U1 ($o,0) ® Uz(p,0) ® Uz(o,0))” T(Ur(h,a) ® Ua(epp,a) ® Us(ehp,a)-

Now using the [5, Lemma 2.2], we conclude that T is a homogeneous operator. O
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Lemma 3.2. Assume that T and T, are homogeneous operators with the same associated rep-
resentation U. Then for any pair of scalars a,y € C, the operator

I a(lh —-T2) y(Th—T1»)
Ala,y)=| 0 T 0
0 0 T

is homogeneous with associated representation U @ U @ U.

Proof. The proof follows easily from Lemma 3.1. However, we give a different proof below
which is similar to [20, Lemma 2.1]. The invertible operator

I al yI
S=[0 I O
0 0 I

commutes with Ue U ® U and A(a,y) = SHTyeThe T»)S. Suppose ¢ € Mab, then

P(A(@, 7)) = STHP(T1) & P(T2) & P(T2))S
=S U@ U@ e UP*)T10Tr0 T) U)o Up) & U)S
=U@) oUW e UP IS (T1e T2 T)SWU@P) & U@) & U@))
=(U@ eUP eUP")A, U@ e Up) e U(p).

This proves that A(a,y) is a homogeneous operator with associated representation U & U &
U. O

Lemma 3.3. If|a;| = |ay| and |y1| = |y2|, then A(ay,y1) and A(as,Y2) are unitarily equivalent.

Proof. We have |a;| = |az| and |y;] = |y2]. So there exist ¢,s € T such that a; = ta; and y; =
sy2. Now, the operator

tI 0 O
V=10 I 0
0 0 tsI
is unitary. Since A(a;,y1) = VA(az,Y2) V", the proof is complete. O

Recall that { f;, = 2"} ,,cz is a complete orthogonal set in the Hilbert space H Ao Fornez,
lete, = ”}Cﬁ and H(n) be the span of {(e;;,0,0)", (0, e,,0)",(0,0,e,)’}. Let 0, m = Ppn)yyy,,, Where
P,, is the orthogonal projection of H onto H(n). Then n,,,, isamap from H(m) to H(n) for all
n,me Z. For ¢ € Mob, let n, ,,(¢p) be the map defined by 7, ,,, (P) (e) = (n((p)em, en> e,. Then

N (P) (@€, bem, cem)’ = (T(P)em, e,) (aen, bey, ce,)’
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and
Nn,m(P) * (aen, bey, cep) = <7l'((,b) €m, en>(aem’ be,, cen) t»
for all a, b, c € C. It is useful to define the set A,, ,, analogous to the ones in Definition 2.16,
replacing the representation P, o by the representation z. Thus, if the matrix coefficient of
is
(n(pa)e™, 2"y =c(-D"@"™ )Y Ci(m, nrk, (3.4)

k=(m—-n)*

where r = |al?, ¢ = ¢, (0)12|¢,(0)|* and the coefficients Cy(m, ) are explicitly determined as
in [9, p. 316].

Definition 3.4. Let A, , < (—1,1) be the set of all zeros of the power series }_ = (- )+ Ck(m, 1) rk
and A = UmyneZAm’n.

The sets A, , are countable and therefore so is A. Take b € (0,1)\ A. Then (n((pb) fm fn> #
0, for all n, m € Z. Fix ¢p;, in M6b. Now assume that uy, vy, wy are three non-zero mutually or-
thogonal vectors in H(0). For n # 0, define u,, = 0 ,,0(¢p) Uo, V5 = 015,0(Pp) Vo, Wy, = 0 1,0(Pp) Wo.
Then each of the vectors u,,, v,;, w, is non-zero.

Lemma 3.5. The set of vectors {uy, vy, Wy} ez s a complete orthogonal set in H.
Proof. The proofis similar to that of Lemma 2.17. O

Let H;, H» and Hj be the close subspaces spanned by the sets of vectors {u, : n € Z},
{vp:neZ} and {w,, : n € Z}, respectively.

Lemma 3.6. The subspaces Hy, H> and H3 are invariant under 1. Moreover, 1, u; 18 equivalent
ton foralli=1,2,3.

Proof. The proof is similar to that of Lemma 2.18. O

Suppose T is a homogeneous operator with associated representation 7. Since H(n) are
K-isotypic subspaces of 1, it follows, from [9, Theorem 5.1], that T maps H(n) to H(n + 1) for
eachneZ. Let T, := T\aw)-

Lemma 3.7. Foreveryne Z, T, is invertible.

Proof. Homogeneity of T implies that the following equation holds for every ¥ in M6b where
w(z) = eiO%, zeD:

€101 (W) Tn — a€nie1 n @) = T i n @) — T par W) T, (3.5)

The proof is completed following arguments similar to the ones appearing in the proof of
Lemma 2.19. O
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Theorem 3.8. Suppose T is a homogeneous operator with associated representation n. Then
there exist closed subspaces Hy, H, and H3 such that H = H,® H, ® Hs and T(H,) < Hy, T(H») <
H; ® Hy. Foreachi = 1,2,3, the subspace H; is invariant undern and g, is equivalent to n.

Proof. Sincen o(¢pp) " Ty is an operator on H(0), there exist three non-zero mutually orthonor-
mal vectors ug, vy, Wy in H(0) such that 771,0((/717)_1 Touo = aguy and nl,o(cph)_l Tovo = bougy +
co Vg for some ayg, by, ¢y € C.

For every n € Z\ {0}, define u, = 1n,,0($p) to, Vn = Nn,o(pp)vo and wy, = n,,0(pp) wp. Let
H,, H, and Hj be the close subspaces spanned by the sets of vectors {u, : n€ Z}, {v,: ne€ Z}
and {wy, : n € Z}, respectively. From Lemma 3.5, we have H = H; & H, & Hs. It follows, from
Lemma 3.6, that for each i = 1,2,3, H; is invariant under 1 and n,g, is equivalent with 7. We
show that T(Hy) € Hy, T(H,) € Hy @ H,.

We have Tyuy = aoni,0(¢pp) up which is a scalar multiple of the vector u,. Using an argu-
ment similar to the one appearing in the proof of Theorem 2.20, it follows that Tu, is a scalar
multiple of u, 4 for every n e Z.

(a) We show that T, v, is in the subspace spanned by the set of vectors {11, Vn+1},
neN.

The claim is easily verified for n = 0: Tovg = bon1,0(Pp) o+ com1,0(¢p) vo. For an inductive
proof, assume that Ty v is in the subspace spanned by the set of vectors {11, Vi+1} for some
k=0.

Let Ar= |J A, where A; ; are described in Definition 3.4. Since 0 is not a limit
0<i,j<k+2
point of any A; j, there exists r € (0,1) such that for 0 < i, j < k+2, (m(¢ps)e;j, e;) # 0 for all

a € D with 0 <|al| < rg. Substituting n = k,i = k+ 1 in the equation (3.5), we get

angs2,k(@a) = MNi+2,k+1(Pa) Tk = Tr1Mk+1,k(Pa) — ATk 1M k41, k+1(Pa) Tk (3.6)

for every ¢, in M6b with |a| < ry.

A similar argument to that in the proof of Theorem 2.20 implies that for every ¢, in Mob
with |a| < ri, there exist by,1(a), cx+1(a) € C such that

Tk Vi = b1 (@Nier1,k (Pa) Uk + Crr1 (@N 41,k (Pa) Vit (3.7

holds. Since Ty ug+1 is a scalar multiple of uy.,, for every ¢, there exists Ar.2(a) € C such
that

Tir1Mk+1,k (Pl uy = Aks2 (@Nk+2,k+1( PN k+1,k(Pa) Uk (3.8)
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Combining the equations (3.6), (3.7) and (3.8), we get

a(m(pa)ek, ex+2)
(m(Pa)er ex+1) {T(Pa)er+1,er+2)
+ (A k+2(@) (T(Pa) eks1s ex+1) — 1) Pia1 (@Nk+2, k1 (D) Nks1,k (Do) Uk

= (1-acrr1(@ (m(Pa) e+, ex+1)) Ter1Mi+1,k (P Ve (3.9)

= Ck+1(D) | N k42, k41 (PN k1,6 (Pa) Vi

for all 0 < |al < rg. Itis not hard to verify that 2 k+1(@a)Nk+1,k(Pa) Uk is a scalar multiple of
the vector w2 and Ni42,k+1(Pa)Ni+1,k(Pa) Vi is a scalar multiple of the vector vy,.». Therefore,

the two vectors 112, k+1(Pa)Nk+1,k(Pa) Uk and N2 k+1(Pa)Ni+1,k(Pa) Vi are linearly indepen-
dent. Now, if

(1 —acg+1(a) <7T(¢)a)ek+1y ek+1>) =0

for every ¢, with 0 < |al < ri, then we have

a(m(pa)er, ex+2)
(m(pa)er, ex+1) (T (Pa)er+1,er+2)

— k1@ | =0, (dak+2(a) <7T((Pa)ek+1» ek+1> - 1) bi+1(a)=0

for every ¢, with 0 < |a| < ry. Suppose for every ¢, with 0 < |a| < ry,

a(m(pa)ek, ex+2) _
(m(pa)er, exr1){T(Pa)ers, exva)

(1 —aci+1(a) <7T((Pa) €k+1, ek+1>) =0and cy41(a) -
Then combining these two equations, we get

lal*((pa) ek, err2) (T(Pa)ers1, exr1) = (T(Pa)ek, exr1) (T (Pa)ers1, Crra)

Now, using the matrix coefficient of 7(¢p,) and then comparing the constant coefficient, we
arrive at a contradiction. So, there exists ¢, with 0 < |a| < ¢ such that

(1 —acg+1(a) <7T((Pa)ek+1: ek+1>) # 0.

Thus from equation (3.9), we see that Ty v is in the space spanned by the set of vectors
{42, V2l

(b) Now we prove that T-}v_,,; is in the subspace spanned by {u_,, v_,} for all n €
N U {0}.

The claim for n = 0 follows from what we have said before, namely, combine the two
statements: Tovo = bon1,0(¢p) to + con1,0(Pp) vo and TO_1 uy is a scalar multiple of uy.

Assume that there exists p € NU {0} such that T__; U_p+1 is in the subspace spanned by

the set of vectors {u_p, v_,}. Let A,= |J A . Then, since 0 is not a limit point of A4,
-p—1<i,j<0
there exists rp, € (0,1) such that (n(¢pa)ej,e;) #0, —-p—-1<i,j<0and 0 < |a| < rp.
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Since T-,v_, is in the subspace spanned by the set of vectors {u_ 41, V- p+1}, it follows
that for every ¢, with 0 < |a| < rp,, there exists b_p1(a), c-p+1(a) in C such that

T—p Vop= b—p+1(a)77—p+l,—p((,ba) U_p+ C—p+1(a)77—p+1,—p((,ba) V_p. (3.10)

Substituting ¢ = ¢4, i = —p — 1, n = —p in the equation (3.5), evaluating at the vector v_, and
then using equation (3.10), we get

T [a({m@ae p e p)vp—cpr(@n-ppi1(dN-pi1,-pPa)v_p]
- b—p+1(6l) T—_;—l (n—p,—p+1 ((,ba)n—p+l,—p((,ba) u—p) = n—p—l,—p((,ba) Vop
- db—pﬂ(a)n—p—l,—pﬂ(¢a)n—p+1,—p((pa) U-—p

- dc—p+1 (a)T]—p—l,—p+1 ((l)a)n—p+1,—p((pa) V-p. (3.11)

We know that the vector b_p.1(¢pa) T__;_l (M=p—p+1@Da)N—p+1,—p(Pa)u—p) is a scalar multiple

of u_,_1. Therefore, we can find a(a) € C such that
b—p+l (Pa) T—_;—l (n—p,—p+l ((Pa)n—p+l,—p (Pa) u—p)
- db—p+1 (a)n—p—l,—p+1 (¢a)n—p+1,—p(¢a) U_p= a(a) U-p-1. (3.12)

Using the equalities

N-p,—p+1 ((pa)n—p+l,—p((/)a) = <7T((Pu) €-p, e—p+1> <7T((Pa)e—p+1y €-p-1 > Id,

(m(Pa)e—p,e_pi1){m(Ppa)e_pi1,ep-1)
<7T(¢a)e—py e—p—1>
and then combining with the equations (3.11), (3.12), we get

N-p-1,-p+1(@Pa)N-p+1,-p(Pa) = N-p-1,-p(Pa)

[a(n(pae—p,e_p) —cpr1(@ (TPa)e—p,e_pi1)(T(Pae—ps1,ep)] T, 1v-p
<77:((pa)e—py e—p+1> <7T(Qba)€_p+1,e_p_1>
<7T(¢a) €—p, e—p—1>

=a(@u-p-1+ |1-ac_pi1(a N-p-1,-pPa) V—p.
(3.13)

The two vectors u_,_1 and 1,5 (¢p4) V-, are orthogonal. Therefore, if
a <7l'((,ba)e—p» e—p> —C-p+1 (a) <7l'((,ba)e—p» e—p+1> <7T((Pa) €—p+1» e—p> =0
for all ¢, with 0 <|al < rp, then

(m(pae—p,e_pr1){mPae_pi1,e-p-1)

0
(m(Pa)e-p ep-1)

a(a)=0and 1-ac_p1(a)
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for every ¢, with 0 < |a| < rp,. This gives us

|a|2 <7[(¢a)e—p; e—p> <7T((/7a)e—p+1, e—p—1> = <7T((pa)e—p+1; e—p> <7T((,ba)e—p» e—p—1>

for all ¢, with 0 < |a| < r,. Now, using the matrix coefficient of 7(¢p,) and then comparing the
coefficients of r3, we arrive at a contradiction. So, there exists ¢, with 0 < |a| < rp such that

al{m(pa)e-p,e-p) = c-pr1(@) (w(pa)e—p,e_p+1) (w(pa)e—p+1,e-p) #0.

