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Abstract

The validity of the von-Neumann inequality for commuting n - tuples of 3× 3 matri-

ces remains open for n ≥ 3. We give a partial answer to this question, which is used to

obtain a necessary condition for the Carathéodory-Fejér interpolation problem on the

polydisc Dn . In the special case of n = 2 (which follows from Ando’s theorem as well),

this necessary condition is made explicit.

An alternative approach to the Carathéodory-Fejér interpolation problem, in the spe-

cial case of n = 2, adapting a theorem of Korányi and Pukánzsky is given. As a conse-

quence, a class of polynomials are isolated for which a complete solution to the

Carathéodory-Fejér interpolation problem is easily obtained. A natural generalization

of the Hankel operators on the Hardy space of H 2(T2) then becomes apparent. Many of

our results remain valid for any n ∈ N, however, the computations are somewhat cum-

bersome for n > 2 and are omitted.

The inequality limn→∞C2(n) ≤ 2K C
G , where K C

G is the complex Grothendieck constant

and

C2(n) = sup
{‖p(T )‖ : ‖p‖Dn ,∞ ≤ 1,‖T ‖∞ ≤ 1

}
is due to Varopoulos. Here the supremum is taken over all complex polynomials p in n

variables of degree at most 2 and commuting n - tuples T := (T1, . . . ,Tn) of contractions.

We show that

lim
n→∞C2(n) ≤ 3

p
3

4
K C

G

obtaining a slight improvement in the inequality of Varopoulos.

We show that the normed linear space `1(n), n > 1, has no isometric embedding into

k ×k complex matrices for any k ∈N and discuss several infinite dimensional operator

space structures on it.
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1 Introduction

The fundamental inequality of von-Neumann saying that ‖T ‖ ≤ 1 if and only if ‖p(T )‖ ≤
‖p‖D,∞ for any polynomial p, has lead to several new developments in modern oper-

ator theory. This inequality follows from the Sz.-Nagy dilation theorem, indeed, it is

equivalent to it. The homomorphisms ρ : C[Z ] → B(H), where C[Z ] is the polynomial

ring and B(H) is the algebra of bounded linear operators, on some complex separable

Hilbert space H, are clearly in one-one correspondence with operators T in B(H). Thus

given T ∈ B(H), one defines the homomorphism ρT (p) = p(T ) and conversely given ρ,

one may set T := ρ(z). An equivalent formulation of the von-Neumann inequality is the

statement: A homomorphism ρ is contractive, that is, ‖ρ(p)‖ ≤ ‖p‖D,∞ for all p ∈C[Z ] if

and only if ‖T ‖ := ‖ρ(z)‖ ≤ 1.

The Sz.-Nagy dilation theorem for a homomorphism ρ is the statement:

The homomorphism ρ is contractive if and only if there exists a Hilbert space K con-

tainingH and a ∗-homomorphism ρ̃ : C (T) →B(K) such that

PHρ̃(p)|H = ρ(p), p ∈C[Z ].

Since σ(ρ̃(z)) ⊂T and ρ̃ is a ∗-homomorphism, it follows that

‖ρ(p)‖ ≤ ‖PHρ̃(p)|H‖ ≤ ‖ρ̃(p)‖ ≤ ‖p‖T,∞ ≤ ‖p‖D,∞,

which is the von-Neumann inequality. The existence of the ∗-homomorphism ρ̃ can

be obtained, among several other methods, following the Schaffer construction of the

(unitary power) dilation.

Over the past five or six decades, the question of the von-Neumann inequality and

the Sz.-Nagy dilation has been studied vigorously. In explicit terms, these two questions

are stated below. Let C[Z1, . . . , Zn] denote the ring of complex valued polynomials in n

variables.

(1) If T1, . . . ,Tn is a tuple of commuting contractions, does it follow that ‖p(T1, . . . ,Tn)‖ ≤
‖p‖Dn ,∞ for any polynomial p ∈C[Z1, . . . , Zn]?

1



1 Introduction

(2) If ρ is a contractive homomorphism, that is, ‖ρ(p)‖ ≤ ‖p‖Dn ,∞, p ∈ C[Z1, . . . , Zn],

does it follow that ρ(p) = PHρ̃(p)|H for some ∗-homomorphism ρ̃ : C (Tn) →B(K),

whereK is some Hilbert space containingH?

As is well known, via the foundational work of Arveson [Arv69, Arv72], the second ques-

tion is equivalent to the complete contractivity of the homomorphism ρ:

‖ρ(P )‖ ≤ ‖P‖op
Dn ,∞, where P = ((

pi j
))

, pi j ∈C[Z1, . . . Zn]

and ‖P‖op
Dn ,∞ = sup

{∥∥((
pi j

))∥∥ : z ∈Dn}
.

If n = 1, as we have seen, an affirmative answer to both of these questions are ob-

tained via the von-Neumann inequality and the Sz.-Nagy dilation theorem. Indeed, an

affirmative answer to either of these questions gives an affirmative answer to the other.

This continues to be the case even if n = 2, thanks to the celebrated theorem of Ando.

However for n = 3, examples due to Varopoulos-Kaijser and Parrott show that neither (1)

nor (2) has an affirmative answer.

Varopoulos, in a second paper, showed that

K C
G ≤ sup‖p(T1, . . . ,Tn)‖ ≤ 2K C

G , (1.1)

where K C
G denote the complex Grothendieck constant and supremum is over all n ∈ N,

tuples of commuting contractions T = (T1, . . . ,Tn) and polynomials p of degree 2 with

‖p‖Dn ,∞ ≤ 1. He lamented if 2 appearing on the right hand side of this inequality, can

be removed. The examples due to Varopoulos leaves the following question (cf. [Pis01,

Chapter 1, Page 24] open:

Question 1.1. For a fixed n ∈N,n ≥ 3 and M > 0, does there exist a commuting contrac-

tive n - tuple of operators T1, . . . ,Tn such that

sup
p∈C[Z1,...,Zn ]

‖p(T1, . . . ,Tn)‖
‖p‖Dn ,∞

> M .

A class of homomorphism, which include the example of Parrott were studied further

in [Mis94, Pau92], where the question of contractivity vs. complete contractivity of these

homomorphism was reduced to certain linear maps. The reason for this lies in showing

that the contractivity(respectively complete contractivity) of these homomorphisms is

determined by their restriction to the linear polynomials. To explain this in some detail

and for use throughout this thesis, we introduced the following notations,
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LetΩ be a bounded and polynomially convex domain inCn . Let A (Ω) be the comple-

tion of C[Z1, . . . , Zn] with respect to norm ‖ ·‖Ω,∞, where ‖ f ‖Ω,∞ = sup{| f (ω)| :ω ∈Ω} for

every f ∈C[Z1, . . . , Zn]. Let Pk [Z1, . . . , Zn] denote the set of all polynomials in n variables

of degree at most k. When number of variables is clear from the context we omit the vari-

ables Z1, . . . , Zn . Let H∞(Ω) denote the set of all complex valued bounded holomorphic

functions onΩ and D be the unit disc in C. For each ω ∈Ω, set

H∞(Ω,D) = {
f ∈ H∞(Ω) : ‖ f ‖Ω,∞ ≤ 1

}
and H∞

ω (Ω,D) = {
f ∈ H∞(Ω,D) : f (ω) = 0

}
.

Let T = (T1, . . . ,Tn) be a tuple of bounded operators on some fixed separable Hilbert

spaceH and ω= (ω1, . . . ,ωn) be a fixed point inΩ. Define the Parrott homomorphism to

be the map ρ(ω)
T

: H∞(Ω) →B(H⊕H) given by the formula

ρ(ω)
T

( f ) =
(

f (ω)I D f (ω) ·T

0 f (ω)I

)
,

where D f (ω) =
(
∂
∂z1

f (ω), . . . , ∂
∂zm

f (ω)
)

and D f (ω) ·T = ∂
∂z1

f (ω)T1 +·· ·+ ∂
∂zm

f (ω)Tm .

The following lemma, called “the zero lemma”, and several of its variants involving

functions defined on domains inCn and taking values in k×k matrices have been proved

in [Mis84, MNS90, Mis94, Pau92]. The proof below follows closely the one appearing in

[Pau92].

Lemma 1.2. A Parrott homomorphism ρ(ω)
T

is contractive if and only if ‖ρ(ω)
T

( f )‖ ≤ 1 for

all f ∈ H∞
ω (Ω,D).

Proof. Let us assume that ‖ρ(ω)
T

( f )‖ ≤ 1 for all f ∈ H∞
ω (Ω,D). Suppose g : Ω→ D is an

analytic function and φ is the automorphism of D mapping g (ω) to 0. Then φ ◦ g is an

analytic map from Ω to D with (φ ◦ g )(ω) = 0, therefore ‖ρ(ω)
T

(φ ◦ g )‖ ≤ 1. Now by von-

Neumann’s inequality we have ‖φ−1(ρ(ω)
T

(φ◦ g ))‖ ≤ 1, which is equivalent to ‖ρ(ω)
T

(g )‖ ≤
1. Hence ρ(ω)

T
is a contraction. The converse is trivially true.

Now, let us assume thatΩ is a unit ball inCn with respect to some norm andω= 0. Let

L [Z1, . . . , Zn] = {a1z1 +·· ·+an zn : ai ∈C ∀i = 1 to n}

be the set of all linear polynomials in m variables. Let ρT denote the homomorphism

ρ(0)
T

.

Theorem 1.3. For the Parrott homomorphism ρT , we have

sup
{‖ρT (`)‖ : ` ∈L [Z1, . . . , Zn],‖`‖Ω,∞ ≤ 1

}= sup
{‖ρT ( f )‖ : f ∈ H∞

0 (Ω,D)
}

.

3
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Proof. If f ∈ H∞
0 (Ω,D) is a holomorphic function, then from the Schwarz lemma [Rud08,

Theorem 8.1.2], ` := D f (0) maps Ω in to the disc of radius ‖ f ‖Ω,∞ and thus ‖`‖Ω,∞ ≤
‖ f ‖Ω,∞. From the definition of ρT , we have ‖ρT (`)‖ = ‖ρT ( f )‖. Therefore

‖ρT (`)‖
‖`‖Ω,∞

≥ ‖ρT ( f )‖
‖ f ‖Ω,∞

and hence

sup
{‖ρT (`)‖ : ` ∈L [Z1, . . . , Zn],‖`‖Ω,∞ ≤ 1

}≥ sup
{‖ρT ( f )‖ : f ∈ H∞

0 (Ω,D)
}

.

The other inequality is obvious.

This theorem says that if we wish to establish only the contractivity of Parrott homo-

morphism ρT , it is enough to restrict ρT to the linear polynomials.

It also says that if Ω=Dn , then the Parrott homomorphisms ρT are contractive if and

only if T1, . . . ,Tn are contractions. This follows from the Schwarz lemma (cf. [Rud08,

Theorem 8.1.2]): {
D f (0) ∈Cn : f ∈ H∞

0 (Dn ,D)
}= {

` : `(Dn) ⊆D}
.

Consequently, these homomorphisms can not be used to answer the Question 1.1.

We therefore investigate the homomorphism induced by the commuting triple of con-

tractions T1,T2,T3 given by Varopoulos and Kaijser with the property ‖p(T1,T2,T3)‖ >
‖p‖D3,∞. This leads to a natural definition of a class of operators which we call Varopou-

los operator of type I and II. We investigate the answer to the Question 1.1 assuming the

homomorphism ρT is induced by T, a tuple of these operators. It is useful to recall that

Varopoulos, in a second paper, proved the following.

K C
G ≤ sup‖ρT |P2

‖ ≤ 2K C
G ,

where K C
G denote the complex Grothendieck constant and supremum is over all n ∈

N and tuples of commuting contractions T = (T1, . . . ,Tn). Thus it is natural to ask if

sup‖T ‖∞≤1 ‖ρT |P2
‖, where ‖T ‖∞ := max{‖T1‖, . . . ,‖Tn‖}, is closer to the universal constant

K C
G of Grothendieck than indicated by the inequalities (1.1). We show that inequality on

the right can be considerably improved.

LetH be a separable Hilbert space and {e j } j∈N be a set of orthonormal basis forH. For

any x ∈ H, define x] : H→ C by x](y) = ∑
j x j y j , where x = ∑

x j e j and y = ∑
y j e j . For

x, y ∈H, we set
[
x], y

]= x](y).

4



Definition 1.4 (Varopoulos Operator of Type I (V I)). LetH be a separable Hilbert space.

For x, y ∈H, define Tx,y :C⊕H⊕C→C⊕H⊕C by

Tx,y =


0 x] 0

0 0 y

0 0 0

 .

The operator Tx,y will be called Varopoulos operator of type I corresponding to the pair

of vectors x, y . If x = y then Tx y will simply be denoted by Tx .

Definition 1.5 (Varopoulos Operator of Type II and of order k (V II of order k)). LetH be

a separable Hilbert space. For X ∈B(H), let

TX =



0 X 0 · · · 0

0 0 X · · · 0
...

...
...

. . .
...

0 0 0 · · · X

0 0 0 · · · 0


be the operator in B(H⊗C k+1). In analogy with the work of Varopoulos [Var76], oper-

ators of the form TX , X ∈ B(H), are called Varopoulos operator of type II and of order

k.

Let Ω be a bounded domain in Cn and ω ∈ Ω be a fixed but arbitrary point. As be-

fore let ρ(ω)
x y (respectively µ(ω)

X ) denote the induced homomorphism on H∞(Ω), corre-

sponding to a tuple of commuting contractions ω1I +Tx1 y1 , . . . ,ωn I +Txn yn (respectively

ω1I +TX1 , . . . ,ωn I +TXn ), which is defined as following.

ρ(ω)
x y ( f ) =


f (ω) D f (ω) · x] 1

2 D2 f (ω) · Ax,y

0 f (ω)I D f (ω) · y

0 0 f (ω)


for f ∈ H∞(Ω), where x = (x1, . . . , xn), y = (y1, . . . , yn), x] = (x]1, . . . , x]n) and Ax,y =

((
[x]i , y j ]

))
.

As the definition of ρ(ω)
x y ( f ) includes only the terms of order at most 2 from the Taylor se-

ries expansion of f , therefore it is quite natural to ask the following question.

Question 1.6. We ask if the contractivity of ρ(ω)
x y on H∞(Ω) is equivalent to contractivity

of the restriction to the polynomials of degree at most 2.

5



1 Introduction

Clearly to answer this question, one must first answer a related question generalizing

the Carathéodory-Fejér interpolation problem, namely: Given any polynomial p in n

variables of degree 2 with p(0) = 0, find necessary and sufficient conditions on the coef-

ficients of p to ensure the existence of a holomorphic function h defined on the polydisc

Dn with h(k)(0) = 0 for all multi indices k of length at most 2, such that f := p +h maps

the polydisc Dn to the unit disc D.

However the absence of an explicit criterion, in spite of several results which have

been obtained recently [FF90, EPP00, Woe02, HWH14], for the solution to this problem

for n > 1 makes it difficult to answer this question.

We combine a theorem due to Korányi and Pukánszky giving a criterion for deter-

mining if the real part of a holomorphic function defined on the polydisc Dn is positive

with a theorem due to Parrott to find a solution to the Carathéodory-Fejér interpolation

problem. We state these two theorems below.

Theorem 1.7 (Korányi-Pukánszky Theorem). If the power series
∑
α∈Nn

0
aαzα represents a

holomorphic function f on the polydisc Dn , then ℜ( f (z)) ≥ 0 for all z ∈ Dn if and only if

the map φ :Zn →C defined by

φ(α) =


2ℜaα if α= 0

aα if α> 0

a−α if α< 0

0 otherwise

is positive, that is, the k ×k matrix
((
φ(mi−m j )

))
is non-negative definite for every choice of

m1, . . . ,mk ∈Zn .

Let f : Dn → D be a holomorphic function and χ be the Cayley map of the unit disc

to the right half plane. Then in the matricial representation of φχ◦ f with respect to the

usual order in Z2, it is not easy to isolate the coefficients of f . We introduce a new order,

to be called, the D-slice ordering:

Definition 1.8 (D-slice ordering). Suppose (x1, y1) ∈ Pl and (x2, y2) ∈ Pm are two ele-

ments in Z2. Then

1. If l = m, then (x1, y1) < (x2, y2) is determined by the lexicographic ordering on

Pl ⊆Z2 and

2. if l < m (resp., if l > m), then (x1, y1) < (x2, y2) (resp., (x1, y1) > (x2, y2)).

6



The matricial representation of the functionφχ◦ f is then in the form of a block Toeplitz

matrix with respect to the D-slice ordering.

Theorem 1.9 (Parrott’s Theorem). For i = 1,2, let Hi ,Ki be Hilbert spaces and H =H1 ⊕
H2,K=K1 ⊕K2. If (

A

C

)
:H1 →K and

(
C D

)
:H→K2

are contractions, then there exists X ∈B(H2,K1) such that
(

A X
C D

)
:H→K is a contraction.

In this theorem, all the choices for X are given by the formula:

(I −Z Z∗)1/2V (I −Y ∗Y )1/2 −Z S∗Y ,

where V is a contraction and Y , Z are determined from the formulae:

D = (I −CC∗)1/2Y , A = Z (I −C∗C )1/2.

Our method gives only a (explicit) necessary condition for the existence of a solution

to the Carathéodory-Fejér interpolation problem in general. (Surprisingly, for the case

of the bi-disc, this necessary condition is exactly the condition for contractivity of the

homomorphisms induced by the Varopoulos operators.)

It also gives an algorithm for constructing a solution whenever such a solution exists.

The algorithm involves finding, inductively, polynomials pn of degree at most n such

that a certain block Toeplitz operator, made up of multiplication by these polynomials

is contractive. A solution to the Carathéodory-Fejér interpolation problem exists if and

only if this process is completed successfully.

If n = 1 and the necessary condition we have obtained is met, then the algorithm

completes successfully and produces a solution to the Carathéodory-Fejér interpola-

tion problem. Thus in this case, we fully recover the solution to the Carathéodory-Fejér

interpolation problem.

We also isolate a class of polynomials for which our necessary condition is also suffi-

cient. This is verified using the deep theorem of Nehari reproduced below (cf. [You88,

Theorem 15.14, page 194]).

Let H 2(T) denote the Hardy space, a closed subspace of L2(T). Let P− denote the

orthogonal projection of L2(T) onto L2(T)ªH 2(T).

Definition 1.10 (Multiplication Operator). For φ ∈ L∞(T), we define multiplication op-

erator Mφ : L2(T) → L2(T) by Mφ( f ) =φ · f .

7



1 Introduction

Since φ · f ∈ L2(T) for any φ ∈ L∞(T) and f ∈ L2(T) therefore Mφ is well defined for all

φ ∈ L∞(T). Also ‖Mφ‖ = ‖φ‖∞ (cf. Theorem 13.14 in [You88]).

Definition 1.11 (Hankel Operator). Let φ ∈ L∞(T). Hankel operator corresponding to φ

is the operator P− ◦Mφ|H 2(T). It is denoted by Hφ.

Theorem 1.12 (Nehari’s Theorem). If φ ∈ L∞(T) and Hφ is the corresponding Hankel

operator, then

inf
{‖φ− g‖T,∞ : g ∈ H∞(T)

}= ‖Hφ‖op .

All this is done for the bi-discD2 with the understanding that these computations will

go through for the polydisc Dn . Similarly, while we have discussed the Carathéodory-

Fejér interpolation problem for polynomials of degree at most 2, again, our methods

remain valid for an arbitrary polynomial.

What follows is a detailed description of the results proved in this thesis.

Following [Var76] and [Pis01, Page 24], in chapter 2, we define the quantities:

Ck (n) = sup
{‖p(T )‖ : ‖p‖Dn ,∞ ≤ 1, p is of degree at most k, ‖T ‖∞ ≤ 1

}
and

C (n) = lim
k→∞

Ck (n), (1.2)

where ‖T ‖∞ = max
{‖T1‖, . . . ,‖Tn‖

}
. In this notation, it follows from the von-Neumann

inequality and Ando’s theorem that C (1),C (2) = 1. Also C2(3) > 1, thanks to the exam-

ple of Varopoulos and Kaijser [Var74] involving an (explicit) homogeneous polynomial

of degree 2. Following this, in the paper [Var76], Varopoulos proves the inequality (1.1).

Consequently, the limit of the non-decreasing sequence C2(n) must be bounded below

by K C
G . We show that C2(3) ≥ 1.2 by means of explicit examples. We were hoping to im-

prove this inequality obtained earlier by Holbrook [Hol01] since our methods appear to

be somewhat more direct. In view of the known lower bound for limn→∞C2(n) in (1.1),

we hoped that the lower bound for C2(3) itself will be closer to K C
G . In this chapter, we

also show that ‖p(T1, . . . ,Tn)‖ ≤ ‖p‖Dn ,∞ for any n commuting contractions of the form{( (ω1 α1 0
0 ω1 β1
0 0 ω1

)
, . . . ,

(ωn αn 0
0 ωn βn
0 0 ωn

) )
:αiβ j =α jβi ,1 ≤ i , j ≤ n,ω := (ω1, . . . ,ωn) ∈Dn

}
, (1.3)

after assuming that |αi | = |βi |, 1 ≤ i ≤ n. This is interesting considering that the von-

Neumann inequality is valid for any commuting n - tuple of 2×2 contractions [MP93,

Agl90] and fails for 4× 4 contractions [Hol01]. As a corollary of the von-Neumann in-

equality for a subclass of the operators defined in (1.3), we get the following necessary

condition for the Carathéodory-Fejér interpolation problem for the polydisc Dn .
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Theorem 1.13. Let p be a polynomial in n variables of degree 2 such that p(0) = 0. There

exists a holomorphic function q, defined on polydiscDn , with q (k)(0) = 0, |k| ≤ d such that

‖p +q‖∞ ≤ 1 only if

sup
‖α‖∞≤1

{∣∣∣D2p(0) · Aα

2

∣∣∣+ ∣∣Dp(0) ·α∣∣2
}
≤ 1,

whereα= (α1, . . . ,αn), Aα = ((
αiα j

))
, D2p(0)·Aα =∑ ∂2p

∂zi∂z j
(0)αiα j and Dp(0)·α=∑ ∂p

∂zi
(0)αi .

