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Abstract

Let T = (T1, . . . ,Td ) be a d- tuple of commuting operators on a Hilbert space H . Assume that

T is hyponormal, that is,
[[

T ∗,T
]]

:= (([
T ∗

j ,Ti ]
))

acting on the d - fold direct sum of the Hilbert

space H is non-negative definite. The commutator [T ∗
j ,Ti ], 1 ≤ i , j ≤ d , of a finitely ctyclic

and hyponormal d - tuple is not necessarily compact and therefore the question of finding

trace inequalities for such a d- tuple does not arise.

A generalization of the Berger-Shaw theorem for a commuting tuple T of hyponormal

operators was obtained by Douglas and Yan decades ago. We discuss several examples of this

generalization in an attempt to understand if the crucial hypothesis in their theorem requir-

ing the Krull dimension of the Hilbert module over the polynomial ring defined by the map

p → p(T ), p ∈ C[z], is optimal or not. Indeed, we find examples T to show that there is a

large class of operators for which trace[T ∗
j ,Ti ], 1 ≤ j , i ≤ d , is finite but the d - tuple is not

finitely polynomially cyclic, which is one of the hypotheses of the Douglas-Yan theorem. We

also introduce the weaker notion of “projectively hyponormal operators" and show that the

Douglas-Yan thorem remains valid even under this weaker hypothesis.

We introduce the determinant operator dEt(
[[

T ∗,T
]])

, which coincides with the gen-

eralized commutator introduced by Helton and Howe earlier. We identify a class BSm,ϑ(Ω)

consisting of commuting d- tuples of hyponormal operators T , σ(T ) =Ω, satisfying a growth

condition for which the dEt is a non-negative definite operator. We then obtain the trace esti-

mate given in the Theorem below.

Theorem. Let T = (T1, . . . ,Td ) be a commuting tuple of operators on a Hilbert space H such

that T is in the class BSm,ϑ(Ω). Then the determinant operator dEt
([[

T ∗,T
]])

is in trace-class

and

trace
(
dEt

([[
T ∗,T

]]))≤ mϑd !
d∏

i=1
‖Ti‖2.

In the case of a commuting d - tuple T of operators, where σ(T ) is of the formΩ1×·· ·×
Ωd , we obtain a slightly different but a related estimate for the trace of dEt

([[
T ∗,T

]]))
. Explicit

computation of dEt
([[

T ∗,T
]])

in several examples and based on some numerical evidence,

we make the following conjecture refining the estimate from the Theorem:

vii
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Conjecture. Let T = (T1, . . . ,Td ) be a commuting tuple of operators on a Hilbert space H such

that T is in the class BSm,ϑ(Ω). Then the determinant operator dEt
([[

T ∗,T
]])

is in trace-class,

and

trace
(
dEt

([[
T ∗,T

]]))≤ md !

πd
ν(Ω),

where ν is the Lebesgue measure.

Let Ω be an irreducible classical bounded symmetric domain of rank r in Cd . Let K be

the maximal compact subgroup of the identity component G of the biholomorphic automor-

phism group of the domainΩ. The groupK consisting of linear transformations acts naturally

on any d-tuple T of commuting bounded linear operators by the rule:

k ·T := (
k1(T1, . . . ,Td ), . . . ,kd (T1, . . . ,Td )

)
, k ∈K,

where k1(z), . . . ,kd (z) are linear polynomials. If the orbit of this action modulo unitary equiv-

alence is a singleton, then we say that T is K-homogeneous. We realize a certain class of K-

homogeneous d-tuples T as a d -tuple of multiplication by the coordinate functions z1, . . . , zd

on a reproducing kernel Hilbert space HK . (The Hilbert space HK consisting of holomor-

phic functions defined on Ω and K is the reproducing kernel.) Using this model we obtain a

criterion for (i) boundedness, (ii) membership in the Cowen-Douglas class, (iii) unitary equiv-

alence and similarity of these d-tuples. In particular, we show that the adjoint of the d-tuple of

multiplication by the coordinate functions on the weighted Bergman spaces are in the Cowen-

Douglas class B1(Ω). For an irreducible bounded symmetric domain Ω of rank 2, an explicit

description of the operator
∑d

i=1 T ∗
i Ti is given. Based on this formula, a conjecture giving the

form of this operator in any rank r ≥ 1 was made. This conjecture was recently verified by H.

Upmeier.



Conventions and Notations

The following conventions and notations will be in force throughout.

1. All Hilbert spaces will be assumed to be complex and separable.

2. An operator T , unless otherwise specified, will be assumed to be linear and bounded.

3. The algebra of bounded linear operators is denoted by B(H ).

4. The symbol T denotes a commuting d - tupe of operators (T1, . . . ,Td ).

5. For brevity, we write, hyponormal d - tuple for jointly hyponormal d - tuple of commut-

ing operators.

6. N0 denotes the set of non-negative integers.

7. α ∈Nd
0 is called a multi-index.

8. α+εi := (α1, . . . ,αi +1, . . . ,αd )

9. α−εi := (α1, . . . ,αi −1, . . . ,αd ) whenever αi > 0.

10. |α| :=α1 +·· ·+αd and α! =α1! · · ·αd !.

11. We will use the term “finitely polynomially cyclic”, "m - cyclic" or even “m - polynomi-

ally cyclic" interchangeably, while “cyclic” always means 1 - cyclic.

12. An r- tuple s = (s1, . . . , sr ), s1 ≥ ·· · ≥ sr ≥ 0 stands for a signature.

13.
−→
N r

0 denotes the set of all signatures.

14. M = (M1, . . . , Md ) is the commuting d- tuple of the operator of multiplications by the

co-ordinate functions.

15. σ(T ) denotes the Taylor joint spectrum. However, the term spectrum, or joint spectrum

would always mean the Taylor joint spectrum.
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16. C[z] is the ring of complex polynomials in d variables.

17. ‖ ·‖1 is the trace norm.

18. (λ)n :=λ(λ+1) · · · (λ+n −1) is the Pochhammer symbol.

19. (λ)s :=∏r
j=1

(
λ− a

2 ( j −1)
)

s j
=∏r

j=1

∏s j

l=1

(
λ− a

2 ( j −1)+ l −1
)

is the generalized Pochham-

mer symbol.
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Chapter 1

Introduction

The spectral theorem provides both a complete set of unitary invariants and a canonical

model for normal operators on a complex separable Hilbert space. Therefore, it is natural to

ask if there are operators which one may study using techniques developed for studying nor-

mal operators. It is natural to expect that operators close to the class of normal operators may

be somewhat more tractable by these methods than an arbitrary operator. Several notions of

"close" have been around in the literature. For instance, (i) an operator T such that the com-

mutator [N∗−T ∗, N −T ] = K for some compact operator K , the quantitative version of this

would be to require that K is in a Schatten p - class (ii) the hyponormal operators, namely, an

operator T such that the commutator [T ∗,T ] is a non-negative operator, (iii) the subnormal

operators, the operators which are obtained by restricting a normal operator to an invariant

subspace, etc. The study of each of these classes of operators has been vigorous over the past

few decades. An impressive body of results have been accumulated. However, the study of

commuting tuples of operators in each of these classes remains widely open. Among many

other results from operator theory in one variable, the Berger-Shaw theorem has provided the

impetus for a number of exciting developments in multi-variate operator theory [7]. Indeed,

it shows that an operator T that is hyponormal and m-cyclic is close to a normal operator,

that is,

trace[T ∗,T ] ≤ m
π

Area(σ(T )),

where σ(T ) is the spectrum of the operator T . Thus a very large class of operators is close to

the class of normal operators. In this thesis, first we obtain trace inequalities similar to the

one of Berger and Shaw for a certain small class of commuting tuples of operators. However,

there are several instances, where all of the commutators [T ∗
j ,Ti ], 1 ≤ i , j ≤ d , of a commuting

tuple T := (T1, . . . ,Td ) are not necessarily compact even after assuming that they are jointly

hyponormal and cyclic. So, the question of finding trace inequalities for such d- tuples does

not arise. However, we define an operator valued determinant of a d × d- block operator



2 1. Introduction

B := ((
Bi j

))
by the formula

dEt
(
B

)
:= ∑

σ,τ∈Sd

sgn(σ)Bτ(1),σ(τ(1))Bτ(2),σ(τ(2)), . . . ,Bτ(n),σ(τ(d)).

In this thesis we investigate the properties of the operator dEt
([[

T ∗,T
]])

, where
[[

T ∗,T
]]

:=((
[T ∗

j ,Ti ]
))

, i.e., in this case, Bi j = [T ∗
j ,Ti ]. We show that the operator dEt

([[
T ∗,T

]])
equals

the generalized commutator of T introduced earlier by Helton and Howe [24]. Among other

things, we find a trace inequality for the operator dEt
([[

T ∗,T
]])

, after imposing certain growth

and cyclicity conditions on the operator T . We give explicit examples illustrating the abstract

inequality and show that it is sharp in a number of examples.

In this introductory chapter, we first recall some definitions, namely that of operators in

the trace class ( Schatten p -class) and jointly hyponormal operators and its multiplicity fol-

lowed by that of a Hilbert modules over a ring and finally the list of classical bounded symmet-

ric domains. Since we use some of the basic tools from commutative algebra, we recall them

here. This includes the notion of a Noetherian ring, the Krull dimension and the Noether

normalization lemma. Our search for explicit examples, where the conditions of our main

theorem are met and we obtain a trace inequality for the determinant operator dEt
([[

T ∗,T
]])

,

takes us to the class of the d- tuple of multiplication operators Mzi on the weighted Bergman

space of a bounded symmetric domain. We therefore recall some of the basic tools like the

Peter-Weyl decomposition, Fischer-Fock inner product, the Wallach set etc. that will be es-

sential to some of the proofs. Finally, the chapter ends with a brief description of the results

in each of the following chapters.

1.1 Trace, Multiplicity and Hyponormal Operators

Let us recall the definition of trace of a bounded linear operator defined on a complex sepa-

rable Hilbert space.

Definition 1.1 (Trace-class). An operator T : H →H is said to be in trace-class if there is an

orthonormal basis {en} such that
∑

n〈|T |en ,en〉 < ∞, where |T | is the unique square root of

T ∗T. The trace norm of an operator T in the trace class is set to be

‖T ‖1 =
∑
n
〈|T |en ,en〉,

where the sum
∑

n〈|T |en ,en〉 is independent of the choice of basis. The p - norm of an opera-

tor T is defined, similarly, by setting

‖T ‖p
p =∑

n
〈|T |p en ,en〉.

An operator T with ‖T ‖p <∞ is said to be in the Schatten p - class.
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Definition 1.2 (m- cyclic). Let ξ(m) denote a set of linearly independent vectors ξ1, . . . ,ξm in

H . For a commuting tuple of operators T = (T1, . . . ,Td ), we say that ξ(k) is cyclic for T if the

linear span of the vectors{
T i1

1 T i2
2 . . .T id

d v | v ∈ ξ(k) and i1, i2, . . . , id ≥ 0
}

is dense in H . The commuting tuple T is said to be m- polynomially cyclic if

m = min{k : ξ(k) is cyclic for T }.

The set ξT (m) is then said to be m-cyclic for T . For a m-cyclic d- tuple T , let

HN :=∨{
T i1

1 T i2
2 . . .T id

d v | v ∈ ξ[m] and 0 ≤ i1 + i2 + . . . id ≤ N
}

and PN be the orthogonal projection onto HN .

In what follows, we will use the term “finitely polynomially cyclic”, "m - cyclic" or even

“m - polynomially cyclic" interchangeably, while “cyclic” always means 1 - cyclic.

For any two operators T1 and T2 on a Hilbert space H , the commutator [T1,T2] of T1

and T2 is T1T2 −T2T1. An operator T on a Hilbert space H is said to be hyponormal if the

commutator [T ∗,T ] is non-negative definite. An operator T is pure if it has no reducing sub-

space H0 such that T restricted to H0 is normal. A bounded operator T on H is said to be

subnormal if T has a normal extension. There are many possible notions of hyponormality

for a d- tuple T = (T1, . . . ,Td ) of commuting operators acting on a Hilbert space H .

For instance, a commuting d- tuple T of operators acting on a Hilbert space H is said

to be jointly hyponormal if[[
T ∗,T

]]
:= ((

[T ∗
j ,Ti ]

))d
i , j=1 :

⊕
d

H −→⊕
d

H

is non-negative definite, that is, for each x ∈⊕
d H ,〈[[

T ∗,T
]]

x, x
〉≥ 0.

Or, equivalently, if ((
T ∗

j Ti
))d

i , j=0 :
⊕
d+1

H −→ ⊕
d+1

H ,

where T0 := I , is non-negative definite (see [31]).

On the other hand, a commuting d- tuple T of operators acting on a Hilbert space H is

said to be projectively hyponormal if, for each vector (α1, . . . ,αd ) ∈Cd \ {0}, the sum
∑d

i=1αi Ti

is a hyponormal operator on H . In the literature, these have been called weakly hyponormal

operators. However, the adjective "projective" describes better the way this class is related to

the class of jointly hyponormal operators.
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Remark 1.3. For 1 ≤ i , j ≤ d , let Bi j : H →H be a bounded linear operator. Define((
Bi j

))
: H ⊗Cd −→H ⊗Cd

to be the operator ((
Bi j

))
x ⊗α= ((

Bi j x
)) ·α :=

d∑
i=1

( d∑
j=1

α j Bi j x ⊗ei
)
.

If
〈((

Bi j
))

x ⊗α, x ⊗α〉≥ 0 for every vector x ⊗α in H ⊗Cd , then we say that the operator
((

Bi j
))

is projectively positive.

Now, it easy to verify that a tuple of operators T = (T1, . . . ,Td ) is projectively hyponormal

if and only if
[[

T ∗,T
]]

is projectively positive on H ⊗Cd .

It is evident that a hyponormal tuple is automatically projectively hyponormal. But the

converse is not true in general.

Example 1.4. (R.Curto) For x ≥ 0 let Tx be the weighted shift whose weight sequence is given

by α0 = x,αn =
√

n+1
n+2 (n ≥ 0). If 3

4 ≤ x ≤
√

2
3 then (Tx ,T 2

x ) is projectively hyponormal but not

hyponormal.

For a single hyponormal operator T , one of the most celebrated results is the trace in-

equality due to Berger and Shaw reproduced below.

Theorem 1.5 (Berger-Shaw, [7]). If T is an m- cyclic hyponormal operator, then [T ∗,T ] is in

trace-class and

trace [T ∗,T ] ≤ m

π
ν

(
σ(T )

)
,

where σ(T ) is the spectrum of T and ν is the Lebesgue measure.

In what follows, unless explicitly indicated otherwise, we drop the adjective “jointly”

and say “hyponormal” instead of jointly hyponormal.

1.2 Preliminaries on Hilbert modules

A Hilbert module H over a ring R is an ordinary module over the ring R except that H is

a Hilbert space and the module multiplication is assumed to be continuous in the second

variable. This notion was introduced by R. G. Douglas, see [17]. However, the original defini-

tion required the ring to be a complete normed algebra and the module multiplication to be

continuous in both variables. Over the years, it has become apparent that these additional re-

quirements are of no significant value. So, they are not included in the definition of a Hilbert

module. Now, we give the formal definition of a Hilbert module over a normed ring.
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Definition 1.6 (Hilbert Module). A complex separable Hilbert space H is said to be a Hilbert

module over a (complex) unital ring R if there exists a map (p,h) 7→ p ·h from R ×H to H

satisfying the following conditions:

1. 1 ·h = h,

2. (pq) ·h = p · (q ·h),

3. (p +q) ·h = p ·h +q ·h, and

4. p · (αh1 +βh2) =α(p ·h1)+β(p ·h2).

where p, q ∈R,h,hi ∈H , i = 1,2, and α,β ∈C and the linear operator mp : H 7→H , mp (h) =
p ·h, p ∈R, is bounded.

Thus the notion of a Hilbert module H over a ring R is determined by the unital homo-

morphism p → mp , p ∈R, from the ring R to the algebra of bounded linear operators B(H )

and conversely.

Apart from the boundedness of the operator mp for each p ∈ R, if we also require that

the ring R complete with respect to some Banach algebra norm and impose the condition

that the map

(p,h) → p ·h, p ∈R, h ∈H ,

is continuous in both the variables, then from the uniform boundedness Principle, it follows

that

‖mp‖ ≤ K ‖p‖, p ∈R,

for some constant K independent of p. Thus continuity in both the variables of the module

map is equivalent to the boundedness of the homomorphism p → mp .