Thus, from equation (3.13), we conclude that T_‘;_l v_p, is in the subspace spanned by the set
of vectors {u—_p-1, V—p-1}. O

LetO<a<b<1land T(a,b), T(b,a) be the weighted shifts defined by T (a, b)e, = t,e,+1

and T(b,a)e, = t—lnenﬂ where ¢, = ”lﬁi—;ﬁ“ =1/ 2L, Recall that T'(a, b) and T'(b, a) are the only

homogeneous operators whose associated representation is 7 = Cy 5, where A = a+b—1 and
b—a

o=

2

Lemma3.9. Let T) and T» be two homogeneous operators with associated representation m and
S be an operator on HY? such that S satisfies the following equation

S(p) - en(p)S=aTin(P)S+aSn(p)T» (3.14)
forallp =g 4 in Mob. Then S = a(T; — 1), for some a € C.

Proof. First assume that T} = T'(a,b), T» = T(b,a). It follows from [7, Theorem 5.3] and [9,
Lemma 2.5] that a (T, — T>) satisfies equation (3.14) for all « € C.

Restricting the equation (3.14) to the group of rotations, we see that S is a weighted shift
with respect to the orthonormal basis {e,} of HY?. Let {a,} be the weight sequence of S.
Substituting ¢ = ¢, in the equation (3.14), evaluating at e,,, taking inner product with e, and
then using the matrix coefficient of 7(¢p,), we obtain

noitm Y. Cemn-Drf—apt,y Y Cum+1,mr*
k=(m-n+1)* k=z(m-n+1)*

oy
:(amtn_1+ :1) Z Ck(m+1,n—1)rk.

m J k=(m-n+2)*

Taking m = n and comparing the coefficient of r, we get
aptp1(n+a)=a,_1t,(n—1+a).

Now applying induction, we find thatforne€ Z, a, = a (tn - I—ln) for some a € C. This shows
thatif 71 = T'(a, b) and T» = T(b, a), then the solution of the equation (3.14) is a(T; — T3), for
some a € C.
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Similarly, we can show that if 7} = T'(b,a) and T» = T(a, b), then also the solution of
equation the (3.14) is a(T; — T>), for some «a € C.

Now assume that 71 = T(a,b) and T, = T(a, b). In this case, we show that § = 0. Again
restricting the equation (3.14) to the group of rotations, we see that S is a weighted shift with
respect to the orthonormal basis {e;} of HM  Let {a,} be the weights of S.

Substituting ¢ = ¢, in the equation (3.14), evaluating at e,,, taking inner product with
e, and then using the matrix coefficient of 7(¢p,), we obtain

Ap_1lm Z Ck(m,n—l)rk—amtn_l Z Ck(m+1,n)rk

k=(m-n+1)* k=(m-n+1)"*

=(@mitp-1+an-1tm) Z Ck(m+1;n—1)rk
k=(m-n+2)*

Putting m = n— 1 and equating the coefficient of r, we get
dp-1 tn_l(/l + 2,LL -1)=0.

Since A=a+b—-1and p=1-a,so A+2u—1=b- a, which is different from 0. Also we know
that t,,_1 #0, for all n € Z. This implies that a;, = 0 for all n € Z. This shows that if T} = T'(a, b),
T, = T(a, b) and S satisfies equation (3.14), then S must be 0.

Similarly, we can prove that if 77 = T'(b,a), T» = T(b,a) and S satisfies equation (3.14),
then also § = 0. O

Now, we describe all homogeneous operators whose associated representation is 7. De-

note
T(a,b) a(T(a,b)—T(b,a) P(T(a,b)—-T(ba)
T(a,b,a,p):= 0 T(b,a) 0
0 0 T(b,a)
and
T(b,a) a(T(a,b)—T(b,a) pL(T(a,b)-T(ba)
Tb,a,a,p):= 0 T(a,b) 0
0 0 T(a,b)

Theorem 3.10. Up to unitary equivalence, T(a,b,a, ), T(b,a,a, ), T(a,b)® T(a,b)® T(a,b)
and T(b,a)® T(b,a) ® T(b, a) are the only homogeneous operators with associated representa-
tionm.

Proof. Let T be a homogeneous operator with associated representation 7. In view of Theo-
rem 3.8, we may assume, without loss of generality, that

hn S S

T=| 0 T, S
0 0 T,
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Now, Lemma 3.1 implies that T;, i = 1,2, 3, are homogeneous with associated representation
mand S;, i = 1,2,3, satisfy equations (3.1), (3.2) and (3.3). We divide the proof into several
cases and give the proof in each of these cases separately.

(i) First assume that 77 = T'(a,b) and T, = T3 = T'(b, a). The operators S; and Sj satisfy
the equations (3.1) and (3.2), respectively. Lemma 3.9 shows that S; = a(T; — T») for some
a € C and S3 = 0. Substituting Sz = 0 in the equation (3.3), we obtain

Sa7t(bg,q) — 7 (Po,a) S2 = AT1 7 (Po,a) Sz + @S27 (Pg,0) T2, Pg,q € MED.

Again, Lemma 3.9 implies that Sy = (77 — T>) for some (3 € C and therefore T = T'(a, b, a, ).
(ii) Assume T = T(b,a) and T, = T3 = T(a,b). Repeating the argument given in (i), it
follows that T = T'(b, a, a, B).
(iii) Assume T» = T'(b,a) and T, = T3 = T'(a, b). Since S; satisfies equation (3.1), Lemma
3.9 applies and we see that S; = a(T; — T») for some a € C. Using arguments similar to the
ones in the proof of Lemma 3.3, we can take @ > 0. Consider the unitary operator

1 —-al 1
U, =
a?+1 I al
Clearly,
T1 a(T1 - Tg) . Tz af(Tg - Tl)
0 T> 0 T '

Let V = U, @ I where I is the identity operator on H*?. Then V is a unitary operator and

T a(lb-T1) S
VIV*=| 0 T Ss
0 0 T3

Now repeating the same argument as in the proof of (i), we see that VTV* = T'(b, a, a, f).

(iv) Assume that 7> = T'(a, b) and T) = T3 = T'(b, a). In this case, T is unitarily equivalent
to T'(a, b, a, B) for some a, € C. The proof is similar to that of (iii).

(v) If T} = T, = T3, then applying Lemma 3.3 repeatedly, we find that S = S, = S3=0. O

Theorem 3.11. Every homogeneous operator with associated representationn is reducible.

Proof. Theorem 3.10 provides a list of all the homogeneous operators with associated repre-
sentation 7). All of these are evidently reducible except T'(a, b, a, ) and T'(b, a, a, B). Therefore,
it is enough to show that these are reducible.

Let H(n) be the subspace spanned by the set of vectors {(ej,0,0)?, (0, e,,0),(0,0,e,)'},
neZ. Since T(a,b,a,pB) and T(b,a,a, ) are homogeneous operators, it follows that both
T(a,b,a,p)and T(b,a,a, ) map H(n) to H(n+1), n€ Z. Let us define

Up = (€,,0,0)", v, = (0, Bey, —aey)' and wy, = (0, aey,, Bey)’.
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Then u,, v, and w, are three mutually orthogonal elements of H(n). It is easy to verify that
T(a,b,a,f)un = thin+1,
T(a,b,a,B)vn = 7 Vn+1,
T(a,b,a, f)wy = (@ + ) (tn = &) tpsr + Lwpiy
and
T(b,a, @, B)un = 1-tns1,
T(b,a,a,P)vn = taps1,
T(b,a,a, B)wy, = (a®+ ) (tn - é) Upsl+ EnWha1.

This shows that T'(a, b, a, B) and T (b, a, a, B) are reducible operators. In fact, this shows that
the operator T'(a, b, a, p) is unitarily equivalent to the operator

T(b,a) 0 0
0 T(a,b) (T(a,b)—-T(b,a)
0 0 T(b,a)

and similarly, the operator T'(b, a, a, f) is unitarily equivalent to the operator

T(a,b) 0 0
0 T(b,a) (T(a,b)—T (b a)
0 0 T(a,b)
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Chapter 4

Characteristic function of homogeneous
contractions

A bounded operator T is said to be a contraction if || T|| < 1. A very successful model theory
for such operators were developed by Sz.-Nagy and Foias. In particular, the model theory
provides a complete unitary invariant, namely, the characteristic function 8 of the operator T.
To define 0, let us recall that Dy = (I - T* T)% and Dy« = (I — TT*)% are the defect operators of
T and 91 = closranD7 and 27+ = closranDr+. Then 27 and 27+ are the defect spaces. Now,
define the characteristic function 07 : D — B(21,27+) to be the holomorphic function:

Or(a) = —Tig, + aDr+(I—aT*) ' Dryg,, a€D.

A very deep theorem, due to Sz.-Nagy and Foias, says that two pure contractions T and T are
unitarily equivalent if and only if 07(a) = 10 7(a)n, a € D, for some pair of unitaries 7 : 7. —
D7+ and n: D1 — Dj.

In the following, we will let ¢4, ¢ (W) := {5+,
phism of the unit disc D. It has been proved by Bagchi and Misra (see [2]) that the characteris-
tic function 81 of a homogeneous contraction 7 with an associated representation 7 is of the

a € D, denote an involutive automor-

form
Or(@) =01(pa) 0100 R(Ps).

Also, o1 and o are projective representations of Méb with common multiplier, which are
explicitly determined from 7. In the first section of this chapter, we give another proof of the
“product formula”. In [8], it has been proved that

(a) the defect operators of MW, A > 1, the multiplication operator on the reproducing ker-

nel Hilbert space HY with reproducing kernel m, z,w € D, are quasi-invertible

and
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(b) the representations oz and oy for the operator MY, A > 1, are equivalent to the repre-
. + + .
sentations Dy _, and D) _,, respectively.

Since the operators M are in the Cowen-Douglas class B, (D) , it is natural to ask what hap-
pens to homogeneous contractions in By (D). In this chapter, we show that the defect oper-
ators of an irreducible homogeneous contraction in B, (D) need not be quasi-invertible. We
also identify the representations o and o for an irreducible homogeneous contraction in
B, (D).

4.1 Product formula

Let T be ahomogeneous contraction with an associated representation 7 and I'r be the mini-
mal unitary dilation of the operator T. The original proof of the product formula of the charac-
teristic function 67 was obtained by first extending the representation 7 to the dilation space
of I'r, say 7, and then verifying that

AP Tri(d) = p(T'1), P € M&b.

Thus the minimal unitary dilation I'7 of the operator T is homogeneous whenever T is ho-
mogeneous with an associated representation 7. The restriction of 77 to the subspaces 27 and
27+ defines the representations or and o7y, respectively. The proof of the product formula
given below is obtained without going to the dilation space.