We also prove the following theorem, giving a considerable improvement on the up-

per bound (1.1) previously obtained in [Var76].

Theorem 1.14. limn→∞C2(n) ≤ 3
p

3
4 K C

G .

Finally, in this chapter, we investigate in some detail, the contractivity of the homo-

morphisms ρx,y induced by the Varopoulos operators of type I (V I) and we come up with

the same inequality as in the Theorem 1.13 but for n = 2.

In chapter 3, we study the homomorphisms induced by tuples of commuting Varopou-

los operators of type II and order 2 and solve the extremal problem (indeed a more gen-

eral extremal problem obtained in the study of these homomorphism) occurring in the

Theorem 1.13 but for n = 2. We define

p1(z) = ∂

∂z1
f (0)+ ∂

∂z2
f (0)z and p2(z) = 1

2

∂2

∂z2
1

f (0)+ ∂2

∂z1∂z2
f (0)z + 1

2

∂2

∂z2
2

f (0)z2

for a holomorphic function f in two variables and we prove the following.

Theorem 1.15. For f ∈ H∞
0 (D2,D), we have,

sup
‖X ‖∞≤1

∥∥∥∥T (
D f (0) ·X ,

1

2
D2 f (0) · AX

)∥∥∥∥= ‖T(Mp1 , Mp2 )‖,

where X = (X1, X2) is pair of commuting operators, ‖X ‖∞ = max{‖X1‖,‖X2‖}, AX = ((
Xi X j

))
and T(A1, A2) =

( A1 A2

0 A1

)
for any A1, A2 ∈B(H).

In the process of solving the extremal problem occurring in this theorem, we reprove

the von-Neumann inequality and Ando’s theorem for a commuting pair of Varopoulos

operators of type II.

In chapter 4, we give an alternative for solving the Carathéodory-Fejér interpolation

problem after adapting a theorem of Korányi and Pukánszky. This approach is important

9



1 Introduction

as it is independent of the commutant lifting theorem, whereas the method in chapter 3

strongly depends on it. For a polynomial p in two variables we define

p1(z) = ∂

∂z1
p(0)+ ∂

∂z2
p(0)z and p2(z) = 1

2

∂2

∂z2
1

p(0)+ ∂2

∂z1∂z2
p(0)z + 1

2

∂2

∂z2
2

p(0)z2.

In the following theorem, we reformulate the Carathéodory-Fejér interpolation problem

for the bi-disc D2.

Theorem 1.16. For any polynomial p of the form

p(z) = a10z1 +a01z2 +a20z2
1 +a11z1z2 +a02z2

2 ,

there exists a holomorphic function q, defined on the bi-disc D2, with q (k)(0) = 0 for |k| ≤
2, such that ‖p + q‖D2,∞ ≤ 1 if and only if |p2| ≤ 1−|p1|2 and there exists a holomorphic

function f :D→B(L2(T)) with

‖ f ‖op
D,∞ ≤ 1 and

f (k)(0)

k !
= Mpk for all k ≥ 0,

where p0 = 0 and for k ≥ 3, pk ∈ C[Z ] is a polynomial of degree less than or equal to k.

Here Mpk is the multiplication operator on L2(T) induced by the polynomial pk .

In this chapter, we show that |p1|2 +|p2| ≤ 1 is a necessary condition for the solution

to exist for the Carathéodory-Fejér interpolation problem. In the following theorem, we

also isolate a class of polynomials for which this is a sufficient condition for the existence

of a solution.

Theorem 1.17. Let p1(z) = γ+δz and p2(z) = (α+βz)(γ+δz) for some choice of complex

numbersα, β, γ and δ. Assume that |p1|2+|p2| ≤ 1. If eitherαβγδ= 0 or arg(α)−arg(β) =
arg(γ) − arg(δ), then |p1|2 + |p2| ≤ 1 is a sufficient condition also for the existence of a

solution for the corresponding Carathéodory-Fejér interpolation problem.

We illustrate, by means of an example, that this necessary condition is not sufficient in

general. In the end of this chapter, we give a proof of the Korányi-Pukánszky theorem for

the bi-disc using the spectral theorem. This proof can be made to work for the polydisc

as well.

In chapter 5, we give a generalization of Nehari’s theorem to two variables. In this

chapter we define the Hankel operator Hφ corresponding to any function φ ∈ L∞(T2).

The following theorem shows that the norm of the Hankel operator Hφ is the norm of

the symbol φ with respect to a quotient norm, described below.
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Theorem 1.18 (Nehari’s theorem for L2(T2)). If φ ∈ L∞(T2), then ‖Hφ‖ = dist∞(φ, H1).

In this theorem, H1 :=
{

f := ∑
m+n≥0

am,n zm
1 zn

2 | f ∈ L∞(T2)

}
and dist∞(φ, H1) is the dis-

tance of φ from H1 in L∞− norm.

In chapter 6, we study the operators space structures on `1(n). There is a canonical

isometric embedding of `∞(n) into the set of n×n matrices Mn . However, we show that

`1(n), n > 1, has no isometric embedding into Mk for any k ∈N.

Theorem 1.19. There is no isometric embedding of `1(n), n > 1, in to Mk for any k ∈N.

The next theorem provides several isometric embeddings of `1(n) into B(H) for each

n ∈N.

Let H1, . . . ,Hn be Hilbert spaces and Ti be a contraction on Hi for i = 1, . . . ,n. Assume

that the unit circle T is contained in σ(Ti ), the spectrum of Ti , for i = 1, . . . ,n. Denote

T̃1 = T1 ⊗ I⊗(n−1), T̃2 = I ⊗T2 ⊗ I⊗(n−2), . . . , T̃n = I⊗(n−1) ⊗Tn .

Theorem 1.20. Suppose the operators T̃1, . . . , T̃n are defined as above. Then, the function

f : `1(n) →B(H1 ⊗·· ·⊗Hn)

defined by

f (a1, a2, . . . , an) := a1T̃1 +a2T̃2 +·· ·+anT̃n .

is an isometry.

For n = 2,3, we show that all of these embeddings are completely isometric to the MIN

structure. In the end of this chapter, using these embeddings and Parrott’s example in

[Mis94], we construct an operator space structure on `1(3) which is distinct from the

MIN structure.
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2 Varopoulos Operators of Type I

Let C[Z1, . . . , Zn] denote the set of all polynomials in n complex variables. For every con-

traction T on a complex Hilbert space, the von-Neumann inequality [vN51] states that

‖p(T )‖ ≤ ‖p‖D,∞ for every p ∈ C[Z ]. Ando [And63] established an analogous inequal-

ity for any two commuting contractions T1,T2, namely, ‖p(T1,T2)‖ ≤ ‖p‖D2,∞ for every

p ∈C[Z1, Z2]. Varopoulos [Var74] constructed examples showing that the generalization

of this inequality to three variables fails. He along with Kaijser also produced an explicit

example of three commuting contractions T1,T2,T3 and a polynomial p with the prop-

erty ‖p(T1,T2,T3)‖ > ‖p‖D3,∞. Let ‖T ‖∞ = max
{‖T1‖, . . . ,‖Tn‖

}
,

Ck (n) = sup
{‖p(T )‖ : ‖p‖Dn ,∞ ≤ 1, p is of degree at most k, ‖T ‖∞ ≤ 1

}
. (2.1)

and

C (n) = lim
k→∞

Ck (n). (2.2)

In this notation, it follows from the von-Neumann inequality and Ando’s theorem that

C (1),C (2) = 1.

Also C2(3) > 1, thanks to the example of Varopoulos and Kaijser [Var74] involving an

(explicit) homogeneous polynomial of degree 2. Following this, in the paper [Var76],

Varopoulos shows that the limit of the non-decreasing sequence C2(n) must be bounded

above by 2K C
G , where K C

G is the complex Grothendieck constant, the definition is given

below. He also showed that the lower bound for this limit is K C
G . Thus he has proved

K C
G ≤ lim

n→∞C2(n) ≤ 2K C
G . (2.3)

We show that C2(3) ≥ 1.2 by means of explicit examples. We were hoping to improve

this inequality obtained earlier by Holbrook [Hol01] since our methods appear to be

somewhat more direct. In view of the known lower bound for limn→∞C2(n) in (2.3), we

hoped that the lower bound for C2(3) itself will be closer to K C
G .

We recall some of the details from the two papers [Var74, Var76] of Varopoulos, which

will be useful in what follows. Fix a Hilbert spaceH and a bilinear form S onHwith norm
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2 Varopoulos Operators of Type I

1. Let e, f be two arbitrary but fixed vectors of length 1 and set H = {e}⊕H⊕ { f }. For any

x ∈H, define Tx : H →H by the rule

Tx f = x, Tx y = S(x, y)e, Txe = 0 for all y ∈H (2.4)

and extend it linearly. It is then easily verified that for every x, y ∈H, Tx and Ty commute.

Lemma 2.1. For every x ∈ H, ‖Tx‖ = ‖x‖, where the operator Tx is defined according to

(2.4).

Proof. For h ∈ H and α,β ∈ C, we have h = αe +PHh +β f , where PH : H → H is the

orthogonal projection onH.

〈T ∗
x Txh,h〉 = |S(x,PH(h))|2 +|β|2‖x‖2 ≤ (‖PHh‖2 +|β|2)‖x‖2

therefore 〈T ∗
x Txh,h〉 ≤ ‖h‖2‖x‖2. Thus ‖Tx‖ ≤ ‖x‖. We already know that ‖Tx‖ ≥ ‖x‖ and

hence ‖Tx‖ = ‖x‖.

Definition 2.2 (Grothendieck Constant). Suppose A := ((
a j k

))
n×n is a complex(real) array

satisfying ∣∣∣∣∣ n∑
j ,k=1

a j k s j tk

∣∣∣∣∣≤ max
{∣∣s j

∣∣ |tk | : 1 ≤ j ,k ≤ n
}

, (2.5)

where s j , tk are complex(real) numbers. Then there exists K > 0 such that for any choice

of sequence of vectors (x j )n
1 , (yk )n

1 in a complex(real) Hilbert spaceH, we have∣∣∣∣∣ n∑
j ,k=1

a j k〈x j , yk〉
∣∣∣∣∣≤ K max

{‖x j‖‖yk‖ : 1 ≤ j ,k ≤ n
}

. (2.6)

The least constant K satisfying inequality (2.6) is denoted by KG and called Grothendieck

constant. The constant KG is a universal constant independent of n and the matrices

satisfying the hypothesis (2.5). Note that the definition of KG depends only on the un-

derlying field. When it is the field C of complex numbers, this constant is called the

complex Grothendieck constant and is denoted by K C
G .

Let pA be the polynomial
∑n

i , j=1 ai j zi w j . The inequality (2.5) is equivalent to saying

that ‖pA‖D2n ,∞ ≤ 1. This follows from the equality ‖pA‖D2n ,∞ = ‖A‖`∞(n)→`1(n). Let pA,M be

the restriction of pA to the diagonal set

M= {
(z1, . . . , zn , z1, . . . , zn) : |zi | < 1,1 ≤ i ≤ n

}
,
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which is the polydisc Dn . Thus ‖pA,M‖Dn ,∞ is also at most 1. If A is symmetric, then the

second derivative D2pA,M(0) is 2A. It is therefore clear that

‖p2A,M‖Dn ,∞ ≤ 2‖A‖`∞(n)→`1(n). (2.7)

We find examples where (2.7) is strict. Indeed, for this particular example, we show that

‖A‖`∞(n)→`1(n)

‖pA,M‖Dn ,∞
≥ 1.2

This observation will be important for us in what follows. As pointed out earlier, the

following theorem is due to Varopoulos.

Theorem 2.3 ([Var76]). limn→∞C (n) ≥ K C
G .

Proof. It is a well known that K C
G > 1. Let ε> 0 be a fixed real number such that K C

G −ε>
1. Since K C

G is the least constant in the inequality (2.6), therefore there exists a matrix

A := ((
a j k

))
n×n satisfying the inequality (2.5) and unit vectors xi , yi , in `2(k), 1 ≤ i ≤ n,

for some k ∈N such that
n∑

j ,k=1
a j k〈x j , yk〉 > (K C

G −ε)

Let

Ã = ((
ã j k

))
2n×2n := 1

2

(
0 A

At 0

)
.

It is easy to see that Ã satisfies inequality (2.5). Take x̃1 = x1, x̃2 = x2, ..., x̃n = xn , x̃n+1 =
ȳ1, ..., x̃2n = ȳn and consider the bilinear form S on `2(k) defined as follows:

S(x, y) =
k∑

j=1
x j y j ,

where x = (x1, . . . , xk ) and y = (y1, . . . , yk ). The operator Ã : `∞(2n) → `1(2n) is of norm at

most 1 and

2n∑
j ,k=1

ã j k S(x̃ j , x̃k ) = 1

2

{
n∑

j ,k=1
a j k〈x j , yk〉+

n∑
j ,k=1

ak j 〈ȳ j , x̄k〉
}

,

which implies
2n∑

j ,k=1
ã j k S(x̃ j , x̃k ) =

n∑
j ,k=1

a j k〈x j , yk〉 > K C
G −ε. (2.8)
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2 Varopoulos Operators of Type I

The polynomial p(z1, . . . , z2n) = ∑2n
j ,k=1 ã j k z j zk is a homogeneous polynomial of degree

two. It is clear that ‖p‖D2n ,∞ ≤ 1. Consider the operators (as defined in (2.4)),

Tx̃ j =


0 x̃ j 0

0 0 x̃ t
j

0 0 0

 (2.9)

for j = 1, . . . ,2n. Then ‖p(Tx̃1 , . . . ,Tx̃2n )‖ > K C
G − ε is a direct implication of the inequality

(2.8).

LetH be a separable Hilbert space and {e j } j∈N be a set of orthonormal basis forH. For

any x ∈ H, define x] : H→ C by x](y) = ∑
j x j y j , where x = ∑

x j e j and y = ∑
y j e j . For

x, y ∈H, we set
[
x], y

]= x](y). From the definition it can be seen that
[
x], y

]= [
y ], x

]
. Let

H] := {
x] : x ∈H}

. Let H] be equipped with the operator norm. Since the map φ :H→H]

defined by φ(x) = x] is a linear onto isometry, therefore H] is linearly (as opposed to the

usual anti-linear identification) isometrically isomorphic toH.

Let H1 and H2 be two separable Hilbert spaces and {e j } j∈N, {ẽ j } j∈N be orthonormal

bases of H1 and H2 respectively. Let { f j } j∈N and { f̃ j } j∈N be the corresponding dual basis

forH1 andH2 respectively. For a linear map T :H1 →H2, define T ] :H2 →H1 by

T ] (ẽk ) =
∑

j
f̃k (Te j )e j

and extend it linearly. We note that if T is bounded then so is the operator T ]. We have

the following lemma:

Lemma 2.4. Let H1,H2 and H3 be separable Hilbert spaces and {e(p)
j } j∈N be an orthonor-

mal basis forHp for p = 1,2,3. Let { f (p)
j } j∈N be the corresponding dual basis forHp for p =

1,2,3. If T :H1 →H2 and S :H2 →H3 are two bounded operators, then (S ◦T )] = T ] ◦S].

Proof. It is enough to check the equality (S ◦T )] = T ]◦S] on the basis elements {e(3)
k }k∈N.

For any k ∈N,

(S ◦T )]
(
e(3)

k

)=∑
j

f (3)
k

(
S
(
T (e(1)

j

))
e(1)

j .

(
T ] ◦S]

)(
e(3)

k

)= T ]
(∑

j
f (3)

k

(
Se(2)

j

)
e(2)

j

)
=∑

j
f (3)

k

(
Se(2)

j

)(∑
l

f (2)
j (Te(1)

l )e(1)
l

)
.
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Thus

(
T ] ◦S]

)(
e(3)

k

)=∑
l

f (3)
k

(
S
(∑

j
f (2)

j (Te(1)
l )e(2)

j

))
e(1)

l

=∑
l

f (3)
k

(
(S ◦T )(e(1)

l )
)
e(1)

l .

Hence
(
S ◦T

)](e(3)
k

)= (
T ] ◦S]

)(
e(3)

k

)
.

The form of the operator appearing in (2.9) and the operators used in the addendum

of [Var74], suggest the definition of the following two classes:

Definition 2.5 (Varopoulos Operator of Type I (V I)). LetH be a separable Hilbert space.

For x, y ∈H, define Tx,y :C⊕H⊕C→C⊕H⊕C by

Tx,y =


0 x] 0

0 0 y

0 0 0

 .

The operator Tx,y will be called Varopoulos operator of type I corresponding to the pair

of vectors x, y . If x = y then Tx y will simply be denoted by Tx .

Definition 2.6 (Varopoulos Operator of Type II and of order k (V II of order k)). LetH be

a separable Hilbert space. For X ∈B(H), let

TX =



0 X 0 · · · 0

0 0 X · · · 0
...

...
...

. . .
...

0 0 0 · · · X

0 0 0 · · · 0


be the operator in B(H⊗C k+1). In analogy with the work of Varopoulos [Var76], oper-

ators of the form TX , X ∈ B(H), are called Varopoulos operator of type II and of order

k.

In the following section, we show that ‖p(T1, . . . ,Tn)‖ ≤ ‖p‖Dn ,∞ for any n commuting

contractions of the form{( (ω1 α1 0
0 ω1 β1
0 0 ω1

)
, . . . ,

(ωn αn 0
0 ωn βn
0 0 ωn

) )
:αiβ j =α jβi ,1 ≤ i , j ≤ n,ω := (ω1, . . . ,ωn) ∈Dn

}
, (2.10)
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2 Varopoulos Operators of Type I

after assuming that |αi | = |βi |, 1 ≤ i ≤ n. This is interesting considering that the von-

Neumann inequality is valid for any commuting n - tuple of 2×2 contractions [MP93,

Agl90] and fails for 4×4 contractions [Hol01].

Secondly, we show that limn→∞C2(n) ≤ 3
p

3
4 K C

G giving a considerable improvement on

the upper bound previously obtained in [Var76].

Finally, we investigate in some detail, the contractivity of the homomorphisms ρx,y

induced by the Varopoulos operators of type I (V I). In particular, for a pair of commuting

contractions Tx1 ,Tx2 , x1, x2 ∈ C, of type V I, and any holomorphic function f : D2 → D,

f (0,0) = 0, applying the von-Neumann inequality, we must have

sup
x1,x2∈D

∥∥∥∥∥T
(
∂ f

∂z1
(0)x1 + ∂ f

∂z2
(0)x2,

1

2

2∑
i , j=1

∂2 f

∂zi∂z j
(0)xi x j

)∥∥∥∥∥≤ 1,

where T(ω,α) =
( ω α

0 ω

)
. The solution to this problem (indeed a generalization of it),

which we obtain in Chapter 3, therefore gives a necessary condition for the Carathéodory-

Fejér interpolation problem for polynomials of degree 2. Unfortunately, while the ex-

tremal problem can be stated for any n in N, not just for 2, its solution depends on the

commutant lifting theorem.

2.1 The von-Neumann Inequality

The von-Neumann inequality for a commuting n - tuple of 3×3 matrices remains open

for n ≥ 3. In this section, we establish this inequality for any n - tuple of commuting

contractions of the form prescribed in (2.10) with the additional assumption that |αi | =
|βi |, 1 ≤ i ≤ n.

Let H be a separable Hilbert space. Given a set of n operators A1, . . . , An in B(H),

define the operator

T(A1, . . . , An) :=



A1 A2 A3 · · · An

0 A1 A2 · · · An−1

0 0 A1 · · · An−2
...

...
...

. . .
...

0 0 0 · · · A1

 ,

which is in B(H⊗Cn).
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2.1 The von-Neumann Inequality

The condition for the contractivity of any 3×3 matrix of the form

T =


ω α 0

0 ω β

0 0 ω

 ,ω ∈D, α and β in C. (2.11)

is given in the following lemma. It will be used repeatedly in what follows.

Lemma 2.7. The operator T defined in (2.11) is a contraction if and only if

|α| ≤ 1−|ω|2, |β| ≤ 1−|ω|2

and

|αβω|2 ≤
((

1−|ω|2)2 −|α|2
)((

1−|ω|2)2 −|β|2
)

.

In particular, if |α| = |β|, then T is contractive if and only if |α| ≤ (1−|ω|)p1+|ω|.

Proof. Suppose T is contraction. Then T(ω,α) :=
(
ω α
0 ω

)
and T(ω,β) :=

(
ω β
0 ω

)
must be

contractions. Hence, we have |α| ≤ 1−|ω|2 and |β| ≤ 1−|ω|2. By Parrott’s theorem [Par78],

there exists a ∈C such that the operator Ta is a contraction, where

Ta =


ω α a

0 ω β

0 0 ω

 .