Now, we remark that if the ring R is the polynomial ringC[z] in d variables, then any ho-

momorphism mp :C[z] →B(H ) is evidently determined by a commuting tuple T := (T1, . . .Td )

of operators in B(H ) by setting mp (h) := p(T )h, p ∈ C[z] and h ∈ H . The other way round,

given a homomomorphism mp : C[z] →B(H ), it determines a d- tuple of commuting oper-

ators, namely, Ti := mzi , i = 1, . . . ,d . We will therefore use the three notions, i.e., the Hilbert

module H , the homomorphism mp and the d- tuple of commuting operators without mak-

ing any distinction depending on the context.

If H is a Hilbert module over the polynomial ringC[z], then ξ(m) is said to be a generat-

ing set for H . According to [17, Definition 1.25], the minimal cardinality of this generating set

is defined to be the rank of the module H , which coincides with the notion of m- polynomial

cyclicity as in Definition 1.2.

Now, we recall some basic definitions from commutative algebra.
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Definition 1.7 (Algebra). Let f : A →B be a ring homomorphism. The scalar multiplication,

ab = f (a)b, a ∈A andb ∈B,

makes the ring B into an A - module. Thus B has an (compatible) A - module structure

along with a ring structure. The ring equipped with this A - module structure, is said to be an

A -algebra.

Definition 1.8 (Noetherian ring). A ring R is said to be Noetherian if it satisfies the following

three equivalent conditions:

(i) Every non-empty set of ideals in R has a maximal element.

(ii) Every assending chain of ideals in R is stationary.

(iii) Every ideal in R is finitely generated.

Definition 1.9 (Krull dimension). The Krull dimension of a ring R is defined to be the maxi-

mum of those positive integers n for which there is an ascending chain of prime ideals of the

form

{0} = P0 ( P1 ( . . .( Pn (R.

For example, C[z1, . . . , zn] has Krull dimension n. A chain of prime ideals in C[z1, . . . , zn]

of length n is easy to exhibit:

(0)( (z1)( (z1, z2)( · · ·( (z1, . . . , zn)(C[z1, . . . , zn].

One can show that it is maximal [20].

The height (or co-dimension) of a prime ideal P in R is the maximum length of the chain

of prime ideals such that

P0 ( P1 ( . . .( Pn ⊆ P.

Height of an ideal I is the infimum of the heights of all prime ideals containing I .

Lemma 1.10 (Ideals in quotient rings). Let I be an ideal in a ring R. Then contraction and

extension by the quotient map φ : R →R
/

I give a one to one correspondence between ideals in

R
/

I and ideals containing I in R:{
ideals in R

/
I
}←→ {

ideals containing I in R
}

J −→ J c = (φ)−1(J )

φ(J ) =J e ←− J .

If I is an ideal in an integral domain R, then dim
(
R

/
I
)+height (I ) = dim R.
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Theorem 1.11 (Noether’s normalization theorem). Let R be a Noetherian ring over C having

dim (R) = n with generators {x1, . . . , xm}.

1. Then there exists a complex n ×m matrix ( (ai j ) ) such that R is integral over

C[
∑m

j=1 a1 j x j , . . . ,
∑m

j=1 an j x j ].

2. If E is the linear span in Cm of the row vectors of the n ×m matrix ( (ai j ) ) such that R is

integral over C[
∑m

j=1 a1 j x j , . . . ,
∑m

j=1 an j x j ], then dim (E) = m.

Further, if R is the co-ordinate ring C[z1, . . . , zd ]
/

I , where
p

I = I (U ) and U is an algebraic

curve, then there exists ( (ai j ) )k,m
i=1, j=1 such that if gi =∑m

j=1 ai j z j , i = 1, . . . ,k, then

1. C[z1, . . . , zd ] is integral over C[I , gi ] and

2. each z j is a linear combination of the gi ’s.

It is easy to adapt the definition of Shatten p - class and hyponornormality to a Hilbert

module defined over a commutative Banach algbra.

Definition 1.12. Let A be a commutative Banach algebra containing a dense subalgebra B.

A Hilbert module H over A is said to be p-reductive for B if [m∗
b1

,mb2 ] is in the Schatten

p-class Sp for every b1,b2 ∈B.

Definition 1.13. Let H be a Hilbert module over a Banach algebra A . Assume there is a dense

Noetherian sub-algebra B of A , that {b1,b2, . . . ,bn} generates B and that the commuting tu-

ple of operators (mb1 ,mb2 , . . . ,mbn ) on H is hyponormal (resp. subnormal). Then the Hilbert

module H is said to be a hyponormal (resp. subnormal) module over A .

We are now ready to state the Theorem of Douglas and Yan which was an attempt to

find a generalization of the Berger-Shaw theorem for a commuting d- tuple of operators.

Theorem 1.14 (Douglas-Yan). (Module): Let H be a finitely generated hyponormal Hilbert

module over A with the dense subalgebra B. If dimB = 1, then H is 1-reductive for B.

(d- tuple): Let T = (T1, . . . ,Td ) be a hyponormal d- tuple of operators on the Hilbert space H

such that T is finitely polynomially cyclic. Let I be the ideal of C[z1, . . . , zd ] defined by

I = {
p ∈C[z1, . . . , zd ] : p(T ) = 0

}
.

If dim
(
C[z1, . . . , zd ]

/
I
)= 1, then [T ∗

j ,Ti ] is in trace-class for all i , j .
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Another important topic that provides impetus for the results in Chapter 3 is the Arveson-

Douglas Conjecture which we now describe briefly. First, we recall the definition of the weighted

Bergman spaces.

Let H (λ)(Bd ), λ > 0, be the weighted Bergman spaces of the unit Euclidean ball Bd . In

particular,λ= d is the Hardy space H 2(Bd ). These spaces are determined by the orthonormal

set of vectors: {
c(λ)
α zα1

1 · · ·zαd
d :α= (α1, . . . ,αd ) ∈Nd

0

}
,

where c(λ)
α = (λ)|α|

α! . Here

(λ)n :=λ(λ+1) · · · (λ+n −1)

is the Pochhammer symbol.

Conjecture 1.15 (Arveson-Douglas). Assume I is a homogeneous ideal of the polynomial ring

C[z1, . . . , zd ] and [I ] is the closure of I in H (λ)(Bd ). Then for all r > dimZ (I ), where Z (I ) is

the common zero set of I , the quotient module [I ]⊥ is r-essentially normal.

In many cases, [I ] = { f ∈H (λ)(Bd ) : f |Z (I ) = 0}. Assuming this is the case, Q is the closed

linear span of the vectors {K (λ)(z, w) : w ∈ Z (I )}, where K (λ)(z, w), for every fixed w ∈ Bd , is

the unique vector in H (λ)(Bd ) determined by evaluation at w . It is not hard to verify that the

commutators [M∗
j , Mi ], 1 ≤ i ≤ d , on the weighted Bergman spaces H (λ)(Bd ), λ ≥ 1, are in

Schatten p - class for p > d +ε, ε> 0. It follows that the Arveson-Douglas conjecture is true for

the trivial ideal {0}.

1.3 Bounded Symmetric Domains

Bounded symmetric domains are the natural generalization of the open unit disc in one com-

plex variable and the open Euclidean unit ball in several complex variables. A bounded do-

main Ω ⊂ Cd is said to be symmetric if for every z ∈ Ω, there exists a biholomorphic auto-

morphism of Ω of period two, having z as isolated fixed point. The domain Ω is said to be

irreducible if it is not biholomorphically equivalent to a product of two non-trivial domains.

We refer to [30], [1] for the definition and basic properties of bounded symmetric domains.

Let Ω be an irreducible bounded symmetric domain in Cd and let Aut(Ω) denote the

group of biholomorphic automorphisms of Ω, equipped with the topology of uniform con-

vergence on compact subsets ofΩ. Let G denote the connected component of the identity in

Aut(Ω). It is known that G acts transitively on Ω. Let K be the subgroup of linear automor-

phisms in G . By Cartan’s theorem [37, Proposition 2, pp. 67],K= {φ ∈G :φ(0) = 0} is a maximal

compact subgroup of G andΩ is isomorphic to G/K. Note that the unitary group U (d) is the

subgroup of linear biholomorphic automorphisms of Aut(Bd). Therefore, it is natural to re-

place U (d) with the subgroup K of linear biholomorphic automorphisms of an irreducible
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bounded symmetric domainΩ and study all commuting d- tuples T such that k ·T is unitar-

ily equivalent to T for all k ∈K. The action of the group K on the d- tuples is defined below.

The groupK acts onΩ by the rule

k · z := (
k1(z), . . . ,kd (z)

)
, k ∈K and z ∈Ω.

Note that k1(z), . . . ,kd (z) are linear polynomials. Thus k ∈K acts on any commuting d- tuple

of bounded linear operators T = (T1, . . . ,Td ), defined on a complex separable Hilbert space

H , naturally, via the map

k ·T := (
k1(T1, . . . ,Td ), . . . ,kd (T1, . . . ,Td )

)
.

Definition 1.16. A d- tuple T = (T1, . . . ,Td ) of commuting bounded linear operators on H is

said to be K-homogeneous if for all k in K the operators T and k ·T are unitarily equivalent,

that is, for all k inK there exists a unitary operator Γ(k) on H such that

T jΓ(k) = Γ(k)k j (T1, . . . ,Td ), j = 1,2, . . . ,d . (1.1)

For brevity, we will write

TΓ(k) = Γ(k)(k ·T ).

While a d- tuple of K-homogeneous operators is clearly modeled after a spherical tu-

ple, it is a much more intricate notion, in general. For instance, spherical tuples in the class

B1(Bd ), introduced by Cowen and Douglas in the very influential paper [12], are necessarily

joint weighted shifts. On the other hand, the structure of K-homogeneous operator tuples

in B1(Ω), where Ω is a bounded symmetric domain of rank > 1, is much more complex. In

particular, they are not joint weighted shifts. Also, recall that the commuting operator tuples

T = (T1, . . . ,Td ) such that T and g (T ) are unitarily equivalent for all g in G , called homoge-

neous tuples, have been studied extensively over the past few years, see [33], [35], [28]. In the

case of open unit disc D, all homogeneous operators in B1(D) were classified by Misra in [32].

As a corollary of his abstract classification theorem, Wilkins provided an explicit model for all

homogeneous operators in B2(D), see [45]. Later in 2011, using techniques from complex ge-

ometry and representation theory, a complete classification of homogeneous operators in the

Cowen-Douglas class Bn(D) was obtained by Misra and Korányi in [27]. Homogeneous opera-

tors on an irreducible bounded symmetric domain of type I , discussed below, were studied by

Misra and Bagchi in [6]. Later in [2], their results were generalized for an arbitrary irreducible

bounded symmetric domain by Arazy and Zhang. A comparison of the class of d- tuples of

homogeneous operators with K-homogeneous operator tuples might reveal interesting con-

nections with the inducing construction, which we intend to study in future.
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Every irreducible bounded symmetric domain Ω of rank r can be realized as an open

unit ball of a Cartan factor Z =Cd . For a fixed frame e1, · · · ,er of pairwise orthogonal minimal

tripotents, let

Z = ∑
0≤i≤ j≤r

Zi j

be the joint Peirce decomposition of Z (see [44, pp. 57]). Note that Z00 = {0} and Zi i =Cei for

all i = 1, . . . ,r. Moreover,

a := dim Zi j , 1 ≤ i < j ≤ r

is independent of i , j and

b := dim Z0 j , 1 ≤ j ≤ r

is independent of j . The parameters a,b are called the characterstic multiplicities of Z and the

numerical invariants (r, a,b) determine the domain Ω uniquely upto biholomorphic equiva-

lence (see [1]). The dimension d is related to the numerical invariants (r, a,b) as follows:

d = r + a

2
r (r −1)+ r b.

According to the classification due to E. Cartan [9], there are six types of irreducible

bounded symmetric domains upto biholomorphic equivalence (see also [30]). The first four

types of these domains are called the classical Cartan domains, while other two types are

known as the exceptional domains. In what follows, we consider only the classical domains,

that is, an irreducible bounded symmetric domain of one of the following four types:

(i) Type I : n ×m (m ≥ n) complex matrices z with ‖z‖ < 1. These domains are determined

by the numerical invariants (n,2,m −n).

(ii) Type II : Symmetric complex matrices z of order n with ‖z‖ < 1. In this case, the numer-

ical invariants (n,1,0) are complete biholomorphic invariant.

(iii) Type III : n ×n anti-symmetric complex matrices z of order n with ‖z‖ < 1. Here r =[n
2

]
, a = 4 and b = 0 if n is even and b = 2 if n is odd.

(iv) Type IV (The Lie ball) : All z ∈ Cd (d ≥ 5) such that 1+|1
2 z t z |2 > z t z and z t z < 2, where

z t is the complex conjugate of the transpose z t . The numerical invariants (2,d−2,0) are

complete biholomorphic invariant for these domains.

Throughout the thesis, let N0 denote the set of all non-negative integers. Let P be the space

of all analytic polynomials on Z , and let Pn , n ∈N0, denote the subspace of P consisting of

all homogeneous polynomials of degree n. Clearly, as a vector space, P can be written as

the direct sum
∑∞

n=0 Pn . The group K acts on the space P by composition, that is, (k ·p)(z)
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= p(k−1z), k ∈ K, p ∈ P . Below we describe the irreducible components of this action. An

r- tuple s = (s1, . . . , sr ) is called a signature if s1 ≥ ·· · ≥ sr ≥ 0. Let
−→
N r

0 denote the set of all

signatures. For all s ∈ −→
N r

0, we associate the conical polynomial ∆s , see [44, pp. 128] for the

definition, where

∆s(z) =∆s1−s2
1 (z) . . .∆sr−1−sr

r−1 (z)∆sr
r (z)

and the polynomial space P s is the linear span of {∆s ◦k : k ∈ K}. It is known that the poly-

nomial spaces {P s}
s∈−→N r

0
are precisely the K-invariant, irreducible subspaces of P which are

mutuallyK-inequivalent, and

P = ∑
s∈−→N r

0

P s .

The Fischer-Fock inner product on P , defined by 〈p, q〉F := 1
πd

∫
Cd p(z)q(z)e−|z |2 dm(z), is

K-invariant. The reproducing kernel of the space P s with respect to the Fischer-Fock inner

product is denoted by Ks(z , w ). Note that Ks isK-invariant and∑
s∈−→N r

0

Ks(z , w ) = ez ·w .

Further anyK-invariant Hilbert space H of analytic functions onΩ has the decomposition

H =⊕
s∈−→N r

0
P s .

This decomposition is called Peter-Weyl decomposition [43].

Let T = (T1, . . . ,Td ) be a commuting d- tuple of bounded linear operators acting on a

complex separable Hilbert space H . Also, let DT : H →H ⊕·· ·⊕H be the operator

DT h := (T1h, . . . ,Td h), h ∈H .

We note that kerDT = ∩d
i=1 kerTi is the joint kernel and σp (T ) = {w ∈ Cd : kerDT−w I 6= 0} is

the joint point spectrum of the d- tuple T = (T1, . . . ,Td ). The Wallach set W (Ω) of a classical

bounded symmetric domainΩ is of the form Wd (Ω)∪Wc (Ω), where

Wd (Ω) :=
{

0,
a

2
, . . . ,

a

2
(r −1)

}
, Wc (Ω) :=

(a

2
(r −1),∞

)
,

see [22]. For λ> 0 consider the function K (λ) :Ω×Ω→C given by the formula

K (λ)(z , w ) =∑
s

(λ)sKs(z , w ), z , w ∈Ω,

where (λ)s is the generalized Pochhammer symbol

(λ)s :=
r∏

j=1

(
λ− a

2
( j −1)

)
s j

=
r∏

j=1

s j∏
l=1

(
λ− a

2
( j −1)+ l −1

)
.
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The function K (λ) is non-negative definite if and only if λ is in the Wallach set W (Ω). Let H (λ)

denote the Hilbert space determined by the non-negative definite kernel K (λ), λ ∈ W (Ω). If

λ= d
r and λ= a

2 (r −1)+ d
r , then the Hilbert spaces H (λ) coincide with the Hardy space H 2(S)

over the Shilov boundary S of Ω and the classical Bergman space A2(Ω) respectively. For this

reason with a slight abuse of language, the Hilbert spaces H (λ), λ ∈W (Ω), are called weighted

Bergman spaces.

1.4 Main Results

This thesis is in two parts. The first part is an attempt to obtain an inequality for the trace

of a suitable function of a d- tuple of operators T . The second part is a detailed study of

commuting d- tuples T that remain unitarily invariant under the action of a natural compact

group acting on the joint spectrum σ(T ). We briefly describe the results of the thesis below.