Lemma 4.1. Let T be a homogeneous contraction with an associated representation n. Let
¢ € Mob. Then Dyr) = n(p)*Drr(p) and Dyry« = n(p)* Dr+m(P). In particular w(¢p) maps

Do) and D7y to D1 and D+, respectively.

Proof. Let ¢p € MOb. Homogeneity of T implies that ¢(T) = n(¢p)* Tr(¢p). Using this relation it

is easy to see that Dém =n(p)* D%n((p) and D(ZP(T)* = 71(¢p)* D%.. (¢). This implies that D1y =
ﬂ(gb)*DTﬂ((l)) and D({)(T)* = JT((,D)*DT*T[((P) It follows that 7'5(([)) maps @(p(T) and @qb(T)* to 91
and 97+, respectively. O

Let ¢o(2) = €%z, z € D and let T, denote the operator ¢, (T) = e'“T. It is easy to see that
D7, =Drand Dt = D7+. Lemma 4.1 implies that 27 and 27+ are invariant under 7 (¢q).

Lemma 4.2. Let 01, and Ot be the characteristic function of T, and T, respectively. Then
01,(2) = 1)y, . OT(DM(Pa) g, and 07, (2) = e'*0r(e™'%2), z€D.
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Proof. Using homogeneity of the operator 7, we have
01,(2) = —Tajg, + 2D1; (I - 2T3) "' D1, 0.
= —7(pa) * T7(pa) 17 z7(¢pq) *Dr~ (pa) I — z7(pg) * T*”((Pa))_lﬂ((Pa) *DT”((Pa)@T
=71($a)” |9,.01(@T(Pa) g, -
This proves the first part. Also,
01,(2) = —Tai9, + 2D (I - 2T;) ' D1, g
=—e'%Tig, +zDr+(I- e '“2T*) ' Dryg,

= e'%(e”'%2).

This completes the proof of the lemma. O
Let p4(2) = 7=, for all z € D. Let T, denote the operator p,(T). Following Sz.-Nagy and

Foias [32, p. 240], define Z(a) : 91, — P and Z.(a) : D1: — D7+ by Z(a)D1,h = DrSsh and
Z.(@)Dr: h = Dr+ S}, h, respectively, where S, = (1 - lal>)2 (I—aT)~!. Then Z(a) and Z, (a) are
unitary operators. Also, from the definition of Z(a) and Z, (a), we have

Z(a)DTa = DTSa and Zs (a)DT; = DT* SZ

Lemma 4.3. Let T be a homogeneous contraction with associated representation n. For ¢ in
Mob of the form ¢(z) = e'* =, ze D, we have

Oro¢p (@) = (72 Z (@), V012 € 2 n(P)igy, Z(@)), zED.
Proof. Clearly, ¢(T) = el T,. From [32, p. 241], it follows that
07(p,' (2)) = Z. (@07, (D) Z(@)*. 4.1)
Substituting e"i%z for z in the equation (4.1), we obtain
01,(e7"2) = Z. (@) *0r(p,' (e" " 2) Z(a). 4.2)
Now, Lemma 4.2 implies that
Op(1)(2) = '%01,(e"'“2), z€D. (4.3)
Homogeneity of T and Lemma 4.1 gives us
0p)(2) = ~(Digyr, + 2Dy U= ap(1)) ' Dy g5,

= _”(¢)*|@T* T”((P)I%;(T)
+ Zﬂ((,b)*@T* Dr+m(¢p) (1 —zu(p)* T*ﬂ((,b))_l ﬂ((b)*DTﬂ(CP)@(pm
= 7T(<P)|*@T* QT(Z)U((P)|@¢(T)- (4.4)
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Combining equation (4.2), equation (4.3) and equation (4.4), we get
Oro¢ (@) = (€2 Zu( @)y, 07D (e 2 () gy, Z(@)")
completing the proof. O

Theorem 4.4. Let T be a homogeneous contraction with associated representation n. For ¢
in -]}:Idb of the form ¢(z) = ei“%, z € D, define o (¢) = ei%n((,b)|9¢(T)* Z.(a)* and og(¢p) =
e " 2(P)i@ym Z(@)*. Suppose my and m are the multipliers of DT and m, respectively. Theno
and o are projective representations of Mob with common multiplier my m. Also, we have the

following relationships:
oL@ D1+ = D) ()2 (T)*, or() Dy = D) (¢) 2(T), ¢ € Mob.

Proof. First, we prove the second part of the Theorem using the formulas Z(a)Dt, = D18,
Zi(a)*Dr+ = Dr» (S%)~1 from [32, p. 240] and Lemma 4.1. Let ¢ € M6b be such that ¢(z) =

ia z—a
e 1_dz,z€|D.Then

o@D+ = e'En(Pa,, Ze(@) Dy
= 'S (g D (S7)
=e'2 Dy (¢)(S)) 7!
= D) ((¢) 2 (T))*

and

or()Dr = e 2 n(¢)ig,, Z(@)* Dr
=e " n(¢)ig,, D1,S5
=e 2 Dru()S;]
= Dy () (@) (7).

Now, we prove that o and o are projective representations. Clearly, o; and og are Borel
maps. Let ¢p; and ¢, be any two elements in M6b. Then

oLGDTLB2) D1 = 0L (p1) D=7 (ho) ()2 (T))*
= D () (B}) 72 (T 1) () "2 (T
= D (D)D) ()2 (P (T)* ()2 (T
Also, we have
TL(@1p2) D1+ = D (1p2) (P1h2)) 2 (T))*
= my (1, $2) M1, b2) D+ T (BT (o) (B} 72 (Po (T ((Ph) "2 (T)*.
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This proves that
oL(p1¢2) = my(pr, Pp2)m(py1, Pp2)op(Ppr)o(P2).

Now,

T r(P)TR(G2) D1 = 0 r(P1) D7) (Ph) "2 (T)
= D7) (@) 2 (T (h2) () "2 (T)
= Dy (1) () (P)) 2 (2 (1)) () "2 (T).

Also, we have

O R(@12) DT = Drar(prho) (1)) "2 (T)
= ma (1, 2) M1, ¢2) D) () () "2 (b (1)) () "2 (T).

Thus
ORr(P1¢2) = my(py,p2) m(Pp1,P2)or(P1)oR(D2).

This shows that o and oy are projective representations of Mob and the multiplier of o7 and
oRis mm. O

Combining the Theorem we have just proved and Lemma 4.3, we obtain the following
Theorem which gives the product formula for the characteristic function of a homogeneous
contraction with an associated representation.

Theorem 4.5. Let ¢, in Mob be of the form ¢,(2) = -, z € D. The characteristic function

1-az’
of a homogeneous contraction T with an associated representation m, is given by

Or(a)=01(pa) 01(0)or(p,), a€D,

whereo and o are as in Theorem 4.4.

4.2 Characteristic function of an irreducible homogeneous con-
traction of rank 2

In this section, we explicitly compute the characteristic function of an irreducible homoge-
neous contraction in the Cowen-Douglas class of rank 2. This, however, naturally splits into
two cases which we discuss separately.

For the rest of this chapter, we denote the defect operators Dy and D+ of T by D and
D,, respectively. Similarly, we let 2 and .. denote the defect spaces Y1 and Y7+, respectively.
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Let MW be the multiplication operator on HY and i be the inclusion map of HW to

HAM2) Let fn(z) =2z"and eﬁ = IIJ‘anIIA Recall that {efl}nzo is a complete orthonormal set of H ),

For p1 >0, following [21], define T, : HY @ H**? — Hol(D, C?) by

t
. (4.5)

1
Taulf,8) = (f»zf’wg

Clearly, T'y , is an injective linear map. Let H** be the range of 'y ,,. Define an inner product
on HMH g0 as to make T A,u unitary. It is known (cf. [21]) that H L) s a reproducing kernel
Hilbert space with reproducing kernel

1 z
(1-zw)? (11—25_0)’“_1

w FHU +zw
(1-zmM*1  (1-zw)H+?

Also, ithas been proved ( [21, Theorem 3.1]) that the representation D) ,, = F;L,H(Dj{ EBDLZ)FZ i

is a multiplier representation on H* with multiplier

/ A
(¢'(2)2 0

) _
] ((pyz) _C(p((pl(z))% ((pl(z))%-l—l

(4.6)

where cy is a scalar depending on ¢ such that ¢ (2) = —cy(¢'(2))¥2. Let M, be the multi-
plication by z operator on HA* . From Theorem 1.16, it follows that M, is a homogeneous
operator with associated representation D, ,. It is easy to see that the off-diagonal entry of
the operator I' ;“WM A u givenin [15, p. 2255], is a scalar multiple of the inclusion map i from
HW into HA*2  Therefore, it follows that

M(/D 0

_1. (A+2)
il M

T M.y, =

Itis shown in [22] that these are the only irreducible homogeneous operators in B, (D). The as-
A

. . M 0 . + =+
sociated representation of ( 1 e ) isDyeDj ,.

It can be easily proved that ifﬂlnll = |n2|, then M(n,) and M(n,) are unitarily equivalent. So,
we consider M (n) withn = 0.

Let M(n) denote the operator ({47 (l.M M(2+2) ) .

Lemma 4.6. The operator M(n) is a contraction if and only if A = 1 and 0 < n? < % Defect
operators of M(n) are quasi-invertible if and only if0 < n? < %

Proof. Since M™ is a contraction only when A > 1, we infer that if M(1) is a contraction, then

A = 1. Let H(0) be the subspace spanned by the vector (eé‘,O)t and for n = 1, let H(n) be the

A+2
n-1

subspace spanned by the set of vectors {(e},0)?, (0,e**2)}. The operator M(n) maps H(n) to

H(n+1).
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It is easy to see that ||M(17)(e%,0)t||2 <1 for all n = 0 if and only if 172 < % Let T}, :=
TiH(n), for n=0. Then T, T,, maps H(n) to H(n). Suppose [T, T,] is the matrix representation
of T} T,, with respect to the basis {(e},0)?, (0,e}*%)'} of H(n), n > 1. Then we have

n+1 n?(A+1DA nvnA(A+1)
(T*T,] = A A+n+D)A+n)  A+n+1)V(A+n)
n-n nvVnA(A+1) n
A+n+1)vV(A+n) (A+n+1)

A straight forward computation shows that the eigenvalues of [T, T},] are less than or equal to
1ifand onlyif 0 <n? < % From this, it follows that T is a contraction if and only if A = 1 and
0<n?<il 7L 1

Also, it is easy to see that if one of the eigenvalues of [T, T},] is 1, then 172 = % This
shows that D is quasi-invertible if and only if 0 < 172 < % For 172 = %, (In— T, Ty) has one
dimensional kernel for all n > 1, where I, is the identity operator on H(n).

A similar computation shows that D, is quasi-invertible if and only if 0 < n? < % For
172 = %, (In—T,T,;) has one dimensional kernel for all n > 1. O

4.2.1 The defect operators are not quasi-invertible

Given any two Hilbert spaces £, £ and a contractive holomorphic function 0 : D — #(£, £),
the operator O : HgZZ — Hip, defined by the formula © f(z) =0(2)f(z), zeD, f € Hi,, is a con-
traction. The two Hilbert spaces H%, and H%, can be naturally identified with HY ® % and
HWY ® £, respectively. If # is a Hilbert space consisting of holomorphic functions defined on
D, then there is a natural realization of the Hilbert space H") ® % as a space of holomorphic
functions in two variables. One way to achieve this is to take f ® g € HY ® % to the function
(z, w) — f(2)g(w), z, w € D. Similarly, we realize the Hilbert space H" ® & as a space of holo-
morphic functions on D?, whenever .# is a Hilbert space consisting of holomorphic functions
onD.

Recall (see [8, Theorem 3.1]) that the characteristic function of the operator M W 1>
1, coincides with the purely contractive holomorphic function 8, : D — %(H A+D) gA-1)y

where 1
01(z) = mDi_l(%)*@*DLl(%).