Every possible choice of a in C, ensuring contractivity of the operator Ta is given by

a = (I −Z Z∗)1/2V (I −Y ∗Y )1/2 −Z S∗Y ,

where V : C→ C is an arbitrary contraction, S = T(0,ω), R = (β,ω)t and Q = (ω,α). The

operators Y and Z are explicitly determined by the formulae R = (I −SS∗)1/2Y and Q =
Z (I −S∗S)1/2. The reader is referred to (cf. [You88, Chapter 12]) for more information on

the Parrott’s theorem and related topics. Thus

Y =
(

β

(1−|ω|2)1/2
,ω

)t

and Z =
(
ω,

α

(1−|ω|2)1/2

)
.

Therefore

a =
(
(1−|ω|2)− |α|2

1−|ω|2
)1/2

V

(
(1−|ω|2)− |β|2

1−|ω|2
)1/2

− ωβα

1−|ω|2 . (2.12)
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2 Varopoulos Operators of Type I

Since T is a contraction, it follows that a = 0 is a valid choice in (2.12) for some contrac-

tion V . This forces

V = ωβα

1−|ω|2
((

1−|ω|2)− |α|2
1−|ω|2

)−1/2((
1−|ω|2)− |α|2

1−|ω|2
)−1/2

to be of absolute value at most 1. Thus we have

|ω|2|α|2|β|2(
1−|ω|2)2 ≤

((
1−|ω|2)− |α|2

1−|ω|2
)((

1−|ω|2)− |β|2
1−|ω|2

)
.

Hence we get

|αβω|2 ≤
((

1−|ω|2)2 −|α|2
)((

1−|ω|2)2 −|β|2
)

.

All the steps in the proof given above are reversible. Therefore, the converse statement

is valid as well.

The condition for contractivity assuming |α| = |β| is easily seen to be

|α| ≤ (1−|ω|)
√

1+|ω|.

Remark 2.8. It is known that T is a contraction if and only if ‖ f (T )‖ ≤ 1 for all f in the

disc algebraA(D) with f (ω) = 0 for an arbitrary but fixedω inD and ‖ f ‖D,∞ ≤ 1. Therefore

T in (2.11) is a contraction if and only if

| f ′(ω)|2|α|2 +| f ′′(ω)/2||α|2 ≤ 1

for all f ∈A(D) with f (ω) = 0 and ‖ f ‖D,∞ ≤ 1. Thus

|α|2 ≤ 1

sup
(
| f ′(ω)|2 +| f ′′(ω)

2 |
) ,

where the supremum is over the set { f ∈ A(D) : f (ω) = 0,‖ f ‖D,∞ ≤ 1}. From the Lemma

2.7, we conclude (for some arbitrary but fixed ω ∈D) that

sup

{
| f ′(ω)|2 + ∣∣ f ′′(ω)

2

∣∣ : f ∈A(D), f (ω) = 0,‖ f ‖D,∞ ≤ 1

}
= 1

(1−|ω|2)(1−|ω|) .

For α j ,β j ∈D, define the operators

T j =


0 α j 0

0 0 β j

0 0 0

 , 1 ≤ j ≤ n,
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2.1 The von-Neumann Inequality

and assume that α jβk = αkβ j , j ,k = 1, . . . ,n. This commuting n-tuple of contractions

T = (T1, . . . ,Tn) is in the set (2.10) withω= 0. It defines a homomorphismρT :C[Z1, . . . , Zn] →
B(C3) given by the formula ρT (p) := p(T ). Explicitly evaluating p(T ), we obtain

ρT ( f ) :=


f (0) D f (0) ·α 1

2 D2 f (0) · Aαβ

0 f (0) D f (0) ·β
0 0 f (0)

 , f ∈C[Z1, . . . , Zn], (2.13)

where Aαβ =
((
α jβk

))
n×n . Here

D f (0) ·α=∑
j

∂ f

∂z j
(0)α j , D f (0) ·β=∑

j

∂ f

∂z j
(0)β j

and

D2 f (0) · Aαβ =
∑
j ,k

∂2 f

∂z j∂zk
(0)α jβk .

Clearly, the formula (2.13) makes sense and defines a homomorphism of the algebra

H∞(Dn) consisting of all bounded holomorphic functions on the polydisc Dn .

The following lemma and several of its variants involving functions defined on do-

mains in Cn and taking values in k × k matrices have been proved in [Mis84, MNS90,

Mis94, Pau92]. The proof below follows closely the one appearing in [Pau92].

Lemma 2.9 (The zero lemma). The homomorphism ρT is a contraction if and only if

‖ρT ( f )‖ ≤ 1 for all f ∈ H∞(Dn) with f (0) = 0 and ‖ f ‖Dn ,∞ ≤ 1.

Proof. Let us assume that ‖ρT ( f )‖ ≤ 1 for all f :Dn →D with f (0) = 0. Let g :Dn →D be

an analytic function and φ be an automorphism of D mapping g (0) to 0. Then φ ◦ g is

an analytic map from Dn to D with (φ◦ g )(0) = 0, therefore ‖ρT (φ◦ g )‖ ≤ 1. Now by von-

Neumann’s inequality we have ‖φ−1(ρT (φ ◦ g ))‖ ≤ 1 which is equivalent to ‖ρT (g )‖ ≤ 1.

Hence ρT is a contraction. The converse is trivially true.

Theorem 2.10. The homomorphism ρT , as defined in (2.13) for the commuting tuple of

contractions T, is contractive.

Proof. Assume that the supremum norm of the polynomial

p(z1, . . . , zn) =
n∑

j=1
a j z j +

n∑
i , j=1

ai j zi z j +
d∑

k=3

∑
|I |=k

aI z I

over the polydisc Dn is at most 1. Then

∥∥ρT (p)
∥∥=

∥∥∥∥∥
( ∑

aiαi
∑

ai jαiβ j

0
∑

aiβi

)∥∥∥∥∥≤ 1
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2 Varopoulos Operators of Type I

if and only if ∣∣∣∣∣ n∑
i , j=1

ai jαiβ j

∣∣∣∣∣
2

≤
(

1−
∣∣∣∣∣ n∑

j=1
a jα j

∣∣∣∣∣
2)(

1−
∣∣∣∣∣ n∑

j=1
a jβ j

∣∣∣∣∣
2)

. (2.14)

Without loss of generality we assume 0 < |β1| ≤ |α1|. Let |β1|/|α1| = µ. We have α jβk =
αkβ j for all j ,k = 1, . . . ,n therefore inequality (2.14) is equivalent to∣∣∣∣∣ n∑

i , j=1
ai jαiα j

∣∣∣∣∣
2

≤
(

1−
∣∣∣∣∣∑

j=1
a jα j

∣∣∣∣∣
2)(

1

µ2
−

∣∣∣∣∣∑
j=1

a jα j

∣∣∣∣∣
2)

. (2.15)

Define qα(t ) := p(tα1, . . . , tαn) for all t ∈D. Since ‖p‖Dn ,∞ ≤ 1 therefore ‖qα‖D,∞ ≤ 1 and

hence T
(∑

aiαi ,
∑

ai jαiα j
)

is of norm at most 1. Therefore∣∣∣∣∣ n∑
i , j=1

ai jαiα j

∣∣∣∣∣
2

≤
(

1−
∣∣∣∣∣∑

j=1
a jα j

∣∣∣∣∣
2)(

1−
∣∣∣∣∣∑

j=1
a jα j

∣∣∣∣∣
2)

and since µ ≥ 1, it follows that (2.15) holds. Hence ρT is a contractive homomorphism.

We now prove the von-Neumann inequality for any contractive n - tuple in the set

(2.10) assuming |αi | = |βi |, 1 ≤ i ≤ n. (We no longer assume that ω= 0.) As before, such

a n-tuple defines a homomorphism ρT,ω : H∞(Dn) →B(C3) by

ρT,ω( f ) :=


f (ω) D f (ω) ·α 1

2 D2 f (ω) · Aαβ

0 f (ω) D f (ω) ·β
0 0 f (ω)

 , (2.16)

where

D f (ω) ·α=∑
j

∂ f

∂z j
(ω)α j , D f (ω) ·β=∑

j

∂ f

∂z j
(ω)β j

and

D2 f (ω) · Aαβ =
∑
j ,k

∂2 f

∂z j∂zk
(ω)α jβk .

Here is “the zero lemma’’ again, now adapted to work for the homomorphism ρT,ω . For

the proof, we compose f with an automorphism of the disc taking f (ω) to 0, whenever

f (ω) 6= 0.

Lemma 2.11. The homomorphism ρT,ω is contractive if and only if ‖ρT,ω( f )‖ ≤ 1 for all

f ∈ H∞(Dn) with f (ω) = 0 and ‖ f ‖Dn ,∞ ≤ 1.
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2.1 The von-Neumann Inequality

Theorem 2.12. The homomorphism ρT,ω induced by a contractive n - tuple T in the set

(2.10) with α j =β j , j = 1, . . . ,n, is itself contractive.

Proof. Assume that the supremum norm of the polynomial

p(z1, . . . , zn) =
n∑

j=1
a j (z j −ω j )+

n∑
i , j=1

ai j (z j −ω j )(zi −ωi )+
d∑

k=3

∑
|I |=k

aI (z −ω)I

over the polydisc Dn is at most 1, where d is the degree of p. Then

∥∥ρT,ω(p)
∥∥=

∥∥∥∥∥
( ∑

aiαi
∑

ai jαiα j

0
∑

aiαi

)∥∥∥∥∥≤ 1

if and only if ∣∣∣∣∣ n∑
i , j=1

ai jαiα j

∣∣∣∣∣≤
(

1−
∣∣∣∣∣ n∑

j=1
a jα j

∣∣∣∣∣
2)

. (2.17)

For j = 1, . . . ,n, applying the Lemma 2.7 to the operator
ω j (1−|ω j |)

√
1+|ω j | 0

0 ω j (1−|ω j |)
√

1+|ω j |
0 0 ω j


we conclude that it must be contractive. Therefore, using Nehari’s theorem (cf. [You88,

Chapter 15, Theorem 15.14]), we obtain a holomorphic function h j , h(k)
j (0) = 0, k =

0,1,2, defined in the unit disc D such that the supremum norm of the function

f j (z) =ω j + (1−|ω j |)
√

1+|ω j |z +h j (z)

over the unit disc D is at most 1. Define f = ( f1, . . . , fn) : Dn → Dn by f (z1, . . . , zn) =(
f1(z1), . . . , fn(zn)

)
. Now p ◦ f maps Dn to D with p ◦ f (0) = 0. Define the following con-

tractive operators

S j :=


0

α j

(1−|ω j |)
p

1+|ω j |
0

0 0
α j

(1−|ω j |)
p

1+|ω j |
0 0 0


for j = 1, . . . ,n. Then S = (S1, . . . ,Sn) is a tuple of commuting contractions. From Theo-

rem 2.10 it is clear that ‖p ◦ f (S)‖ ≤ 1. Therefore (2.17) holds and hence ‖p(T1, . . . ,Tn)‖ ≤
1.
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2 Varopoulos Operators of Type I

As a corollary of this theorem, we get the following necessary condition for the Carathéodory-

Fejér interpolation problem for the polydisc Dn .

Theorem 2.13. Let p be a polynomial in n variables of degree 2 such that p(0) = 0. There

exists a holomorphic function q, defined on polydiscDn , with q (k)(0) = 0, |k| ≤ d such that

‖p +q‖∞ ≤ 1 only if

sup
‖α‖∞≤1

{∣∣∣D2p(0) · Aα

2

∣∣∣+ ∣∣Dp(0) ·α∣∣2
}
≤ 1,

whereα= (α1, . . . ,αn), Aα = ((
αiα j

))
, D2p(0)·Aα =∑ ∂2p

∂zi∂z j
(0)αiα j and Dp(0)·α=∑ ∂p

∂zi
(0)αi .

Remark 2.14. This proof of the von-Neumann inequality works without having to make

the assumption that |αi | = |βi |, if instead, we assume that
ω j α j 0

0 ω j α j

0 0 ω j

 and


ω j β j 0

0 ω j β j

0 0 ω j


are contractions for j = 1, . . . ,n. Unfortunately, there are contractive n - tuples T in the set

(2.10) for which this condition is not met, for example, take ω=α= 2/5 and β= 4/5, here

n is just 1!

2.2 An improvement in the bound for C2(n)

The explicit example in [Var74] showing that a commuting triple of contractions need

not define a contractive homomorphism of the tri-disc algebra uses the interesting poly-

nomial

pV := (z1, z2, z3) = z2
1 + z2

2 + z2
3 −2z1z2 −2z2z3 −2z3z1.

This polynomial will be referred as the Varopoulos-Kaijser polynomial. The supremum

norm of pV over the tri-disc is shown to be 5. Let

AV :=


1 −1 −1

−1 1 −1

−1 −1 1

 (2.18)

be the matrix of co-efficients of the polynomial pV .

Lemma 2.15. ‖AV ‖`∞(3)→`1(3) ≥ 6.
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2.2 An improvement in the bound for C2(n)

Proof. Suppose ai j denote the (i , j ) entry of AV and z j = e iθ j for i , j = 1,2,3. Then

∣∣∑ai j zi z j
∣∣= |z1|2 +|z2|2 +|z3|2 −2Re

(
z1z2 + z2z3 + z3z1

)
= 3−2(cos(θ1 −θ2)+ cos(θ2 −θ3)+ cos(θ3 −θ1))

≤ 3−2

(−3

2

)
= 6.

Using the Lemma 2.18, the above inequality can easily be deduced . For θ1 −θ2 = 2π
3 =

θ2 −θ3, the inequality in this computation becomes an equality. Thus

‖AV ‖`∞(3)→`1(3) ≥ sup
|z j |=1

∣∣∑ai j zi z j
∣∣= 6.

Thus ‖AV ‖`∞(3)→`1(3) > ‖pV ‖D3,∞. Here
‖AV ‖`∞(3)→`1(3)

‖pV ‖
D3,∞

≥ 1.2.

Question: Does there exists k > 0 such that ‖A‖`∞(n)→`1(n) ≤ k‖pA,M‖Dn ,∞ for all symmet-

ric matrices A of size n, n ∈N?

We have just seen that k is bounded below by 1.2. Now, we show that 3
p

3
4 is an upper

bound for k. This will be an immediate corollary of the following theorem giving an

upper bound for the second derivative.

Theorem 2.16. If f : Dn → D is a holomorphic function, then ‖D2 f (0)‖`∞(n)→`1(n) is

bounded above by 3
p

3
2 .

Proof. Let f be a complex valued analytic function on Dn with ‖ f ‖Dn ,∞ ≤ 1. Let a =
(a1, . . . , an) ∈ Dn be an arbitrary point. Let Φ j be the automorphism of the unit disc de-

fined by

Φ j (z) = z +a j

1+a j z

for j = 1, . . . ,n. Let Φ(z1, . . . , zn) = (Φ1(z1), . . . ,Φn(zn)) and ϕ be the automorphism of the

unit disc such that ϕ( f (a)) = 0. Due to chain rule we have

D(ϕ◦ f ◦Φ)(0) =ϕ′( f (a))D f (a)DΦ(0).

As g :=ϕ◦ f ◦Φ :Dn →D is an analytic map therefore due to Schwarz’s lemma Dg (0) is a
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2 Varopoulos Operators of Type I

contractive linear functional on (Cn ,‖ ·‖Dn ,∞). Also

DΦ(0) =


1−|a1|2 0 · · · 0

0 1−|a2|2 · · · 0
...

...
. . .

...

0 0 · · · 1−|an |2


therefore

D f (a) =ϕ′( f (a))−1

(
n∑

j=1

∂ j g (0)

1−|a j |2
)

.

Thus we have ∥∥D f (a)
∥∥

1 ≤ (1−| f (a)|2)max
j

1

1−|a j |2
.

Suppose r ∈ (0,1) is such that |ai | < r for all i = 1, . . . ,n. Then we have

‖D f (a)‖1 ≤ 1

1− r 2
. (2.19)

Let g := D f then g is a map from rDn to 1
1−r 2 (Dn)∗ where (Dn)∗ denotes the dual unit

ball of (Cn ,‖·‖Dn ,∞). Now due to Schwarz’s lemma Dg (0) is a linear operator onCn which

maps rDn into 1
1−r 2 (Dn)∗. Hence we have

‖D2 f (0)‖`∞(n)→`1(n) ≤
1

r (1− r 2)
. (2.20)

Inequality (2.20) is true for every r ∈ (0,1) and maximum of r (1− r 2) is attained at r =
1/
p

3. Therefore we can conclude that

‖D2 f (0)‖`∞(n)→`1(n) ≤
3
p

3

2
.

Let p(z1, z2, . . . , zn) =∑
ai j zi z j be a homogeneous polynomial of degree 2 in n variables

with ‖p‖Dn ,∞ ≤ 1. As D2p(0) = ((2ai j ))n×n therefore from (2.16), we have

‖(ai j )‖`∞(n)→`1(n) ≤
3
p

3

4
≈ 1.3. (2.21)

This leads to a considerable improvement in one of the theorems of [Var76], which is

exactly the same as the theorem below except that the constant obtained in [Var76] is

2K C
G .
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2.2 An improvement in the bound for C2(n)

Theorem 2.17. Suppose p be a polynomial of degree atmost 2 in n variables and T =
(T1, . . . ,Tn) be a tuple of commuting contractions on a Hilbert spaceH. Then

‖p(T1, . . . ,Tn)‖ ≤ 3
p

3

4
K C

G ‖p‖Dn ,∞,

where K C
G is the complex Grothendieck constant.

Proof. Let

p(z1, . . . , zn) = a0 +
n∑

j=1
a j z j +

n∑
j ,k=1

a j k z j zk .

For x, y ∈H arbitrary vectors of norm at most 1, we have

∣∣〈p(T1, . . . ,Tn)x, y〉∣∣= ∣∣a0〈x, y〉+
n∑

j=1
〈a j T j x, y〉+

n∑
j ,k=1

〈a j k T j x,T ∗
k y〉∣∣.

Let

B =


a0 a1/2 a2/2 · · · an/2

a1/2 a11 a12 · · · a1n
...

...
...

...

an/2 an1 an2 · · · ann


and q be the corresponding homogeneous polynomial of degree 2 in n + 1 variables

defined by

q(z0, z1, . . . , zn) = a0z2
0 +

n∑
j=1

a j z j z0 +
n∑

j ,k=1
a j k z j zk .

It can easily be seen that ‖q‖Dn+1,∞ = ‖p‖Dn ,∞. Suppose v0 = x, v j = T j x and w0 = y, w j =
T ∗

j y for j = 1, . . . ,n. Then

n∑
j=0

b j k〈v j , wk〉 = a0〈x, y〉+
n∑

j=1
〈a j T j x, y〉+

n∑
j ,k=1

〈a j k T j x,T ∗
k y〉,

where b j k is the ( j ,k) entry in B . Now from the definition of the complex Grothendieck

constant, we get ∣∣∣ n∑
j=0

b j k〈v j , wk〉
∣∣∣≤ K C

G ‖B‖`∞(n+1)→`1(n+1).

Now, to complete the proof, one merely has to apply the inequality (2.21).
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2 Varopoulos Operators of Type I

2.3 Homomorphisms induced by operators of type VI

LetΩ be a bounded domain in Cm andω= (ω1, ...,ωm) ∈Ω be fixed. LetH be a separable

Hilbert space. Let x = (x1, . . . , xm), y = (y1, . . . , ym), where x j , y j ∈ H for all j = 1, . . . ,m,

be such that [x]j , yk ] = [x]k , y j ] for all j ,k = 1, . . . ,m. Let the operator Tx j ,y j be of type V I

corresponding to the pair x j , y j , j = 1, . . . ,m. We let T (ω)
x,y denote the commuting n-tuple

(ω1I +Tx1,y1 , . . . ,ωm I +Txm ,ym ). We will let T x denote the m-tuple (Tx1,x1 , . . . ,Txm ,xm ). It is

easy to see that for j ,k, l = 1, . . . ,m, we have Tx j ,y j Txk ,yk Txl ,yl = 0 and

Tx j ,y j Txk ,yk =


0 0

[
x]j , yk

]
0 0 0

0 0 0

 .

Consequently, for any polynomial p in m variables, we see that

p(T (ω)
x,y ) =


p(ω) Dp(ω) · x] 1

2 D2p(ω) · Ax,y

0 p(ω)I Dp(ω) · y

0 0 p(ω)

 , (2.22)

where x] = (
x]1, . . . , x]m

)
, Ax,y = ((

[x]i , y j ]
))

m×m . Therefore, extending this definition to

functions in H∞(Ω), we obtain the homomorphism ρ(ω)
x,y : H∞(Ω) →B(C⊕H⊕C), which

for any polynomial p is given by the formula ρ(ω)
x,y (p) = p(T (ω)

x,y ) and is defined for f in

H∞(Ω) by the same formula. The homomorphism ρ(0)
x,x will simply be denoted by ρx .

Suppose Ω = Dm and ‖x j‖ ≤ 1,‖y j‖ ≤ 1 for each j = 1, . . . ,m. Then for m = 1,2, we

know that ρ(ω)
x,y is contractive homomorphism. What about m > 2?

The following example is due to Varopoulos and Kaijser in [Var74]. Set

A1 =



0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1/
p

3 −1/
p

3 −1/
p

3 0

 ,

A2 =



0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 −1/
p

3 1/
p

3 −1/
p

3 0
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2.3 Homomorphisms induced by operators of type VI

and

A3 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 −1/
p

3 −1/
p

3 1/
p

3 0

 .