Chapter 2 begins with elementary observations about tensor products of jointly (respec-

tively, projectively) hyponormal operators. It is then shown that the commutator [[T ∗,T ]],

where T is of the form (A1 ⊗T, . . . , Ad ⊗T ), belongs to the trace class as soon as certain nat-

ural conditions are imposed on the commuting tuple A and the operator T . Next, a mild

generalization of the Douglas-Yan theorem by replacing the strongly hyponormal d- tuples

with projectively hyponormal d- tuples is obtained. This is followed by several explicit exam-

ples of commuting d- tuples of operators satisfying the hypothesis of the Douglas-Yan the-

orem. The chapter concludes by showing that the joint spectrum of a d - tuple of operators

of the form (A1 ⊗T, . . . , Ad ⊗T ) is the countable union of thin sets whenever (A1, . . . , Ad ) is a

commuting tuple consisting of normal and compact operators. The trace of the commutator

[(A j ⊗T )∗, (Ai ⊗T )], 1 ≤ i , j ≤ d , is finite while these commuting tuples need not be finitely

polynomially cyclic. Therefore finding a different set of conditions on a commuting tuple of

operators ensuring the membership of the commutators in the trace class remains an intrigu-

ing problem.

A different approach is to look for a function of
[[

T ∗,T
]]

which may be in trace class. For

this, we define an operator valued determinant of a d ×d- block operator B := ((
Bi j

))d
i , j=1 by

the formula

dEt
(
B

)
:= ∑

σ,τ∈Sd

sgn(σ)Bτ(1),σ(τ(1))Bτ(2),σ(τ(2)) . . .Bτ(d),σ(τ(d)).

Setting Bi j = [T ∗
j ,Ti ], it is natural to investigate the properties of the operator dEt

([[
T ∗,T

]])
.

Indeed, we show that the operator dEt
([[

T ∗,T
]])

equals the generalized commutator GC
(
T ∗,T

)
introduced earlier by Helton and Howe [24, pp. 272], who had investigated the trace proper-

ties of the operator GC
(
T ∗,T

)
. Among other things, we find a trace inequality for the opera-

tor dEt
([[

T ∗,T
]])

, after imposing certain growth and cyclicity condition on the operator T . We
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give explicit examples illustrating the abstract inequality and show that it is sharp in a number

of examples. In Chapter 3, we explicitly compute dEt
([[

T ∗,T
]])

and trace
(
dEt

([[
T ∗,T

]]))
for

some class of operators. Moreover, the class BSm,ϑ(Ω) of commuting d- tuple of operators T

is introduced. For d = 1, this class of operators is clearly included in the class of finitely poly-

nomially cyclic hyponormal operators and therefore the trace of the commutator [T ∗,T ] is

finite by the Berger-Shaw theorem. In this case, [T ∗,T ] = dEt
([[

T ∗,T
]])

and we show that the

trace of the operator dEt
([[

T ∗,T
]])

is finite in general for an arbitrary d ∈ N. We give several

examples of d- tuples in BSm,ϑ(Ω) whenΩ is a ball of the formBp,q := {(z1, z2) : |z1|p+|z2|q < 1}

with p = 2, q = 2 and p = 2, q = 1.

Definition 1.17. Fix a bounded domain Ω ⊂ Cd such that Ω is polynomially convex. A m-

cyclic commuting d- tuple of operators with σ(T ) =Ω is said to be in the class BSm,ϑ(Ω), if

(i) PN T j P⊥
N = 0, j = 1, . . . ,d .

(ii) dEt
([[

T ∗,T
]])

is non-negative definite.

(iii) For a fixed but arbitrary τ in the permutation group Sd of d symbols, there exists ϑ ∈N,

independent of N , such that

∥∥PN
( ∑
η∈Sd

Sgn(η)T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d)

)
P⊥

N Tτ(d)PN
∥∥≤ϑ

(
N +d −1

d −1

)−1 d∏
i=1

∥∥Ti
∥∥2.

The main theorem of Chapter 3 provides an estimate for dEt
([[

T ∗,T
]])

in terms of the

operator norms ‖Ti‖, 1 ≤ i ≤ d :

Theorem 1.18. Let T = (T1, . . . ,Td ) be a commuting tuple of operators on a Hilbert space H

such that T is in the class BSm,ϑ(Ω). Then the determinant operator dEt
([[

T ∗,T
]])

is in trace-

class and

trace
(
dEt

([[
T ∗,T

]]))≤ mϑd !
d∏

i=1
‖Ti‖2.

This is followed by explicit computation of dEt
([[

T ∗,T
]])

for the commuting tuple of

multiplication by the coordinate function on the weighted Bergman space of the Euclidean

ball, the generalized ellipsoid and the symmetrized bidisc. Based on these examples and some

numerical evidence, we make the following conjecture. The conjecture is a refinement of the

previous estimate of the trace. It connects the trace of dEt
([[

T ∗,T
]])

to the volume of the joint

spectrum of the d- tuple T :

Conjecture 1.19. Suppose that T = (T1, . . . ,Td ) is a commuting tuple of operators, acting on a

Hilbert space H , is in BSm,ϑ(Ω). Then

trace
(
dEt

([[
T ∗,T

]]))≤ md !

πd
ν(Ω),
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where ν is the Lebesgue measure.

We show that the inequality in the conjecture is sharp in the class BS1,1(B2,2). Also,

setting T (1) #T (2) := (T (1)
1 ⊗ I , . . . ,T (1)

d1
⊗ I , I ⊗T (2)

1 , . . . I ⊗T (2)
d2

), we have

Theorem 1.20. Assume that T (i ) is in the class BSmi ,1(Ωi ), i = 1,2. Then the determinant op-

erator

dEt
([[

(T (1) #T (2))∗, (T (1) #T (2))
]])

is non-negative definite and

trace
(
dEt

([[
(T (1) #T (2))∗, (T (1) #T (2))

]]))≤ 2d1!d2!m1m2

d1∏
i=1

∥∥T (1)
i

∥∥2
d2∏

i=1

∥∥T (2)
i

∥∥2.

Finally, for the polydisc Dd , the inequality proved in Theorem 1.20 is sharp as is easily

verified by taking the example of the d- tuple of multiplication by the coordinate functions on

the Hardy space of Dd .

The results of Chapter 4 and 5 are in [23]. In Chapter 4, we introduce the class AK(Ω)

consisting of commuting d- tuples of K - homogeneous operators T possessing a number of

additional properties:

Definition 1.21. A commuting d- tuple of K-homogeneous operators T possessing the fol-

lowing properties

(i) dimkerDT ∗ = 1,

(ii) any non-zero vector e in kerDT ∗ is cyclic for T ,

(iii) Ω⊆σp (T ∗)

is said to be in the class AK(Ω).

Now, for T ∈ AK(Ω), which are necessarily K-homogeneous, we provide a model as

multiplication by the coordinate functions z1, . . . , zd on a reproducing kernel Hilbert space

HK of holomorphic functions defined on Ω. We describe the kernel K in terms of the K-

invariant kernels Ks of the spaces P s .

Theorem 1.22. If T is a d- tuple of operators in AK(Ω), then T is unitarily equivalent to a d-

tuple M = (M1, . . . , Md ) of multiplication by the coordinate functions z1, . . . , zd on a reproducing

kernel Hilbert space HK of holomorphic functions defined on Ω with K (z , w ) =∑
α−1

s Ks(z , w ),

z , w ∈Ω, for some choice of positive real numbers αs with α0 = 1.
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Having described the model, we obtain a criterion for boundedness of these operators.

Using this criterion, we determine which d- tuple of multiplication operators on the weighted

Bergman spaces H (λ) are bounded. The boundedness criterion for the multiplication op-

erators on the weighted Bergman spaces has appeared before in [6] and [2]. For any T in

the class AK(Ω), we point out that the operators
∑d

i=1 T ∗
i Ti and

∑d
i=1 Ti T ∗

i restricted to the

subspace P s are scalar times the identity. In particular, for the weighted Bergman spaces

H (λ), [2, Proposition 4.4] provides an explicit form for the operator
∑d

i=1 Ti T ∗
i . We extend this

formula for any T in the class AK(Ω). We also obtain criterion for the adjoint of the d- tu-

ple of operators in AK(Ω) to be in the Cowen-Douglas class B1(Ω0) for some neighbourhood

Ω0 ⊂Ω of 0 ∈Ω. In case of weighted Bergman spaces H (λ), we prove that the adjoint of the d-

tuple of multiplication operators by the coordinate functions are in the Cowen-Douglas class

B1(Ω).

Throughout the PhD thesis, let K (a) :Ω×Ω→C denote the kernel function given by the

formula K (a)(z , w ) = ∑
s∈−→N r

0
asKs(z , w ), z , w ∈Ω, for some choice of positive real numbers as .

The positivity of the sequence as ensures that K (a) is a positive definite kernel. Thus it deter-

mines a unique Hilbert space H (a) ⊆ Hol(Ω) with the reproducing property: 〈 f ,K (a)(·, w )〉 =
f (w ), f ∈ H (a), w ∈Ω. From [1], it follows that the polynomial ring P is dense in H (a) and

P s is orthogonal to P s′ whenever s 6= s′, that is, H (a) =⊕
s∈−→N r

0
P s . It is then easy to see that the

d- tuple of multiplication operators M (a) on the reproducing kernel Hilbert space H (a) are

in the class AK(Ω). Finally, we study the question of unitary equivalence and similarity of d-

tuples of operators in the class AK(Ω) using the model of d- tuple of multiplication operators

M (a) on the reproducing kernel Hilbert space H (a).

Theorem 1.23. Let T 1 and T 2 be two operator tuples in AK(Ω). Suppose that T 1 ∼u M (a) and

T 2 ∼u M (b). Then the following statements are equivalent.

(i) T 1 and T 2 are unitarily equivalent.

(ii) as = bs for all s ∈−→
N r

0.

(iii) K (a) = K (b).

Theorem 1.24. Let T 1 and T 2 be two operator tuples in AK(Ω). Suppose that T 1 ∼u M (a) and

T 2 ∼u M (b). Then the following statements are equivalent.

(i) T 1 and T 2 are similar.

(ii) There exist constants α,β> 0 such that α‖p‖H (a) ≤ ‖p‖H (b) ≤β‖p‖H (a) , p ∈P .

(iii) H (a) =H (b).
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(iv) There exist constants α,β> 0 such that αK (a) ¹ K (b) ¹βK (a).

(v) there exist constants α,β> 0 such that αas ≤ bs ≤βas , s ∈−→
N r

0.

Corollary 1.25. Ifλ1,λ2 > a
2 (r−1), then the d- tuple of multiplication operators M (λ1) on H (λ1)

and M (λ2) on H (λ2) are similar if and only if λ1 =λ2.

In Chapter 5, for the Hardy space H 2(SΩ) of the Shilov boundary SΩ of a classical bounded

symmetric domain Ω, we show that
∑d

i=1 M∗
i Mi is the rank times the identity. This is inde-

pendently proved in [5]. Also, for any T in AK(Ω), we show that the commutators [M∗
i , Mi ],

i = 1, . . . ,d on the weighted Bergman spaces are compact if and only if r = 1. This follows

from the explicit computation of the operator
∑d

i=1 T ∗
i Ti on certain subspaces of H (a). For

any classical bounded symmetric domain Ω of rank 2, an explicit description of the opera-

tor
∑d

i=1 T ∗
i Ti is found on all of H (a). The computation involved in this description naturally

lead to a conjecture, given below, independent of the rank of the domain. This conjecture was

recently proved by Upmeier, see [42].

Conjecture 1.26. LetΩ be an irreducible bounded symmetric domain of rank r . Then, for any

polynomial p in P s , M (a)∗M (a)p = δ(s)p on the Hilbert space H (a), δ(s) given by the formula

δ(s) = ∑
j∈I+(s)

as

as+ε j

( d
r )s+ε j

( d
r )s

cs( j ) (1.2)

where I+(s) := { j : 1 ≤ j ≤ r, s +ε j ∈−→
N r

0} and cs( j ) =∏
k 6= j

s j−sk+ a
2 (k− j+1)

s j−sk+ a
2 (k− j ) , j = 1, . . . ,r.



17

Chapter 2

Multivariate Hyponormal tuples and Trace

Theorems

Any attempt to generalize the Berger-Shaw inequality must take into account the behaviour

of the pair of multiplication operators M := (Mz1 , Mz2 ) on the Hardy space H 2(D2) of the

bidisc D2. The pair M is hyponormal and 1- cyclic. However, an easy computation shows

that [M∗
zi

, Mzi ] is of the form P ⊗ I or I ⊗P depending on whether i = 1 or i = 2, where P is a

finite rank projection and I is the identity operator on the Hardy space H 2(D) and H 2(D2) is

identified with H 2(D)⊗H 2(D), see (3.3). It follows that neither of the commutators [M∗
zi

, Mzi ],

i = 1,2 can be compact leave alone trace class. The challenge is to find suitable additional

hypotheses to ensure that the self commutators are in trace class. As we have discussed in

the Introduction, Athavale had introduced the notion of hyponormality for a commuting d-

tuple of operators and proved that if apart from hyponormality, one makes a strong cyclicity

requirement, namely, require that each operator in the d- tuple is individually cyclic, then the

self commutators (and hence all the commutators) of the d- tuple are in trace class. Dou-

glas and Yan arrive at a similar conclusion by assuming joint cyclicity but making the strong

assumption of thinness of the Taylor joint spectrum.

In this chapter, we isolate a small class of operators for which neither of the strong as-

sumptions of joint cyclicity or thinness of the spectrum is required to conclude that the com-

mutators [T ∗
j ,Ti ] 1 ≤ i , j ≤ d are in trace class. This is Theorem 2.5. We also obtain a class

of explicit examples, where the Douglas-Yan theorem applies. We can even do this with the

weaker hypothesis of projectively hyponormal d- tuples, at the moment, only for a pair of

operators, this is Theorem 2.16.
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2.1 A class of hyponormal d- tuples

The following lemma is certainly well known, however for the shake of completeness, we pro-

vide a proof.

Lemma 2.1. Let A,C be positive operators on some Hilbert space H1 and B be a nonzero oper-

ator on (possibly) some other Hilbert space H2. Assume that

A⊗B∗B ≥C ⊗BB∗.

Then A ≥C .

Proof. By our hypothesis, for unit vectors x ∈H1 and y ∈H2, we have

〈Ax, x〉‖B y‖2 = 〈A⊗B∗B x ⊗ y, x ⊗ y〉 (2.1)

≥ 〈C ⊗BB∗x ⊗ y, x ⊗ y〉 = 〈C x, x〉‖B∗y‖2 (2.2)

Since ‖B‖2 ≥ ‖B y‖2, sup
{‖B∗y‖2 : ‖y‖ = 1

}= ‖B∗‖2 and ‖B∗‖ = ‖B‖, it follows that A ≥C .

Proposition 2.2. Let A = (A1, . . . , Ad ) be d- tuple of operators on a Hilbert space H1 and T be a

nonzero operator on (possibly) some other Hilbert space H2. Assume that the tuple of operators

A ⊗T := (A1 ⊗T, . . . , Ad ⊗T ) on H1 ⊗H2 is commuting and projectively hyponormal. Then we

have the following.

(i) Each of the operators A1, . . . , Ad is hyponormal on H1 and the operator T is hyponormal

on H2.

(ii) The tuple of operators A is commuting and projectively hyponormal on H1.

Proof. Since A⊗T is projectively hyponormal, the commutators [A∗
i ⊗T ∗, Ai ⊗T ] in the (i , i ),

i = 1, . . . ,d , positions of the matricial commutator
[[

(A⊗T )∗, A⊗T
]]

are hyponormal. In other

words, for i = 1, . . . ,d , we have

[A∗
i ⊗T ∗, Ai ⊗T ] = (A∗

i Ai ⊗T ∗T − Ai A∗
i ⊗T T ∗) ≥ 0.

Now, for a fixed i , 1 ≤ i ≤ d , setting A := A∗
i Ai , C := Ai A∗

i and B := T , we see that the hypothe-

ses of Lemma 2.1 are satisfied. Therefore, we conclude that Ai , 1 ≤ i ≤ n, is hyponormal.