Here, 0 : HAD — HA*D is the map defined by df = f'. The characteristic function 0, deter-
mines, as above, an operator 0, : HY @ HMD — g @ HA~1) The formula given below for
©} is from [8]:

-1f(z,w) - f(w,w)

* A (1) (A-1)
(03f) (z,w) = \/ma f(,w) \/ 7 — ,z,weD, fe HY @ HAD,
4.7)
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For A >2,let0: D — B(HA?D HA-2) pe the map defined by 0(z) = 0)_1(2)0)+1(2), z € D.
The map 0 induces an operator © from HV @ HA*2 to HV @ HA~? From the definition of 6,
it follows that ® = ©3_10341.

Let A := {(z,2) : z € D} be the diagonal subset of the bi-disc D?. For A > 0, let sy(1) :=
{fe HY @ HV : fiyx =0} and 53(2) := {f e HY @ HV : fix =0, 8, fin = 0}. Both s3(1), 53(2) are
closed subspaces of H(D ® HW with 5,(2) < s3(1).

Recall that {
Hom,, (p) is the space of all homogeneous polynomial of degree p in H @ HY . Then we have
HY ¢ HY = @ )-oHom, (p). Let

-1
‘n= 0} I w”||i = (”J”1 1) is an orthonormal basis of HV. Suppose

lw™ 2 n

P op-ly P (b +1al’)
few=Yy — ' and 139z w) = Z”#zf"l w', (4.8)
= w3 S w2

w_ w1 W _ v
where aj, l;) ” 1”2 and by’ = ZX(:) ”

and flg is in s3(1) N s3(2)*. Therefore the set of vectors { f;’ll), f, W} is an orthogonal basis of

e From [15], we know that f;ﬁ) is in s3_»(1)*
s1(2)* nHom, (p).
Lemma 4.7. For A > 2, the operator ©; | maps s)_»(2) to sy(1) and sy_»(2)* 1o s (1)*.

Proof. From the definition of ®]_,,
It takes a little more work to show that © _, (s ,1_2(2)l) is contained in s, (1)*. First, using the

it is easy to see that @j_l (s1-2(2)) is contained in s, (1).

formula (see [8, Equation 4.3])

it is easy to prove that

aﬁf‘”b(pm_z) nd b2 = (- 2)(’9”_2).
p

It then follows that

A=-2
(A-2) _ _ (1-2) 4
bp p(/l_l)a . (4.9)

p-1
; -2y _ @ ; (A-2) _ -1-1,,1
Since f,; a =0t follows that £, (2, w) = (2~ w) l;) a;zP "7 'w', where a; € C,0< I <
p— 1. Comparing the coefficients of z”~!w' from the two sides of this equality and then using

the equation (4.9), we get

b(l 2) (1-2)

+ka
Z p

(p b
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Now, from the formula (4.7) given for @;"1, we have

f(A 2)(Z w)
VA-DA-20;_, £z w) = f“ 2z w) - (A-2) P —
P b” 2)+la(" 2
}: — — A= | P w! T
=i W

Using the value of @;_; from the equation (4.10) and the identity (A*/-3) = 422 (441-3) e

obtain

B2 + 1alD)1 A+1-3 A-2
p —(/1—2)C¥l_1:()‘,—2) [—p(—)aé}l—Z)
IIWIII;L_2 -1 A-1
A2 172 g
+lay +(A 1)p (p—-1+1)
A+1-3 (A +1-2)
=(A-2 -2 _—
( )( 1-1 )“” A-1
A+1-2
=(A-2)al?
t=2a 1-1
(A-2)
:(A—Z)ap
||wl‘1||i

For the third equality, we have used the identity (’};[l 1)2) (4173) = (*M12). Therefore, it follows
that

-1-1,,,1

VA-DA-2(0; ,£%5?) (2 w) = (A -2)af" ”Z—w A-20al? 1P, |z w).

w3

Consequently, the vector © f A=2) isin 53 (1)NHom, ( p—1) showing that ®) | maps s3» 2)*
into sy (1)*. O

Theorem 4.8. Let 0 : D — B(HMN2) HA-2)) pe defined by 0(z) =0)_1(2)0)+1(z). Then @ coin-
MAD o

\/%i MA+D |-
Proof. Since 6,_; and 6, ., are purely contractive, it follows that § = 0,_,0,,, is also purely
contractive. Let © : HV @ HM? — HU ¢ HA=2 be the operator induced by §. Then © =
0,-10,+1 and therefore 0 is an inner function.

Let ./ be the range of ©® and T = P ,. MY ® I ;,1, where M) is the multiplication
operator on HY and P ,. is the projection of H" ® H*~? onto .. It follows, from [32],
that the characteristic function of T coincides with 8. Since .# = ran ®, so .41 = ker ©*.

cides with the characteristic function of
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Now [8, Theorem 3.2] implies that ker G);"1 1= 51 (DT and therefore, by Lemma 4.7, we have
ker ©* = s3_,(2)".
M(l—l) 0
From [15], it follows that T is unitarily equivalent to the operator \/%i yo+y | and
M(/l*l] 0
therefore the characteristic function of | /. . 1.1 | coincides with 0(z). O
ﬂl M

4.2.2 The defect operators are quasi-invertible

Lemma 4.6 implies that the defect operators of M, defined on H*® are quasi-invertible if
and only if A > 1 and p? > m Now we describe the characteristic function of M in this
case.

Let H(0) be the subspace of H** spanned by the vector (1,0)? and for n = 1, H(n) be
the subspace of H** spanned by the set of vectors {(z", 2z"1)",0,uz"1)'}. Then M, maps
H(n) to H(n+1) for all n = 0. Note that HMH is densely contained in HMLE) for all u >0,

because HM is densely contained in H? if 1; < A,.

Lemma4.9. Thereexistc >0 and py > 0 such that(Df,Dg)=c(f,&),.; yforallf,ge HMH,
where (.,.)1+1,, is the inner product on HM M) and D is the defect operator (I — M} M,)"/2.

Proof. Since M, maps H(n) to H(n+1), each H(n) is invariant under D. Because H(n)’s are
orthogonal in HMH), so it is enough to prove the above equality on each H(n) with some ¢
and u; which independent of n.

For n =0, we have

n!(1+1)

DO, uz™ % = 11212 ., — 12" )2 ., = .
1D, uz™) 17 = 127115, = 127711515 A+n+2)--(A+2)

2

AL then we

Suppose there exist ¢ > 0 and p; > 0 such that 1D, uz™? = c|| (0, uz™"|
obtain

nl(A+1)
A+n+2)---(A+2)

B onven2 ny2
=Clla41,, 0, —2) M54 4 = Cll—2" 17,3 =
H1 H H1 2 n

m ,uz(/1+n+2 )_1
1

which gives us

A+1 @i
—_ = Cc—. .
2
A+2 T
Suppose that the statement of the Theorem is valid with this ¢ and u;. Then we have
IDE" 22 P = el ", 22 Y I, nz ] (4.12)
) A, - ’ A, /1_'_1’“1! = L. .

But
n _ n
IDE", 52" DAE =125 - 1 Zz”)fuz. (4.13)
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Since

t 1\ 1
(Zn+l’%zn) :(zn+1’n;{ Zn) _E(O’uzn)t’

it follows that

n
+1 2 +1
(2", =2 = z"

2
1 17+

1 1 A+n _1+ 1 (A+n+1)"
A2p2"7 A2 g A2 2 n '

z™)!||? in the equation (4.13), we obtain

Substituting the value of [|(z"*, 4

A-1 1

n n!
D n,_ n—-1yt,2 _ -
ID(z", —z"" )" A+DA A2p2(A+n+1)

A T A+ A+n+1)---(A+2)

2

AL Since

Now let us calculate || (z", %z”_l)tll

n n n—-1\t n n n—1\t n n—1\t
= = (", — +———(0, :
(2 AZ ;= /1+1Z ) ul/l(/l+1)( )

it follows that

2
n n
n n—1\t,2 _ n n—1yt,2 n—1\t,2
12", 22" D Wy = 1" 772D ”“1'“1+—(A+1)2A2u§ 10,1 z" D341 4
2

_ ny2 n-1y2
=12+ Gz e s

n! 1 n
A+ (A+3) | (A+2)(A+ 1) +AZM§(A+1)2(A+n+1) '

Now substituting the values of || (2", %z"‘l)tllfhw1 and | D(z", 2z"~1)*|? in the equation (4.12),
we get
A-1 1 (4.14)
c=——- : :
1 22
Quasi-invertibility of the defect operators of M, imply that 451 — /12;!12 > 0 and therefore ¢ > 0.

Putting the value of c in the equation (4.11), we obtain y;.

Now to check if this choice of ¢ and u; works, we need to verify the equality

nﬁ n—1yt n-1yt\ _ nﬁ n—1yt n-1
(D" 22", DOuz"") = e{(@" 72", O,z )>A n=l.
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Forn=1,

(D"~ 2", DO, uz" ) >=<(I—M*Mz)(zn,%zn_

:<(Zn’zz ) (0, ,uz )t> <(Zn+l Zn)t,(O,,uZn)t>

- _ <(Zn+1’ Zzn)t’ (O,Mzn)t>

- <(z”“, ”T“z”)f - ;—M(o, uz™’ (0, uz")f)>

l)t, (0, luzn—l)t>

1
= {(0,uz™", (0,u2™")
_ L e L[ Arnel -
_AIJ 7L+2_/1u n

Again, we have

n ' _n-1yt n-1\t
y 4 ) 0)
<(z 17 ) Opz )>/1+1,,u1

- n - H —1yt
={ (2", —2" 't ———— (0,1 2" N, (0, 2" )>
< A+1 HiAA+1) H 1 f A+1Lp

n—l)

(0, 12" 1,0, 12 t>/1+1,p1

A(}L+ 1)

-1
_ nuy 1212 = nu A+n+1
AL+ WA+ | n-1

Now, using the equation (4.11), it is easy to see that

<D(Z , n 1) D(O uzn 1) >:C<(Zn,Ezn—l)t’(o,uzn—l)t>

A A+1,[,t1 '
Also, it is easy to prove that (D(1,0)",D(1,0)") = ¢{(1,0)", (1’0)t>/1+1,u1' Since we have ¢ and
1, independent of , it follows that (D f, Dg) = c(f,g}ML#1 forall f,ge HMH, =

From Theorem 4.5, it follows that the characteristic function of M, on HYM is (a) =

01L(Pa)*0(0)0r(Pa), a €D, where ¢p,(2) =
common multiplier on the Hilbert space H A ’“‘). Also, Theorem 4.4 implies that

o g are representations of Mob with

or(P)D = DDy () (@) V2(T) and 01 ()* Dy = D (¢)/*(T)*Da u(¢p)*, ¢ € Mob.

The following Lemma along with its proof is an adaptation of a similar result from the unpub-
lished manuscript [2].

Lemma 4.10. Suppose that the defect operators D and D, of M, on H*") are quasi-invertible.
Then there exist two positive real numbers ; and (i, such that or and o are unitarily equiv-
alent to Dy 1y,, and D) ,,, respectively.
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Proof. Recall that the reproducing kernel K of the Hilbert space HA is of the form

1 z
1—zw)A 1—z)A+!
Kzw) =] ¢ ;w) (%Jrzgﬁzw , z,weD.
(l—zu'/)ﬂ“l (1_Zw)/1+2
Let ,u% =y + % — ﬁ Since the defect operators of M, are quasi-invertible, using Lemma 4.6,
we have p3 > 0. Define
1 z
+ _ - _ | a-ziyAt (1-zw)*
K '(z,w)=(1-zw)K(z,w) = o o
(1-zw)? (1-zw)+!

Then K™ is the kernel of the Hilbert space HA~1'#2) Note that H~1#2) is densely contained
in H&¥ Let i* be the inclusion map of HA~1#2) into HA® ., Then (i*)* is a map from HWH
to HW~1H2) such that

G)*K(,w)é=K"(,w)é weD, & e C?. (4.15)

Also, it is easy to see that
<D*K(’ wl)EI)D*K(-) w2)62> = <(l+)*K() wl)gl) (l+)*K(y w2)€2>/1_1)”2

for all wy, w, € C and &1,¢, € C2. This implies that

(Do f,Dsg) =) [, &)y 1 (4.16)

for all f,g € HM¥, Define V : HAMW — ALk by VD, f = (i*)*f for all f € HMM, Since
D, is quasi-invertible, equation (4.16) implies that V is an isometry. Also, by definition of V,
we have VD, = (i*)*. Taking adjoint both sides of this equation, we obtain D, V* = i* which
implies that ker V* = {0}. This proves that V is an unitary operator. We have

Do () = Dy u(@) (@) *(T)D..
Using Theorem 4.4, we obtain
Do f(2)=J*V @, 2D, f(p (@), fe HMH,
Therefore for gin H (A=Lu2) e have

i"VoL@)V g() = D.or(@V*g@) =]V, 2DV )¢ (2)
= JA V™ 2 90 (2) = T Vo7, g0 (2)).