It is easy to see that A1, A2 and A3 are commuting contractions. Now, consider the

Varopoulos-Kaijser polynomial pV defined earlier. Choose x1 = ( 1p
3

,− 1p
3

,− 1p
3

), x2 =
(− 1p

3
, 1p

3
,− 1p

3
), x3 = (− 1p

3
,− 1p

3
, 1p

3
) and y1 = (1,0,0), y2 = (0,1,0), y3 = (0,0,1). In the

notations above Tx1,y1 = A1, Tx2,y2 = A2 and Tx3,y3 = A3. We have

∥∥pV (Tx1,y1 ,Tx2,y2 ,Tx3,y3 )
∥∥=

∣∣∣ 3∑
j ,k=1

a j k

[
x]j , yk

]∣∣∣= 3
p

3 > 5 = ‖pV ‖D3,∞,

where
((

a j k
))= AV . Hence ρ0

x,y corresponding to x = (x1, x2, x3), y = (y1, y2, y3) is not con-

tractive. In this example the ratio of ‖pV (T 0
x,y )‖ to ‖pV ‖D3,∞ is approximately 1.04. In this

section we shall show that

sup
{‖pV (T x)‖
‖pV ‖D3,∞

: ‖x‖2 = 1
}

is 1.2, which was proved earlier by Holbrook [Hol01]. However, we give many examples

of operators of type V I for which this upper bound is attained. As explained earlier,

the hope that we may be able to increase it even further was the motivation behind

introducing the set of operators V I. For the proof, we shall need the following lemma.

Lemma 2.18. For n > 1, we have

min
(〈x1, x2〉+〈x2, x3〉+〈x3, x1〉

)=−3

2
,

where the minimum is over the set
{
(x1, x2, x3) : x1, x2, x3 ∈Rn , ‖xi‖2 = 1, i = 1,2,3

}
.

Proof. Let x1, x2, x3 ∈Rn with ‖xi‖2 = 1, i = 1,2,3. The following identity is easily verified:

‖x1 +x2 +x3‖2
2 = ‖x1‖2

2 +‖x2‖2
2 +‖x3‖2

2 +2
(〈x1, x2〉+〈x2, x3〉+〈x3, x1〉

)
.

For i = 1,2,3, ‖xi‖2 = 1, therefore

‖x1 +x2 +x3‖2
2 −3 = 2

(〈x1, x2〉+〈x2, x3〉+〈x3, x1〉
)
.

Thus 〈x1, x2〉+ 〈x2, x3〉+ 〈x3, x1〉 is minimized at x1, x2, x3 ∈ Rn such that x1 + x2 + x3 = 0.

Choose any three points x1, x2, x3 from the unit sphere of Rn such that the centroid of

these points is the origin. For example, choose x1 = (1,0, . . . ,0), x2 = (−1/2,
p

3/2,0, . . . ,0)

and x3 = (−1/2,−p3/2,0, . . . ,0). Thus we have proved the lemma.
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2 Varopoulos Operators of Type I

What follows is an easy generalization of the preceding lemma.

Lemma 2.19. For n > 1, we have

min

(∑
i< j

〈xi , x j 〉
)
=−m

2
,

where minimum is over the set
{
(x1, . . . , xm) : x1, . . . , xm ∈Rn , ‖xi‖2 = 1, i = 1, . . . ,m

}
.

Let x1, x2, x3 ∈Rn be arbitrary vectors of Euclidean norm 1 and set x = (x1, x2, x3). Con-

sider the algebra homomorphismρx as in (2.22), namely, ρx(p) = p(T x). Take Varopoulos-

Kaijser polynomial pV . By the definition of ρx , it is easy to see that

∥∥ρx(p)
∥∥=

∣∣∣ 3∑
j ,k=1

a j k [x]j , xk ]
∣∣∣= ∣∣∣ 3∑

j ,k=1
a j k〈x j , xk〉

∣∣∣
=

3∑
i=1

ai i +2a12〈x1, x2〉+2a23〈x2, x3〉+2a31〈x3, x1〉

= 3−2(〈x1, x2〉+〈x2, x3〉+〈x3, x1〉) .

From the Lemma 2.18, it is clear that we can choose x1, x2, x3 ∈ Rn (in fact there are

infinitely many choices for x for each n > 1) such that ‖ρx(pV )‖ = 6 and ‖xi‖2 = 1 for

each i = 1,2,3. Thus
‖ρx(pV )‖
‖pV ‖D3,∞

= 6

5
= 1.2 > 1.

Hence for this choice of x the corresponding ratio of ‖pV (T x)‖ to ‖pV ‖D3,∞ is 1.2.

We state “the zero lemma’’ for a third time, in the form we will use it here. The proof is

no different from what has been indicated earlier.

Lemma 2.20. For m−tuple of vectors, x = (x1, . . . , xm), y = (y1, . . . , ym) from H, we have,

‖ρ(ω)
x,y ( f )‖ ≤ 1 for all f ∈ H∞(Ω,D) if and only if ‖ρ(ω)

x,y ( f )‖ ≤ 1 for all f ∈ H∞
ω (Ω,D).

As before, using the Lemma 2.20 we may assume that f (ω) = 0, without loss of gener-

ality, in determining the contractivity of ρ(ω)
x,y for f in any algebra of holomorphic func-

tions containing the algebra H∞(Ω).

Proposition 2.21. Let ρ(ω)
x,y be as defined in (2.22). For f ∈ H∞

ω (Ω,D), we get ‖ρ(ω)
x,y ( f )‖ ≤ 1

if and only if ∣∣∣∣1

2
D2 f (ω) · Ax,y

∣∣∣∣2

≤
(
1−∥∥D f (ω) · x

∥∥2
)(

1−∥∥D f (ω) · y
∥∥2

)
.
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2.3 Homomorphisms induced by operators of type VI

Proof. Let f ∈ H∞
ω (Ω,D). Let V1 :H→ `2 and V2 :H]→ (`2)] be isometries taking D f (ω)·y

to ‖D f (ω)·y‖e1 and D f (ω)·x] to ‖D f (ω)·x‖et
1 respectively, where e1 is (1,0,0, . . .)t. Then

‖ρ(ω)
x,y ( f )‖ =

∥∥∥∥∥
(

D f (ω) · x] 1
2 D2 f (ω) · Ax,y

0 D f (ω) · y

)∥∥∥∥∥
=

∥∥∥∥∥
(

1
2 D2 f (ω) · Ax,y D f (ω) · x]

D f (ω) · y 0

)∥∥∥∥∥ .

As norms are preserved under isometries therefore

‖ρ(ω)
x,y ( f )‖ =

∥∥∥∥∥
(

1 0

0 V1

)(
1
2 D2 f (ω) · Ax,y D f (ω) · x]

D f (ω) · y 0

)(
1 0

0 V2

)∥∥∥∥∥ ,

and hence

‖ρ(ω)
x,y ( f )‖ =

∥∥∥∥∥
(

1
2 D2 f (ω) · Ax,y ‖D f (ω) · x‖et

1

‖D f (ω) · y‖e1 0

)∥∥∥∥∥
=

∥∥∥∥∥
(

1
2 D2 f (ω) · Ax,y ‖D f (ω) · x‖
‖D f (ω) · y‖ 0

)∥∥∥∥∥ .

Thus we have the proposition.

Let

D(ω)
Ω :=

{(1

2
D2 f (ω),D f (ω)

)
| f ∈ H∞

ω (Ω,D)
}

be a subset of M s
m ×Cm , where M s

m denotes the set of all m ×m complex symmetric

matrices.

Lemma 2.22. The set D(ω)
Ω can be realized as the unit ball in M s

m×Cm with respect to some

norm, say ‖ ·‖D .

Proof. We will show that D(ω)
Ω is a balanced, convex and absorbing subset of M s

m ×Cm .

• Balanced: If λ ∈D and
(1

2 D2 f (ω),D f (ω)
) ∈D(ω)

Ω , then

λ

(
1

2
D2 f (ω),D f (ω)

)
=

(
1

2
D2(λ f )(ω),D(λ f )(ω)

)
.

The map λ f :Ω→D is analytic with λ f (ω) = 0 and hence

λ

(
1

2
D2 f (ω),D f (ω)

)
∈D(ω)

Ω .
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2 Varopoulos Operators of Type I

• Convex: Pick (
1

2
D2 f (ω),D f (ω)

)
,

(
1

2
D2g (ω),Dg (ω)

)
∈D(ω)

Ω .

For the h := t f + (1− t )g , t ∈ (0,1), we have

t

(
1

2
D2 f (ω),D f (ω)

)
+ (1− t )

(
1

2
D2g (ω),Dg (ω)

)
=

(
1

2
D2h(ω),Dh(ω)

)
.

Since f , g are in H∞
ω (Ω,D), it follows that h is also in H∞

ω (Ω,D). Hence

t

(
1

2
D2 f (ω),D f (ω)

)
+ (1− t )

(
1

2
D2g (ω),Dg (ω)

)
∈D(ω)

Ω .

• Absorbing: Let B = (b j k ) be a symmetric matrix of order m and a = (a1, ..., am) in

Cm . Define

p(z1, z2, ..., zm) =
m∑

j=1
a j (z j −ω j )+

m∑
j ,k=1

b j k (z j −ω j )(zk −ωk ).

The function

f (z1, z2, ..., zm) = p(z1, z2, ..., zm)

‖p‖Ω,∞
.

is clearly in H∞
ω (Ω,D) with

D f (ω) = a

‖p‖Ω,∞
and

1

2
D2 f (ω) = B

‖p‖Ω,∞
.

Hence
1

‖p‖Ω,∞
(B , a) ∈D(ω)

Ω .

The set

U := {
(z, v1, v2) : z ∈C, v1, v2 ∈Hwith |z|2 ≤ (

1−‖v1‖2)(1−‖v2‖2)}
is seen to be the unit ball via the identification (z, v1, v2) →

(
v ]1 z
0 v2

)
. Clearly, ‖

(
v ]1 z
0 v2

)
‖ ≤ 1

if and only if (z, v1, v2) is in U. Thus we have proved the following lemma.

Lemma 2.23. The setU is the unit ball with respect to the norm ‖(z, v1, v2)‖U := ‖
(

v ]1 z
0 v2

)
‖.
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2.3 Homomorphisms induced by operators of type VI

For fixed x = (x1, ..., xm), y = (y1, ..., ym) in Hm , define a linear map L(ω)
x,y : M s

m ×Cm →
C⊕H⊕H by the formula

L(ω)
x,y (B , a) =

(
1

2
tr(Ax,y B), a · x, a · y

)
,

where a·x = a1x1+·· ·+am xm , a = (a1, . . . , am) ∈Cm (and a·y is defined similarly). Propo-

sition 2.21 together with what we have said here amounts to the equivalence asserted in

the following theorem.

Theorem 2.24. The following statements are equivalent:

1. ρ(ω)
x,y is a contractive homomorphism.

2. L(ω)
x,y : (M s

m ×Cm ,‖.‖D) → (C⊕H⊕H,‖.‖U) is a contractive linear map.

Let E be a domain (containing 0) in C. For each k ∈N0, let

Pk (Ω,E) = {
p ∈C[Z1, . . . , Zm] : deg(p) ≤ k and p(Ω) ⊂ E

}
.

For each ω ∈Ω, let P ω
k (Ω,E) denote the set of all polynomials p ∈ Pk (Ω,E) such that

p(ω) = 0.

Now, supposeΩ is the unit disc and ω= 0. Then we have the following theorem.

Theorem 2.25. If H is a separable Hilbert space and x ∈ H with ‖x‖ ≤ 1, then for the

homomorphism ρx , we have

sup
{‖ρx(p)‖ : p ∈P 0

1 (D,D)
}= sup

{‖ρx( f )‖ : f ∈ H∞
0 (D,D)

}
.

Proof. We know that for f ∈ H∞(D) with f (0) = 0,

‖ρx( f )‖ =
∥∥∥∥∥
(

1
2 f ′′(0)[x], x] ‖ f ′(0)x‖
‖ f ′(0)x‖ 0

)∥∥∥∥∥ ,

therefore from the formula in [MNS90],

‖ρx‖ =
{
|a|‖x‖2 + 1

2

[
|a|2

∣∣∣[x], x]
∣∣∣2 +

√
|b|4 ∣∣[x], x]

∣∣4 +4|a|2‖x‖2|b|2 ∣∣[x], x]
∣∣2

]} 1
2

,

where a = f ′(0) and b = f ′′(0)/2. Using Cauchy-Schwarz inequality we get

‖ρx‖ ≤
{
|a|‖x‖2 + 1

2

[
|a|2‖x‖4 +

√
|b|4‖x‖8 +4|a|2|b|2‖x‖6

]} 1
2
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2 Varopoulos Operators of Type I

and therefore

‖ρx‖ ≤ ‖x‖
{
|a|+ 1

2

[
|a|2 +

√
|b|4 +4|a|2|b|2

]} 1
2

.

Hence sup
{‖ρx( f )‖ : f ∈ H∞

0 (D,D)
}= ‖x‖. It is easy to see that

sup
{‖ρx(p)‖ : p ∈P 0

1 (D,D)
}= ‖x‖.

Hence the proof is complete.

The following corollary is now evident.

Corollary 2.26. Suppose H is a separable Hilbert space and x ∈H with ‖x‖ = 1. Then for

homomorphism ρx defined above, we get

sup
{‖ρx(p)‖ : p ∈P 0

1 (D,D)
}= sup

{‖ρx( f )‖ : f ∈ H∞(D,D)
}

.

2.4 The Carathéodory-Fejér Interpolation Problems

We state the well known interpolation problem in m variables, usually known as the

Carathéodory-Fejér (CF) problem.

Problem 2.27 (CF). Given any polynomial p in m variables of degree d , find necessary

and sufficient conditions on the co-efficients of p to ensure the existence of a holomor-

phic function h defined on the polydsic Dm with h(k)(0) = 0 for all multi indices k of

length at most d , such that f := p +h maps the polydisc Dm to the unit disc D.

Without loss of generality one may assume that p(0) = 0 via the transitivity of the

unit disc D. There are several different known solutions to the CF problem when n =
1, see (cf. [Nik86, Page 179]). However, repeated attempts to obtain solutions for n >
1 has remained unsuccessful for the most part, however see (cf. [BW11, Chapter 3])

for a comprehensive survey of recent results. In these notes we shall obtain necessary

condition for the CF problem for the bi-disc D2. (However, we first discuss the case of

the unit disc D, which paves the way for the case of the bi-disc D2.) We show that for

certain class of polynomials of degree at most 2, our necessary conditions turn out to

be sufficient as well. None the less, they are not always sufficient as we demonstrate by

means of an example.

We point out that the necessary condition for the CF problem actually works for any

n, via an adaptation of a theorem due to Korányi and Pukánszky [KP63]. However for

n > 2, the computations involved in deriving the necessary condition explicitly is cum-

bersome. Therefore, we don’t give the details except in the case n = 2.
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2.4 The Carathéodory-Fejér Interpolation Problems

2.4.1 CF problem in one variable

The CF problem for one variable is stated below for polynomials of degree at most two

and with p(0) = 0. This is the first non-trivial case of the CF problem and is typical of all

other cases.

Problem 2.28. Fix p to be the polynomial p(z) = az+bz2. Find a necessary and sufficient

condition for the existence of a holomorphic function g defined on the unit disc D with

g (k)(0) = 0, k = 0,1,2, such that ‖p + g‖D,∞ ≤ 1.

Let Tx be an operator of the type V I for some x ∈ C. For any f ∈ H∞
0 (D,D), picking

|x| ≤ 1 to ensure contractivity of Tx , we see that ‖ρx( f )‖ ≤ 1. Now, applying Corollary

2.21, we find that ∣∣∣∣1

2
f ′′(0)x2

∣∣∣∣+ ∣∣ f ′(0)x
∣∣2 ≤ 1.

Taking supremum over all x such that |x| ≤ 1, we get∣∣∣∣1

2
f ′′(0)

∣∣∣∣+ ∣∣ f ′(0)
∣∣2 ≤ 1,

which is equivalent to ∥∥∥∥T (
f ′(0),

f ′′(0)

2

)∥∥∥∥ :=
∥∥∥( f ′(0) f ′′(0)

2

0 f ′(0)

)∥∥∥≤ 1.

Thus we have proved the following theorem.

Theorem 2.29. Suppose f :D→D is an analytic function with f (0) = 0. Then∥∥∥∥T (
f ′(0),

f ′′(0)

2

)∥∥∥∥≤ 1.

We answer the question of the converse in the theorem below.

Theorem 2.30. If α,β ∈ C are such that ‖T(β,α)‖ ≤ 1, then there exists an analytic map

f :D→D such that f (0) = 0, f ′(0) =β and f ′′(0)/2 =α.

Proof. Let α,β ∈ C be such that ‖T(β,α)‖ ≤ 1 i.e. |α| + |β|2 ≤ 1. As D0
D

is a convex and

balanced set so without loss of generality we assume α> 0 and |α|+ |β|2 = 1. Define

g (z) :=
{
β i f z = 0
f (z)

z other wi se.
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2 Varopoulos Operators of Type I

Let φβ denote the automorphism of Dmapping β to 0. From chain rule, we get(
φβ ◦ g

)′ (0) = α

1−|β|2 = 1.

Hence (φβ ◦ g )(z) = e iθz for some θ ∈ [0,2π). Therefore

g (z) = e iθz +β
1+βe iθz

.

and thus

f (z) = z · e iθz +β
1+βe iθz

.

Thus we have found necessary and sufficient condition for the CF problem 2.28. A

second approach to this problem will be given in Chapter 4.

2.4.2 CF interpolation problem in two variables

The complete solution to the CF problem remains a mystery, although, several different

partial answers are known. On the other hand, Eschmeier, Patton and Putinar [EPP00]

find a necessary and sufficient condition for the CF problem for the bi-discD2. However,

these conditions are somewhat intractable.

Theorem 2.31. Let d be a positive integer and let P (z) be a polynomial of degree less

than or equal to d in two complex variables. There exists an analytic function F :D2 →D

such that P ≡ F mod (zd+1) if and only if there are Hilbert spaces H1 and H2 and a pair

of vector valued polynomial functions of degree less than or equal to d, Ak : D2 → Hk ,

k = 1,2, such that:

1−P (z)P (z) ≡ (1−|z1|2)‖A1(z)‖2
1 + (1−|z2|2)‖A2(z)‖2

2 mod (zd+1, zd+1).

Analogous to the case of one variable, the CF problem in the case of two variables

is given below for polynomials of degree at most two with constant term zero. This is

typical of all other cases.

Problem 2.32. Fix p ∈C[Z1, Z2] to be the polynomial

p(z1, z2) = a1,0z1 +a0,1z2 +a2,0z2
1 +a1,1z1z2 +a0,2z2

2 .

Find necessary and sufficient conditions for the existence of a holomorphic function q

on D2 with q (k)(0) = 0, for multi indices k of length at most 2, such that ‖p +q‖D2,∞ ≤ 1.
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2.4 The Carathéodory-Fejér Interpolation Problems

Let Tx1 , Tx2 be operators of type V I for x1, x2 in C, |x1|, |x2| ≤ 1. Let f ∈ H∞
0 (D2,D) be

any holomorphic function mappingD2 toDwith f (0) = 0. The von-Neumann inequality

in Theorem 2.10 implies that ‖ f (Tx1 ,Tx2 )‖ ≤ 1, which in turn is equivalent to

‖D f (0) · x‖2 +
∣∣∣tr

(
1

2
D2 f (0) · xxt

)∣∣∣≤ 1,

where x is the column vector
(x1

x2

)
. Thus we have the following theorem.

Theorem 2.33. If p is any complex valued polynomial in two variables of degree at most

2 with p(0) = 0, then

sup
x1,x2∈D

∥∥∥∥∥T
(
∂p

∂z1
(0)x1 + ∂p

∂z2
(0)x2,

1

2

2∑
i , j=1

∂2p

∂zi∂z j
(0)xi x j

)∥∥∥∥∥≤ 1 (2.23)

is a necessary condition for the existence of a holomorphic function q : D2 → C, with

q (k)(0) = 0, |k| ≤ 2, such that ‖p +q‖D2,∞ ≤ 1.

In the Chapter 3 we will compute the supremum occurring in (2.23). We will also

find conditions on the coefficients of the polynomial p, apart from the ones imposed by

(2.23), which will ensure the existence of the required function q.
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3 Varopoulos Operators of Type II

3.1 Homomorphisms induced by operators of type

V II and order two

LetΩ be a bounded domain inCm andω= (ω1, . . . ,ωm) ∈Ω be fixed. LetH be a separable

Hilbert space and X = (X1, . . . , Xm) be a tuple of commuting contractions, X j ∈ B(H),

j = 1, . . . ,m. Let TX j be of type V II and of order 2, j = 1, . . . ,m. Let T X be the n-tuple

(ω1I +TX1 , . . . ,ωm I +TXm ). For j ,k, l = 1, . . . ,m, we have TX j TXk = TXk TX j , TX j TXk TXl = 0

and

TX j TXk =


0 0 X j Xk

0 0 0

0 0 0

 .

Let AX denote the block matrix
((

X j Xk
))

m×m of operators. Consequently, for any poly-

nomial p in m variables, we see that

p(TX ) =


p(ω)I Dp(ω) ·X 1

2 D2p(ω) · AX

0 p(ω)I Dp(ω) ·X

0 0 p(ω)I

 .

Therefore, extending this definition to functions in H∞(Ω), we obtain the algebra ho-

momorphism µ(ω)
X : H∞(Ω) → B(H⊕H⊕H), which for any polynomial p is given by the

formula µ(ω)
X (p) = p(TX ) and is defined for f in H∞(Ω) by the same formula. Suppose

Ω is the polydisc Dm . Then, for m = 1,2, we know that µ(0)
X := µX is a contractive homo-

morphism. What about m > 2?