A similar proof shows that T is hyponormal on H2. Next, we prove that Ai , A j for i 6= j

commute. By hypothesis,

0 = [(Ai ⊗T ), (A j ⊗T )]

= [Ai , A j ]⊗T 2
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whenever i 6= j . This implies: either [Ai , A j ]=0 or T 2 = 0. If T 2 = 0, then the spectral radius of

T , r (T ) = 0. Since T is a hyponormal operator we have r (T ) = ‖T ‖ (see [41, Theorem 1]). So

‖T ‖ = 0 which is a contradiction. Hence we have [Ai , A j ]=0.

To complete the proof, for an arbitrary choice of complex numbers α1, . . . ,αn , let Aα :=∑n
i=1αi Ai and set

A := A∗
αAα, C := AαA∗

α and B := T.

As before, the hypotheses of Lemma 2.1 are satisfied and it follows that A is projectively hy-

ponormal.

The following proposition is analogous to the previous one with hyponormality replac-

ing the projectively hyponormality in it.

Proposition 2.3. Let A = (A1, . . . , Ad ) be d- tuple of operators on a Hilbert space H1 and T be a

nonzero operator on (possibly) some other Hilbert space H2. Assume that the tuple of operators

A ⊗T := (A1 ⊗T, . . . , Ad ⊗T ) on H1 ⊗H2 is commuting and hyponormal. Then we have the

following.

(i) Each of the operators A1, . . . , Ad is hyponormal on H1 and the operator T is hyponormal

on H2.

(ii) The tuple of operators A is commuting and hyponormal on H1.

Proof. Evidently, hyponormality implies projective hyponormality and thus the statement (i)

and the first half of the statement in (ii) follow from the previous Proposition. To prove the

second half of the statement in (ii), we have to show that
[[

A∗, A
]] ≥ 0 on H1 ⊗Cd . This is

equivalent to showing 
A∗

1 A1 . . . A∗
d A1

...
. . .

...

A∗
1 Ad . . . A∗

d Ad

≥


A1 A∗

1 . . . A1 A∗
d

...
. . .

...

Ad A∗
1 . . . Ad A∗

d


on H1 ⊗Cd . By our hypothesis, [[

(A ⊗T )∗, (A ⊗T )
]]≥ 0

on H1 ⊗H2 ⊗Cd . In other words,
A∗

1 A1 . . . A∗
1 Ad

...
. . .

...

A∗
d A1 . . . A∗

d Ad

⊗T ∗T ≥


A1 A∗

1 . . . Ad A∗
1

...
. . .

...

A1 A∗
d . . . Ad A∗

d

⊗T T ∗.
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Now setting A :=


A∗

1 A1 . . . A∗
d A1

...
. . .

...

A∗
1 Ad . . . A∗

d Ad

 , C :=


A1 A∗

1 . . . A1 A∗
d

...
. . .

...

Ad A∗
1 . . . Ad A∗

d

, both acting on the Hilbert

space H1 ⊗Cd , and B := T on the Hilbert space H2, it is easy to see that the hypotheses of

Lemma 2.1 are met. Thus,
A∗

1 A1 . . . A∗
d A1

...
. . .

...

A∗
1 Ad . . . A∗

d Ad

≥


A1 A∗

1 . . . A1 A∗
d

...
. . .

...

Ad A∗
1 . . . Ad A∗

d


which completes the proof.

The following Proposition provides a converse to the Propositions 2.2 and 2.3. For brevity,

we have combined the hypotheses of the projective hyponormality and the (joint) hyponor-

mality in a single statement. The proof is also given with the hypothesis of projective hyponor-

mality with the understanding that the proof follows similarly in the case of hyponormal tuple.

Proposition 2.4. Let A = (A1, . . . , Ad ) be a commuting projectively (resp. jointly) hyponormal

tuple of operators on a Hilbert space H1 and T be a hyponormal operator on (possibly) some

other Hilbert space H2. Then A ⊗T = (A1 ⊗T, . . . , Ad ⊗T ) is a commuting projectively (resp.

jointly) hyponormal tuple of operators on H1 ⊗H2.

Proof. For an arbitrary choice of α = (α1, . . . ,αd ) ∈ Cd , let Aα := ∑d
i=1αi Ai and (A ⊗T )α :=∑d

i=1αi (Ai ⊗T ). It is easy to see that (A ⊗T )α := Aα⊗T . Since A is commuting projectively

hyponormal, we have for each α ∈Cd , [(Aα)∗, (Aα)] ≥ 0. Now

[(Aα⊗T )∗, (Aα⊗T )] = (Aα)∗(Aα)⊗T ∗T − (Aα)(Aα)∗⊗T T ∗

≥ (Aα)∗(Aα)⊗T T ∗− (Aα)(Aα)∗⊗T T ∗

= [(Aα)∗, (Aα)]⊗T T ∗

≥ 0.

Theorem 2.5. Let A := (A1, . . . , Ad ) be a d- tuple of commuting normal Hilbert-Schmidt oper-

ators on a Hilbert space H1 and T be a hyponormal operator on a second (possibly different)

Hilbert space H2. Assume that T is m- polynomially cyclic. Then A ⊗T := (A1 ⊗T, . . . , Ad ⊗T )

is a commuting hyponormal d- tuple of operators and for all 1 ≤ i , j ≤ d , [A∗
i ⊗T ∗, A j ⊗T ] is in

trace class.

Proof. Since T is a hyponormal and m- polynomially cyclic operator on H2, by the Berger-

Shaw theorem, [T ∗,T ] is in trace-class. Using Fuglede theorem for commuting normal oper-

ators we get, for 1 ≤ i , j ≤ d ,

[(Ai ⊗T )∗, (A j ⊗T )] = A∗
i A j ⊗ [T ∗,T ] = A j A∗

i ⊗ [T ∗,T ] (2.3)
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Using Equation (2.3), we obtain the following string of equalities.

[[
(A ⊗T )∗, A ⊗T

]]=


A1 A∗
1 ⊗ [T ∗,T ] . . . Ad A∗

1 ⊗ [T ∗,T ]
...

. . .
...

A1 A∗
d ⊗ [T ∗,T ] . . . Ad A∗

d ⊗ [T ∗,T ]



=


A1 A∗

1 . . . Ad A∗
1

...
. . .

...

A1 A∗
d . . . Ad A∗

d

⊗ [T ∗,T ]

=


A1
...

Ad

(
A∗

1 . . . A∗
d

)
⊗ [T ∗,T ]. (2.4)

Since we have assumed that T is hyponormal, therefore from Equation (2.4), it follows that

the commuting tuple A ⊗T is hyponormal.

Also, since Ai , is a Hilbert-Schmidt operator, it follows that Ai A∗
j , 1 ≤ i , j ≤ d , is in trace-

class. The operator [T ∗,T ] is in trace-class, consequently (using Equation (2.3)), we conclude

that [A∗
i ⊗T ∗, A j ⊗T ], 1 ≤ i , j ≤ d , is in trace-class.

2.2 Douglas-Yan Theorem

In this Section, we first recall the Douglas-Yan theorem from [18] in two different forms, which

nevertheless are equivalent. We then give a proof for one of these theorems with a slightly

weaker hypothesis. This proof is very similar to the original proof but we include it here for

completeness. We also give some natural examples of commuting d- tuples of operators sat-

isfying the hypothesis of the Douglas-Yan theorem. Next, for many of the d- tuple of operators

discussed in the previous Section, we show that the conclusion of the Douglas-Yan theorem

remains valid while they don’t meet all the hypotheses of the theorem.

Theorem 2.6 (Douglas-Yan). (Module): Let H be a finitely generated hyponormal Hilbert mod-

ule over A with the dense subalgebra B. If dimB = 1, then H is 1-reductive for B.

(d- tuple): Let T = (T1, . . . ,Td ) be a hyponormal d- tuple of operators on the Hilbert space H

such that T is finitely polynomially cyclic. Let I be the ideal of C[z1, . . . , zd ] defined by

I = {
p ∈C[z1, . . . , zd ] : p(T ) = 0

}
.

If dim
(
C[z1, . . . , zd ]

/
I
)= 1, then [T ∗

i ,T j ] is in trace-class for all i , j .
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Remark 2.7. (i) Since H is a finitely generated hyponormal module, there exist generators

φ1, . . . ,φd for B (as an algebra) so that (mφ1 , . . . ,mφd ) is a commuting finite polynomially

cyclic hyponormal tuple of operators on H . Since B is a subalgebra of finite type it

follows that

B ∼=C[z1, . . . , zd ]/I .

Thus, by hypothesis, dimB = dim
(
C[z1, . . . , zd ]/I

)= 1.

(ii) In the special case, when the operator tuple T is subnormal, dim
(
C[z1, . . . , zd ]/I

) = 1 is

equivalent to the fact that the Taylor joint spectrum of the d- tuple is thin.

2.2.1 Examples

For the sake of completeness, we first recall the definition of the joint spectrum σ(T ) of a

commuting d - tuple T due to J. Taylor. The following paragraph describing the Taylor joint

spectrum is taken verbatim from [16].

Let Λ = Λ[e] = Λn[e] be the exterior algebra on n generators e1, . . . ,en , with identity

e0 = 1. Λ is the algebra of forms in e1, . . . ,en , with complex coefficients, subject to the col-

lapsing property ei e j +e j ei = 0(1 ≤ i , j ≤ n). Let Ei :Λ→Λ be given by Ei x = ei x (i = 1, . . . ,n).

E1, . . . ,En are the "creation operators." Clearly Ei E j +E j Ei = 0(1 ≤ i , j ≤ n).Λ can be regarded

as a Hilbert space. If we declare {ei1 · . . . · eik : 1 ≤ i1 < ·· · < ik ≤ n} as an orthonormal basis.

Then E∗
i x = x ′, where x = ei x ′+ x ′′ is the unique decomposition of a form x as the sum of an

element in the range of Ei and an element in the kernel of E∗
i . Actually, each Ei is a partial

isometry, and E∗
i E j +E j E∗

i = δi j (1 ≤ i , j ≤ n). For H a vector space and A ⊆L (H), we define

D A :Λ(H) →Λ(H) (Λ(H) = H ⊗CΛ) by

D A :=
n∑

i=1
Ai ⊗Ei .

Then

D2
A(y ⊗x) =

n∑
i , j=1

A j Ai y ⊗E j Ei x = ∑
i< j

Ai A j y ⊗ (Ei E j +E j Ei )x = 0,

so that R(D A) ⊂ N (D A) (R and N denote range and kernel). We say that A is nonsingular on

H if R(D A) = N (D A). When n = 1, for instance, A is nonsingular if and only if A is one to one

and onto. The Taylor spectrum of A on H is

σ(A, H) := {λ ∈Cn : R(D A−λ) 6= N (D A−λ)}.

The Taylor joint spectrumσ(T ) of a commuting d - tuple T has several useful properties

listed in [16, pp. 21]. These include
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1. σ(T ) is non-empty and compact subset of Cd .

2. The spectral mapping property: σ(p(T )) = {p(λ) | λ ∈ σ(T )} for any polynomial p in d

variables. In particular, the joint spectrum has the projection property.

Note that the projection property shows that the joint spectrum σ(T ) of a commuting d -

tuple T is a subset of the product σ(T1)× ·· ·×σ(Td ). Now, we recall without proof, a useful

proposition from [8] describing the Taylor joint spectrum of the direct sum of a countable set

of commuting tuple of operators.

Proposition 2.8. Let
{

S i := (
Si 1, . . . ,Si d

)}n
i=1, where n ∈N∪{∞}, be a set of commuting d- tuple

of bounded linear operators on the Hilbert spaces H i . Then the Taylor joint spectrumσ(⊕n
i=1S i )

of the direct sum ⊕n
i=1S i equals ∪n

i=1σ(S i ).

It is proved in Theorem 2.5 that the commutators [(A j ⊗T )∗, Ai ⊗T ], 1 ≤ i , j ≤ d , be-

longs to the trace class as soon as certain natural conditions are imposed on the commuting

tuple A and the operator T . For this, the commuting tuple T need not be polynomially cyclic,

which is one of the assumptions in the Douglas-Yan theorem. However, using the following

theorem, we see that the joint spectrum of the d- tuples appearing in Theorem 2.5 is union

of thin sets. A set V ⊆ Cd is said to be an algebraic curve if it is the common zero set of a set

of polynomials in d variables. Let I (V ) denotes the set of polynomials that vanish on V . If

dim
(
C[z1, . . . , zd ]/I (V )

) = 1, then V is called an algebraic curve. In the paper [18], the joint

spectrum σ(T ) of a commuting d - tuple T is said to be thin if it lies in an algebraic curve.

Theorem 2.9. Let A := (A1, . . . , Ad ) be a d(≥ 2)- tuple of commuting normal Hilbert-Schmidt

operators on a Hilbert space H1 and T be an operator on a second (possibly different) Hilbert

space H2. Then the joint spectrum of the commuting d- tuple of operators A ⊗ T := (A1 ⊗
T, . . . , Ad ⊗T ) is a countable union of thin sets.

Proof. Let λ(k) = (λ(k)
i )i∈I , 1 ≤ k ≤ d , be the countable set of eigenvalues of Ak , that is, I is at

most a countable set. We can assume, without loss of generality, that Ak =∑
λ(k)

i Pi , where Pi

is the orthogonal projection to the eigenspace corresponding to λ(k)
i . Consequently, the tuple

A ⊗T is the direct sum ⊕
i∈I

(
λ(1)

i T , . . . , λ(d)
i T

)
.

For a fixed i ∈ I , the spectrum of the operator
(
λ(1)

i T , . . . , λ(d)
i T

)
is the set {(λ(1)

i z, . . . ,λ(d)
i z) : z ∈

σ(T )} ⊆ Cd . Now, applying Proposition 2.8, we conclude that the spectrum of the d- tuple of

operators A ⊗T is the set

σ(A ⊗T ) = ⋃
i∈I

{
(λ(1)

i z, . . . ,λ(d)
i z) : z ∈σ(T )

}
.

Thus σ(A ⊗T ) is a union of at most countably many thin sets.



24 2. Multivariate Hyponormal tuples and Trace Theorems

Remark 2.10. Abstract conditions on a commuting d - tuple of operators T are given in The-

orem 2.6 to ensure that the commutators [T ∗
j ,Ti ], 1 ≤ i , j ≤ d , are in trace class. In Theorem

2.5, it is shown that the commutators [A∗
i ⊗T ∗, A j ⊗T ], 1 ≤ i , j ≤ d , are in trace class for any

commuting d - tuple (A1, . . . , Ad ) of normal Hilbert-Schmidt operators and a polynomially

cyclic hyponormal operator T . As shown in Theorem 2.9, the spectrum of these d - tuple of

commuting operators, in general, is only a countable union of thin sets. For producing a dif-

ferent class of examples, let T be a m- polynomially cyclic pure hyponormal operator on a

Hilbert space H . Assume that the pair (T,T 2) is hyponormal. We claim that the Douglas-Yan

theorem applies to the pair (T,T 2).

To verify this claim, we note that (T,T 2) is n- polynomially cyclic with n ≤ m whenever

T is m- polynomially cyclic. Thus it remains to show that the Krull dimension of C[z1, z2]
/

I is

1, where I = {
p ∈ C[z1, z2]|p(T,T 2) = 0

}
. By definition the ideal generated by the polynomial

pT : pT (z1, z2) = z2
1 −z2 is included in I . If there is another polynomial p, which does not have

pT as a factor, with p(T,T 2) = 0, then q(T ) = 0 for some non zero polynomial q ∈ C[z]. But

q(T ) = 0 if and only if the spectrum of T is finite. Now, if T is a pure hyponormal operator,

then the spectrum of T can not be discrete hence cannot be finite (see [41, Cor. 2]). Thus the

polynomial p such that p(T,T 2) = 0 will have pT as a factor. Therefore, the vanishing ideal of

the pair (T,T 2) is the ideal generated by the polynomial z1
2−z2. Since z1

2−z2 is an irreducible

polynomial, the ideal I generated by it is a prime ideal and height of I is 1. Thus using Lemma

(1.10) we conclude that

dimC[z1, z2]
/

I = 1.

Similarly, we verify the hypotheses of Theorem 2.6 for any hyponormal d- tuple (T,T 2, . . . ,T d ).

For this d- tuple, the vanishing ideal I contains the idea (z2
1 − z2, z3

1 − z3, . . . , zd
1 − zd ), the ideal

generated by the polynomials z2
1−z2, z3

1−z3, . . . , zd
1 −zd . An argument, as in the previous para-

graph shows that it is equal to the vanishing ideal. The kernel of the evaluation map Φ from

C[z1, . . . , zd ] toC[z1] given by f (z1, . . . , zd ) → f (z1, z2
1 , . . . , zd

1 ) is I and therefore,C[z1, . . . , zd ]/I ∼=
C[z1]. Thus

dimC[z1, . . . , zd ]
/

I = dimC[z1] = 1.