This implies that

Vo)V g2 =YV 2gp 1 (2), ge HALH,
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Therefore, Vo (p)V* = Dy, (), ¢ in MSb.
From Theorem 4.4, we know that or(¢p)D = DD, ,(¢) ((,b')‘”z(T). Lemma 4.9 implies
that there exist two positive real numbers ¢ and p; such that

(Df,Dg)=c(f &) rs1p Frg€HM,

where (.,.)311,, is the inner product of HA*1#1), Let i~ be the inclusion map form H** into
HWMLi) Define U : HAW — ML) by UDf = /ci™ f, f € HMP, Quasi-invertibility of D
implies that U is a unitary operator. Theorem 4.4 shows that

or(@)Df(2) =DMV, 2) f(¢ (), fe HM, ¢ e Mbb.

Thus for f in H (A1) we have

1
Uor(P)U"i” f(2) = —=Uor()Df(2)
Ve

= \%UDJ(“” @ L2 fo 1 2)

=i JMV e 2 ol (2)),

which implies that

Uor(@U* f(2) = JM*V @™, 2) f( " (2) = Dasru(@) f(2), fe HMH. (4.17)
Since HM is densely contained in HA*1#) from equation (4.17) it follows that Uo g(p)U* =
Dy 11,u(¢) for all ¢ in Mob. O

From Lemma 4.10, it follows that the characteristic function of M, on H»* coincides

with D)1 4, (a)* VO()U* Dy 1,y (¢g), where U and V are the two unitary operators defined
1
VAA+1)

UM} V* and compute I'; TT p_1 4, explicitly. Note that for A > 0, the map 0 : HWY -
z p A+1,141 H2 P Y;

HW2  defined by 4 f = f, is a bounded operator.

Lemma 4.11. The operator '} TTa-1,y, : HAV @ HAMD — gD ¢ AT s given by the

as above, whenever u > . To concretely realize the characteristic function, set T :=

A+1,/Jl
formula
ﬁa __Ve 1
r* TT _ A-1 H2(A-1)
ALt AL Ve g2 Ve g
P AAZ-1) u1(A+1)

Proof. Using the equation (4.15), the relations V*(i*)* = D., M,D = D,M, and UD =\/ci",
we obtain
TK*(, w)é = UM V*K* (, w)é
= UM V*(i*)* K(, w)é = UM} D, K (., w)é
=UDM;K(,w)¢=vci M;K(,w)é
=+vc wK(, w)é, (4.18)
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for any w € C and ¢ € C2. Differentiating k times both sides of the equation (4.18) with respect
to w at 0, we get
T(O* K" (,0¢) = vc k0" 1K (., 0)¢. (4.19)

A direct computation shows that

(A+k—2)kmk (A+k—1)kwhl
0¥ K" (z,0) = k k
A+k-2 Kzl (L4 p2) A+k Kk A+k-1 Fizk
k-1 k k—
and
(A+k—1 Lk Atk ) e
K@= Y A+k+1 A+k
kliz"t (3 +p2) k!zk + kizF
k-1 k k-1

Evaluating the equation (4.19) at ¢ = (1,0)!, we obtain
k toye k(k-1)
(2, k—l)_ (kkl kz).
(Z A-1" A-1) A

and consequently,

/e
A-1

1 t
My n 0 =1 (1 ) = s (7o) e, (4.20

Now, evaluating (4.19) at ¢ = (0,1)%, we get

k1 (1 z) A+k) , k k)t_\/z( k (l z) A+K), oy k(-1 k—l)t
T(z ’()L-Hl N z +/1z =7 kz", /1+u —(/“_Dkz + A+l z .
(4.21)

Using pz u? + /1 7, it is easy to see that

1 A+k) k \! k+1 \' (k t
k+1 (L, 2 k, Xk k+1 k K 2 k
(z ’()L+ T z+/1z) (z . 1z)+(/1+1)(0,,u2z).
Equation (4.20) and (4.21) together imply that

1 (k Zkt_«E k+1)k{_l 5 k(A +k) km—ly_uk+n} hjf
V@(A+1)T@*hz)" 1 -1 22050 Taasy aasnS® )
(4.22)

If ¢, d € C such that

k k+1) ;[ 1 5 k(A+K) km—ly_uk+u} hqt_ (kk hjt -
“ﬂ Ard)z’%k+”)amﬁd)+am+1) AA-DJ° “Faf '”4°”Z )’
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_k_k+1 _ _ _(A+k) A+k)k
thenwegetc=% - 35 = -7y and d =

Consequently, equation (4.22) gives us

AA+D)
k
T(0, 225" = Ve 0, (2 kzk! Ve ok iy
0, us2")" = A+ 1)( ) - - 1)(2 /l )t
which implies that
Ve 2 Ve

TTA-1,,0,8)" = ———0,u?g) - —"—(g,~g"!, ge HMV, 4.23
A-1,12(0,8) ;uz(ﬂt+1)( ug)- o= 1)(g Ag) , 8 (4.23)
Therefore, combining equations (4.20) and (4.23), the proof is complete. O

The following theorem gives the formula for the characteristic function of a homoge-
neous operator in this case (defect operators are quasi-invertible) explicitly.

Theorem 4.12. The characteristic function of M, assuming that the defect operators are quasi-
invertible, on HMH coincides with

0, (a)0
%9/1(61) 1(@)0)42(a)

Ve V=D (2a-1-1)

1 A 0
- 701+2(a)
Ja-n(2a-n-1) At

Whereeﬂ(a) = \/(/11_—1) ((pa) 0 DA+1((I)CZ) dnd0/1+2(6l) = \/m ;Hl((/)a) 0 DA+3(¢61)-

Proof. Theorem 4.5 shows that the characteristic function 0 of M, is of the form
0(a)=0r($pa)"00)or(Pa), a€D.

Since the defect operators of M, on H (A1) gre quasi-invertible, it follows, from Lemma 4.10,
that
VO(@)U™* = —Dp-1,u, ()" T*D/l+l,y1 (Pa),

where U and V are the two unitary operators defined in Lemma 4.10. So
F;kt—l,uz VO(@U T p41,,

=~ (T30 P @1 gs) (Thongn TTA 1) (Ther i Dastin @a)Tasim)

= Din @ . } Y H JL(AZ D ©°)° D}, @) X }
0 A+1((p“) T2 (\;/L_DI p:/(:lﬁzl)a* 0 /1+3(¢a)
\ 2102(a) Lem)em(m
pV/AA2-1)

/sz/1+2
,Uz(/l—l)l ’ VATl 7L+2(a)
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Now, using the equations (4.11), (4.14) and ,u% = ,u2 - m, we obtain

0,(@0
%6,{(&) A (@)B)+2(a) 1
\ ; VA-D@2A-1-1)
[ 1, VO@U Thurp, = —Ve , >
- =701+2(a)
VA-D@2a-n-14)
This completes the proof of the theorem. O

Since the characteristic function 0 coincides with T’ fl—l.uz VO(@U*T 41,4, we use the
same symbol 0 to denote this operator and call it the characteristic function of the operator
M,.

We conclude this chapter by describing the invariant subspace determined by the char-
acteristic operator © :

%G)A 020142
v VA-D@2A-1D-1)
I /A g ’
- 1—1 OA+2
Ja-neza-n-h A

which is just the range of the operator ®. We have

/2o _ I
A-LA Ja-ngza-n-h

®0*=—-vc . .
\/_ 037,,9; L@)*
Ja-neza-n-h V 1-192+2

It follows, from Lemma 4.7, that ker ©* = {(f, %@;f) :fesy-1(2)1}, where a = - % and
b= —ve .
VA-D@2A-1-1)
By the model theory of Sz.-Nagy and Foias, the operator Pyero+ (MW@ (I)_181)41))

0=-\c

| ker®*’
where Iy, is the identity operator on H**D, is unitarily equivalent to the operator M, on
HMH  Recall that MV is the multiplication by the coordinate function on the Hardy space
HW . The operator MY ® (I)_; @ I} 1) is clearly a homogeneous operator with the associated
; + + +
representation D} ® (D} _, ® D}, ,).
We show that the subspace ker ©* is also left invariant by the representation (D] ®

D;[_l) ®(Df ® DLI). This would give another proof that M, on HAW, o> m, is ho-

mogeneous.
The following Lemma is the first step in proving that ker ©* is also left invariant by the

representation D} ® (D/J{_1 ® DLl) = (D ®D; )& (Dj ® D}, ).

Lemma 4.13. For ¢ € Mob, we have ©}D; () ® D;_(¢) = Dy (¢) ® D}, ,()O].
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Proof. Let0(z) = \/M;Lﬁ *.@2)*0D}_ (¢2). Then 6(z) induces an operator © from L*(T) &
HYY to 12(T) @ HMV. Here, we view the elements of L2(T) ® HAV and L*(T) ® HA*D
as complex valued functions defined on T x D. Then for every f € L2(T) ® HAD from [8,
Theorem 3.2], we have

0
—flz,w)-(A- 1)

3 1
0 (z, w) = ——
©NeEw AA—1) 0w

f(z w)

forallze T and w € D.

Let pp be an element of M6b such that py(z) =
orthogonal basis of L?(T) ® HA™V. Let f(a, w) = a”" w Where aeTand weD. Then

(DY (o) ® D3, (0,01 (a, w)

3 _
=———Df(p,)®D}, (oY) |=—a"w" - A-1)— a”wml
VAAL-1) ow 1-aw
—A(ﬂ—l) 1\Wp A+1\¥h _ ];)
. .
= DY (p,hY® D}, (pp") | ma"w™ ™ — (A - 1)Za “lymrk

_ (@) (o w)

m(pp(@)" (pp(w)" = A-1) Y (op(@)" 1 (op(w))™+*

VAA-T) k=0
(pb(a))l/z(pb(W)) (op(@) " (pp(w))" 'm—(/l— (op(w)) 1
VAA-1) » (Pp(@) (1= (pp(@) (pp(w)))
~ (0, (@) 2 (0!, (W) T (pp(@)" (01 ()™ = (= 1)—Pp)
VAA-1) L pp(a) — pp(w)
~ (0}, (@) 20!, (W) T (pp(@)" (01 (10))™ [ - 1) (w-b)1 - ba)
VAA-1) L (a—w)(1-|bj?)

The fifth and the sixth equalities are obtained by noting thatif a € T, then pj(a) € T. Now,

@ D (p,"Y® D;_,(p; ") )a w)
—®D+(pb )® Dy _ 1(Pb Yya w™

—G)((pb(a))”z(pb(a)) (pb(wn (pb(w)) )
(,Ob(a))l/z(Pb(a))n 7

- A-1
B m_A-1 ! = m
VAA-1) ( b)) (pb(w)) — )( w) (o, (W) 2 (pp(w))
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From this equation, using p,(w) = 1 T ,pb( w) = andp (w) = z(li(fT_llf)'j),we see that
© (DY (p,H® D} _ (0, ) f)(a, w)
(pb(a))l/z(pb(w» (op(@)" (pp(w))" A1) (w—b)(1 - ba)
m — - .
VAA=T) (a—w)(1-1b?)

This shows that
(DY (p; ) ® D}, ,(p;") ©=06 (D (p,"Y® Di_,(p;")).

Since p;l = p_p for all b € D, it follows that
(D (pp) ® Dy, (pp)) © =06 (DY (pp) ® D;_; (pp)).
Let ¢pg be an element of M6b such that ¢g(z) = e’ z. Then it is easy to see that
(D} (¢g) ® D7, | (hp)) Oa" w™ = O (D} (¢pg) ® D}, (pp))a" w™, n€eZ m=0.
Since {a” W™} nez,m=0 is an orthonormal basis of L?(T) ® H*~1, it follows that
(DY (¢p) ® D, | (pp)) © = O (D (¢pg) ® D} _, (bp)).