Consider the operators A1, A2 and A3 as defined in the Section 2.3. Consider TA1 ,TA2

and TA3 , the operators of type V II and of order 2. Consider the Varopoulos-Kaijser poly-

nomial pV . From the computation in [Var74], we get

∥∥pV (TA1 ,TA2 ,TA3 )
∥∥=

∥∥∥ 3∑
j ,k=1

a j k Ak A j

∥∥∥= 3
p

3,

39



3 Varopoulos Operators of Type II

where
((

a j k
))= AV . Therefore∥∥pV (TA1 ,TA2 ,TA3 )

∥∥> ‖pV ‖D3,∞ = 5.

Hence µX corresponding to the tuple X = (A1, A2, A3) of commuting contractions A1, A2

and A3 is not contractive.

We need a version of “the zero lemma” one final time which is adapted to apply directly

to the functional calculus for operators of the type V II. This variant is also proved exactly

the same way as before.

Lemma 3.1. The homomorphism µ(ω)
X is contractive if and only if ‖µ(ω)

X ( f )‖ ≤ 1 for all f

in H∞
ω (Ω,D).

IfΩ is the unit disc D and ω= 0, then we have the following theorem.

Theorem 3.2. Suppose H is a separable Hilbert space and X ∈ B(H) with ‖X ‖ ≤ 1. Then

for homomorphismµX , we get sup
{‖µX (p)‖ : p ∈P 0

1 (D,D)
}= sup

{‖µX ( f )‖ : f ∈ H∞
0 (D,D)

}
.

Proof. We have sup
{‖µX (p)‖ : p ∈P 0

1 (D,D)
} = ‖X ‖ by definition. Fix f ∈ H∞

0 (D,D), and

assume that f is represented in the unit discDby the convergent power series
∑∞

j=1 an zn .

Then

‖µX ( f )‖ = ∥∥T (
a1X , a2X 2)∥∥≤ ‖X ‖‖T (a1I , a2X )‖ .

Also ‖ f ‖D,∞ ≥ ‖T (a1, a2)‖ , therefore

‖µX ( f )‖
‖ f ‖D,∞

≤ ‖X ‖‖T (a1I , a2X )‖
‖T (a1, a2)‖ ≤ ‖X ‖.

The last inequality follows from the equation (??). Hence

sup
{‖µX (p)‖ : p ∈P 0

1 (D,D)
}= sup

{‖µX ( f )‖ : f ∈ H∞
0 (D,D)

}= ‖X ‖.

For two commuting contractions X1, X2 ∈ B(H), let X = (X1, X2) and TX1 , TX2 be the

operators of type V II and order 2. Setting Ω=D2, and ω= 0, we see that the homomor-

phism µX is contractive via Ando’s theorem. Hence for f ∈ H∞
0 (D2,D), we have

sup
X

∥∥∥∥T (
D f (0) ·X ,

1

2
D2 f (0) · AX

)∥∥∥∥≤ 1,

where the supremum is taken over all pairs of commuting contractions X = (X1, X2).

Thus we have proved the following theorem.
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3.2 The von-Neumann Inequality in One variable

Theorem 3.3. Let f ∈ H∞
0 (D2,C). Then

sup

∥∥∥∥∥T
(
∂ f

∂z1
(0)X1 + ∂ f

∂z2
(0)X2,

1

2

2∑
i , j=1

∂2 f

∂zi∂z j
(0)Xi X j

)∥∥∥∥∥≤ 1,

where the supremum is taken over all pairs of commuting contractions X1, X2 ∈ B(H), is

a necessary condition for f to map D2 to D.

In what follows, we show that the supremum in (2.23) is the same as the one appear-

ing in Theorem 3.3. We then proceed to compute it explicitly. Let (B)1 denote the open

unit ball of the Banach space B. Let Ω be a domain in Cm and k ∈ N. We shall de-

note the set of all Mk−valued polynomials in m variables by P (Cm , Mk ). The symbol

Pn(Cm , Mk ) will denote the set of all polynomials in P (Cm , Mk ) which are of degree at

most n. For anyω ∈Ω, we shall denote P (ω)
n (Cm , Mk ) := {

p ∈Pn(Cm , Mk ) : p(ω) = 0
}

and

P (ω)
n (Ω, (Mk )1) :=

{
p ∈P (ω)

n (Cm , Mk ) : ‖p‖op
Ω,∞ ≤ 1

}
, where ‖p‖op

Ω,∞ = sup{‖p(z)‖op : z ∈
Ω}.

Our attempt here to find a solution to the extremal problem stated in the Theorem 3.3

leads naturally to an independent verification of the von-Neumann inequality for pairs

of commuting contractions of type V II.

3.2 The von-Neumann Inequality in One variable

In what follows the following lemma is needed.

Lemma 3.4. If F (z) = A1+A2z+A3z2+·· · is an analytic map onD taking values in (Mk )1,

then T(A1, A2) has norm at most 1.

Proof. Suppose φ−A1 :
(
Mk

)
1 →

(
Mk

)
1 is an analytic map defined by

φ−A1 (C ) = (
I − A1 A∗

1

)− 1
2 (C − A1)

(
I − A∗

1C
)−1(I − A∗

1 A1
) 1

2 .

Then φ−A1 ◦F maps D to
(
Mk

)
1 with

(
φ−A1 ◦F

)(
0
)= 0.(

φ−A1 ◦F
)′(0

)=φ′
−A1

(
F (0)

)
F ′(0) = (

I − A1 A∗
1

)− 1
2 A2

(
I − A∗

1 A1
)− 1

2

Schwarz’s lemma implies that
(
φ−A1◦F

)′(0
)

is a contractive linear map fromC to Mk and

therefore ∥∥∥(
I − A1 A∗

1

)− 1
2 A2

(
I − A∗

1 A1
)− 1

2

∥∥∥≤ 1.

Now due to Parrott’s theorem, we conclude that ‖T(A1, A2)‖ ≤ 1.
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3 Varopoulos Operators of Type II

The theorem below proves the von-Neumann inequality (involving matrix valued poly-

nomials) for operators of type VII and order 2.

The homomorphism µ(ω)
X naturally extends to the algebra H∞(Ω)⊗ Mk by tensoring

with the identity map Ik on the k ×k matrices Mk . Thus

µ(ω)
X ⊗ Ik : H∞(Ω)⊗Mk →B(H⊗C3)⊗Mk

is given by the formula µ(ω)
X ⊗ Ik (F ) := ((

µ(ω)
X (Fi j )

))
, where F = ((

Fi j
)) ∈ H∞(Ω)⊗ Mk . In

particular, for any F (z) = A0 + A1z + A2z2 +·· · , it follows that

µ(ω)
X ⊗ Ik (F ) = A0 ⊗ Ik + A1 ⊗TX + A2 ⊗T 2

X +·· ·
=

(
A0 A1⊗X A2⊗X 2

0 A0 A1⊗X
0 0 A0

)
(3.1)

Theorem 3.5. Let X be a contraction on some Hilbert space H and TX be the operator of

type V II and order 2. If P ∈Pn (D, (Mk )1) then, ‖P (TX )‖ ≤ 1.

Proof. The zero lemma 3.1 is easy to prove for the homomorphism µ(ω)
X ⊗ Ik . The proof

now involves finding an automorphism of the unit ball (with respect to the operator

norm) in the k×k matrices taking P (ω) to 0. Since this group of automorphisms is known

to be transitive, the proof of the zero lemma even for matrix valued polynomials is same

in spirit to the ones given before. We therefore assume, without loss generality, that

P (0) = 0. Thus for any polynomial P (z) = A1z + A2z2 +·· ·+ An zn , we have

P (TX ) :=µX ⊗ Ik (P ) =


0 A1 ⊗X A2 ⊗X 2

0 0 A1 ⊗X

0 0 0


and hence

‖P (TX )‖ =
∥∥∥∥∥
(

A1 ⊗X A2 ⊗X 2

0 A1 ⊗X

)∥∥∥∥∥
=

∥∥∥∥∥
(

I ⊗X 0

0 I

)(
A1 ⊗ I A2 ⊗ I

0 A1 ⊗ I

)(
I 0

0 I ⊗X

)∥∥∥∥∥ .

Since ‖X ‖ ≤ 1, it follows that ‖P (TX )‖ ≤ ‖T(A1, A2)‖ . Now using the Lemma 3.4, we get

‖P (TX )‖ ≤ 1.
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3.3 Ando’s Theorem for the Operators of type V II and order 2

3.3 Ando’s Theorem for the Operators of type V II and

order 2

The zero lemma 3.1, modified as in the previous section, applies to the case of matrix

valued polynomials in any number of variables. In this form, it is stated in the pa-

pers [MNS90, Pau92]. Consequently it is enough, without loss of generality, that the

homomorphisms we consider below are defined only on polynomials with P (0) = 0. We

now recall the commutant lifting theorem (cf.[DMP68, Theorem 4]), which we use in the

proof of the lemma below.

Theorem 3.6. Let T be a contraction on a Hilbert spaceH, U be its minimal co-isometric

dilation acting on some Hilbert space K, and R be an operator on H commuting with T .

Then there is an operator S onK commuting with U such that

SH⊂H, ‖S‖ = ‖R‖ and RmT n = PHSmU n |H ∀m,n ≥ 0.

Let X1 and X2 be two commuting contractions on a Hilbert space H and TX1 ,TX2 be

the operators of type V II and order 2 respectively. Let

P (z1, z2) =
n∑

k=1

∑
p+q=k

Apq zp
1 zq

2

be in P (0)
n

(
C2, Mk

)
. Evaluating the polynomial P on the commuting pair of contractions

TX1 ,TX2 , we get

P (TX1 ,TX2 ) =


0

∑
p+q=1

Apq ⊗X p
1 X q

2

∑
p+q=2

Apq ⊗X p
1 X q

2

0 0
∑

p+q=1
Apq ⊗X p

1 X q
2

0 0 0


and hence

∥∥P (TX1 ,TX2 )
∥∥=

∥∥∥∥∥∥∥


∑
p+q=1

Apq ⊗X p
1 X q

2

∑
p+q=2

Apq ⊗X p
1 X q

2

0
∑

p+q=1
Apq ⊗X p

1 X q
2


∥∥∥∥∥∥∥ .

Lemma 3.7. For any polynomial P in P (0)
n

(
C2, Mk

)
, ‖P (TX1 ,TX2 )‖ ≤ 1 for all commuting

contractions X1, X2 if and only if ‖P (TX1 ,TX2 )‖ ≤ 1 for all commuting pairs X1, X2 with

X1 is co-isometry and X2 contractive.
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3 Varopoulos Operators of Type II

Proof. Let X1 and X2 be any two commuting contractions. Let U :K→K be the minimal

co-isometric dilation of X1. From commutant lifting theorem there exists an operator

S :K→K such that

‖S‖ = ‖X2‖, SU =U S and X m
2 X1

n = PHSmU n |H for all m,n ∈N0.

Let TU and TS be the operators of type V II and order 2. Setting H̃ = Ck ⊗H⊕Ck ⊗H, we

have

PH̃T
(

A10 ⊗U + A01 ⊗S, A20 ⊗U 2 + A11 ⊗U S + A02 ⊗S2)∣∣H̃
=T

( ∑
p+q=1

Apq ⊗X p
1 X q

2 ,
∑

p+q=2
Apq ⊗X p

1 X q
2

)
.

Thus for any polynomial P of the form

P (z1, z2) =
n∑

k=1

∑
p+q=k

Apq zp
1 zq

2

mapping D2 into (Mk )1,, we have ‖P (TU ,TS)‖ ≥ ‖P (TX1 ,TX2 )‖ completing the proof of

the lemma.

Theorem 3.8. Let TX1 and TX2 be commuting contractions of type V II and order 2. We

have ‖P (TX1 ,TX2 )‖ ≤ ‖P‖op
D2,∞, for any matrix valued polynomial P in two variables.

Proof. Let P be a polynomial in two variables of the form

P (z1, z2) =
n∑

k=1

∑
p+q=k

Apq zp
1 zq

2 , Apq ∈ Mk ,

with ‖P‖op
D2,∞ ≤ 1. For λ ∈D,

pλ(z1) := P (z1,λz1) = (A10 + A01λ)z1 + (A20 + A11λ+ A02λ
2)z1

2 + ...

maps D to (Mk )1. Therefore for each λ ∈D,∥∥∥∥∥
(

A10 + A01λ A20 + A11λ+ A02λ
2

0 A10 + A01λ

)∥∥∥∥∥≤ 1,

which is equivalent to∥∥T (A10, A20)+T (A01, A11)λ+T (0, A02)λ2
∥∥≤ 1,
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3.4 Solution to the Extremal Problem

for all λ ∈D. Define f :D→ (M2k )1 by

f (λ) =T (A10, A20)+T (A01, A11)λ+T (0, A02)λ2.

Let X1 be a co-isometry operator and X2 be an arbitrary contraction such that X1X2 =
X2X1. If Y := X2X ∗

1 , then

f (Y ) =T
(

A10 ⊗ I + A01 ⊗Y , A20 ⊗ I + A11 ⊗Y + A02 ⊗Y 2) .

An easy computation gives(
A10 ⊗X1 + A01 ⊗X2 A20 ⊗X1

2 + A11 ⊗X2X1 + A02 ⊗X2
2

0 A10 ⊗X1 + A01 ⊗X2

)

=
(

I ⊗X1 0

0 I

)
f (Y )

(
I 0

0 I ⊗X1

)
.

Therefore, ∥∥∥∥∥T
( ∑

p+q=1
Apq ⊗X p

1 X q
2 ,

∑
p+q=2

Apq ⊗X p
1 X q

2

)∥∥∥∥∥≤ ∥∥ f (X2X1
∗)

∥∥
and since X2X ∗

1 is a contraction, therefore by the von-Neumann inequality, we have∥∥∥∥∥T
( ∑

p+q=1
Apq ⊗X p

1 X q
2 ,

∑
p+q=2

Apq ⊗X p
1 X q

2

)∥∥∥∥∥≤ 1.

This completes the proof of the theorem.

3.4 Solution to the Extremal Problem

In this section we shall calculate the supremum occurring in Theorem 2.33 and Theo-

rem 3.3.

Let B be the bilateral shift on `2(Z) and C∗(B) be the commutative unital C∗− algebra

generated by B. Hence C∗(B) is isometrically isomorphic to the C∗- algebra of contin-

uous functions C (σ(B)), where σ(B) = T is the unit circle in C. This isometric isomor-

phism, which we denote by τ, is defined by the rule τ( f ) = f (B∗). Consequently, for any

k ∈N, the map

τ⊗ Ik : C (T)⊗Mk →B(`2(Z))⊗Mk

is also a ∗− isometric monomorphism. In particular, for any P ∈P (C, Mk ), we have

‖P‖op
D,∞ = ‖P (B∗)‖. (3.2)
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3 Varopoulos Operators of Type II

In the proof of the Theorem 3.8, we have seen that in solving the extremal problem

sup

∥∥∥∥∥T
(
∂ f

∂z1
(0)X1 + ∂ f

∂z2
(0)X2,

1

2

2∑
i , j=1

∂2 f

∂zi∂z j
(0)Xi X j

)∥∥∥∥∥
over all commuting contractions X1, X2 ∈ B(H), we may assume without loss of gener-

ality that X1 = I . Therefore the supremum in Theorem 3.3 is equal to the

sup

∥∥∥∥∥T
(
∂ f

∂z1
(0)I + ∂ f

∂z2
(0)X ,

1

2

(
∂2 f

∂z2
1

(0)I +2
∂2 f

∂z1∂z2
(0)X + ∂2 f

∂z2
2

(0)X 2

))∥∥∥∥∥ , (3.3)

where the supremum is taken over all contractions X .

Let P be the polynomial (taking values in 2×2 matrices M2)

P (λ) =T

(
∂ f

∂z1
(0),

1

2

∂2 f

∂z2
1

(0)

)
+T

(
∂ f

∂z2
(0),

∂2 f

∂z1∂z2
(0)

)
λ+T

(
0,

1

2

∂2 f

∂z2
2

(0)

)
λ2

We have

sup
x1,x2∈D

∥∥∥∥∥T
(
∂ f

∂z1
(0)x1 + ∂ f

∂z2
(0)x2,

1

2

2∑
i , j=1

∂2 f

∂zi∂z j
(0)xi x j

)∥∥∥∥∥= ‖P‖op
D,∞

and for any contraction X , an application of the von-Neumann inequality gives ‖P (X )‖ ≤
‖P‖op

D,∞. From (3.2) we have, ‖P‖op
D,∞ = ‖P (B∗)‖. Therefore, sup‖P (X )‖ = ‖P (B∗)‖ and

hence supremum in (3.3), Theorem 2.33 and Theorem 3.3 are equal to∥∥∥∥∥T
(
∂ f

∂z1
(0)I + ∂ f

∂z2
(0)B∗,

1

2

∂2 f

∂z2
1

(0)I + ∂2 f

∂z1∂z2
(0)B∗+ 1

2

∂2 f

∂z2
2

(0)B∗2

)∥∥∥∥∥ .

Thus Theorem 2.33 and Theorem 3.3 are equivalent to the following theorem.

Theorem 3.9. For any f ∈ H∞
0 (D2,D),∥∥∥∥∥T

(
∂ f

∂z1
(0)I + ∂ f

∂z2
(0)B∗,

1

2

∂2 f

∂z2
1

(0)I + ∂2 f

∂z1∂z2
(0)B∗+ 1

2

∂2 f

∂z2
2

(0)B∗2

)∥∥∥∥∥≤ 1.

The following corollary is essentially a restatement of Theorem 3.9. However, it is

worded to make the necessary condition for the CF problem inherent in this theorem,

evident.

Corollary 3.10. If p is any complex valued polynomial in two variables of degree at most

2 with p(0) = 0, then∥∥∥∥∥T
(
∂p

∂z1
(0)I + ∂p

∂z2
(0)B∗,

1

2

∂2p

∂z2
1

(0)I + ∂2p

∂z1∂z2
(0)B∗+ 1

2

∂2p

∂z2
2

(0)B∗2

)∥∥∥∥∥≤ 1

is a necessary condition for the existence of a holomorphic function q : D2 → C, with

q (k)(0) = 0, |k| ≤ 2, such that ‖p +q‖D2,∞ ≤ 1.
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3.4 Solution to the Extremal Problem

In the Chapter 4, we will give another proof of Theorem 3.9 and investigate the ques-

tion of the converse.
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4 The Korányi-Pukánszky Theorem
and CF Problems

4.1 The Korányi-Pukánszky Theorem

We recall the following theorem of Korányi and Pukánszky proved in [KP63, Corollary,

Page 452]. This gives a necessary and sufficient condition for the range of a holomorphic

function defined on the polydisc Dn to be in the right half plane H+.

Theorem 4.1 (Korányi-Pukánszky Theorem). If the power series
∑
α∈Nn

0
aαzα represents a

holomorphic function f on the polydisc Dn , then ℜ( f (z)) ≥ 0 for all z ∈ Dn if and only if

the map φ :Zn →C defined by

φ(α) =


2ℜaα if α= 0

aα if α> 0

a−α if α< 0

0 otherwise

is positive, that is, the k ×k matrix
((
φ(mi−m j )

))
is non-negative definite for every choice of

m1, . . . ,mk ∈Zn .

We will call the function φ, the Korányi-Pukánszky function corresponding to the co-

efficients (aα)α∈Nn
0

.

Let us revisit the (CF) problem of realizing a polynomial p ∈ C[Z1, . . . , Zn] of degree d

as the first d terms of the power series expansion of an analytic function f ∈ H∞(Dn)

with ‖ f ‖Dn ,∞ ≤ 1.

4.2 The planar Case

Although, we state the problem below for polynomials of degree 2, our methods apply

to the general case.
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4 The Korányi-Pukánszky Theorem and CF Problems

Problem 4.2. Fix p to be the polynomial p(z) = az+bz2. Find a necessary and sufficient

condition for the existence of a holomorphic function g defined on the unit disc D with

g (k)(0) = 0, k = 0,1,2, such that ‖p + g‖D,∞ ≤ 1.

We note that the condition on the range of a holomorphic function given in the theo-

rem of Korányi and Pukánszky can be easily converted into a condition where the range

is required to be in the unit disc D. For this consider the Cayley map χ :D→ H+ into the

right half plane defined by

χ(z) = 1+ z

1− z
,

which is a bi-holomorphism. Let f ∈ H∞(D) be given by the power series f (z) =∑∞
n=1 an zn .

Assume that f maps D to D. This happens if and only if χ◦ f maps D to H+. Also,

χ◦ f (z) = 1+ f (z)

1− f (z)
= 2

(
c0 +

∞∑
n=1

cn zn
)

, (4.1)

where c0 = 1/2 and the new coefficients cn are as in the lemma below. In this section, we

set c0 = 1/2, wherever it occurs.

Lemma 4.3. The coefficient cn in equation (4.1) is given by an +
n−1∑
j=1

a j cn− j for n ≥ 1.

Proof. Consider the expression

χ◦ f (z) = 2

(
c0 +

∞∑
n=1

cn zn
)
= 2

(
1

2
+ f (z)+ f (z)2 + f (z)3 +·· ·

)
.

Rewriting, we get

1

1− f (z)
= 1+

∞∑
n=1

cn zn .

Hence, we have (
1+

∞∑
n=1

cn zn
)(

1−
∞∑

n=1
an zn

)
= 1.