2.2.2 A strengthening of the Douglas-Yan Theorem

Recall that Athavale, in the paper [4], had introduced the notion of the projectively hyponor-

mal operators, although, he called them weakly hyponormal. Among other things, he had

proved the following Lemma. We provide a proof which is no different from the proof of

Athavale except for minor correction in his proof.

For the proof of the Lemma given below, we will be using the trace norm ‖T ‖1 of an
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operator T ∈B(H ) in a slightly different form than the one given in Definition 1.1, namely,

‖T ‖1 = sup
{ fn },{gn }

∞∑
n=1

|〈T fn , gn〉|, (2.5)

where the supremum is taken over any pair { fn} and {gn} of orthonormal sets in the Hilbert

space H , see [40, Proposition 3.6.5.].

Lemma 2.11. Let T = (T1, . . . ,Td ) be a commuting projectively hyponormal d- tuple of op-

erators on the Hilbert space H . Furthermore, assume that for 1 ≤ k ≤ d, each [T ∗
k ,Tk ] is in

trace-class. Then [T ∗
j ,Tk ] is also in trace-class for all 1 ≤ k, j ≤ d.

Proof. From projective hyponormality of T , for any fixed pair of indices j ,k and any pair of

complex numbers α j ,αk , we have that α j T j +αk Tk is hyponormal, that is, the commutator

[(α j T j +αk Tk )∗,α j T j +αk Tk ] is non-negative. Expanding and taking inner product with an

arbitrary vector f ∈H , we have

|α j |2〈 f , [T ∗
j ,T j ] f 〉+2Re ᾱ jαk〈 f , [T ∗

j ,Tk ] f 〉+ |αk |2〈 f , [T ∗
k ,Tk ] f 〉 ≥ 0,α j ,αk ∈C, f ∈H . (2.6)

Since the inequality (2.6) is for all pairs of complex numbersα,β, it follows that 〈 f , [T ∗
j ,Tk ] f 〉 =

0 if both 〈 f , [T ∗
j ,T j ] f 〉 = 0 and 〈 f , [T ∗

k ,Tk ] f 〉 = 0. On the other hand, suppose that one of

〈 f , [T ∗
k ,Tk ] f 〉 or 〈 f , [T ∗

j ,T j ] f 〉 is not equal to 0, say, 〈 f , [T ∗
k ,Tk ] f 〉 6= 0. Then choosing α j = 1

and αk = −〈 f ,[T ∗
j ,Tk ] f 〉

〈 f ,[T ∗
k ,Tk ] f 〉 , the inequality (2.6) gives

〈 f , [T ∗
j ,T j ] f 〉−2

|〈 f , [T ∗
j ,Tk ] f 〉|2

〈 f , [T ∗
k ,Tk ] f 〉 +

|〈 f , [T ∗
j ,Tk ] f 〉|2

〈 f , [T ∗
k ,Tk ] f 〉 ≥ 0, f ∈H .

Or, equivalently,

|〈 f , [T ∗
j ,Tk ] f 〉|2 ≤ 〈 f , [T ∗

j ,T j ] f 〉〈 f , [T ∗
k ,Tk ] f 〉, f ∈H . (2.7)

For any bounded operator A on a Hilbert space H , by the polarization identity, we have

4〈 f , Ag 〉 = 〈 f + g , A( f + g )〉−〈 f − g , A( f − g )〉
− i 〈 f + i g , A( f + i g )〉+ i 〈 f − i g , A( f − i g )〉, f , g ∈H ,

and hence

4|〈 f , Ag 〉| ≤ |〈 f + g ,A( f + g )〉|+ |〈 f − g , A( f − g )〉|
+ |〈 f + i g , A( f + i g )〉|+ |〈 f − i g , A( f − i g )〉| (2.8)
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For all f , g ∈H , putting A = [T ∗
j ,Tk ] in the inequality (2.8), we get

4|〈 f , [T ∗
j ,Tk ]g 〉|

≤ |〈 f + g , [T ∗
j ,Tk ]( f + g )〉|+ |〈 f − g , [T ∗

j ,Tk ]( f − g )〉|
+ |〈 f + i g , [T ∗

j ,Tk ]( f + i g )〉|+ |〈 f − i g , [T ∗
j ,Tk ]( f − i g )〉|

≤ (〈 f + g , [T ∗
k ,Tk ]( f + g )〉〈 f + g , [T ∗

j ,T j ]( f + g )〉) 1
2

+ (〈 f − g , [T ∗
k ,Tk ]( f − g )〉〈 f − g , [T ∗

j ,T j ]( f − g )〉) 1
2

+ (〈 f + i g , [T ∗
k ,Tk ]( f + i g )〉〈 f + i g , [T ∗

j ,T j ]( f + i g )〉) 1
2

+ (〈 f − i g , [T ∗
k ,Tk ]( f − i g )〉〈 f − i g , [T ∗

j ,T j ]( f − i g )〉) 1
2

≤ 1

2

(〈 f + g , [T ∗
k ,Tk ]( f + g )〉+〈 f + g , [T ∗

j ,T j ]( f + g )〉+〈 f − g , [T ∗
k ,Tk ]( f − g )〉+

〈 f − g , [T ∗
j ,T j ]( f − g )〉+〈 f + i g , [T ∗

k ,Tk ]( f + i g )〉+〈 f + i g , [T ∗
j ,T j ]( f + i g )〉+

〈 f − i g , [T ∗
k ,Tk ]( f − i g )〉+〈 f − i g , [T ∗

j ,T j ]( f − i g )〉)
≤ 2

(〈 f , [T ∗
k ,Tk ] f 〉+〈g , [T ∗

k ,Tk ]g 〉+〈 f , [T ∗
j ,T j ] f 〉+〈g , [T ∗

j ,T j ]g 〉).

Therefore, using Equation (2.8), we have

∣∣〈 f , [T ∗
j ,Tk ]g 〉∣∣≤ 1

2

(〈 f , [T ∗
k ,Tk ] f 〉+〈g , [T ∗

k ,Tk ]g 〉+〈 f , [T ∗
j ,T j ] f 〉+〈g , [T ∗

j ,T j ]g 〉).

For any pair of orthonormal sets { fn} and {gn} ,∑∣∣〈 fn , [T ∗
j ,Tk ]gn〉

∣∣
≤ 1

2

(∑
n
〈 fn , [T ∗

k ,Tk ] fn〉+
∑
n
〈gn , [T ∗

k ,Tk ]gn〉+∑
n
〈 fn , [T ∗

j ,T j ] fn〉+
∑
n
〈gn , [T ∗

j ,T j ]gn〉
)

≤ 1

2

(
2
∥∥[T ∗

k ,Tk ]
∥∥

1 +2
∥∥[T ∗

j ,T j ]
∥∥

1

)
= ∥∥[T ∗

k ,Tk ]
∥∥

1 +
∥∥[T ∗

j ,T j ]
∥∥

1.

Taking supremum over all possible orthonormal sets we get,∥∥[T ∗
j ,Tk ]

∥∥
1 =

∥∥[T ∗
k ,T j ]

∥∥
1 = sup

{ fn }{gn }

∑
n
|〈[T ∗

k ,T j ] fn , gn〉|

= sup
{ fn }{gn }

∑
n
|〈 fn , [T ∗

j ,Tk ]gn〉| ≤
∥∥[T ∗

k ,Tk ]
∥∥

1 +
∥∥[T ∗

j ,T j ]
∥∥

1 <∞.

Thus [T ∗
j ,Tk ] is in trace class.
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Reviewer pointed out that in the proof of Lemma 2.11 the scalar matrix ((〈[T ∗
j ,Ti ] f , f 〉))

is positive semi-definite, Hence by the Cauchy-Schwarz inequality, one gets the inequality 2.7.

The following estimate for the trace norm of [T ∗
j ,Ti ] assuming that (T1, . . .Td ) is projec-

tively hyponormal follows directly from Lemma 2.11 and the Berger-Shaw theorem.

Theorem 2.12. Let T = (T1, . . . ,Td ) be a projectively hyponormal d- tuple of operators. Suppose

that each Ti , 1 ≤ i ≤ d, is mi - polynomially cyclic. Then the operators [T ∗
j ,Ti ] are in trace class.

Moreover, we have

∥∥[T ∗
j ,Ti ]

∥∥
1 ≤


mi
π
ν(σ(Ti )) if i = j

mi
π
ν(σ(Ti ))+ m j

π
ν(σ(T j )) if i 6= j ,

where ν(σ(Ti )) is the Lebesgue measure of the spectrum of Ti .

Proposition 4 of [4] gives an estimate (a) for the trace of the operators [T ∗
j ,Ti ], 1 ≤ i , j ≤ d

assuming only projective hyponormality of (T1, . . . ,Td ) and (b) for the Hilbert-Schmidt norm

of the same set of operators under the stronger assumption of hyponormality. We are unable

to verify these assertions with the exact assumptions made in [4]. However, Theorem 2.12

together with Theorem 2.13 stated below, we believe, should replace the corresponding parts

of Proposition 4 in [4].

Theorem 2.13. Let T = (T1, . . . ,Td ) be a hyponormal d- tuple of operators. Suppose that each

Ti , 1 ≤ i ≤ d, is mi - polynomially cyclic. Then the operators [T ∗
j ,Ti ] are in trace class. Moreover,

we have ∥∥[T ∗
j ,Ti ]

∥∥
1 ≤


mi
π
ν(σ(Ti )) if i = j(mi
π
ν(σ(Ti ))

) 1
2
(m j

π
ν(σ(T j ))

) 1
2 if i 6= j ,

where ν(σ(T ) is the Lebesgue measure of the spectrum of T .

Proof. Hyponormality of the d- tuple T gives for x, y ∈H ,∣∣〈[T ∗
j ,Ti ]x, y〉∣∣≤ 〈[T ∗

i ,Ti ]x, x〉 1
2 〈[T ∗

j ,T j ]y, y〉 1
2 .

For any pair of orthonormal sets { fn} and {gn} ,∑
n

∣∣〈[T ∗
j ,Ti ] fn , gn〉

∣∣≤∑
n
〈[T ∗

i ,Ti ] fn , fn〉
1
2 〈[T ∗

j ,T j ]gn , gn〉
1
2

≤ (∑
n
〈[T ∗

i ,Ti ] fn , fn〉
) 1

2
(∑

n
〈[T ∗

j ,T j ]gn , gn〉
) 1

2

≤ ∥∥[T ∗
i ,Ti ]

∥∥ 1
2
1

∥∥[T ∗
j ,T j ]

∥∥ 1
2
1 .

Now the conclusion follows from Equation (2.5) and the Berger-Shaw theorem.
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Lemma 2.11 and the Lemma proved below help to prove the Douglas-Yan theorem with

the weaker hypothesis of projective hyponormality.

Lemma 2.14. Let T = (T1, . . . ,Td ) be a projectively hyponormal commuting d- tuple of opera-

tors on a Hilbert space H and ai j , 1 ≤ i ≤ m and 1 ≤ j ≤ d be a set of md complex scalars. Sup-

pose gi (T ) =∑d
j=1 ai j T j , i = 1, . . . ,m,. Then (g1(T ), . . . , gm(T )) is also projectively hyponormal

on H .

Proof. T is projectively hyponormal implies the operatorα1T1+α2T2+ . . .+αd Td is hyponor-

mal for all αi ∈C. There exists bi ∈C, 1 ≤ i ≤ d , such that
∑m

j=1λ j g j (T ) =∑d
i=1 bi Ti . Therefore

(g1(T ), . . . , gm(T )) is also projectively hyponormal.

The following Theorem is a restatement of [18, Theorem 2] with the weaker hypothesis

of projective hyponormality. The proof given below is similar to the one in [18]. As in the

original proof, the main idea in the proof below is to find an appropriate linear combination

of the operators Ti , 1 ≤ i ≤ d such that each of them is individually polynomially cyclic. This

is ensured by using the crucial assumption that the Krull dimension of the module is 1.

Theorem 2.15. Let T = (T1, . . . ,Td ) be a projectively hyponormal commuting d- tuple of op-

erators on a Hilbert space H such that T is m- cyclic. Assume that C[z1, . . . , zd ]/I has Krull

dimension 1, where I is the vanishing ideal of T , then [T ∗
j ,Ti ] is in trace class for all 1 ≤ i , j ≤ d.

Proof. By hypothesisC[z1, . . . , zd ]/I has Krull dimension 1 and the Noether normalization the-

orem applies to it. Consequently there exist linear polynomials g1, . . . , gn such thatC[z1, . . . , zd ]

is integral over C[I , g j ], j = 1, . . . ,n, and for i = 1, . . . ,d , zi =∑n
j=1 ai j g j , ai j ∈C. Thus

Ti =
n∑

j=1
ai j g j (T ), i = 1, . . . ,d ,

and

[T ∗
j ,Ti ] =

[
(

n∑
k=1

a j k gk (T ))∗,
n∑

l=1
ai l gl (T )

]
=

n∑
k=1

n∑
l=1

ai l a j k
[
gk (T )∗, gl (T )

]
.

To complete the proof, it is therefore enough to prove that [(gk (T ))∗, gl (T )],1 ≤ k, l ≤ n, is in

trace class.

It follows from Lemma 2.14 that
(
g1(T ), . . . , gn(T )

)
is a projectively hyponormal n- tuple.

Hence for i = 1, . . . ,n, gi (T ) is a hyponormal operator. Since T is m- cyclic there exists ξ[m] :=
{v1, . . . , vm} ⊆ H such that

{
p(T )v |v ∈ ξ[m]and p ∈ C[z1, . . . , zd ]

}
is dense in H . For a fixed
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but arbitrary i , 1 ≤ i ≤ d , C[z1, . . . , zd ] is an integral module over C[I , gi ], therefore C[z1, . . . , zd ]

is finitely generated over C[I , gi ]. Thus for any polynomial p in C[z1, . . . , zd ], there is a finite

subset { f1, . . . , ft } ⊆ C[z1, . . . , zd ], depending on gi , and q1, . . . , qt in C[I , gi ], depending on p,

such that p = q1 f1 + . . . qt ft . By hypothesis I is the vanishing ideal for T . Hence q(T ) is in

C[gi (T )] for any q ∈C[I , gi ]. For v1, . . . , vm in ξ[m], define vkl = fl (T )vk , l = 1, . . . , t . Now, for a

fixed but arbitrary vk ∈ ξ[m], we have

p(T )vk =
t∑

l=1
ql (T ) fl (T )vk =

t∑
l=1

ql (T )vlk , p ∈C[z1, . . . , zd ].

This proves that
{

p(T )v |v ∈ ξ[m]and p ∈C[z1, . . . , zd ]
}

is subset of{
q(gi (T ))v |v ∈ {vlk , l = 1, . . . t ,k = 1, . . . ,m}and q ∈C[z]

}
.

Thus gi (T ) is finitely polynomially cyclic. By applying Berger-Shaw theorem to gi (T ), i =
1, . . . ,n, we conclude that [gi (T )∗, gi (T )] is in trace-class. Finally, it follows from Lemma 2.11

that [(gk (T ))∗, gl (T )], 1 ≤ k, l ≤ n, is in trace class.

In the proof of the following theorem, we consider those polynomials p in C[z1, . . . , zd ]

with the property that none of the partial derivatives ∂k p, 1 ≤ k ≤ d , is the zero polynomial.

We call such a polynomial pure.

Suppose (T1,T2) is any pair of commuting operators and p(T1,T2) = 0. If p is not pure,

then p is of the form: (a) p(z1, z2) = ∑m
k=1 ak zk

1 , or (b) p(z1, z2) = ∑n
k=1 bk zk

2 . In either case,

the spectrum of T1 or T2 is finite. Now, if T1 and T2 are pure hyponormal operators, then the

spectrum of neither of these can be discrete hence cannot be finite (see [41, Cor. 2]). This

contradiction shows that for any commuting pair T1, T2 of pure hyponormal operators, if p is

not a pure polynomial, then p(T1,T2) cannot be zero.

Theorem 2.16. Let T = (T1,T2) be a (pure) projectively hyponormal pair of commuting opera-

tors on the Hilbert space H such that T is m- polynomially cyclic. Furthermore, assume that

there exists a polynomial p ∈ C[z1, z2] such that p(T1,T2) = 0, then [T ∗
j ,Ti ] is in trace class for

all 1 ≤ i , j ≤ 2.