The multipliers of the two representations D} ® D; | and D ® Dy | are same. Hence we have

A+1
(D} (@) ® Dy, (¢) 6 =6 (DY (¢) ® D;_,(¢h)), ¢ € M&b.

Let P be the projection of L?(T) ® HMD onto HV @ HAMD, Since HY ® HMV is an invariant
subspace of the representation D ® D+ .1 S0 P commutes with D (p)® D; . (¢) forall ¢ in

MGb. As O} = PO, g -1, SO We get that

A+1

(D] (@) ® D7, () ©; =0 (D} (p) ®D;_, (¢))
for all ¢ in M6b. O

Theorem 4.14. For anyt € C, the subspace J%f = {(f, t @}‘Lf) c e (2)i} is invariant under
the representation (D} ® D} _|) & (D ® D}

141)- Consequently, the subspaceker ©* is invariant
under (D} ® Dy _|)® (D] ® D}, ) as well.

Proof. The subspace s3_1(2)* is invariant under D e D;{_l. Thus, for fin s3_1(2)* and ¢ in
Mib, (DY () ® D} _ () f is in 531 (2)*. Now, using Lemma 4.13, we get

(D () ® DI_, (@) @ (D} () ® DY () (f, £ OF f)
(DY (¢) ® D} _, () f, t(D} (¢) ® D}, , ()0} f)
(D} (¢) ® DI _, (@) f, £ ©%(D} (p)® DI_, (@) ))
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Since (D} (¢) ® DT_ () f is in 531 (2)*, it follows that
(DY (p)® D}, () & (DT () ® D, (P)(f, £ O f) € M.

This shows that .4/ is invariant under (D} ® Dy e Dy eDj, ).

Clearly, ker ©* = J%ﬁ for some t € C, therefore ker ®* is invariant under the represen-

: + + + +
tation (D1 ®D/1_1) ® (D1 ®D/1+1 . O
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Chapter 5

Homogeneous tuples in the
Cowen-Douglas class of the polydisk

The notion of a homogeneous operator has a natural generalization to commuting tuple of
operators. In this chapter, we consider the case of a commuting tuple which is homogeneous
with respect to either the automorphism group Aut(D") of the polydisc D" or the subgroup
Mob” := Aut(D) x --- x Aut(D) < Aut(D"). We note that Aut(D”) = Mob” x S,,, where S, is the
permutation group on a set of n elements. Throughout this chapter, we let G denote one of
these two groups.

Definition 5.1. A commuting tuple of operators (T3, T»,..., Tj) is said to be homogeneous
with respect to the group G, if the joint spectrum of (T3, T», ..., T;) liesin D™ and ¢ (T, T, ..., Tr)
is unitarily equivalent to (T, T»,..., T,) for all ¢ € G.

Combining the change of variable formula with the transformation rule of the curvature
forced by homogeneity, we write down the curvature (1, 1) form explicitly for a homogeneous
operator. Since the curvature is a complete unitary invariant for an n-tuple of operators in the
Cowen-Douglas class of the polydisc B, (D"), we obtain a list of unitarily inequivalent homo-
geneous tuples from the curvature. Determining the class of homogeneous tuples in B,,(D")
is much more challenging when the rank m > 1. We have succeeded in obtaining a complete
list of inequivalent homogeneous tuples only in the case of m = 2.

Let K:D" xD" — _,, be a positive definite kernel which is holomorphic in the first and
anti-holomorphic in the second variable. The linear span of the set of vectors

{K(zyw)x:xeC™, weD"}
equipped with the inner product

(K(z, w2)x,K(z, w1)y) = (K(w1, w2)x,y)
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is a pre-Hilbert space. The completion is a Hilbert space, say Hxk, of holomorphic functions
on D". For each fixed but arbitrary w € D", the vector K(-, w)x, x € C", is in Hg and has the
reproducing property:

(fLKG,w)x) ={f(w),x), fe€ Hg.

Let M, be the operator of multiplication by the coordinate function z;, 1 < i < n. Given
any commuting tuple of operators (T, T»,..., T,) in B, (D"), there exists a reproducing ker-
nel Hilbert space Hg such that (T3, Ty,..., T,) is unitarily equivalent to (M7, M7 ,...,M; ),
(see [14, Theorem 4.12]). Thus we will assume without loss of generality that a commuting

tuple of operators in B,,(D") has been realized as (M, , M}

1 Mz,,...,M; ) on some reproducing

kernel Hilbert space Hg. Conversely, with mild assumptions on the kernel K, one may assume
., M7 ) isin By, (D") (cf. [14]). Throughout this chapter, we
mandate that these assumptions are in force.

the commuting tuple (M} , M,

21’ z27°"

Definition 5.2. For g € G, let J; : D" — GL(m,C) be holomorphic. A kernel K : D" x D" —
My, is said to be quasi-invariant with respect to J if for all g € G and z, w € D", the kernel K
transforms as follows:

K(z,w) = J¢(2)K(gz, gw)Jg(w)".

In practice, the factor J is assumed to be a cocycle, that is,
J(gh,2)=J(h,2)](g hz), g, heG; zeD".
Here J(g,2) := J4(2), g€ G, ze D".

Suppose Hg is a reproducing kernel Hilbert space and Jg : D" — GL(m,C), g € G, is
holomorphic. Then U : G — Hol(D",C™), defined by

Ugf)(2)=J(g ", 2)f(g " 2); f €Hol@®",C™), g€G,

is a unitary representation of G on H if and only if K is quasi-invariant and J is a cocycle.

Let ey, ..., e, be the standard unit vectors in C™”. For 1 < i < m, define s; : D" — Hg to
be the anti-holomorphic map: s;(w) := K(-, w)e;, w € D". Clearly, (sy,..., Sy) defines a trivial
anti-holomorphic Hermitian vector bundle E of rank m on D”. The fiber of E at w is the m
- dimensional subspace {K(-, w)x : x € C"} and the Hermitian structure at w is given by the
positive definite matrix K(w, w). Thus the the curvature K of the vector bundle E is a (1,1)
form given by the formula:

Kw)= ) 0;[K(w,w)™'0;K(w,w)|dw; Adw;.
ij=1
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Although, not very common, we will let
H (w) = (#(w)), webD",

where & (w) := 0; [K(w, w)_lajK(w, w)] is the co-efficient of dw; A dw; in K. We obtain a
transformation rule for the curvature whenever the kernel K is quasi-invariant.

Proposition 5.3. Let ], : D" — GL(m,C), ¢ € G, be holomorphic and K : D" x D" — ., be a
kernel. If K is quasi-invariant with respect to ], then we have

H(2) = (Dp(2)' & U9, ")) X (9(2) (Dp@ ® J(p, 2)")
forpeGand z,weD".

Proof. Letg € Gand K, : D" xD" — ./, be the kernel K, (z, w) = K(¢z, pw). Since K is quasi-
invariant with respect to J, we have

K(z,w) =J(p,2)K(pz,ow)](p, w)*
forall ¢ € G and z, w € D". Now,
ijry_A. -13.
Ky (2) =0; [Ky(2,2)" 0K, (2,2)]

=0

~.

111 -
{1927 K22 (19.2") '} 8;{I0.27'K(z,2 J(p,2)") 1}]

=0: |1, 2" K(z, 27 T, 2 {19, 970K (2,2) (19, ")

+ Jp,2) 'K (2,29; J(9,2°) '}

=0; :J(q),z)*K(z, 270K (2,2 (J(p, ") + (0, 2)*0; (]((p,Z)*)_l]
= J(¢,2)"0; [K(2,2)7'8,K(2,2] (J(@,2*)”

= (@, 2* X (2) (J(p,2*) .

This gives us
Hp(2) = (I8 ](p,2)") X (2) (IeUlp,2")7). 6.1

Also using the chain rule, we obtain
Hy(2) = (Dp(2)' ® 1) K (p(2)) (Dp@ 01 (5.2)
Combining (5.1) and (5.2), we have
K (2)=(De(2)' ® U9, 9")) X (9(2) (D@ & Jp, 2)").

verifying the transformation rule for the curvature .£". O
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Since G acts transitively on D", there is a ¢, in G with ¢,(z) = 0. Substituting ¢ in the
transformation rule for the curvature obtained in Proposition 5.3, we see that the curvature at
any z € D", is determined from its value at 0.

Corollary 5.4. With notations and assumptions as in Proposition 5.3, we have
K (2) = (Dg,(2)' ® Uz, 2)") 1) A (0) (Dq)z(z) ®J((pz,z)*)

where @ is in G with ¢(z) = 0.

5.1 Homogeneous tuples in B, (D")

First we prove a lemma for a kernel K which is quasi-invariant with respect to Jg : D" — C,
which is assumed to be holomorphic and g — J; is assumed to be Borel. We show that J must
be a co-cycle if K is assumed to be quasi-invariant with respect to J.

Lemma 5.5. Suppose ¢ — ], is Borel and for each ¢ € G, ], is holomorphic. If
K(z,w) = J(@,2)K(@pz,pw)J (@, w); p € G, z,weD",
then ] is a projective cocycle.
Proof. Let ¢,y € G. By the given condition, we have
K(z,w) = J(py, 2)K(pyz, ppw) ] (py, w).
Again using the given condition repeatedly, we have

K(z,w)=]J(w,2)K(yz,yw)J (v, w)
=Jy,2)J (@, v2) Koy z,oyw) ] (@,yw)](y, w).

Equating these two values of K(z, w) and then cancelling K(¢v z, pyw) from the both side,
we get

Iy, 2)](py,w) =J(y,2) ] (@, y2) ] (@, yw)] (¥, w)

Since for each ¢ in G, J (¢, -) is holomorphic, it follows that

Jpy,2) =mp,9) (@, v2)](y,2) (5.3)

where m(¢g, ) is a constant of modulus 1. Since J is Borel in first variable, so m is also a Borel
map on G x G. Now, we show that m is a multiplier.
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Let ¢,y,n € G. Then equation (5.3) implies that

J(pyn,z) =m(p,yn)J(@,vnz)](yn,2)
=m(p,ynymy,n)J(p,ynz)J(y,nz)Jn,z).

Again equation (5.3) implies that

J(pyn,z) = m(ey,n)J(@y,n2)](n, 2)
=m(py,mm(e,v)J(p,yn2)](y,nz)J(n,z).

Equating these two values of J(pwn, z), we obtain

m(p,yn)m(y,n) = m(ey,nN)m(e,y).
This shows that m is a multiplier and therefore J is a projective cocycle. O

To describe the homogeneous tuples in By (D"), realized as a tuple of adjoint of mul-
tiplication operators on a reproducing kernel Hilbert space, we first prove a useful Lemma
showing that the reproducing kernel in this case must be quasi-invariant. The proof of the
Lemma is given for G = Aut(D"). The proof in the case G = Mob” then follows.

Lemma5.6. Let K :D" xD" — _#,, be a reproducing kernel. Assume that the tuple of multipli-
cation operators is in By, (D"") and homogeneous with respect to G. Then for each ¢ € G, there
exists a holomorphic map J, : D" — GL(m,C) such that K is quasi-invariant with respect to J.

Proof. 1f g, € Aut(D"), then g, (21, 22,...,2n) = (81(20,), 82(24,), ..., 8n(2s,)), & € MOb and o €
Syu. Since (Mg, My,,...,M,,), where M,. denotes the multiplication by the coordinate function
z; on the reproducing kernel Hilbert space Hg, is homogeneous, it follows that

gU(MZUMZQ! .. .,Mzn) = (Mgl(zal)’Mg2(Z(72) ---)Mgn(Zgn))

is unitarily equivalent to (M;,, My,, ..., M_,).