A comparison of the coefficients completes the verification.

Remark 4.4. Applying Theorem 4.1 to χ◦ f , we conclude that f mapsD toD if and only if

the Korányi-Pukánszky function φ corresponding to coefficients (cn)∞n=0 is positive.
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4.3 Alternative proof of Theorem 2.30

Matrix of φ : The matrix
(
φ( j −k)

)
j ,k is given by



· · · −1 0 1 · · ·
...

...
...

...

−1 · · · 1 c1 c2 · · ·
0 · · · c1 1 c1 · · ·
1 · · · c2 c1 1 · · ·
...

...
...

...

. (4.2)

Therefore, we can rewrite the Problem 4.2 in the equivalent form:

Problem 4.5. Let p be a polynomial of the form p(z) = a1z + a2z2. There exists a holo-

morphic function q, q (k)(0) = 0 for k = 0,1,2, defined on the unit disc D, such that

‖p +q‖D,∞ ≤ 1 if and only if 
1 c1 c2

c1 1 c1

c2 c1 1


is non-negative definite and for j > 2, there exists c j ∈C such that the Korányi-Pukánszky

function φ corresponding to (cn)n∈N0 is positive.

4.3 Alternative proof of Theorem 2.30

Suppose f is an analytic function on the unit disc D with ‖ f ‖D,∞ ≤ 1 and that f (z) =∑∞
n=1 an zn is its power series expansion in the unit disc D. Then χ ◦ f (z) has the power

series 2(c0+∑∞
n=1 cn zn) in the unit discD, where c0 = 1/2 and cn is of the form prescribed

in the Lemma 4.3. In this section also, we set c0 = 1/2, wherever it occurs. Let Cn , An and

Pn denote

(Cn :=)



1 c1 c2 · · · cn

c1 1 c1 · · · cn−1

c2 c1 1 · · · cn−2
...

...
...

. . .
...

cn cn−1 cn−2 · · · 1

 , (An :=)



a1 a2 a3 · · · an

0 a1 a2 · · · an−1

0 0 a1 · · · an−2
...

...
...

. . .
...

0 0 0 · · · a1
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4 The Korányi-Pukánszky Theorem and CF Problems

and

(Pn :=)



1 −a1 −a2 · · · −an

0 1 −a1 · · · −an−1
...

...
. . . . . .

...

0 0 0 · · · −a1

0 0 0 · · · 1


respectively for each n ∈N.

Lemma 4.6. If a1, a2 ∈C, then |a1|2 +|a2| ≤ 1 if and only if the matrix C2 is non-negative

definite.

Proof. Since |a1|2 + |a2| ≤ 1, it follows that ‖A2‖ ≤ 1. It is equivalent to the positivity of

the following matrix

(
I − A2 A∗

2 0

0 1

)
=


1− (|a1|2 +|a2|2) −a2a1 0

−a1a2 1−|a1|2 0

0 0 1

= P2C t
2P∗

2 .

Since P2 is an invertible matrix, the positivity of P2C t
2P∗

2 is equivalent to C t
2 being non-

negative definite. Thus, we conclude that C2 is non-negative definite.

Lemma 4.7. For all n ∈N, PnC t
nP∗

n = (I − An A∗
n)⊕1.

Proof. We shall prove the result by induction on n. The case n = 1 follows from the

Lemma 4.6. Assume the result upto n −1 for n > 1. For each n ∈N, let

P̃n := (−an ,−an−1, . . . ,−a1)t and C̃n := (cn ,cn−1, . . . ,c1)t .

The verification of the identity

PnC t
nP∗

n =
(

Pn−1 P̃n

0 1

)(
C t

n−1 C̃n

C̃∗
n 1

)(
P∗

n−1 0

P̃∗
n 1

)

is easy. Hence

PnC t
nP∗

n =
(

Pn−1C t
n−1P∗

n−1 + P̃nC̃∗
n P∗

n−1 + P̃∗
n

(
Pn−1C̃n + P̃n

)
Pn−1C̃n + P̃n(

Pn−1C̃n + P̃n
)∗

1

)
.

From the Lemma 4.3, we have Pn−1C̃n + P̃n = 0 and therefore we conclude that

PnCnP∗
n =

(
Pn−1C t

n−1P∗
n−1 + P̃nC̃∗

n P∗
n−1 0

0 1

)
.
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4.3 Alternative proof of Theorem 2.30

Now

P̃nC̃∗
n P∗

n−1 =


−an

...

−a1

(
cn −

n−1∑
i=1

ai cn−i cn−1 −
n−2∑
i=1

ai cn−i · · · c1

)
.

From the Lemma 4.3, we get

P̃nC̃∗
n P∗

n−1 =


−an

...

−a1

(
an · · · a1

)
= (−an−i an− j

)n−1
i , j=0 .

Also,

I − Ak A∗
k =



1−
k∑

j=1
|a j |2 −

k∑
j=2

a j a j−1 · · · −ak a1

−
k∑

j=2
a j a j−1 1−

k−1∑
j=1

|a j |2 · · · −ak−1a1

...
...

. . .
...

−a1ak −a1ak−1 · · · 1−|a1|2


and therefore I − An A∗

n = (
(I − An−1 A∗

n−1)⊕1
)+ (−an− j an−l

)
1≤ j ,l≤k−1 . Thus I − An A∗

n =
Pn−1C t

n−1P∗
n−1 + P̃nC̃nP∗

n−1, which completes the proof.

An immediate corollary is the following proposition.

Proposition 4.8. The matrix Cn is non-negative definite if and only if An satisfies ‖An‖ ≤
1.

In the theorem below we provide an alternative proof of the Theorem 2.30. The tech-

nique involved here is from the Section 3 of the paper of Parrott [Par78].

Theorem 4.9. Suppose a1 and a2 are two complex numbers. Then there exists f ∈ H∞(D),

with ‖ f ‖D,∞ ≤ 1, such that f (0) = 0, f ′(0) = a1, f ′′(0) = 2a2 if and only if |a1|2 +|a2| ≤ 1.

Proof. Assume f and χ◦ f are as in (4.1). Then by Korányi-Pukánszky theorem 4.1, every

principal submatrix of finite size of the matrix in (4.2) is non-negative definite. In par-

ticular, the matrix C2 is non-negative definite. From the Lemma 4.6 we conclude that

|a1|2 +|a2| ≤ 1. Conversely, assume a1, a2 ∈C are such that |a1|2 +|a2| ≤ 1. Then,

A2 =
(

a1 a2

0 a1

)
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4 The Korányi-Pukánszky Theorem and CF Problems

satisfies ‖A2‖ ≤ 1. Using Parrott’s theorem, there exists a3 ∈C such that

A3 =


a1 a2 a3

0 a1 a2

0 0 a1


has operator norm less than or equal to 1. Using the Lemma 4.3, we see that the matrix

C3 is non-negative definite. Repeatedly using the Parrott’s theorem and the Lemma 4.3,

one may ensure the existence of non-negative definite matrices Cn , for all n > 3.

Hence the Korányi-Pukánszky function corresponding to (cn)N0 is positive. Thus the

function g (z) = ∑
n cn zn maps D to H+ by Korányi-Pukánszky theorem 4.1. Hence from

the Lemma 4.3, the function f =χ−1 ◦ g satisfies all the required conditions.

4.4 The case of two Variables

Problem 4.10. Fix p ∈C[Z1, Z2] to be the polynomial defined by

p(z1, z2) = a10z1 +a01z2 +a20z2
1 +a11z1z2 +a02z2

2 .

Find necessary and sufficient conditions for the existence of a holomorphic function

function q defined on the bi-discD2 with q (k)(0) = 0 for |k| ≤ 2, such that ‖p+q‖D2,∞ ≤ 1.

Let f be an analytic function on D2. Suppose f is represented by the power series

f (z) =
∞∑

m,n=0
amn zm

1 zn
2

and a00 = 0. Also assume that f maps D2 into D. This happens if and only if χ◦ f maps

D2 to H+, where

χ◦ f (z) = (1+ f (z))(1− f (z))−1 = 2

(
c00 +

∞∑
m,n=1

cmn zm
1 zn

2

)
,

c00 = 1/2 and the coefficients cmn are from the Lemma 4.13. In this section, we set c00 =
1/2, wherever it occurs. If φ denotes the Korányi-Pukánszky function corresponding to

the coefficients (cmn), then φ is positive.

The matrix of φ: For a fixed k ∈ Z, define Pk := {(
x, y

) |x + y = k
}

. The sequence (Pk )

is a sequence of disjoint subsets of Z2. Besides⊔
k∈Z

Pk =Z2.
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An order on Z2, which we call the D-slice ordering, is defined below. Clearly, it is dif-

ferent from the usual co-lexicographic order. The matrix computations that follow are

transparent because of the D-slice ordering that we use in describing the matrix of the

Korányi-Pukánszky function φ.

Definition 4.11 (D-slice ordering). Suppose (x1, y1) ∈ Pl and (x2, y2) ∈ Pm are two ele-

ments in Z2. Then

1. If l = m, then (x1, y1) < (x2, y2) is determined by the lexicographic ordering on

Pl ⊆Z2 and

2. if l < m (resp., if l > m), then (x1, y1) < (x2, y2) (resp., (x1, y1) > (x2, y2)).

The following theorem describes the Korányi-Pukánszky function φ with respect to

the D-slice ordering on Z2.

Theorem 4.12. Let (cmn)m,n∈N0 be an infinite array of complex numbers. The matrix of

the Korányi-Pukánszky functionφ in the D-slice ordering corresponding to this array is of

the form



· · · P−1 P0 P1 · · ·
...

...
...

...

P−1 · · · I C∗
1 C∗

2 · · ·
P0 · · · C1 I C∗

1 · · ·
P1 · · · C2 C1 I · · ·
...

...
...

...

,

where Cn := cn0I + cn−1,1B∗+·· ·+c0nB∗n , n ∈N.

Proof. With respect to the D-slice ordering onZ2, the matrix corresponding to the func-

tion φ is a doubly infinite block matrix, where (k,n) element in (l ,m) block, which is

φ ((k,−k + l )− (n,−n +m)) . is computed as follows, separately, in three different cases:

First, let k −n < 0.

The quantity φ ((k,−k + l )− (n,−n +m)) is non-zero only if k − n ≥ l − m. Hence if

l ≥ m, thenφ ((k,−k + l )− (n,−n +m)) = 0. Now, assume l < m. In this case, the possible

values for k −n are l −m, l −m +1, . . . ,−1, otherwise φ ((k,−k + l )− (n,−n +m)) = 0. For

p ∈ {0,1, . . . ,−l +m −1} and k −n = l −m +p, we have

φ ((k,−k + l )− (n,−n +m)) = cm−l−p,p .
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Second, let k −n = 0.

φ(0, l −m) =
{

c0,l−m if l ≥ m

c0,m−l if l < m

Finally, let k −n > 0.

The quantity φ ((k,−k + l )− (n,−n +m)) is non-zero only if k −n ≤ l −m. Hence if

l ≤ m, then φ ((k,−k + l )− (n,−n +m)) = 0. Now, assume l > m. In this case the possible

values for k −n are l −m, l −m − 1, . . . ,1 otherwise φ ((k,−k + l )− (n,−n +m)) . For p ∈
{0,1, . . . , l −m −1} and k −n = l −m −p, we have

φ ((k,−k + l )− (n,−n +m)) = cl−m−p,p .

Therefore, the (l ,m) block in the matrix of φ is given exactly by the following rule:

1. C∗
m−l if l < m,

2. Cl−m if l > m,

3. I if m = l .

Hence the matrix of the Korányi-Pukánszky function φ in the D-slice ordering corre-

sponding to the array (cmn) is of the form



· · · P−1 P0 P1 · · ·
...

...
...

...

P−1 · · · I C∗
1 C∗

2 · · ·
P0 · · · C1 I C∗

1 · · ·
P1 · · · C2 C1 I · · ·
...

...
...

...



Assume that the power series
∑∞

j ,k=0 a j k z j
1 zk

2 , with a00 = 0, represents a holomorphic

function f defined on the bi-disc and that ‖ f ‖D2,∞ ≤ 1. Let 2
(
c00 +∑∞

j ,k=1 c j k z j
1 zk

2

)
be

the power series representation for χ ◦ f on the bi-disc D2 for some choice of complex

number cmn which are determined from the coefficients amn of the function f .

Lemma 4.13. For all n ∈ N, setting An := an0I + an−1,1B∗ + ·· · + a0nB∗n , Cn = cn0I +
cn−1,1B∗+·· ·+c0nB∗n , we have

Cn = An +
n−1∑
j=1

A j Cn− j .
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Proof. Let C (z1, z2) :=∑∞
i , j=0 ci j zi

1z j
2 . We have

1+ f (z1, z2)+ f (z1, z2)2 +·· · = (χ◦ f )(z1, z2)

2
+ c00 =C (z1, z2).

Thus C (z1, z2)(1− f (z1, z2)) = 1, which is the same as

(1+ c10z1 + c01z2 + c20z2
1 + c11z1z2 + c02z2

2 +·· · )×
(1−a10z1 −a01z2 −a20z2

1 −a11z1z2 −a02z2
2 +·· · )

= 1.

Now comparing the coefficient of zn−k
1 zk

2 we have

cn−k,k =
k∑

p=0

n∑
j=k

an− j ,p c j−k,k−p ,

where a00 = 0.

The coefficient of B∗k in An +
n−1∑
i=1

Ai Cn−i is

an−k,k c00 +an−k,k−1c01 +an−k−1,k c10 +an−k,k−2c02

+an−k−1,k−1c11 +an−k−2,k c20 +·· ·
= (an−k,k c00 +an−k,k−1c01 +·· ·+an−k,0c0k )+

(an−k−1,k c10 +an−k−1,k−1c11 +·· ·+an−k−1,0c1,k )+·· ·

· · ·+ (a0k cn−k,0 +a0,k−1cn−k,1 +·· ·+a00cn−k,k )

=
k∑

p=0

n∑
j=k

an− j ,p c j−k,k−p

completing the proof of the claim.

In view of the Theorem 4.12 and the Lemma 4.13, the CF Problem 4.10 takes the fol-

lowing form:

Theorem 4.14. For any polynomial p of the form

p(z) = a10z1 +a01z2 +a20z2
1 +a11z1z2 +a02z2

2 ,

there exists a holomorphic function q, defined on the bi-disc D2, with q (k)(0) = 0 for |k| =
0,1,2, such that

‖p +q‖D2,∞ ≤ 1
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4 The Korányi-Pukánszky Theorem and CF Problems

if and only if 
I C∗

1 C∗
2

C1 I C∗
1

C2 C1 I


is non-negative definite and for each k ≥ 3, there exists Ck = ck0I +ck−1,1B∗+·· ·+c0k B∗k

such that the Korányi-Pukánszky function φ corresponding to (cmn)m,n∈N0 is positive.

Lemma 4.15. If An and Cn are as defined above, then

I C∗
1 C∗

2 · · · C∗
n

C1 I C∗
1 · · · C∗

n−1

C2 C1 I · · · C∗
n−2

...
...

...
. . .

...

Cn Cn−1 Cn−2 · · · I

≥ 0

if and only if ∥∥∥∥∥∥∥∥∥∥∥∥∥



A1 A2 A3 · · · An

0 A1 A2 · · · An−1

0 0 A1 · · · An−2
...

...
...

. . .
...

0 0 0 · · · A1



∥∥∥∥∥∥∥∥∥∥∥∥∥
≤ 1.

Proof. For each n ∈ N, Cn commutes with Cm and Am for all m ∈ N and hence we can

adapt the proof of the Lemma 4.7 to complete the proof in this case.

Since the adjoint of the bilateral shift B∗ on `2(Z) is unitarily equivalent to the mul-

tiplication operator Mz on L2(T), it follows that An and Cn are unitarily equivalent to

the multiplication operators Ma and Mc respectively, where a(z) = an0 + an−1,1z + ·· ·+
a0n zn , and c(z) = cn0 + cn−1,1z +·· ·+ c0n zn . Now the Theorem 4.14 takes the equivalent

form given below, where for the polynomial p of the form p(z) = a10z1 +a01z2 +a20z2
1 +

a11z1z2 +a02z2
2 , we have set

p1(z) := a10 +a01z and p2(z) = a20 +a11z +a02z2. (4.3)

Theorem 4.16. For any polynomial p of the form

p(z) = a10z1 +a01z2 +a20z2
1 +a11z1z2 +a02z2

2 ,
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there exists a holomorphic function q, defined on the bi-disc D2, with q (k)(0) = 0 for |k| =
0,1,2, such that

‖p +q‖D2,∞ ≤ 1

if and only if |p2| ≤ 1− |p1|2 and there exists a holomorphic function f : D→ B(L2(T))

with

‖ f ‖op
D,∞ ≤ 1 and

f (k)(0)

k !
= Mpk for all k ≥ 0,

where p0 = 0 and for k ≥ 3, pk ∈ C[Z ] is a polynomial of degree less than or equal to k.

Here Mpk is the multiplication operator on L2(T) induced by the polynomial pk .

Thus the Problem 4.10 has been reduced to a one variable problem except it now in-

volves holomorphic functions taking values in B(L2(T)). To discuss this variant of the

CF problem, the following definition will be useful.

Definition 4.17 (Completely Polynomially Extendible). Suppose k ∈ N and {p j }k
j=1 is a

sequence of polynomials, with deg(p j ) ≤ j for all j = 1,2, . . . ,k. Then T(Mp1 , . . . , Mpk )

will be called n-polynomially extendible if ‖T(Mp1 , . . . , Mpk )‖ ≤ 1 and there exists

a sequence of polynomials {pl }n
l=k+1, with deg(pl ) ≤ l , such that ‖T(Mp1 , . . . , Mpn )‖ ≤

1. Also, T(Mp1 , . . . , Mpk ) will be called completely polynomially extendible if the

operator T(Mp1 , . . . , Mpk ) is n-polynomially extendible for all n ∈N.

For p1, p2 ∈C[Z ], polynomials of degree at most 1 and 2 respectively, let P denote the

polynomial P (z) = Mp1 z + Mp2 z2. We shall call P to be a polynomial in the CF class if

given these polynomials p1, p2, there is a holomorphic function f :D→B(L2(T)) satis-

fying properties stated in the Theorem 4.16. Such a function f is called a CF-extension

of the polynomial P . It follows that a solution to the Problem 4.10 exists if and only if the

polynomial P is in the CF class. We have therefore proved the following theorem.

Theorem 4.18. A solution to the Problem 4.10 exists if and only if the corresponding one

variable operator valued polynomial P is in the CF class. Or, equivalently, T(Mp1 , Mp2 ) is

completely polynomially extendible.

It is clear, from the Theorem 4.16, that |p1|2 +|p2| ≤ 1 is a necessary condition for the

existence of a solution to the Problem 4.10. This condition via Parrott’s theorem is also

equivalent to the condition ‖T(Mp1 , Mp2 )‖ ≤ 1.

We now give some instances, where this necessary condition is also sufficient for the

existence of a solution to the Problem 4.10. This would amount to find condition for

T(Mp1 , Mp2 ) to be completely polynomially extendible.
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4 The Korányi-Pukánszky Theorem and CF Problems

Theorem 4.19. Let p1(z) = γ+δz and p2(z) = (α+βz)(γ+δz) for some choice of complex

numbersα, β, γ and δ. Assume that |p1|2+|p2| ≤ 1. If eitherαβγδ= 0 or arg(α)−arg(β) =
arg(γ)−arg(δ), then T(Mp1 , Mp2 ) is completely polynomially extendible.

Proof. All through this proof, for brevity of notation, we will let ‖ f ‖ stand for the norm

sup{‖ f (z)‖op : z ∈D}, for any holomorphic function f :D→B(L2(T)).

Case 1: Suppose β = 0. Then P (z) = Mp1 (z +αz2). Let p(z) = z +αz2. Using Nehari’s

theorem, we extend p to the function p̃(z) = z +αz2 +α3z3 + ·· · such that ‖p̃‖D,∞ =
‖T(1,α)‖ . Define f (z) = Mp1 p̃(z) = Mp1 z +Mp2 z2 +Mp3 z3 +·· · , where pk =αk p1. Also,

‖ f ‖ = sup
z∈D

‖Mp1 p̃(z)‖ = ‖Mp1‖sup
z∈D

|p̃(z)| = ‖Mp1‖‖T(1,α)‖.

Thus ‖ f ‖ = ‖Mp1 ⊗T(1,α)‖ = ‖T(Mp1 , Mp2 )‖ ≤ 1. Hence f is a required CF-extension of

P .

Case 2: Suppose α = 0. Then, P (z) = Mp1 (z +βMz z2). Let Q(z) = z +βMz z2 and

r (z1, z2) = z1(1+βz2). Define s(z2) = 1+βz2. Suppose s̃(z2) = s(z2)+β2z2
2 +β3z3

2 + ·· ·
be such that ‖s̃‖D,∞ = ‖T(1,β)‖. If r̃ := z1 s̃(z2), then ‖r̃‖ = ‖s̃‖ = ‖T(1,β)‖. If Q̃(z) =
z + Mβz z2 + Mβ2z2 z2 + ·· · and f (z) = Mp1Q̃(z), then ‖ f ‖ = ‖Mp1Q̃‖ ≤ ‖Mp1‖‖Q̃‖. Since

s̃(Mz) = Q̃(z), from the von-Neumann inequality it follows that ‖Q̃‖ ≤ ‖s̃‖. Therefore,

‖ f ‖ ≤ ‖Mp1‖‖T(1,β)‖ = ‖T(Mp1 ,βMp1 )‖. Hence

‖ f ‖ ≤
∥∥∥∥∥
(

Mz 0

0 I

)(
Mp1 βMp1

0 Mp1

)(
M∗

z 0

0 I

)∥∥∥∥∥= ‖T(Mp1 , Mp2 )‖ ≤ 1.