Proof. The discussion preceding the Theorem shows that any polynomial p for which p(T1,T2) =
0 must be pure. Let degree of z2 in p be k. For any polynomial q ∈C[z1, z2] using the Division

algorithm in (C[z1])[z2] we get

q(z1, z2) = q1(z1, z2)p(z1, z2)+ r (z1, z2)

where degree of z2 in r is less than k. Since p(T1,T2) = 0 it follows that q(T1,T2) = r (T1,T2).

We conclude that T1 is mk- polynomially cyclic with the cyclic set {T i
2 v : v ∈ ξT [m],0 ≤ i ≤ k},
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where ξT [m] is the cyclic set for T . Now projective hyponomality of the pair T implies that T1

is hyponormal. Hence, by the Berger-Shaw theorem, [T ∗
1 ,T1] is in trace-class. Similarly, since

T2 is also polynomially cyclic, one can prove [T ∗
2 ,T2] is in trace-class. Finally, from Lemma

2.11 we conclude that for 1 ≤ i , j ≤ 2, [T ∗
j ,Ti ] is in trace-class.

Remark 2.17. It is possible to construct a large family of Hilbert modules, using the Theorem

we have just proved, where the Douglas-Yan theorem applies with the slightly weaker hypoth-

esis of projective hyponormality:

Suppose that H is a Hilbert module over the polynomial ring C[z1, z2]. For any com-

muting pair of operators T1,T2 ∈ B(H ), define the the module multiplication by the rule

(p,h) → p(T1,T2)h, p ∈C[z1, z2], h ∈H . Suppose T = (T1,T2) satisfies the hypotheses of The-

orem 2.16. Now, we show that the Krull dimension of C[z1, z2]/I , where I is the vanishing

ideal of (T1,T2), is 1. To verify this claim, note that the only possibilities for the Krull dimen-

sion of C[z1, z2]/I are 1 or 0. But if the Krull dimension is 0, then I must be a maximal ideal.

Since Ti , i = 1,2 is a pure hyponormal operator, it follows that no maximal ideal can be the

vanishing ideal of (T1,T2). Hence the dimC[z1, z2]/I = 1.
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Chapter 3

Determinant Operator and Generalized

Commutator

Let T be a d - tuple of weighted shift operators with (bounded) weight sequence w (i )
α , that is,

Ti xα = w (i )
α xα+εi , i = 1, . . .d , where {xα} is an orthonormal basis in the Hilbert space `2(Nd

0 ).

The d - tuple T is commuting if and only if, for the corresponding weight sequence w (i )
α we

have the equality

w (i )
α w ( j )

α+εi
= w ( j )

α w (i )
α+ε j

, 1 ≤ i , j ≤ d , α ∈Nd
0 . (3.1)

In this chapter, the d - tuple T of weighted shift operators that we discuss are commuting and

hence the equality of Equation (3.1) for the weight sequence w (i )
α is assumed throughout. A

joint weighted shift would always mean a d - tuple of commuting weighted shift operators as

above.

Definition 3.1 ( [11], Definition 2.3). The d- tuple of joint weighted shift operator T is said to

be spherical if the weights w (i )
α of T admit a factorization of the form

w (i )
α = δk

√
αi+1
|α|+d , k = |α| ∈N, 1 ≤ i ≤ d ,

for some sequence δk of positive real numbers. The operator Tδ is the weighted shift defined

by the weight sequence {δk }k∈N.

If T is a spherical d - tuple, then ‖Ti‖ = sup{w (i )
α : α ∈Nd

0 } = sup{δk : k ∈N0}. It follows

that the spherical d - tuple is bounded if and only if the weight sequence δk is bounded. One

of the main results of [11] is that the hyponormality (resp. subnormality) of the d- tuple of

joint weighted shift operators T is equivalent to the hyponormality (resp. joint subnormality)

of the weighted shift operator Tδ. In particular, the d- tuple is hyponormal if and only if the

weight sequence {δ|α|} is increasing.
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The commuting d - tuple M (λ) = (M (λ)
1 , . . . , M (λ)

d ) of multiplication by the co-ordinate

functions on the weighted Bergman spaces H (λ)(Bd ), λ > 0, is unitarily equivalent to a com-

muting d - tuple of weighted shift operator with weights w (i )
α (λ) :=

√
αi+1
|a|+λ , 1 ≤ i ≤ d . For a

fixed λ> 0, we have the factorization

w (i )
α (λ) =

√
|α|+d
|α|+λ

√
αi+1
|α|+d ,

therefore the d- tuple M (λ) is spherical and δk =
√

k+d
k+λ , k = |α| in this case.

It is known that the d - tuple M (λ) is hyponormal if and only if λ ≥ d , see [11, pp.

605]. From the criterion given in [11, Corollary 4.5 and 4.6], it follows that the commuta-

tors [M (λ)
j

∗
, M (λ)

i ], λ > 0, 1 ≤ i , j ≤ d , are in Schatten p - class if and only if p > d . This ver-

ifies the Arveson-Douglas conjecture for I = {0} in the weighted Bergman spaces H (λ)(Bd ),

λ> 0. Consequently, even if λ≥ d , the commutators [M (λ)
j

∗
, M (λ)

i ] are not in the trace class. In

this chapter, for a commuting d - tuple of operators T , we introduce the determinant op-

erator dEt
([[

M (λ)∗, M (λ)
]])

. For the weighted Bergman spaces, we verify that the operator

dEt
([[

M (λ)∗, M (λ)
]])

is in trace class. We also define a class BSm,ϑ(Ω) of commuting d - tu-

ple of operators T with the property that dEt
([[

T ∗,T
]])

is in trace class.

3.1 Determinant Operator

For 1 ≤ i , j ≤ d , let Bi j : H → H be a bounded linear operator on the complex separable

Hilbert space H . Consequently, B := ((
Bi j

))
defines a bounded linear operator from the

Hilbert space H ⊗`2(d) to itself. The determinant dEt(B ) is the operator given by the for-

mula:

dEt(B ) := ∑
σ,τ∈Sd

Sgn(σ)Bτ(1),σ(τ(1))Bτ(2),σ(τ(2)), . . . ,Bτ(d),σ(τ(d)).

Let T = (T1, . . . ,Td ) be a commuting d- tuple of operators. The determinant of the d ×d

block operator
[[

T ∗,T
]]= ((

[T ∗
j ,Ti ]

))
is then obtained by setting Bi j = [T ∗

j ,Ti ]. For instance, if

T is the pair (T1,T2), then

dEt
([[

T ∗,T
]])= T ∗

1 T1T ∗
2 T2 +T ∗

2 T2T ∗
1 T1 +T1T ∗

1 T2T ∗
2 +T2T ∗

2 T1T ∗
1

−T ∗
1 T2T ∗

2 T1 −T ∗
2 T1T ∗

1 T2 −T1T ∗
2 T2T ∗

1 −T2T ∗
1 T1T ∗

2 . (3.2)

Remark 3.2. Here are some remarks on the determinant operator.

(i) The map dEt : B(H )d ×·· ·×B(H )d 7→B(H ) is defined in analogy with the usual def-

inition of the determinant, namely, det : Cd × ·· ·×Cd 7→ C, that is, dEt is a multi-linear

alternating map. It is not clear if such a map is uniquely determined (up to a scalar

multiple).



3.2. Determinant Operator Associated to Different Classes of Operators 33

(ii) The determinant of a positive matrix is positive. However, if B := ((
Bi j

))
is a positive

d ×d block operator, then the determinant operator dEt(B ) need not be positive. For

example let B be the 2×2 block operator with Bi j = Ei j , where Ei j is the 2×2 matrix

with 1 at the (i , j ) entry and 0 everywhere else. The block matrix B is self-adjoint and

positive. But dEt(B ) = (−1 0
0 −1

)
is not positive.

(iii) In the particular case of
[[

T ∗,T
]]

, there is another competing definition of an alternating

multi-linear map, namely, the generalized commutator introduced by Helton and Howe

in [24], which we shall discuss in Subsection 3.3.

(iv) By Putnam-Fuglede Theorem, for d - tuple of commuting normal operators N ,

dEt
([[

N∗, N
]])= 0.

Reproduced below is a remark made by the Reviewer.

Remark. If T is a doubly commuting d - tuple of bounded linear operators on H , then

dEt
([[

T ∗,T
]])= d ! [T ∗

1 ,T1] . . . [T ∗
d ,Td ].

In particular, if [T ∗
1 ,T1] is compact, then dEt

([[
T ∗,T

]])
is compact.

3.2 Determinant Operator Associated to Different Classes of

Operators

3.2.1 Hardy Space overD2

In this subsection we will discuss the determinant operator associated to the pair of multi-

plication operators (Mz1 , Mz2 ) on the Hardy space H 2(D2) over the bidisc D2 determined by

the orthonormal basis {zm
1 zn

2 : m,n ≥ 0}. The space H 2(D2) is isometrically isomorphic to

H 2(D)⊗ H 2(D) via the map L : zm
1 zn

2 7→ zm
1 ⊗ zn

2 . Extend the map L by linearity and note that

it is well-defined and isometric. It is evidently surjective, hence unitary. The unitary L inter-

twines the pair of operators (Mz1 , Mz2 ) with the pair (Mz ⊗ I , I ⊗Mz), where Mz is the multipli-

cation operator on H 2(D). We will let M denote either of these two pairs without causing any

ambiguity since the meaning would be clear from the context.

Let P be the orthogonal projection onto the subspace generated by the constant func-

tion in H 2(D). Clearly, M∗
z Mz = I and Mz M∗

z = I −P. Therefore, we can write down the com-

mutators of M := (Mz ⊗ I , I ⊗Mz) :

[(Mz ⊗ I )∗, (Mz ⊗ I )] = P ⊗ I , [(I ⊗Mz)∗, (I ⊗Mz)] = I ⊗P
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and

[(I ⊗Mz)∗, (Mz ⊗ I )] = 0 = [(Mz ⊗ I )∗, (I ⊗Mz)].

Thus the commutator[[
M∗, M

]]
:=

(
[(Mz ⊗ I )∗, (Mz ⊗ I )] [(I ⊗Mz)∗, (Mz ⊗ I )]

[(Mz ⊗ I )∗, (I ⊗Mz)] [(I ⊗Mz)∗, (I ⊗Mz)]

)

=
(

P ⊗ I 0

0 I ⊗P

)
≥ 0. (3.3)

This proves that M is hyponormal. In this example, we have

dEt
([[

M∗, M
]])= (P ⊗ I )(I ⊗P )+ (P ⊗ I )(I ⊗P ) = 2(P ⊗P ).

Although, none of the non-zero commutators are compact, we see that dEt
([[

M∗, M
]])

is pos-

itive with trace
(
dEt

([[
M∗, M

]]))= 2.

3.2.2 Hardy Space over Symmetrized Bidisk

The usual Hardy space H 2(D2) is a module over the polynomial ring C[z1, z2] equipped with

the module multiplication mp given by the point-wise multiplication, namely, mp ( f ) = p f ,

p ∈ C[z1, z2], f ∈ H 2(D2). Obviously, there are several other possibilities for the module mul-

tiplication. In this subsection, we consider a different module multiplication, which up to

unitary equivalence, is isomorphic to the Hardy module on the symmetrized bidisc. For this,

first consider the commuting pair of operators T = (T1,T2):

T1 = Mz ⊗ I + I ⊗Mz and T2 = Mz ⊗Mz

acting on the Hardy space H 2(D2). We have

[T ∗
1 ,T1] = P ⊗ I + I ⊗P, [T ∗

2 ,T2] = I ⊗P +P ⊗P⊥.

Similarly,

[T ∗
2 ,T1] = P ⊗M∗

z +M∗
z ⊗P, [T ∗

1 ,T2] = P ⊗Mz +Mz ⊗P.

The operator matrix associated to this pair (T1,T2) is(
[T ∗

1 ,T1] [T ∗
2 ,T1]

[T ∗
1 ,T2] [T ∗

2 ,T2]

)
=

(
P ⊗ I + I ⊗P P ⊗M∗

z +M∗
z ⊗P

P ⊗Mz +Mz ⊗P I ⊗P +P ⊗P⊥

)

=
(

P ⊗ I I ⊗P

P ⊗Mz Mz ⊗P

)(
P ⊗ I P ⊗M∗

z

I ⊗P M∗
z ⊗P

)
+

(
0 0

0 P ⊗P

)

=
(

P ⊗ I I ⊗P

P ⊗Mz Mz ⊗P

)(
P ⊗ I I ⊗P

P ⊗Mz Mz ⊗P

)∗
+

(
0 0

0 P ⊗P

)
≥ 0.
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Thus it follows that T is hyponormal. A simple computation gives

dEt
([[

T ∗,T
]])= 2P ⊗P −P M∗

z ⊗MzP −MzP ⊗P M∗
z .

We note that the vector 1⊗1 is an eigenvector of dEt
([[

T ∗,T
]]))

with eigenvalue 2 while the

vector z⊗1+1⊗z is an eigenvector of dEt
([[

T ∗,T
]]))

with eigenvalue −1. Therefore the oper-

ator dEt
([[

T ∗,T
]]))

acting on H 2(D2), is not nonnegative definite.

But if we restrict dEt
([[

T ∗,T
]])

to the subspace H 2
anti(D

2) consisting of those functions

in H 2(D2) that are anti-symmetric, then it is nonnegative definite. Let [[2]] be the set of all pairs

p = (p1, p2) such that p1 > p2 ≥ 0, p1, p2 ∈N0. Define

ep (z) := zp1 ⊗ zp2 − zp2 ⊗ zp1

p
2

.

Then {ep (z) : p ∈ [[2]]} is an orthonormal basis for the subspace H 2
anti(D

2), see [34]. It is also

shown in that paper that H 2
anti(D

2) is module isomorphic to the Hardy module H 2(G2) on the

symmetrized bidisc: G2 := {(z1 + z2, z1z2) : |z1|, |z2| < 1}. In other words, the multiplication by

p(T1,T2) on the Hardy space H 2(D2) is unitarily equivalent to the multiplication by the pair of

the coordinate functions on the Hardy space H 2(G2) of the symmetrized bidisc G2. A direct

and easy computation given below, using the orthonormal basis {ep }, shows that the operator

dEt
([[

T ∗,T
]])

is nonnegative definite and is in trace class:

〈
dEt

([[
T ∗,T

]])
ep ,ep

〉=
1 if p = (1,0)

0 otherwise .

Remark. The pair of multiplication operators on H 2(D2) and also on H 2(G2) are subnormal.

3.3 Generalized Commutator

Given any d- tuple of operators A, not necessarily commuting, it is not clear what represents

the degree of noncommutativity among these operators. For two operators, the answer is

clear. Helton and Howe proposed the following notion of a generalized commutator that has

proved to be quite useful, (see [24, Section A, p. 272]).

Definition 3.3 (Helton-Howe). Let A = (A1, . . . , Ad ) be a d- tuple of bounded operators. The

generalized commutator GC(A) is defined to be the sum∑
σ∈Sd

Sgn(σ)Aσ(1) Aσ(2), . . . , Aσ(d).
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We adapt the definition of Helton and Howe slightly to the case of a commuting tuple

of operators T as follows. Let T = (T1, . . . ,Td ) be a d- tuple of operators. Let A1 = T ∗
1 , A2 =

T1, . . . , A2d−1 = T ∗
d , A2d = Td . The generalized commutator GC(T ∗,T ) is defined to be the sum

GC(T ∗,T ) := ∑
σ∈S2d

Sgn(σ)Aσ(1) Aσ(2), . . . , Aσ(2d). (3.4)

For a pair of commuting operators T = (T1,T2),

GC(T ∗,T ) = T ∗
1 T1T ∗

2 T2 +T ∗
2 T2T ∗

1 T1 +T1T ∗
1 T2T ∗

2 +T2T ∗
2 T1T ∗

1

−T ∗
1 T2T ∗

2 T1 −T ∗
2 T1T ∗

1 T2 −T1T ∗
2 T2T ∗

1 −T2T ∗
1 T1T ∗

2 .

Thus from the Equation 3.2 it follows that for any pair of commuting operators GC(T ∗,T ) =
dEt

([[
T ∗,T

]])
. We now show that the dEt

([[
T ∗,T

]])
and GC(T ∗,T ) coincide for any commut-

ing tuple T . We emphasize that the equality need not hold unless T is a d - tuple of com-

muting operators. In this case, working witth the dEt
([[

T ∗,T
]])

has some advantages over

GC(T ∗,T ) since a number of terms in GC(T ∗,T ) cancel, in case T is d - tuple of commuting

operators, and it equals the less formidable expression for dEt
([[

T ∗,T
]])

.