Let Kg, : D" x D" — #y, be the kernel Kg, (2, w) = K(g,'2,8,' w). It is easy to check
that U : Hx — Hg,, defined by UK (-, w)¢ = Kg, (-, gow)¢, w € D" and ¢ € C™, is unitary. Let
M, denote the multiplication by z; on the Hilbert space Hg, . The following computation
shows that K(-, w)¢ is an eigenvector for (U* M, U,...,U* M, U) with the joint eigenvalue
(&1(wg,), ..., 8&n(wey,)):

u* Mzi UK(,w)¢ = U*MziKga (-, 8 w)¢
= gi(wai)U*KgU (-, 80 w)é
= gi(wO'l')K(') W)f
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Since the linear span of the vectors K(-, w)¢, w € D", ¢ € C™, are dense in Hg, we conclude
that
U* (MI;MZ;---;Mn)U: gO’(MZI)MZQ)---)MZn)-

This, together with the homogeneity assumption, proves that the tuples (Mg, Ma,..., M)
and (Mg, M,,,..., M,,) are unitarily equivalent. Since (M;,, Mz,,..., M) is in B,,(D"), it fol-
lows, from [14, Theorem 3.7], that there exists a holomorphic map J gl D" — GL(m,C) such
that

K(z,w) = ]ggl (2)Kg, (z, w)]ggl (w)*.

This shows that there exists a holomorphic map Jg, : D" — GL(m,C), g, € Aut(D"), such that
K is quasi-invariant with respect to J. O

The following theorem describes all the tuples in B; (D") which are homogeneous with
respect to (a) the group Mob” and (b) the full automorphism group Aut(D").

Theorem 5.7. Assume that the n - tuple of multiplication operators (M, M,,, ..., M), defined
on a reproducing kernel Hilbert space Hy, is in the Cowen-Douglas class B;(D"). Then
(@) the n - tuple (M, M,,,..., M) is homogeneous with respect to M6b" if and only if

K(z,w):h(z)(n = |R(w), z,wem", A; >0,

Zj wz)/1

for some holomorphic function h: D" — C;
(b) the n - tuple (M;,, M,,,..., M) is homogeneous with respect to Aut(D") if and only if

K(z, w):h(z)(H h(w), z,weD", 1 >0,

—Zj Wz) )
for some holomorphic function h: D" — C.

Proof. (a) It is well-known that the n-tuple (M ,..., M; ) on the Hilbert space Hi, K(z, w) =
n 1

S r——r isin B (D"). It is also easy to verify that these are homogeneous with respect to
—&i Wi

Mob”. This is the proof in one direction.

Z]’

For the proof in the other direction, note that the existence of a holomorphic map J,
@ € Mob”, such that

K(z,w) = J(p,2)K(pz,pw)] (¢, w), z,w D", p € Mob"

follows from Lemma 5.6.
Since J is scalar valued, it follows from Proposition 5.3 that

K (2) = Do(2)' X (p(2)) Dy (z) (5.4)



5.1. Homogeneous tuples in By (D") 91

where £ is the curvature of K.

Now, let k € Moéb" be such that k(z1, zo,...,2,) = (k121, k222, ..., knz,) for (21, 20,...,2,)
in D" where each k; is a constant of modulus 1. Then Dk(0) = diag(ky, k2, ..., k). Let a; j be the
(i, j)-th entry of £ (0). Evaluating the equation (5.4) for ¢ = k and z = 0, we see that a;; = 0 if
i # j. This shows that % (0) = diag(ay, @z, ..., ann). Now Corrolary 5.4 gives

an azp Ann
(1-12119%" A =1221)%" """ (1= 12,12

K (2) =D, (2)' Z (0)D¢,(z) = diag(

Let A; = a;;, 1 <i < n. Recalling that £, = %5 if and only if K, = hK;yh for some holomorphic
function h, we conclude that K(z, w) = h(z) (]'[?:1 m)m, h is holomorphic on D”.
Since K is a positive definite kernel, it follows that A; >0, 1 <i<n.

(b) The proof in the forward direction follows from the proof in the same direction of
part (a).

For the other direction, note that the existence of a holomorphic map J, ¢ € Aut(D"),
such that

K(z,w) = J(p,2)K(pz,pw)](p, w), z,weD", ¢ € Aut(D")

follows from Lemma 5.6. On the other hand, Proposition 5.3 gives
K (2) = Dp(2)' X (p(2))De(z), z€ D" ¢ € Aut(D"). (5.5)

Since Mob" is a subgroup of Aut(D"), it follows that (M;,, M_,, ..., M_,) is homogeneous
with respect to the group Mob”. Therefore, £ (0) = diag(ay1, azo, ..., ann) where a;; >0, 1 <
i<n.

Let o € Aut(D") be such that or(z1, 22,...,2,) = (kozo, k1 21,..., knzy,) for (z1,2,...,2,)
in D", where each k; is a constant of modulus 1. Then

0 kr 0 ... O
ki 0 0 ... O
Do (0) = ) )
0 0 0 ... kyp

Evaluating the equation (5.5) for ¢ = 0 and z = 0 and equating (1, 2) entry, we get a;; = a».
Similarly, a;; = ay; for all i. Putting A = a;;, we have £ (0) = diag(A, A,...,1). Now, Corollary

5.4 gives
K (2) = D(2)' X (0) D (2) = di A ik
R M TR PAE R PAC ERCIRPAEIE) M
which implies that K(z, w) = h(z) ( "’ m) h(w) for some holomorphic function i on
D", O

This completes the description of homogeneous operators in Cowen-Douglas class B; (D).
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5.2 Irreducible Homogeneous tuples in B,(D")

In this section, we describe all irreducible homogeneous tuples in B, (D) with respect to the
group G, which is taken to be either Mob” or Aut(D") as before. First, we describe all irre-
ducible tuples in B,(D") which are homogeneous with respect to Mob”, then we show that
there are no irreducible tuples in B, (D"), which are homogeneous with respect to Aut(D").

Definition 5.8. Let (T3, T»,..., T,;) be a commuting tuple of bounded operators. If there does
not exist any non-trivial projection which commutes with each T;, then (T3, T>,..., Ty) is said
to be irreducible.

Let H® denote the reproducing kernel Hilbert space, consisting of holomorphic func-
tions on the unit disc D, determined by the kernel K (z, w) = == defined on D. Also, let
M@ denote the operator of multiplication by the coordinate function z on H'®. Finally, let

HH be the reproducing kernel Hilbert space determined by the kernel

1 z
D) _ | G-zt d-zayM!
K"z, w) = D Itz
(l—ZLD)/“'l (1—le/)“1

defined on D. The operator M is the multiplication by the coordinate function z on HW¥,
An homogeneous operator in B; (D) must be unitarily equivalent to M @* for some a >0 (see
[26]) and every irreducible homogeneous operators in B, (D) must be unitarily equivalent to
MM for some A, 1> 0 (see [22,35]).

We prove that the tuple (M;,, M_,, ..., M,) of multiplication by the coordinate functions
acting on the Hilbert space H @) g...@ H@n-1) ¢ HAH < Hol(D", C?) is irreducible. First, we
prove a useful lemma.

Lemma 5.9. Let Hy and H, be two Hilbert spaces and T; be an irreducible operator on H; for
i =1,2. Suppose P is a projection defined on H; ® H,.

(a) If P commutes with I ® T,, then there exists a projection Py, defined on Hy, such that P =
Piol.

(b) If P commutes with T, ® I, then there exists a projection P,, defined on H,, such that P =
I® P;.

Proof. (a) Assume that dim H; = N, where N can be co. Let {¢; : 1 < i < N} be an orthonormal
basis of H;. Define U : H; ® Hy, — EB?LI H,byU(e;®y) =(0,0,...,),0,...,0), y€ Hy, where y is
in the i-th position. Then U is a unitary operator and U(I ® T,)U™ = @ﬁ\i 1 .

Let P = UPU*. Suppose ((P; j)) is the matrix representation of P as an operator on the
Hilbert space & | H, where P;; is an operator on H,. Since P is a projection, it follows that
15;."]. = pj; forall i, j.
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Since P and I ® T» commutes, the operators P and @ﬁ.\i , I also commute. This implies
that P;; commutes with T; for each i, j. Since T is irreducible and 13;“]. = Pj;, P;j both com-
mute with T>, it follows that P;; = a;;I, for some a;; € C.

Thus, we have P = ((a;;I)). Let P; be the operator on Hj, whose matrix representa-
tion with respect to the orthonormal basis {e; : 1 < i < N} is ((a;;)). Since P = ((a;;I)) isa
projection, it follows that P; is also a projectionand P = P ® I.

(b) Let V: Hi® H, — H>® H) be the unitary operator, defined by V(h;®hy) = hp®hy, hy €
H,, hy € H,. Conjugating P, T1 ® I by V and applying (a), the proof of (b) follows. O

Theorem 5.10. The tuple (M, M,,, ..., M,,) of multiplication by the coordinate functions, act-
ing on the Hilbert space H® ® ---® H'*-1) @ HM® c Hol(D",C?) is irreducible.

Proof. Evidently, the tuple (M;,, My,, ..., M_,) is simultaneously unitarily equivalent to the tu-
ple
MVg..0I&1,. I8 - aM¥ Ve[ [g--&le M)

actingon H® g ... @ H@-1 @ HW,

Let P be a projection which commutes with M®’ ®-..® I ® I. Then there exists a projec-
tion P, defined on H® @ ... @ H@-1 @ HAM such that P = I ® P,, by virtue of Lemma 5.9.
Now, P commutes with /@ M2 ®-.-® I. This implies that P, commutes with M® @ [®---®1.
Again applying Lemma 5.9, we obtain a projection P3 such that P, = I ® P3.

Continuing in this manner, we see that P = I® I ® --- ® P,, where P, is a projection
defined on H*M and it commutes with MMM . Since MM is irreducible, it follows that P,
must be either 0 or I. This proves that the given tuple is irreducible. O

Recall that D} is the holomorphic Discrete series representation of Méb on H@ and
Dy, is the multiplier representation of Méb on H*# given by the cocycle

(¢'(2))? 0
J@A=| 2O (' (@i
2(¢'(0))2

It is easy to see that the tuple of multiplication by the coordinate functions (M, M,, ..., M;,)
acting on the Hilbert space H*) @ ---® H*-1) @ HAH s homogeneous under the action of
Mob” with associated representation D, ® Dy, ®---® Dy ;, of M6b".

Lemma 5.11. Let J, : D" — GL(2,C), ¢ € Méb", be holomorphic and K : D" x D" — > be a
kernel. IfK is quasi-invariant with respect to J, then & 1 (0) = 0 whenever i # j.

Proof. Since K is quasi-invariant with respect to J, it follows from Lemma 5.3 that

H(2) = (Dp(2)' & U(9,2)")") X (9p(2) (D@ ® J(p, 2)")
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for all ¢ in M6b” and zin D". Let k € M6b” be such that k(zy, 2o, ..., 2,) = (k121, k222,.. ., knzn)
for (z1, 22,...,2,) in D" where modulus of each k; is 1. Then Dk(0) = diag(k, k», ..., k,). Now
replacing ¢ by k and z by 0 in the equation appearing above, we get

H(0) = (D) & (J(k,0)") ") % (0) (DK©O) & J (k,0)*),
which is equivalent to the equation:
(DEO) & J(k,0)°) 7 © = # (0) (DK(O) ® J (K, 0)*).
Now, equating the (i, j)-th block from both sides, we get
kiJ(k,0)* %7 (0) = k;. 27 (0)] (K, 0)*.

Thus if i # j, #'/(0) is similar to k;k;% '/ (0) for all k;, k; in the unit circle. This means that
the set of eigenvalues of ./ (0) must be invariant under the circle action. This is not possible
unless %/ (0) = 0. 0O

Lemma 5.12. Let ], :D" — GL(2,C), ¢ € Aut(D"), be holomorphic and K : D" x D" — , be a
kernel. IfK is quasi-invariant with respect to J, then #1(0) = 0 ifi # j and &' (0), &1 (0)
are similar foralli,j,1<1i,j < n.

Proof. Since K is quasi-invariant with respect to J, therefore K is also quasi-invariant with
respect to Jlypsp .pn- 1t then follows, from Lemma 5.11, that HH0)=0ifi#].