Therefore f is a CF-extension of P.

Case 3: Suppose α 6= 0 and β 6= 0. Then, P (z) = Mp1

(
z +Mα+βz z2

)
. Let Q(z) := z +

Mα+βz z2. Define r (z1, z2) := z1+αz2
1+βz1z2 = z1

(
1+αz1 +βz2

)
. Letλ := |α|/|β| and a :=

λ/(1+λ). Define s(z1, z2) := 1+αz1+βz2 = (a +αz1)+(
1−a +βz2

)
. If h1(z1) := a+αz1 and

h2(z2) := 1−a+βz2, then there exist h̃1 = a+αz1+α2z2
1+·· · and h̃2 = 1−a+βz2+β2z2

2+·· ·
with

∥∥h̃1
∥∥= ∥∥T(a,α)

∥∥ and
∥∥h̃2

∥∥= ∥∥T(1−a,β)
∥∥ . If

r̃ (z1, z2) := z1
(
h̃1(z1)+ h̃2(z2)

)= z1 +αz2
1 +βz1z2 +α2z3

1 +β2z1z2
2 +·· · ,

then ‖r̃‖ ≤ ‖h̃1‖+‖h̃2‖. Let Q̃(z) = I z +Mα+βz z2 +Mα2+β2z2 z3 +·· · and f (z) = Mp1Q̃(z)

= ∑
j Mp j z j , where pk+1(z) = (

αk +βk zk
)
p1 for all k > 1. Thus ‖ f ‖ ≤ ‖Mp1‖‖Q̃‖. Since

Q̃(z) = r̃ (z, Mz), from the von-Neumann inequality, it follows that

‖ f ‖ ≤ ‖Mp1‖‖r̃‖ ≤ ‖Mp1‖
(‖h̃1‖+‖h̃2‖

)
.
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As T(a, |α|) =λT(1−a, |β|), therefore
(‖h̃1‖+‖h̃2‖

)= ‖T (
1, |α|+ |β|)‖ and hence

‖ f ‖ ≤ ‖Mp1‖‖T
(
1, |α|+ |β|)‖ = ∥∥T (‖p1‖, (|α|+ |β|)‖p1‖

)∥∥ .

subcase 1: Suppose γ 6= 0, δ 6= 0 and arg (α)− arg (β) = arg (γ)− arg (δ). Then

(|α|+ |β|)‖p1‖ = ‖(α+β)p1‖ = ‖p2‖.

Our hypothesis clearly implies that ‖p2‖+‖p1‖2 ≤ 1. Hence ‖ f ‖ ≤ 1.

subcase 2: Suppose γ= 0 or δ= 0. Then

(|α|+ |β|)‖p1‖ = ‖(α+β)p1‖ = ‖p2‖.

As in subcase 1, here also ‖ f ‖ ≤ 1 can be inferred easily.

Remark 4.20. In Problem (4.10), If either p1 ≡ 0 or p2 ≡ 0, and ‖T(Mp1 , Mp2 )‖ ≤ 1, then

‖P‖ ≤ 1 and hence f in the Theorem (4.16) can be taken to be P itself.

Having verified that the necessary condition ‖T(Mp1 , Mp2 )‖ ≤ 1 is also sufficient for

P to be in the CF class in several cases, we expected it to be sufficient in general. But

unfortunately this is not the case. We give an example of a polynomial P for which

‖T(Mp1 , Mp2 )‖ ≤ 1 but P is not in the CF class.

An Example: Let p1(z) = 1/
p

2 and p2(z) = z2/2. We show thatT(Mp1 , Mp2 ) is not even

3−polynomially extendible.

It can easily be seen that ‖T(Mp1 , Mp2 )‖ ≤ 1. Now suppose there exists a polynomial p3

of degree at most 3 such that ‖T(Mp1 , Mp2 , Mp3 )‖ ≤ 1. Then Parrott’s theorem guarantees

the existence of a contraction V ∈B
(
L2(T)

)
such that

Mp3 =
(

I −M|p1|2 −Mp2

(
I −M|p1|2

)−1
M∗

p2

)
V −Mp2

(
I −M|p1|2

)− 1
2

M∗
p1

(
I −M|p1|2

)− 1
2

Mp2 .

Since every operator involved in this expression is a multiplication operator, it follows

that V is also a multiplication operator, say, Mv . Hence we have

p3 =
(
(1−|p1|2)2 −|p2|2

)
v −p2

2p1

(1−|p1|2)
.

As we have (1−|p1|2)2 −|p2|2 ≡ 0, therefore

p3 =
−p2

2p1

1−|p1|2
=p

2z4.

Thus p3 is a polynomial of degree more than 3 which is a contradiction. HenceT(Mp1 , Mp2 )

is not even 3− polynomially extendible.

We close this section with an open question: What are the properties we must im-

pose on the polynomials p1 and p2 in addition to the requirement ‖T(Mp1 , Mp2 )‖ ≤ 1 to

ensure that P is in the CF class?
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4.5 Korányi-Pukánszky Theorem as an Application of

Spectral Theorem

In this section we show that Korányi-Pukánszky Theorem 4.1 is an application of the

well known spectral theorem. For simplicity we consider n = 2.

Theorem 4.21 (Korányi-Pukánszky Theorem). If the power series
∑
α∈Nn

0
cαzα represents

a holomorphic function g on the polydisc Dn , then ℜ(g (z)) ≥ 0 for all z ∈Dn if and only if

the map φ :Zn →C defined by

φ(α) =


2ℜcα if α= 0

cα if α> 0

c−α if α< 0

0 otherwise

is positive, that is, the k ×k matrix
((
φ(mi−m j )

))
is non-negative definite for every choice of

m1, . . . ,mk ∈Zn .

Proof. Suppose the power series 2
∑
α∈Nn

0
cαzα represents a holomorphic function g de-

fined on the bi-discD2 with the property that ℜ(g (z)) ≥ 0 for all z ∈D2(This extra factor 2

has been put in to the power series just to make previous computation matched). With-

out loss of generality, we assume that g (0) = 1. The function g maps D2 to the right half

plane H+ if and only if f := χ−1 ◦ g maps D2 to the unit disc D. Suppose
∑∞

j ,k=0 a j k z j
1 zk

2

represents the function f . Then, a00 = 0 and the array of coefficients
((

a j k
))

and
((

c j k
))

are

related by the formula obtained in the Lemma 4.15. The operators I ⊗B∗ and B∗⊗B∗ are

commuting unitaries and they have T2 as their joint spectrum. Now, applying spectral

theorem and maximum modulus principle, we get the following:

‖ f (I ⊗B∗,B∗⊗B∗)‖ = ‖ f ‖D2,∞. (4.4)

Also, we note that

f (I ⊗B∗,B∗⊗B∗) = A1 ⊗B∗+ A2 ⊗B∗2 +·· · ,

where An := an0I +an−1,1B∗+·· ·+a0nB∗n and Cn := cn0I + cn−1,1B∗+·· ·+ c0nB∗n as in

the Lemma 4.15. Since ‖ f ‖D2,∞ ≤ 1, it follows from (4.4) that ‖T(A1, . . . , An)‖ ≤ 1 for all
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n ∈N. Now, from the Lemma 4.15, we conclude that

I C∗
1 C∗

2 · · · C∗
n

C1 I C∗
1 · · · C∗

n−1

C2 C1 I · · · C∗
n−2

...
...

...
. . .

...

Cn Cn−1 Cn−2 · · · I

 (4.5)

is non-negative for all n ∈ N. Hence from the Theorem 4.12, we get that the Korányi-

Pukánszky function φ corresponding to the array
((

c j k
))

is positive.

Conversely, suppose the Korányi-Pukánszky function φ corresponding to the array((
c j k

))
is positive, where c00 is assumed to be 1/2. Then, from the Theorem 4.12, we get

that operator in (4.5) is non-negative for all n ∈N. Thus, from the Lemma 4.15 and the

equation (4.4), we conclude that ‖χ ◦ g‖D2,∞ ≤ 1, where g (z1, z2) = 2
∑∞

m,n=0 cmn zm
1 zn

2 .

This is so if and only if g mapsD2 to the right half plane H+. Hence the theorem is proved.
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5 A generalization of Nehari’s
Theorem

For a closed subspace M and a point x in a Hilbert space H, the distance of M from x is

attained at P (x), where P is the orthogonal projection of H onto M . Nehari considered

a similar problem but in the space L∞(T). He evaluated the distance of a function f in

L∞(T) from the closed subspace H∞(T). Before stating Nehari’s theorem we shall give

some definitions.

5.1 The Hankel Operator

Let H 2(T) denote the Hardy space, namely the closed subspace of L2(T) :

H 2(T) := {
f ∈ L2(T)| f̂ (−n) = 0,n ∈N}

,

where f̂ (−n) is the Fourier coefficient of f with respect to the standard orthonormal

basis zn , n ∈ Z and z ∈ T, of L2(T). Let P− denote the orthogonal projection of L2(T)

onto L2(T)ªH 2.

Definition 5.1 (Multiplication Operator). For φ ∈ L∞(T), we define the multiplication

operator Mφ : L2(T) → L2(T) by the rule Mφ( f ) =φ f , where (φ f )(z) =φ(z) f (z), z ∈T.

For any φ ∈ L∞(T) and f ∈ L2(T), it is easy to see that φ f ∈ L2(T) and that Mφ is

bounded. Indeed ‖Mφ‖ = ‖φ‖∞ (cf. [You88, Theorem 13.14]).

Definition 5.2 (Hankel Operator). For φ ∈ L∞(T), define the Hankel operator with sym-

bol φ to be the operator P− ◦Mφ|H 2 and denote it by Hφ.

We recall the well known theorem of Nehari.

Theorem 5.3 (Nehari). If φ ∈ L∞(T) and Hφ is the corresponding Hankel operator, then

inf
{‖φ− g‖T,∞ : g ∈ H∞(T)

}= ‖Hφ‖op .
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5 A generalization of Nehari’s Theorem

5.2 Nehari’s theorem for L2(T2)

In this section, we will give a possible generalization of Nehari’s theorem for L2(T2). This

generalization is most conveniently stated in terms of the D-slice ordering on Z2, which

we now recall. For a fixed k ∈ Z, define Pk := {(
x, y

) |x + y = k
}

. The sequence
(
Pk

)
is a

sequence of disjoint subsets of Z2 and
⊔

k∈ZPk = Z2. The D-slice ordering on Z2 is the

ordering:

Suppose (x1, y1) ∈ Pl and (x2, y2) ∈ Pm are two elements in Z2. Then

1. If l = m, then (x1, y1) < (x2, y2) is determined by the lexicographic ordering on

Pl ⊆Z2 and

2. if l < m (respectively, if l > m), then (x1, y1) < (x2, y2) (respectively, (x1, y1) > (x2, y2)).

Let A1 =⊔
k∈N0 Pk and A2 =⊔

k∈NP−k . Define

H1 :=
{

f := ∑
(m,n)∈A1

am,n zm
1 zn

2 | f ∈ L∞(T2)

}
, H2 :=

{
f := ∑

(m,n)∈A2

am,n zm
1 zn

2 | f ∈ L∞(T2)

}
.

H1 and H2 are two closed and disjoint subspaces of L∞(T2) satisfying L∞(T2) = H1⊕H2.

Now the answer to the following question on L2(T2) would be a natural generalization

of the Nehari’s theorem.

Question 5.4. For φ ∈ L∞(T2), what is dist∞(φ, H1), the distance of φ from the subspace

H1?

5.3 The Hankel Matrix corresponding to φ

Any φ ∈ L2(T2) can be written as

φ(z1, z2) = ∑
m,n∈Z

am,n zm
1 zn

2 = ∑
m,n∈A1

am,n zm
1 zn

2 + ∑
m,n∈A2

am,n zm
1 zn

2 .

Suppose z2 =λz1. Then

φ(z1,λz1) = ∑
k≥0

( ∑
m+n=k

am,nλ
n

)
zk

1 + ∑
k<0

( ∑
m+n=k

am,nλ
n

)
zk

1 .

Setting f φk (λ) :=∑
m+n=k am,nλ

n , we have

φ(z1,λz1) = ∑
k∈Z

f φk (λ)zk
1 .
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5.3 The Hankel Matrix corresponding to φ

In this way, L2(T2) is first identified with L2(T) ⊗ L2(T) and then a second time with

L2(T) ⊗ `2(Z), the identifications in both cases being isometric. For any φ ∈ L∞(T2),

define the multiplication operator Mφ : L2(T)⊗`2(Z) → L2(T)⊗`2(Z) as follows

Mφ

(∑
j∈Z

g j ⊗e j

)
:= ∑

k∈Z

( ∑
q∈Z

gq fq+k

)
ek .

Lemma 5.5. For any φ ∈ L∞(T2), we have ‖Mφ‖ = ‖φ‖T2,∞.

Proof. Let φ ∈ L∞(T2) be an arbitrary element. From what we have said above, it follows

that φ(z,λz) =∑
k∈Z f φk (λ)zk for some f φk in L2(T). The set of vectors

{
zi ⊗e j : (i , j ) ∈Z2

}
is an orthonormal basis in L2(T)⊗`2(Z). The matrix of the operator Mφ with respect to

this basis and the D-slice ordering on its index set is of the form

...
...

...

· · · M
f
φ
−1

M
f
φ

0
M

f
φ

1
· · ·

· · · M
f
φ
−2

M
f
φ
−1

M
f
φ

0
· · ·

· · · M
f
φ
−3

M
f
φ
−2

M
f
φ
−1

· · ·
...

...
...


.

We know that ‖φ‖T2,∞ = supλ∈T supz∈T
∣∣∣∑k∈Z f φk (λ)zk

∣∣∣. Thus

‖φ‖T2,∞ = sup
λ∈T

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



...
...

...

· · · f φ−1(λ) f φ0 (λ) f φ1 (λ) · · ·
· · · f φ−2(λ) f φ−1(λ) f φ0 (λ) · · ·
· · · f φ−3(λ) f φ−2(λ) f φ−1(λ) · · ·

...
...

...



∥∥∥∥∥∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



...
...

...

· · · M
f
φ
−1

M
f
φ

0
M

f
φ

1
· · ·

· · · M
f
φ
−2

M
f
φ
−1

M
f
φ

0
· · ·

· · · M
f
φ
−3

M
f
φ
−2

M
f
φ
−1

· · ·
...

...
...



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Hence ‖φ‖T2,∞ = ‖Mφ‖ completing the proof.

The Hilbert space `2(N0) and the normed linear subspace{
(. . . ,0, x0, x1, . . .) :

∑
i≥0

|xi |2 <∞ with x0 at the 0th position
}
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5 A generalization of Nehari’s Theorem

of `2(Z) are naturally isometrically isomorphic. Let H := L2(T)⊗`2(N0). The space H

is a closed subspace of L2(T)⊗`2(Z). We define Hankel operator Hφ, with symbol φ, to

be the operator PH⊥ ◦Mφ|H . Writing down the matrix for Hφ with respect to the bases

{zi ⊗ e j : i ∈ Z, j = 0,1,2, . . .} and {zi ⊗ e− j : i ∈ Z, j = 1,2, . . .} in the spaces H and H⊥

respectively, we get

Hφ =


M

f
φ
−1

M
f
φ
−2

M
f
φ
−3

· · ·
M

f
φ
−2

M
f
φ
−3

M
f
φ
−4

· · ·
M

f
φ
−3

M
f
φ
−4

M
f
φ
−5

· · ·
...

...
...

 .

We call this the Hankel matrix with symbol φ.

Let H be a Hilbert space. For any (Tn)n∈N ⊂ B(H), define a operator H(T1,T2, . . .) as

follows:

H(T1,T2, . . .) =


T1 T2 T3 · · ·
T2 T3 T4 · · ·
T3 T4 T5 · · ·
...

...
...

 .

Lemma 5.6. For φ in L∞(T2), we have ‖Hφ‖ ≤ dist∞(φ, H1).

Proof. From the definition of Hφ and the Lemma 5.5, it can easily be seen that∥∥Hφ

∥∥= ∥∥PH⊥ ◦Mφ|H
∥∥≤ ∥∥Mφ

∥∥= ∥∥φ∥∥
T2,∞.

Thus ‖Hφ‖ ≤ ‖φ‖T2,∞. From the matrix representation of Hφ it is clear that for any g in

H1, Hφ−g = Hφ. Hence ‖Hφ‖ = ‖Hφ−g‖ ≤ ‖φ− g‖T2,∞. Thus the proof of the lemma is

complete.

For n ∈N, a0, a1, . . . , an−1 ∈C and (bm)m∈N ⊂C, define the following operator

Tn ((bm), a0, a1, . . . , an−1) :=



a0 a1 · · · an−1

b1 a0 · · · an−2
...

...
...

bn−1 bn−2 · · · a0
...

...
...


.

Lemma 5.7. Suppose f0, f1, . . . , fn−1 ∈ L∞(T) and (gm) ⊂ L∞(T) are such that

sup
λ∈T

‖Tn
(
(gm(λ)), f0(λ), . . . , fn−1(λ)

)‖ ≤ 1.
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5.4 CF problem in view of Nehari’s theorem for L2(T)

Then, there exists fn ∈ L∞(T) such that

sup
λ∈T

‖Tn+1
(
(gm(λ)), f0(λ), . . . , fn(λ)

)‖ ≤ 1.

Proof. Let

Q(λ) =
(

f0(λ) · · · fn−1(λ)
)

,R(λ) =
(

fn−1(λ) · · · f0(λ) g1(λ) · · ·
)t

and

S(λ) =



g1(λ) f0(λ) · · · fn−3(λ)

g2(λ) g1(λ) · · · fn−4(λ)
...

...
...

gn−1(λ) gn−2(λ) · · · g1(λ)
...

...
...


.

All possible choices of fn(λ) for which Tn+1
(
(gm(λ)), f0(λ), . . . , fn(λ)

)
is a contraction are

given, via Parrott’s theorem (cf. [You88, Chapter 12, page 152]), by the formula

fn(λ) = (I −Z Z∗)1/2V (I −Y ∗Y )1/2 −Z S(λ)∗Y , (5.1)

where V is an arbitrary contraction and Y , Z are obtained from the formulae R(λ) =
(I −S(λ)S(λ)∗)1/2Y , Q(λ) = Z (I −S(λ)∗S(λ))1/2.

Every entry of I−S(λ)∗S(λ) is in L∞ as function ofλ. Thus all entries in (I−S(λ)∗S(λ))1/2

are measurable functions which are essentially bounded. Consequently, so are entries

of Z . A similar assertion can be made for Y . Therefore choosing V = 0 in equation (5.1),

we get fn with the required property. In fact, one can choose V to be any contraction

whose entries are L∞ functions.

Theorem 5.8 (Nehari’s theorem for L2(T2)). If φ ∈ L∞(T2), then ‖Hφ‖ = dist∞(φ, H1).

Proof. From the Lemma 5.6, we know that ‖Hφ‖ ≤ dist∞(φ, H1). Without loss of gen-

erality we assume that ‖Hφ‖ = 1. Using the Lemma 5.7, we find f φ0 ∈ L∞(T) such that

the norm of H
(
M

f
φ

0
, M

f
φ
−1

, . . .
)

is at most 1. Repeated use of the Lemma 5.7 proves the

theorem.

5.4 CF problem in view of Nehari’s theorem for L2(T)

Fix p ∈C[Z1, Z2] to be the polynomial defined by

p(z1, z2) = a10z1 +a01z2 +a20z2
1 +a11z1z2 +a02z2

2 .
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5 A generalization of Nehari’s Theorem

Denote φ(z1, z2) := z3
1p(z1, z2) = a10z2

1 + a01z3
1z2 + a20z1 + a11z2

1z2 + a02z3
1z2

2 . Suppose

p1(λ) = a10 +a01λ and p2(λ) = a20 +a11λ+a02λ
2. Then, ‖Hφ‖ = dist∞(φ, H1), where

Hφ =


Mp2 Mp1 0 · · ·
Mp1 0 0 · · ·

0 0 0 · · ·
...

...
...

. . .


Thus, if there exists a holomorphic function q : D2 → C with q (k)(0) = 0 for |k| ≤ 2 such

that ‖p +q‖D2,∞ ≤ 1, then ‖Hφ‖ ≤ ‖p +q‖D2,∞. Hence ‖Hφ‖ ≤ 1 is a necessary condition

for such a q to exist.
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6 Operator Space Structures on `1(n)

6.1 Operator space

Definition 6.1. An abstract operator space is a normed linear space V together with a

norm ‖ ·‖k defined on the linear space

Mk (V ) := {((
vi j

))|vi j ∈V ,1 ≤ i , j ≤ k
}
, k ∈N,

with the understanding that ‖·‖1 is the norm of V and the family of norms ‖·‖k satisfies

the compatibility conditions:

1. ‖T ⊕S‖p+q = max
{‖T ‖p ,‖S‖q

}
and

2. ‖ASB‖q ≤ ‖A‖op‖S‖p‖B‖op

for all S ∈ Mq (V ),T ∈ Mp (V ), A ∈ Mq×p (C) and B ∈ Mp×q (C).