Proposition 3.4. For any d-tuple T of commuting operators, the determinant

dEt
([[

T ∗,T
]])= GC (T ∗,T ).

Proof. By definition, we have

dEt
([[

T ∗,T
]])= ∑

τ,σ∈Sd

Sgn(σ)
d∏

i=1
Bτ(i )σ(τ(i ))

= ∑
τ,η∈Sd

Sgn(τ)Sgn(η)
d∏

i=1
Bτ(i )η(i ),

where Bi j = [T ∗
j ,Ti ] and η=στ.

Fix a commuting tuple of operators T . Suppose one of the terms in GC(T ∗, T ) has a

string of the form PTi T j Q, where P and Q are products of operators taken from the remaining

set of (2d−2) operators: (T ∗
1 , . . . ,T ∗

d ,T1, . . . , T̂i , . . . , T̂ j , . . . ,Td ). (Here i , j are from {1,2, . . . ,d} and

T̂ means that it is not included in the set.) Then there must be a second term in GC(T ∗, T ) of

the form PT j Ti Q with the opposite sign. However these have to cancel since Ti T j = T j Ti . A

similar argument applies to strings of the form RT ∗
i T ∗

j S. Thus the only terms that survive are

those in which a Ti must be followed by a T ∗
j and a T ∗

j must be followed by a Ti .
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There are two sets of terms in G(T ∗,T ), one set which begins with a T ∗ and another set

which begins with a T . Indeed, we have

GC(T ∗,T ) = ∑
τ,η∈Sd

Sgn(τ)Sgn(η)T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d)Tτ(d)

+ (−1)d
∑

τ,η∈Sd

Sgn(τ)Sgn(η)Tτ(1)T
∗
η(1)Tτ(2) . . .Tτ(d)T

∗
η(d). (3.5)

The terms starting with a T ∗, which is the first sum in GC(T ∗,T ) simplifies:

∑
τ,η∈Sd

Sgn(τ)Sgn(η)T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d)Tτ(d)

= ∑
τ,η∈Sd

Sgn(τ)Sgn(η)
[
T ∗
η(1),Tτ(1)

]
T ∗
η(2) . . .T ∗

η(d)Tτ(d)

+ ∑
τ,η∈Sd

Sgn(τ)Sgn(η)Tτ(1)T
∗
η(1)T

∗
η(2) . . .T ∗

η(d)Tτ(d).

If d ≥ 1 the second sum on the right is zero since there are two terms containing the string

T ∗
η(1)T

∗
η(2) with opposite signs. Repeating this process (note that the vanishing argument does

not apply at the last stage), we get

∑
τ,η∈Sd

Sgn(τ)Sgn(η)T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d)Tτ(d)

= ∑
τ,η∈Sd

Sgn(τ)Sgn(η)
[
T ∗
η(1),Tτ(1)

][
T ∗
η(2),Tτ(2)

]
. . .

[
T ∗
η(d),Tτ(d)

]
+ ∑
τ,η∈Sd

Sgn(τ)Sgn(η)
[
T ∗
η(1),Tτ(1)

][
T ∗
η(2),Tτ(2)

]
. . .

[
T ∗
η(d−1),Tτ(d−1)

]
Tτ(d)T

∗
η(d). (3.6)

The terms starting with a T , which is the second sum in GC(T ∗,T ), using the equality

Tτ(i )T
∗
η(i ) =−[T ∗

η(i ),Tτ(i )]+T ∗
η(i )Tτ(i ),

simplifies:

∑
τ,η∈Sd

Sgn(τ)Sgn(η)Tτ(1)T
∗
η(1)Tτ(2) . . .Tτ(d)T

∗
η(d)

=− ∑
τ,η∈Sd

Sgn(τ)Sgn(η)
[
T ∗
η(1),Tτ(1)

]
Tτ(2) . . .Tτ(d)T

∗
η(d)

+ ∑
τ,η∈Sd

Sgn(τ)Sgn(η)T ∗
η(1)Tτ(1)Tτ(2) . . .Tτ(d)T

∗
η(d).

If d ≥ 1 the second sum on the right is zero since there is a string with Tτ(1)Tτ(2). Repeating
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this process d −1 times, we get

(−1)d
∑

τ,η∈Sd

Sgn(τ)Sgn(η)Tτ(1)T
∗
η(1)Tτ(2) . . .Tτ(d)T

∗
η(d)

= (−1)d (−1)d−1
∑

τ,η∈Sd

Sgn(τ)Sgn(η)
[
T ∗
η(1),Tτ(1)

][
T ∗
η(2),Tτ(2)

]
. . .

[
T ∗
η(d−1),Tτ(d−1)

]
Tτ(d)T

∗
η(d).

(3.7)

Adding the two sums on the right hand side of the equation (3.6) and the one on the right

hand side of the equation (3.7), we get

GC(T ∗,T ) = ∑
τ,η∈Sd

Sgn(τ)Sgn(η)[T ∗
η(1),Tτ(1)][T

∗
η(2),Tτ(2)] . . . [T ∗

η(d),Tτ(d)]

= ∑
τ,η∈Sd

Sgn(τ)Sgn(η)Bτ(1)η(1)Bτ(2)η(2) . . .Bτ(d)η(d)

= dEt
([[

T ∗,T
]])

completing the verification that GC (T ∗,T ) = dEt
([[

T ∗,T
]])

for a commuting tuple T .

This proof was made up with substantial help from Dr. Cherian Varughese.

3.4 The class BSm,ϑ(Ω)

LetΩ⊂Cd be a bounded domain and let H ⊂ Hol(Ω) be a Hilbert space. A commuting tuple

of bounded linear operators T = (T1, . . . ,Td ) defines a module multiplication on H over the

polynomial ring C[z] via the map

pT (h) = p(T )h, p ∈C[z], h ∈H .

Evidently, p → pT is an algebra homomorphism.

Definition 3.5. Let ξ[n] denote a set of linearly independent vectors ξ1, . . . ,ξn in H . For a

commuting tuple of operators T = (T1, . . . ,Td ), we say that ξ[k] is cyclic for T if the linear span

of the vectors {
T i1

1 T i2
2 . . .T id

d v | v ∈ ξ[k] and i1, i2, . . . , id ≥ 0
}

is dense in H . The commuting tuple T is said to be m-polynomially cyclic, where

m = min{k : ξ[k] is cyclic for T }.

The set ξT [m] is then said to be m-cyclic for T .
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Remark 3.6. 1. In this thesis, we assume that the spectrum of the d-tuple of operators T is

polynomially convex. Consequently polynomially cyclic, as opposed to rationally cyclic,

would be the natural hypothesis for us. Therefore, we write "m-cyclic" instead of m-

polynomially cyclic throughout the thesis.

2. A second consequence of the polynomial convexity is that T is m- cyclic if and only if

the subspace {
f (T )v | v ∈ ξ[m] and f ∈ Hol(σ(T ))

}
is dense in H . Here, Hol(σ(T )) is the algebra of all functions which are holomorphic

in some open neighbourhood of the closed set σ(T ). The operator f (T ) is then defined

using the usual holomorphic functional calculus.

Definition 3.7. For a m-cyclic d-tuple T , let

HN :=∨{
T i1

1 T i2
2 . . .T id

d v | v ∈ ξ[m] and 0 ≤ i1 + i2 + . . . id ≤ N
}

and PN be the orthogonal projection onto HN .

We list below some of the basic properties of the projection PN that will be used in the

proof of the main theorem.

Lemma 3.8. For a m-cyclic d-tuple of operators T , we have PN increasing strongly to I and

rank (P⊥
N T j PN ) ≤ m

(N+d−1
d−1

)
, j = 1, . . . ,d.

Proof. Evidently, HN ⊆HN+1 and hence the projections {PN } are increasing. By hypothesis,

T is m-cyclic, therefore by definition, the linear span of {HN : N ∈ N0} is dense in H . The

number of vectors from HN that are pushed out of it by the operator T j provides a reasonable

upper bound on the rank of the operator P⊥
N T j PN . Such vectors can only be a subset of the

subspace HNªHN−1. Clearly, the dimension of this subspace is the same as the dimension of

the space of homogeneous polynomials of degree N in d-variables tensored with Cm , which

is m
(N+d−1

d−1

)
. Therefore, rank(P⊥

N T j PN ) ≤ m
(N+d−1

d−1

)
.

We recall a well-known inequality between the trace norm and the operator norm of a

finite rank bounded operator.

Lemma 3.9. If F ∈B(H ) is of finite rank, then ‖F‖1 ≤ (rankF )‖F‖.

Proof. Since F is a finite rank operator, choosing an arbitrary but fixed {ϕ1, . . . ,ϕn} orthonor-

mal basis for the range of F , for any x ∈H , we have

F x =
n∑

k=1
〈x, vk〉ϕk (3.8)
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for some set of n vectors {v1, . . . , vn} in H . To see this, observe that F x =∑n
k=1〈F x,ϕk〉ϕk . For

any fixed k, 1 ≤ k ≤ n, the map x 7→ 〈F x,ϕk〉 is a bounded linear functional because F is a

bounded operator. Therefore, there is a vk ∈H such that 〈F x,ϕk〉 = 〈x, vk〉. (Here, the vector

vk depends on the operator F .) For any pair of vectors x, y ∈H , we see that

〈F x, y〉 = 〈 n∑
k=1

〈x, vk〉ϕk , y
〉

=
n∑

i=1
〈x, vk〉〈ϕk , y〉

= 〈
x,

( n∑
k=1

〈ϕk , y〉vk
)〉

.

Therefore, we have proved that F∗y = (∑n
k=1〈ϕk , y〉vk

)
. It follows that

F∗F x = F∗( n∑
k=1

〈x, vk〉ϕk
)

=
n∑

j=1

〈
ϕ j ,

n∑
i=1

〈x, vi 〉ϕi
〉

v j

=
n∑

j=1
〈x, v j 〉v j

Therefore, setting V to be the linear span of the vectors {v1, . . . , vn}, we have F∗F (V ) ⊆V . The

restriction of F∗F to V ⊥ is zero. Hence F∗F = (F∗F )|V ⊕0. Since V is finite dimensional and

for any finite dimensional positive operator A, we have the inequality ‖A‖1 ≤ (rank A)‖A‖, we

conclude that

‖F‖1 =
∥∥(F∗F )1/2

∥∥
1 ≤ (rankF )‖F‖

completing the proof of the theorem.

We next define a class BSm,ϑ(Ω) of d - tuples of commuting operators. The rest of this

chapter is devoted to showing that if T is in BSm,ϑ(Ω), then trace
(
dEt

([[
T ∗,T

]]))
is finite.

Moreover, if T is in BSm,ϑ(Ω), then

trace
(
dEt

([[
T ∗,T

]]))≤ mϑd !
d∏

i=1
‖Ti‖2.

Definition 3.10. Fix a bounded domain Ω ⊂ Cd such that Ω is polynomially convex. A m-

cyclic commuting d - tuple of operators with σ(T ) = Ω is said to be in the class BSm,ϑ(Ω),

if

(i) PN T j P⊥
N = 0, j = 1, . . . ,d .
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(ii) dEt
([[

T ∗,T
]])

is non-negative definite.

(iii) For a fixed but arbitrary τ in the permutation group Sd of d symbols, there exists ϑ ∈N,

independent of N , such that

∥∥PN
( ∑
η∈Sd

Sgn(η)T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d)

)
P⊥

N Tτ(d)PN
∥∥≤ϑ

(
N +d −1

d −1

)−1 d∏
i=1

∥∥Ti
∥∥2.

Remark 3.11. (a) For a single operator T on a Hilbert space H , condition (iii) of Definition

3.10 reduces to

‖PN T ∗P⊥
N T PN‖ ≤ϑ‖T ‖2,

which is true withϑ= 1. It follows that a m-cyclic hyponormal operator T withσ(T ) =Ω
is in the class BSm,1(Ω), if PN T P⊥

N = 0.

(b) If for each τ ∈Sd , there exists a unitary operator Uτ on the Hilbert space such that

UτTτ(i )U
∗
τ = Ti , 1 ≤ i ≤ d ,

then it is enough to check condition (iii) for identity permutation, that is,

‖PN
( ∑
η∈Sd

Sgn(η)T ∗
η(1)T1T ∗

η(2) . . .Td−1T ∗
η(d)

)
P⊥

N Td PN‖ ≤ϑ
(

N +d −1

d −1

)−1 d∏
i=1

‖Ti‖2

implies all the other inequalities, one for each τ of (iii).

To see this, pick τ0 ∈ Sd such that η = τ · τ0. With this choice of τ0, we have Sgnη =
SgnτSgnτ0. It now follows that

PN
( ∑
η∈Sd

Sgn(η)T ∗
η(1)Tτ(1)T

∗
η(2) . . .Tτ(d−1)T

∗
η(d)

)
P⊥

N Tτ(d)PN

= PNUτ

(
Sgn(τ)

∑
η̂∈Sd

Sgn(η̂)T ∗
η̂(1)T1T ∗

η̂(2) . . .Td−1T ∗
η̂(d)

)
U∗
τ P⊥

NUτTdU∗
τ PN

= Sgn(τ)UτPN
( ∑
η̂∈Sd

Sgn(η̂)T ∗
η̂(1)T1T ∗

η̂(2) . . .Td−1T ∗
η̂(d)

)
P⊥

N Td PNU∗
τ .

(c) There exists unitary representation U of the symmetric group Sd and commuting d -

tuples of operators T in BS1,1(Bd ) with the property

UτTτ(i )U
∗
τ = Ti , τ ∈Sn , 1 ≤ i ≤ d .

Explicit examples are given in the following section and in [11].
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3.5 Examples of operators in the class BSm,ϑ(Ω)

We consider two sets of examples, the first is based on the Euclidean ball Bd ⊂ Cd while the

second set of examples comes from considering the ball B2,1 := {(z1, z2) : |z1|2 +|z2| < 1} ⊆C2.

3.5.1 The case of the Euclidean ball BS1,1(Bd )

In the following examples, we have taken Ω = Bd . Let H (λ)(Bd ) be the weighted Bergman

spaces of the unit Euclidean ball Bd . In particular, λ = d is the Hardy space H 2(Bd ). These

spaces are determined by the orthonormal set of vectors:{
c(λ)
α zα1

1 · · ·zαd
d :α= (α1, . . . ,αd ) ∈Nd

0

}
,

whereN0 is the set of non-negative integers and c(λ)
α = (λ)|α|

α! . Here

(λ)n :=λ(λ+1) · · · (λ+n −1)

is the Pochhammer symbol and |α| = α1 +·· ·+αd . Let M (λ) = (M (λ)
1 , . . . , M (λ)

d ) be the d-tuple

of multiplication by the coordinate functions on H (λ)(Bd ). These are examples of spherical

operators [5, 11] described below.

Let U (d) be the group of unitary linear transformations onCd , let T be a commuting d-

tuple of bounded linear operators on H and finally, let U (H ) be the group of unitary linear

transformations on H . Clearly, the group U (d) acts on any commuting d-tuple of operators

T , namely,

U ·T :=
( d∑

j=1
U1 j T j , . . . ,

d∑
j=1

Ud j T j

)
, U = ((

Ui j
)) ∈U (d). (3.9)

The d-tuple T is said to be spherical if there is a map Γ : U (d) →U (H ) such that

ΓU TΓ∗U := (ΓU T1Γ
∗
U , . . . ,ΓU TdΓ

∗
U ) =U ·T for all U ∈U (d). (3.10)

The set of vectors

eα(z) =
√

(d)|α|
α! zα1

1 · · ·zαd
d , α ∈Nd

0 ,α! =α1! · · ·αd !

is an orthonormal basis of H 2(Bd ). The d- tuple S of multiplication operators by the co-

ordinate functions and its adjoint S∗ on the Hardy space H 2(Bd ) are commuting tuples of

weighted shift operators:

Si eα =
√

αi+1
|α|+d eα+εi , S∗

i eα =


√
αi

|α|+d−1 eα−εi if αi > 0,

0 otherwise.
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Note that the operator S is the same as the commuting tuple M (d). However, it is convenient

to use a different notation for this particular d-tuple as will be apparent soon. The basic prop-

erties of commuting tuples of weighted shifts, also called joint weighted shifts, are in [26].

The proof of the two main results of this Section, appearing below, are given for the case

of d = 2. The proof, in general, is obtained inductively starting from this case. The details are

in the Appendix.

Theorem 3.12. For the d-tuple S of multiplication by the coordinate functions on the Hardy

space H 2(Bd ), the operator dEt
([[

S∗,S
]])

is non-negative definite and trace
(
dEt

([[
S∗,S

]]))= 1.