Let o € Aut(D") be the automorphism such that o (z1, 22, ..., 2,) = (k2 22, k121, ..., knzn)
for (z1,2o,...,2,) in D", where each k; is in the unit circle. Then

0 kr 0 ... 0
ki 0 0 ... O
Da(0) = ) :
0 0 0 ... kyp

Replacing ¢ by o and z by 0 in Lemma 5.3, we obtain
Do (0)® J(01,0)* & (0) = & (0) Do (0) ® J (071, 0"
Equating the (1,2) block from both sides of the equation, we get
J@1, 0" Z#0) = 2 (0)](04,0)"

Since J(ok,0)* is invertible, it follows that . 1(0) and % ?2(0) are similar. Similar reasoning
shows that # % (0) and & *1 i*1(0) are similar for all i. O
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Theorem 5.13. Let A, u, a; be positive real numbers wherei =1,2,...,n—1. The tuple of mul-
tiplication by the coordinate functions (Mg, My,,...,M;,), acting on the Hilbert space H (@)
@ H@-1) @ HAW s not homogeneous under the action of Aut(D™).

Proof. The reproducing kernel of the Hilbert space H®V) @ ---® H@»1 @ HMH jg

(a,A, ) nl_l1 1 (l_ijn)l (l_znzl;l/n)/l-'—l
K ’ ’IJ (Z,W): — - l+ +2Z, 0 )

1 (1_Zl.wi)a,' wy 1 THTZnWh

i= -z )M (1-z, )M

where a represents the vector (a5, as,...,a,-1). Since the tuple is homogeneous, it follows,
from Lemma 5.6, that for each ¢ € Aut(D") there exists a holomorphic map J, : D" — GL(2,C)
such that K‘®}H is quasi-invariant with respect to J. Then Lemma 5.12 implies that £ 1(0)
and £ """ (0) are similar. But it is easy to see that

al

H10) = and & " (0) =

0
a 0 }L+2+(%—/,L2)_1
This implies that # ' (0) and . ""(0) can not be similar. This proves that the given tuple is
not homogeneous under the action of Aut(D"). O

Now, we obtain all irreducible homogeneous tuples in B, (D) under the action of M6b".
If an irreducible tuple in B, (D") is homogeneous under the action of M6b”, then it is associ-
ated with an irreducible rank two Hermitian holomorphic vector bundle which admits an
action of the universal covering group G" of Méb”, where G is the universal covering group of
Mob. Indeed, even if we drop the assumption of irreducibility, the proof from [23, Theorem
2.1] goes through.

Also, recall that if (T, T»,..., T,) is in Bo(D™), then it is unitarily equivalent to the tuple
(M, M

2,0+ M ) acting on a Hilbert space consisting of holomorphic functions taking val-

M3, ... M)
is homogeneous with respect to M6b”, then K must be quasi-invariant relative to some family
of holomophic functions J, ¢ € M6b". Finally, if we assume that the tuple (M, M, ..., M} )
isirreducible, then the map J : Méb" xD" — GL(2,C), J(p, z) := Jy(2), is Borel and satisfies the
projective cocycle property:

ues in C2, defined on D", possessing areproducing kernel K. Next, if the tuple (M ;1 ,

J(py, 2) = m(p,v)] (v, z2)] (@, w(z), where m : Mob” x M6b" — T is a multiplier,
that is, m is a Borel map satisfying the multiplier identities

1. m(e,) = m(p,e) =1, ¢ in Mob" and e is the identity element of M6b”.

2. m(@1, p2)m(P1P2,p3) = m(@1, P203) m(@2, @s3) holds for all ¢, @2, 3 in M6b”.
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Therefore to find all the irreducible homogeneous n-tuples in B, (D"), it is enough to find all
the cocycles J:G"*xD" — GL(2,C) and positive diagonal matrix K (0, 0) such that it commutes
with J(k,0) for each k fixing 0 and so that the polarization of

K(z,2):=J(§2,2K(0,0)] (g2, 2)", (5.6)

where g, maps z to 0, is positive definite. Once we find these, we show that K is quasi-
invariant with respect to J and the adjoint of the tuple of multiplication operators on Hy is in
B, (D™).

Now, we shall compute all the two dimensional cocycles on G xD". Recall that SU(1,1)
is the 2-fold covering group of M&b and let G be the universal covering group of SU(1,1). The
unit disc D admits an action of the group SU(1, 1) by the rule,

g(z) = az+h g= (Z Z) eSU(,1),zeD.

bz+a

Therefore the direct product of n copies of the group SU(1,1), denoted by SU(1,1)", acts
on D”. Consequently, composing with the covering map, an action of the universal covering
group of Mob” on D" is evident.

In the discussion below, we follow the notation of [23]. The Lie algebra g of SU(1,1) is
spanned by
01
10

i 0
0 —i

0 i
-i 0|

1
175

1
) 0_2

1
andY = -
2

Let g* be the complexification of g. Then gC is the Lie algebra of the complexification of
the group SU(1,1), which is SL(2,C). The Lie algebra gC is spanned by

. 11 0 . 0 . 00
h=—iXy=—- , X=X +1iY = and y=X;-iY = .
20 -1 0 10
0 1 1
ThesubgroupsKC: “ 1| :2€C\{0} , Pt = “ :zeCprand P = :zeC
0 Z 0 Z
. . C c + 0 ¢
of SL(2,C) have corresponding Lie algebras t- = 0 iceCyp,pt = 0 0 :ceCyand
—c

0
p = { [ : c € C ¢, respectively, where K is the subgroup of SU(1, 1) which stabilzes 0. Let
c

b denote the Lie algebra spanned by {£, y}. Then b is the Lie algebra of the group K® P~, which

is a closed subgroup of SL(2,C). Now, every rank two cocycles on G" x D" is obtained from a
two dimensional indecomposable representationof be b & --- & b (see [23]).

Let K be the subgroup of G which stabilize 0. Then K (0,0) is invariant under the action
of K. Thus, we have to find all the cocycles of rank 2, which are obtained from two dimen-
sional indecomposable representations p of be b®--- @ b such that p is diagonalizable on the
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sub-algebra spanned by the set {(4,0,...,0),(0,h,...,0),...,(0,0,..., h)}. Let b; denote the sub-
algebra0e---ebe---®0, where b is in the i-th position. Similarly, set h; :=(0,..., h,...,0) and
yi:=(0,...,¥...,0), where h and y are in the i-th position in the tuple.

Theorem 5.14. Supposep:bebe---@b — > is a two dimensional indecomposable represen-
tation such that p(h;) is diagonalizable for all i. Then there exists k such that p\p, is indecom-
posable. Furthermore, p(hj) = ajl; and p(y;) =0 forall j # k where a; € C.

Proof. Since h; and hj commute, it follows that p(h;) and p(h;) also commute for all i, j.
Therefore p(h), p(hy),...,p(hy,) are simultaneously diagonalizable. Let {v;, v»} be a basis of
C? such that

P(hi)vj=/1fvj

foralli=1,2,...,nand j =1,2. The relation

[p(hd),p(yd)] =—p(yi)

implies that
p(h)pyvj = A - Dp(y)v;. (5.7)

Suppose )Ll! # /1? + 1 for all i. Then equation (5.7) implies that p(y;) = 0 for all i. But this is
a contradiction, since p is indecomposable. Thus, there must exists k such that either )L,lc =
Ai—=lorAi=2A; -1

Without loss of generality, we can assume that /1?c = /llk — 1. Then (5.7) implies that
p(yi)v1 = av, for some a € C and p(yi)ve =0.

Now, we claim that a # 0.

Suppose a = 0. Then p(yx) must be 0. Since p is indecomposable, there must exists
some i with 1 < i < n, such that p(y;) # 0. Again, equation (5.7) implies that either /lll. = )L? -1
or A7 = A} — 1. If we assume that A7 = A} — 1, then Equation (5.7) implies that p(y;)v) = a; v,
for some a; # 0 and p(y;)v2 = 0. Since p(y;) and p(h;) commute, in this case, it follows that
A, = A%, which contradicts the assumption that A2 = 1, — 1. If we assume 1; = A5 —1, then we
arrive at a similar contradiction.

Now, since p(h;) and p(yx) commutes for all i # k, we must have /1% = /1? and then
Equation (5.7) gives us p(y;) =0 for all i # k.

This shows that pp, is indecomposable, p(h;) = /111.12 and p(y;) =0forall i # k. O

Now we describe all the cocycles.
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Theorem 5.15. Let J: SU(1,1)" xD" — GL(2,C) be a projective cocycle such that J(k,0) is diag-
onal for all k e K". Then there exists a;, i =1,2,...,n—1 and A # 0 such that

n-1 (g;q(zn))/l 0
_ RY24 " 1
](g’ Z) = l:l_ll gi(zl) ﬁ (g/n(zn))/“’z (g;l(Zn))A'Fl )
8n

where g =(g1,82,---,8n) € SUL,1)" and z = (21, 2, ...,2,) € D".

Proof. 1f J: SU(1,1)" x D" — GL(2,C) be a projective cocycle, then there exists a two dimen-
sional indecomposable representation p of b@& b & --- ® b such that

J(g,2)=p(s(2) g7 s(g- 2),

where s: D" — SL(2,C)" is a holomorphic section. If J(k,0) is also diagonal for all k € K", then
p is diagonalizable on the sub-algebra spanned by {hy, hy,..., h,}. Let s : D" — SL(2,C)" be a
holomorphic section, defined by

ol 3154 3

Suppose p is a two dimensional indecomposable representation of be b®---®b. Applying
Theorem 5.14, we assume that there exists a;, i = 1,2,...,n—1 and A # 0 such that

P(hz) = aiIZ’ ,O(yl) :0)
fori=1,2,...,n—1and

00
1 0|

p(hn) =

° (yn) =
0 —A-1) PIm=

a; bi "
Letg:(( )) e SU(1,1)". Then
ci di)};,
J(g,2)=p(s(2) g7 s(g 2)

=p (exp ((_—Cl) yl) exp ((2log(c12z1 +d1)) h1) exp ((

- 4 2
121+ dl C22o + dg y

exp ((2log(c2zz + d2)) h2)---exp (( ) yn) exp ((2log(cnzn + dp)) hn))

— ex (( —a
- exp c1z1+dp

exp ((2log(c2z2 + do)) p(h2)) -+ -exp ((

Cnzn+dy

p(yl)) exp ((2log(c1z1 + d1)) p(h)) eXp(( ),O(J/z))

C22Zo + dg

o id, dn)p(yn)) exp ((210g(cnzn + dn) p(hy)) .
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Now, substituting the values of p(h;) and p(y;), we get that

A
n—-1 , gn(zn)) 0
]( ,Z): _(Z.)Ch‘ " , /l+l , A+1
= la@" _do_(g @) ()
2(gn(0)*
This completes the proof. O
We denote the (projective) cocycle
) A
n-1 (gn (Zn)) 0
g:(z))% ’ , A+l , A+1
,-znl e LO)% (gn(zn)) i (gn(zn))

2(gn ()

by Ju 2 where a = (a1, a»,...,a,—1). Now, we find possible values of a; and A for which there
exists a diagonal matrix K (0, 0) such that

(a) the polarization of K(z, z), defined by the equation (5.6) is a quasi-invariant kernel with
respect to /4, and

(b) the tuple of multiplication operators is in B, (D").

Suppose there exists a positive diagonal matrix K(0,0) such that the polarization of
K(z,z), defined by the equation (5.6), is a quasi-invariant kernel with respect to J, y under

the action of the group M6b”. Then the function must define a positive definite ker-

1
(1-z;w;)%
nelon D, foreach i =1,2,...,n— 1. This implies that a; must be positive for each i. Also, it is

easy to see that the polarization of
Ja,2((0,0,...,8.);(0,0,...,2)K(0,0) 4, ((0,0,..., g);(0,0,...,2))"

is a positive definite kernel on D, where g, maps z to 0. It has been shown in [22] that the
polarization of

Ja,2((0,0,...,82);(0,0,...,2)K(0,0)J,1((0,0,...,8);0,0,...,2) "
is a positive definite kernel on D, only when A is positive and

0

K(0,0) =
00=; 1,

’

where p is any positive real number. This implies that

Wy, z+u+znwn
(A-zp W) (1—zpw,)AH!

1 Zn
(I-zpwp)?  (1-zpiwp) !

n-1
K@) (2, w) = (H 1 )

i1 (1= zjwy)%
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is the only kernel on D" such that the tuple of multiplication operators is in B,(D") and ho-
mogeneous under the action of Mob”, where a = (a1, a2,...,a,-1) is a tuple of positive real
numbers and A, u > 0. Now, Theorem 5.13 implies that there are no irreducible tuple of oper-
ators in B, (D") which are homogeneous with respect to the group Aut(D").
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