Let (V ,‖·‖k ) and (W,‖·‖k ) be two operator spaces. A linear bijection T : V →W is said

to be a complete isometry if T ⊗ Ik : (Mk (V ),‖ · ‖k ) → (Mk (W ),‖ · ‖k ) is an isometry for

every k ∈N. Operator spaces (V ,‖ · ‖k ) and (W,‖ · ‖k ) are said to be completely isometric

if there is a linear complete isometry T : V → W . A well known theorem of Ruan says

that any operator space (V ,‖ · ‖k ) can be embedded, completely isometrically, in to C∗-

algebra B(H) for some Hilbert spaceH. There are two natural operator space structures

on any normed linear space V , which may coincide. These are the MIN and the MAX

operator space structures defined below.

Definition 6.2 (MIN). The MIN operator space structure denoted by MIN(V ) on a normed

linear space V is obtained by the isometric embedding of V in to the C∗-algebra C ((V ∗)1),

the space of continuous functions on the unit ball (V ∗)1 of the dual space V ∗. Thus for((
vi j

))
in Mk (V ), we set∥∥((

vi j
))∥∥

M I N = sup
{∥∥((

f (vi j )
))∥∥ : f ∈ (V ∗)1

}
,

where the norm of a scalar matrix
((

f (vi j )
))

is the operator norm in Mk .
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6 Operator Space Structures on `1(n)

Definition 6.3 (Max). Let V be a normed linear space and
((

vi j
)) ∈ Mk (V ). Define∥∥((

vi j
))∥∥

M AX = sup
{∥∥((

T vi j
))∥∥ : T : V →B(H)

}
,

where the supremum is taken over all isometries T and all Hilbert spaces H. This oper-

ator space structure is denoted by MAX(V ).

These two operator space structures are extremal in the sense that for any normed

linear space V , MIN(V ) and MAX(V ) are the smallest and largest operator space struc-

tures on V respectively. For any normed linear space V , Paulsen [Pau92] associates a

very interesting constant, namely, α(V ) :

α(V ) := sup
{‖IV ⊗ Ik‖(Mk (V ),‖·‖MIN)→(Mk (V ),‖·‖MAX) : k ∈N}

.

The constant α(V ) is equal to 1 if and only if V has only one operator space structure on

it. There are only a few examples of normed linear spaces for which α(V ) is known to

be 1. These include α(`∞(2)) =α(`1(2)) = 1. In fact, it is known (cf. [Pis03, Page 79]) that

α(V ) > 1 if dim(V ) ≥ 3.

The map φ : `∞(n) → B(Cn) defined by φ(z1, . . . , zn) = diag(z1, . . . , zn), is an isometric

embedding of the normed linear space `∞(n) in to the finite dimensional C*-algebra

B(Cn). Clearly, this is the MIN structure of the normed linear space `∞(n). We shall,

however prove that there is no such finite dimensional isometric embedding for the dual

space `1(n). Never the less, we shall construct, explicitly, a number of possibly different

isometric infinite dimensional embeddings of `1(n).

6.2 `1(n) has no isometric embedding into any Mk

In this section, we will show that there does not exist an isometric embedding of `1(n),

n > 1, into any finite dimensional matrix algebra Mk , k ∈ N. Without loss of generality,

we prove this for the case of n = 2.

Lemma 6.4. For m ∈N and θ1, . . . ,θm ∈ [0,2π), there exists a1, a2 ∈C such that

max
j=1,...,m

∣∣a1 +e iθ j a2
∣∣< ∣∣a1

∣∣+ ∣∣a2
∣∣.

Proof. For any two non-zero complex numbers a1, a2, we have

max
j=1,...,m

∣∣a1 +e iθ j a2
∣∣= max

j=1,...,m

∣∣|a1|+e iθ j+φ2−φ1 |a2|
∣∣,
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6.2 `1(n) has no isometric embedding into any Mk

where φ1 and φ2 are the arguments of a1 and a2 respectively. Setting α j = θ j +φ2 −φ1,

we have

max
j=1,...,m

∣∣a1 +e iθ j a2
∣∣2 = max

j=1,...,m

∣∣|a1|+e iα j |a2|
∣∣2

= max
j=1,...,m

∣∣|a1|2|a2|2 +2|a1a2|cosα j
∣∣.

Therefore

max
j=1,...,m

∣∣a1 +e iθ j a2
∣∣= ∣∣a1

∣∣+ ∣∣a2
∣∣

if and only if cosα j = 1 for some j , that is, if and only if α j = 0 for some j . Choose a1

and a2 such that φ1 −φ2 6= θ j for all j = 1, . . . ,m. The existence of such a pair a1 and a2

proves the lemma.

Theorem 6.5. There is no isometric embedding of `1(2) into Mn for any n ∈N..

Proof. Suppose there is a n −di mensi onal isometric embedding φ of `1(2). Then this

embeddingφ is induced by a pair of operators T1,T2 ∈ Mn of norm 1, defined by the rule

φ(a1, a2) = a1T1 +a2T2. Let U1 and U2 in M2n be the pair of unitaries:

Ui :=
(

Ti DT ∗
i

DTi T ∗
i ,

)
i = 1,2,

where DTi is the positive square root of the (positive) operator I −T ∗
i Ti . Now, we have

PCn (a1U1 +a2U2)|Cn = a1T1 +a2T2.

(This dilating pair of unitaries is not necessarily commuting nor is it a power dilation!)

Thus ψ : `1(2) → M2n(C) defined by ψ(a1, a2) = a1U1 + a2U2 is also an isometry. Since

norms are preserved under unitary operations, without loss of generality, we assume

U1 = I and U2 to be a diagonal unitary, say, D. Let D = diag
(
e iθ1 , . . . ,e iθ2n

)
. Now applying

the Lemma 6.4, we obtain complex numbers a1 and a2 such that

max
j=1...2n

∣∣a1 +e iθ j a2
∣∣< ∣∣a1

∣∣+ ∣∣a2
∣∣.

Hence ψ cannot be an isometry contradicting the hypothesis that φ is an isometry.

Remark 6.6. An amusing corollary of this theorem is that the two spaces `∞(n) and `1(n)

cannot be isometrically isomorphic for n > 1.
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6.3 Infinite dimensional embeddings of `1(n)

Let H1, . . . ,Hn be Hilbert spaces and Ti be a contraction on Hi for i = 1, . . . ,n. Assume

that the unit circle T is contained in σ(Ti ), the spectrum of Ti , for i = 1, . . . ,n. Denote

T̃1 = T1 ⊗ I⊗(n−1), T̃2 = I ⊗T2 ⊗ I⊗(n−2), . . . , T̃n = I⊗(n−1) ⊗Tn .

Theorem 6.7. Suppose the operators T̃1, . . . , T̃n are defined as above. Then, the function

f : `1(n) →B(H1 ⊗·· ·⊗Hn)

defined by

f (a1, a2, . . . , an) := a1T̃1 +a2T̃2 +·· ·+anT̃n .

is an isometry.

Proof. Since T ⊂ σ(Ti ) and Ti is a contraction for i = 1, . . . ,n, it follows that T ⊂ ∂σ(Ti )

for i = 1, . . . ,n. From (cf. [Con90, Proposition 6.7, page 210]), we have T ⊂ σa(Ti ) for

i = 1, . . . ,n. Thus for any i ∈ {1, . . . ,n} and λ ∈ T, there exists a sequence of unit vectors

(xi
m)m∈N inHi such that

‖(Ti −λ)(xi
m)‖ −→ 0 as m −→∞.

Now, applying the Cauchy-Schwarz’s inequality, we have

|〈(Ti −λ)(xi
m), (xi

m)〉| ≤ ‖(Ti −λ)(xi
m)‖‖(xi

m)‖
= ‖(Ti −λ)(xi

m)‖ −→ 0.

as m −→ ∞. Hence 〈Ti (xi
m), (xi

m)〉 −→ λ as m −→ ∞. Let (a1, . . . , an) be any vector in

`1(n) such that none of its co-ordinates zero. Let λ1 = e−i arg(a1),λ2 = e−i arg(a2), . . . ,λn =
e−i arg(an ). Now for each j ∈ {1, . . . ,n}, we have (x j

m)m∈N, a sequence of unit vectors from

H j , such that

〈T j (x j
m), (x j

m)〉 −→λ j as m −→∞.

As m goes to ∞, we have∣∣〈(a1T1 ⊗ I⊗(n−1) +·· ·+an I⊗(n−1) ⊗Tn)(x1
m ⊗·· ·⊗xn

m), (x1
m ⊗·· ·⊗xn

m)〉∣∣
= ∣∣a1〈T1(x1

m), (x1
m))〉+ · · ·+an〈Tn(xn

m), (xn
m))〉∣∣−→ ∣∣a1λ1 +·· ·+anλn

∣∣
= |a1|+ · · ·+ |an | = ‖(a1, . . . , an)‖1.
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6.3 Infinite dimensional embeddings of `1(n)

Hence ‖a1T̃1 +a2T̃2 +·· ·+anT̃n‖ ≥ ‖(a1, a2, . . . , an)‖1. Also

‖a1T̃1 +a2T̃2 +·· ·+anT̃n‖ ≤ |a1|‖T1‖+|a2|‖T2‖+·· ·+ |an |‖Tn‖.

Hence ‖a1T̃1 +a2T̃2 +·· ·+anT̃n‖ = ‖(a1, a2, . . . , an)‖1, proving that f is an isometry.

If some of the co-ordinates in the vector (a1, . . . , an) are zero, the same argument, as

above, remains valid after dropping those co-ordinates.

An adaptation of the technique involved in the proof of the Theorem 6.7, also proves

the following theorem.

Theorem 6.8. For i = 1, . . . ,n, let Ti be a contraction on a Hilbert spaceHi and T⊆σ(Ti ).

Denote T̃i = T1 ⊗·· ·⊗Ti ⊗ IHi+1 ⊗·· ·⊗ IHn . Then, the function

f : `1(n) →B(H1 ⊗·· ·⊗Hn)

defined by

f (a1, a2, . . . , an) := a1T̃1 +a2T̃2 +·· ·+anT̃n .

is an isometry.

Remark 6.9. We have already noted that α(`1(2)) = 1. Therefore all the operator space

structures on `1(2), defined in the Theorem 6.7, must be completely isometric to the MIN

operator space structure.

Suppose T1 and T2 are contractions on Hilbert spaces H1 and H2 respectively with the

property that T ⊆ σ(Ti ) for i = 1,2. Denote T̃1 = T1 ⊗ IH2 and T̃2 = IH1 ⊗T2. Then the

map f defined as in the Theorem 6.7 is an isometry. The dilation theorem due to Sz.-

Nagy (cf. [Pau02, Theorem 1.1, page 7]), gives unitaries U1 : K1 → K1 and U2 : K2 → K2

dilating the contractions T1 and T2 respectively. The operator space structure defined by

the isometry g : `1(2) →B(K1⊗K2), where g (a1, a2) = a1U1⊗ IK2 +a2IK1 ⊗U2, is no lesser

than that of f . Since U1 is a unitary map, it follows that the map a1U1⊗IK2+a2IK1⊗U2 7→
a1IK1 ⊗ IK2 +a2U∗

1 ⊗U2 is a complete isometry. Therefore, without loss of generality, for all

operator space structures, defined in the Theorem 6.7, we can assume that T1 is IH1 . Now

suppose k ∈N and A1, A2 ∈ Mk . The von-Neumann inequality implies that

‖A1 ⊗ IH1 ⊗ IH2 + A2 ⊗ IH1 ⊗T2‖ ≤ ‖A1 + A2z‖op
D,∞ = ‖A1 ⊗ (1,0)+ A2 ⊗ (0,1)‖M I N .

Since M I N is the smallest operator space structure, it follows that all operator space struc-

tures on `1(2), defined in the Theorem 6.7 are completely isometric to the M I N structure.
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6 Operator Space Structures on `1(n)

Remark 6.10. Here we note that all the operator space structures on `1(3), defined in

the Theorem 6.7, are completely isometric to the M I N structure. Suppose T1, T2 and T3

are contractions on Hilbert spaces H1,H2 and H3 respectively, with the property that T ⊆
σ(Ti ), for i = 1,2,3. Then the map f defined as in the Theorem 6.7 is an isometry. Using

the same arguments as in the Remark 6.9, here also we can assume that T1 = IH1 . Let k ∈N
and A1, A2, A3 ∈ Mk . Since U∗

1 ⊗U2⊗ IK3 and U∗
1 ⊗ IK2 ⊗U3 commute, therefore via Ando’s

theorem, we conclude that

‖A1 ⊗ IH1⊗H2⊗H3 + A2 ⊗ IH1 ⊗T2 ⊗ IH3 + A3 ⊗ IH1 ⊗ IH2 ⊗T3‖ ≤ ‖A1 + A2z2 + A3z3‖op
D2,∞.

The right hand quantity in this inequality is ‖A1⊗(1,0,0)+A2⊗(0,1,0)+A3⊗(0,0,1)‖M I N .

Since M I N is the smallest operator space structure, therefore all the operator space struc-

ture on `1(3), defined in the Theorem 6.7, are completely isometric to the M I N structure.

6.4 Operator space structures on `1(n) different from

the MIN structure

Due to Parrott’s example [Par70], it is known that a linear contractive map on `1(3) may

not be completely contractive. An explicit example for this is give also in the paper of

G. Misra [Mis94]. This example explains that there are more than one operator space

structure on `1(3). In this section, using the example in [Mis94], we give an explicit

operator space structure on `1(3), which is different from the M I N structure.

Consider the following 2×2 unitary operators:

I2 =
(

1 0

0 1

)
, U :=

(
1
2

p
3

2p
3

2 −1
2

)
andV :=

(
1
2 −

p
3

2p
3

2
1
2

)
.

It is clear that the map h : `1(3) → M2, defined by h(z1, z2, z3) = z1I + z2U + z3V , is of

norm at most 1. The computations done in [Mis94] includes the following:

‖I ⊗ I +U ⊗U +V ⊗V ‖ = 3. (6.1)

and

sup
z1,z2,z3∈D

‖z1I + z2U + z3V ‖ < 3. (6.2)

Choose a diagonal operator D on `2(Z) such that ‖D‖ ≤ 1 and T⊂σ(D). Define

T̃1 :=
[

I 0

0 D

]
, T̃2 :=

[
U 0

0 D

]
, T̃3 :=

[
V 0

0 D

]
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6.4 Operator space structures on `1(n) different from the MIN structure

and

T̂1 = T̃1 ⊗ I ⊗ I , T̂2 = I ⊗ T̃2 ⊗ I , T̂3 = I ⊗ I ⊗ T̃n .

Let

S1 := T̂1 ⊕ I , S2 := T̂2 ⊕U , S3 := T̂3 ⊕V

be operators on a Hilbert spaceK.

Define

S : (`1(3), M I N ) −→ B(K)

by

S(e1) = S1, S(e2) = S2, S(e3) = S3

and extend it linearly.

From the Theorem 6.7, we know that the function (z1, z2, z3) 7→ z1T̂1 + z2T̂2 + z3T̂3 is

an isometry and since h is of norm at most 1, it follows that the map (z1, z2, z3) 7→ z1S1 +
z2S2 + z3S3 is also an isometry. Consequently, there is an operator space structure on

`1(3) for which S is a complete isometry. Also from (6.1), we have

‖S1 ⊗ I +S2 ⊗U +S3 ⊗V ‖ ≥ ‖I ⊗ I +U ⊗U +V ⊗V ‖ = 3.

On the other hand from (6.2), we have

sup
z1,z2,z3∈D

‖z1I + z2U + z3V ‖ < 3

and hence the operator space structure induced by S is different from the MIN structure.
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List of Symbols

N The set of all positive integers

Z The set of all integers

N0 The set of all non-negative integers

C Complex plane

C[Z1, . . . , Zm] The set of all polynomials in m variables

z · x
l∑

j=1
z j x j for x = (x1, . . . , xl ) ∈ B l , z = (z1, . . . , zl ) ∈Cl

‖ f ‖Ω,∞ sup{| f (z)| : z ∈Ω}

H A separable Hilbert space

B(H) The set of all bounded operators onH

σ(T ) Spectrum of T

H∞(Ω) The set of all bounded holomorphic functions onΩ

D unit disk in C

T Circle of unit length

‖p‖op
Ω,∞ sup{‖p(z)‖op : z ∈Ω}

K C
G Complex Grothendieck Constant

Pk [Z1, . . . , Zn] The set of all polynomials of degree k in n variables

H∞(Ω) The set of all complex valued bounded holomorphic function onΩ

H∞(Ω,D)
{

f ∈ H∞(Ω) : ‖ f ‖Ω,∞ ≤ 1
}

H∞
ω (Ω,D)

{
f ∈ H∞(Ω,D) : f (ω) = 0

}
D f (ω)

(
∂
∂z1

f (ω), . . . , ∂
∂zm

f (ω)
)

L [Z1, . . . , Zn] {a1z1 +·· ·+an zn : ai ∈C, i = 1, . . . ,n}

[x], y]
∑

j x j y j

x] C−valued linear map onH defined by x](y) = [x], y]

H] {x] : x ∈H}

L2(T) The set of all square integrable functions on Twith respect to
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List of Symbols

H 2(T) Hardy space

L∞(Tn) The set of all essentially bounded functions Tn with respect to

Lebsegue measure and equipped with the essential sup norm

Mφ Multiplication operator corresponding to φ

Hφ Hankel matrix corresponding to symbol φ

‖T ‖∞ max
{‖T1‖, . . . ,‖Tn‖

}
Ck (n) sup

{‖p(T )‖ : ‖p‖Dn ,∞ ≤ 1, p is of degree at most k, ‖T ‖∞ ≤ 1
}

C (n) limk→∞Ck (n)

T(A1, . . . , An)



A1 A2 A3 · · · An

0 A1 A2 · · · An−1

0 0 A1 · · · An−2
...

...
...

. . .
...

0 0 0 · · · A1


Mk (B) The set of all k ×k matrices with entries in Banach space B

dist∞(φ,K ) Distance of φ from K with respect to essential sup norm

A1
⊔

k∈N0 Pk

A2
⊔

k∈NP−k

H1

{
f := ∑

(m,n)∈A1

am,n zm
1 zn

2 | f ∈ L∞(T2)
}

H2

{
f := ∑

(m,n)∈A2

am,n zm
1 zn

2 | f ∈ L∞(T2)
}

`2(N0)
{
(a0, a1, . . .) : a j ∈C for all j ∈N0,

∑
j≥0

|a j |2 <∞}
pA

∑n
i , j=1 ai j zi w j , where A = ((

ai j
))

M
{
(z1, . . . , zn , z1, . . . , zn) : |zi | < 1,1 ≤ i ≤ n

}
pA,M the restriction of pA to the diagonal set M

‖(z1, . . . , zn)‖p (|z1|p +·· ·+ |zn |p )1/p

`p (n) (Cn ,‖.‖p )

‖A‖`∞(n)→`1(n) Operator norm of A : `∞(n) → `1(n)

Ax y The matrix ([x]j , yk ])m×m

D(ω)
Ω

{(1
2 D2 f (ω),D f (ω)

)
: f :Ω→D is a analytic map with f (ω) = 0

}
M s

m The set of all m ×m complex symmetric matrices

‖ ·‖D The norm in M s
m ×Cm corresponding to the unit ball D(ω)

Ω

U
{
(z, v) : z ∈C, v ∈H such that |z|+‖v‖2 ≤ 1

}
‖ ·‖U The norm in C⊕H corresponding to the unit ball U

Pk (Ω,E)
{

p ∈C[Z1, . . . , Zn] : deg(p) ≤ k and p(Ω) ⊂ E
}

.

P ω
k (Ω,E) The set of all polynomials p ∈Pk (Ω,E) with p(ω) = 0.
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Mk The set of all k ×k complex matrices

(X )1 Open Unit Ball of Banach Space X

P (Cm , Mk ) The set of all Mk valued polynomials in m variables

Pk (Cm , Mk )
{

p ∈P (Cm , Mk ) : deg(p) ≤ k
}

.

P (ω)
k (Cm , Mk ) The set of all polynomials p ∈Pk (Cm , Mk ) such that p(ω) = 0

P (ω)
n (Ω, (Mk )1)

{
p ∈P (ω)

n (Cm , Mk ) : ‖p‖op
Ω,∞ ≤ 1

}
B∗ Adjoint of the bilateral shift

`2(Z)
{
(. . . , a−1, a0, a1, . . .) : a j ∈C for all j ∈Z,

∑
j∈Z

|a j |2 <∞}
C∗(a) C∗−algebra geneated by 1, a and a∗

σ(a) {λ ∈C : a −λ1 is not invertible}

C (X ) The set of all complex valued continuous functions on X

Ik Identity operator on Ck

I Identity operator onH

R(z) Real part of z

H+ The right half plane

Pk
{
(x, y) ∈Z2 : x + y = k

}
normalized Lebsegue measure and equipped with the L2 norm

ar g (α) Argument of the complex number α

H(T1,T2, . . .)


T1 T2 T3 · · ·
T2 T3 T4 · · ·
T3 T4 T5 · · ·
...

...
...



Tn ((bm), a0, a1, . . . , an−1)



a0 a1 · · · an−1

b1 a0 · · · an−2
...

...
...

bn−1 bn−2 · · · a0
...

...
...


Mk (V ) Mk ⊗V

M I N (V ) MIN operator space structure on V

M AX (V ) MAX operator space structure on V

α(V )
{‖(vi j )‖M AX

‖vi j ‖M I N
: (vi j ) ∈ Mk,l (V ),k and l are arbitrary positive integers

}
dim(V ) Dimension of the vector space V

DT The positive square root of the operator I −T ∗T
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