Proof. (d = 2): In this particular case, we have

Si (eα) = w (i )
α eα+εi , where w (i )

α =
√
αi +1

|α|+2
, i = 1,2,

relative to the orthonormal basis {eα} of the Hardy space H 2(B2) and

S∗
i (eα) =

w (i )
α−εi

eα−εi , for αi > 0,

0 otherwise.

A simple computation gives

[S∗
i ,Si ](eα) = {(w (i )

α )2 − (w (i )
α−εi

)2}eα

[S∗
i ,S j ](eα) = {(w (i )

α−εi+ε j
)(w ( j )

α )− (w ( j )
α−εi

)(w (i )
α−εi

)}eα−εi+ε j .

So the action of the determinant operator on the basis vectors eα is given by the formula:

dEt(
[[

S∗,S
]]

)(eα)

= (
[S∗

1 ,S1][S∗
2 ,S2]+ [S∗

2 ,S2][S∗
1 ,S1]− [S∗

1 ,S2][S∗
2 ,S1]− [S∗

2 ,S1][S∗
1 ,S2]

)
(eα)

=
{

{(w (1)
α )2 − (w (1)

α−ε1
)2}{(w (2)

α )2 − (w (2)
α−ε2

)2}

+ {(w (1)
α )2 − (w (1)

α−ε1
)2}{(w (2)

α )2 − (w (2)
α−ε2

)2}

− {(w (2)
α )(w (1)

α−ε1+ε2
)− (w (1)

α−ε1
)(w (2)

α−ε1
)}{(w (1)

α−ε1+ε2
)(w (2)

α )− (w (2)
α−ε1

)(w (1)
α−ε1

)}

−{(w (1)
α )(w (2)

α−ε2+ε1
)− (w (2)

α−ε2
)(w (1)

α−ε2
)}{(w (2)

α−ε2+ε1
)(w (1)

α )− (w (1)
α−ε2

)(w (2)
α−ε2

)}
}

(eα)

= ( 1

(|α|+2)
− |α|

(|α|+1)2

)
eα.

Since
( 1

(|α|+2) − |α|
(|α|+1)2

)≥ 0, it follows that dEt
([[

S∗,S
]])

is non-negative definite. We now com-
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pute the trace of the determinant operator:

trace
(
dEt

([[
S∗,S

]]))= ∑
α∈N2

0

〈
dEt

([[
S∗,S

]])
eα,eα

〉
=

∞∑
k=0

∑
α1,α2
|α|=k

( 1

(|α|+2)
− |α|

(|α|+1)2

)
=

∞∑
k=0

(k +1

k +2
− k

k +1

)
= 1.

This completes the proof.

For a ∈Cd and r > 0, let B[a,r ] be the ball {z ∈Cd : ‖z −a‖2 < r }. We let B[r ] denote the

ball of radius r centred at 0. Finally, Bd is the unit ball in Cd .

Theorem 3.13. Let T be a d- tuple of spherical joint weighted shift operators and Tδ be the one

variable weighted shift corresponding to T . If Tδ is hyponormal, then T is in BS1,1(B[r ]), where

B[r ] = {z ∈Cd : ‖z‖2 < r }, r > 0.

Proof. (d = 2): Clearly, the d- tuple T is 1- cyclic. The joint spectrum of T is B[r ] for some

r > 0, where the radius r of the ball B[r ] is determined by {δ|α|} (cf. [11, Proposition 3.2]). A

calculation similar to the one in the proof of the previous theorem gives the equality:

dEt(
[[

T ∗,T
]]

)(xα) =
( δ4

|α|
(|α|+2)

−
|α|δ4

|α|−1

(|α|+1)2

)
xα.

Since δ|α| is an increasing sequence, it follows that
(

δ4
|α|

(|α|+2) −
|α|δ4

|α|−1

(|α|+1)2

)
≥ |α|δ4

|α|−1

(|α|+2)(|α|+1)2 ≥ 0.

Hence dEt(
[[

T ∗,T
]]

) is non-negative definite. Now it only remains to check the norm esti-

mates in the Definition 3.10. A straightforward computation shows that

( ∑
η∈S2

Sgn(η)T ∗
η(1)Tτ(1)T

∗
η(2)

)
xα = Sgn(τ)δ3

|α|

√
ατ(2)

|α|+1
(|α|+1)−1xα−ετ(2) .

Consequently, we have

‖PN
( ∑
η∈S2

Sgn(η)T ∗
η(1)Tτ(1)T

∗
η(2)

)
P⊥

N‖ ≤ max
|α|=N+1

{
δ3
|α|

√
ατ(2)

|α|+1
(|α|+1)−1

}
= δ3

N+1

N +2

≤ 1

N +2
‖Tτ(1)‖2‖Tτ(2)‖.
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Thus

‖PN
( ∑
η∈S2

Sgn(η)T ∗
η(1)Tτ(1)T

∗
η(2)

)
P⊥

N Tτ(2)PN‖ ≤ 1

N +2
‖Tτ(1)‖2‖Tτ(2)‖2.

Since T is a d - tuple of joint weighted shifts, by definition, PN T j P⊥
N = 0, i = 1, . . . ,d .

Corollary 3.14. Suppose δn ↑ 1 then trace
(
dEt (

[[
T ∗,T

]]
)
)= 1.

Proof. The string of equalities

trace
(
dEt

([[
T ∗,T

]]))= ∑
α∈Nd

〈
dEt

([[
T ∗,T

]])
xα, xα

〉
= ∑
α∈Nd

0

(d −1)!
( δ2d

|α|
(|α|+d)(d−1)

−
δ2d
|α|−1|α|

(|α|+d −1)d

)
=

∞∑
k=0

∑
α1,...,αd
|α|=k

(d −1)!
( δ2d

|α|
(|α|+d)(d−1)

−
δ2d
|α|−1|α|

(|α|+d −1)d

)
=

∞∑
k=0

(
δ2d

k

(k +d −1)(k +d −2) . . . (k +1)

(k +d)(d−1)
−δ2d

k−1

(k +d −2) . . . (k +1)k

(k +d −1)d−1

)
= lim

k→∞
δ2d

k

(k +d −1)(k +d −2) . . . (k +1)

(k +d)(d−1)
= 1.

where second equality follows from Equation (6.7), verifies the claim.

3.5.2 The case of an ellipsoid BS1,2(B2,1)

For p, q ∈N, let Bp,q = {
z ∈ C2 : |z1|p +|z2|q < 1

}
. These are examples of pseudo convex Rein-

hardt domains inC2. The usual Euclidean ballB2 is obtained by taking p = q = 2, i.e.,B2,2 =B2.

The pair (z1, z2) ∈ C2 is in B2,1 if and only if r 2
1 + r2 < 1, where rk := |zk |, k = 1,2. The

volume measure ν restricted toB2,1 is of the form dν(z) = r1r2dr1dr2dθ1dθ2, zk = rk exp(iθk ),

k = 1,2 and set

dµλ(z) := (1− r 2
1 − r2)λ−4r1r2dr1dr2dθ1dθ2. (3.11)

The measure dµλ defines an inner product on the space C[z] of polynomials in two variables

by integration over B2,1:

〈p, q〉λ :=
∫
B2,1

pqdµλ.

LetA(λ)(B2,1) denote the Hilbert space obtained by taking the completion of the inner product

space
(
C[z],〈·, ·〉λ

)
. The Hilbert space A(λ)(B2,1) is non-zero if and only if λ > 3. This follows
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from the norm computation below. For any multi-index α= (α1,α2) ∈N2
0, we have

‖zα‖2
λ =

∫
Ω2,1

|zα|2dµλ

=(2π)2
∫ 1

r1=0

∫ 1−r 2
1

r2=0
r 2α1+1

1 r 2α2+1
2 (1− r 2

1 − r2)λ−4dr1dr2

=2(π)2B(2α2 +2,λ−3)B(α1 +1,2α2 +λ−1)

=2(π)2Γ(λ−3)
Γ(α1 +1)Γ(2α2 +2)

Γ(2α2 +α1 +λ)
.

Integrating first, with respect to the measure dθ1dθ2, we see that {zα |α ∈N2
0} is an orthogonal

set of vectors relative to the inner product 〈·, ·〉µ and hence the set of vectors
{
φα := zα

‖zα‖λ :α ∈
N2

0

}
is a complete orthonormal set in the Hilbert space A(λ)(B2,1). Now, it is easy to see that

the multiplication operators Mzi , i = 1,2 on the Hilbert space A(λ)(B2,1) are weighted shifts

relative to this orthonormal basis, that is, Mzi (φα) = w (i )
α φα+εi , where the weights are given

explicitly by the formulae:

w (1)
α =

√
αi +1

α1 +2α2 +λ
and w (2)

α =
√

(2α2 +2)(2α2 +3)

(α1 +2α2 +λ)(α1 +2α2 +λ+1)
.

Since Sup{w (i )
α } = 1, it follows that ‖Mzi ‖ = 1, i = 1,2.

Theorem 3.15. Let M = (Mz1 , Mz2 ) be the pair of multiplication operators on A(λ)(B2,1) by the

co-ordinate functions. If λ≥ 4, then M is in BS1,2(B2,1).

Proof. Since M is a pair of joint weighted shifts, by definition, PN M j P⊥
N = 0, i = 1,2. The com-

muting pair M is 1-cyclic and the Taylor joint spectrum σ(M) = B2,1, see [15]. The following

computation verifies the estimate (iii) of the Definition 3.10.(
M∗

z1
Mz1 M∗

z2
−M∗

z2
Mz1 M∗

z1

)
φα

=
( (2α1 +2α2 +λ−1)

(α1 +2α2 +λ−2)(α1 +2α2 +λ−1)

√
(2α2)(2α2 +1)

(α1 +2α2 +λ−2)(α1 +2α2 +λ−1)

)
φα−ε2 .

Thus ‖PN
(
M∗

z1
Mz1 M∗

z2
−M∗

z2
Mz1 M∗

z1
)P⊥

N‖ ≤ 2
N+1‖Mz1‖2‖Mz2‖ and therefore

‖PN
(
M∗

z1
Mz1 M∗

z2
−M∗

z2
Mz1 M∗

z1
)P⊥

N Mz2 PN‖ ≤ 2

N +1
‖Mz1‖2‖Mz2‖2.

(
M∗

z2
Mz2 M∗

z1
−M∗

z1
Mz2 M∗

z2

)
φα

=
(

(2α2 +1)(α1 +λ−2)+2(α2 +1)(α1 +2α2 +λ−2)

(α1 +2α2 +λ−2)(α1 +2α2 +λ)
2

(α1 +2α2 +λ−1)

√
α1

α1 +2α2 +λ−1

)
φα−ε1 .
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Consequently, we have∥∥PN
(
M∗

z2
Mz2 M∗

z1
−M∗

z1
Mz2 M∗

z2
)P⊥

N

∥∥≤ 2

N +1
‖Mz2‖2‖Mz1‖

and ∥∥PN
(
M∗

z2
Mz2 M∗

z1
−M∗

z1
Mz2 M∗

z2
)P⊥

N Mz1 PN
∥∥≤ 2

N +1
‖Mz2‖2‖Mz1‖2.

To complete the proof, we only need to verify that the operator dEt
([[

M∗, M
]])

is non-

negative definite. Evaluating on the orthonormal basis {φα}, we see that dEt
([[

M∗, M
]])
φα =

χαφα, where

χα =− 2α2(2α2 +1)(2α1 +2α2 +λ−1)

(α1 +2α2 +λ−2)2(α1 +2α2 +λ−1)2
+ (2α2 +2)(2α2 +3)(2α1 +2α2 +λ+1)

(α1 +2α2 +λ)2(α1 +2α2 +λ+1)2

+ 2(α1 +1)((2α2 +1)(α1 +λ−1)+2(α2 +1)(α1 +2α2 +λ−1))

(α1 +2α2 +λ−1)(α1 +2α2 +λ)2(α1 +2α2 +λ+1)

− 2α1((2α2 +1)(α1 +λ−2)+2(α2 +1)(α1 +2α2 +λ−2))

(α1 +2α2 +λ−2)(α1 +2α2 +λ−1)2(α1 +2α2 +λ)
.

Gathering these terms over a common denominator and simplifying we find that χα is a frac-

tion with a positive denominator and the numerator is 4 times the expression given below.

α4
1(4α2λ−10α2 +3λ−9)+2α1

(
8α3

2

(
12λ2 −30λ+1

)+α2
2

(
48λ3 −96λ2 −84λ+98

))
+ 2α3

1

(
8α2

2(2λ−5)+2α2
(
4λ2 −6λ−7

)+3
(
2λ2 −7λ+6

))+α2
1

(
4α2

2

(
24λ2 −54λ−5

))
+ α2

1

(
48α3

2(2λ−5)+4α2
(
6λ3 −3λ2 −35λ+32

)+18λ3 −72λ2 +93λ−33
)

+ 2α1
(
32α4

2(2λ−5)+α2
(
8λ4 +4λ3 −98λ2 +128λ−39

)+3
(
2λ4 −9λ3 +13λ2 −5λ−2

))+
+ 16α4

2

(
8λ2 −21λ+2

)+16α3
2

(
6λ3 −15λ2 −4λ+9

)+4α2
2

(
8λ4 −14λ3 −37λ2 +61λ−14

)
+ 32α5

2(2λ−5)+2α2
(
2λ5 +3λ4 −42λ3 +64λ2 −14λ−13

)+3(λ+1)
(
λ2 −3λ+2

)2

It is then not hard to verify that the coefficients of αi
1, 1 ≤ i ≤ 4 and that of α j

2, 1 ≤ j ≤ 5 and

the constant term are all positive if λ≥ 4 completing the proof.

Remark 3.16. Although, unlike the case of the Euclidean ball B2, we are not able to explicitly

compute the trace of the operator dEt
([[

T ∗,T
]])

for the weighted Bergman spaces A(λ)(B2,1),

extensive numerical computations show that it is approximately equal to 2
3 , which is the 2

π2

times the volume of the ellipsoid B2,1.

3.6 Trace estimate of the determinant operators

In this Section, for a commuting d-tuple of operators T in the class BSm,ϑ(Ω), we obtain an

estimate for the trace of the operator dEt
([[

T ∗,T
]])

in Theorem 3.18. We make the standing
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assumption that the spectrum of the d - tuple of operators T is polynomially convex and

consider only finitely polynomially cyclic d - tuples T .

Lemma 3.17. Suppose the d -tuple T is m- cyclic and PN T j P⊥
N = 0, 1 ≤ j ≤ d. Then∣∣trace

(
PN dEt

([[
T ∗,T

]])
PN

)∣∣
≤ m

(N+d−1
d−1

)( ∑
τ∈Sd

∥∥( ∑
η∈Sd

Sgn(η)PN T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d)P
⊥
N Tτ(d)PN

)∥∥)
.

Proof. For a d-tuple of commuting operators T , by Proposition 3.4 and using Equation (3.5),

we infer that the determinant

dEt
([[

T ∗,T
]])= ∑

τ,η∈Sd

Sgn(τ)Sgn(η)T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d)Tτ(d)+

(−1)d
∑

τ,η∈Sd

Sgn(τ)Sgn(η)Tτ(1)T
∗
η(1)Tτ(2) . . .Tτ(d)T

∗
η(d)

= ∑
τ,η∈Sd

Sgn(τ)Sgn(η)T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d)Tτ(d)+

− ∑
τ,η∈Sd

Sgn(τ)Sgn(η)Tτ(d)T
∗
η(1)Tτ(1) . . .Tτ(d−1)T

∗
η(d) (3.12)

= ∑
τ,η∈Sd

Sgn(τ)Sgn(η)
[
T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d),Tτ(d)
]
.

The second equality in Equation (3.12) is obtained by replacing the permutation τ in the sec-

ond sum by the permutation τ′ = τ◦(1, . . . ,d), where (1, . . . ,d) is the permutation taking 1 → 2,

. . . , (d −1) → d and d → 1. Since the sums are over all permutations, this does not change it.

But the sign of τ′ differs from that of τ by (−1)d−1. Therefore, it follows that

PN dEt
([[

T ∗,T
]])

PN = ∑
τ,η∈Sd

Sgn(τ)Sgn(η)PN
[
T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d),Tτ(d)
]
PN .

Also, for τ ∈Sd ,

PN
[
T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d),Tτ(d)
]
PN

= PN
(
T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d)Tτ(d) −Tτ(d)T
∗
η(1)Tτ(1) . . .Tτ(d−1)Tη(d)

)
PN

= PN T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d)(PN +P⊥
N )Tτ(d)PN −PN Tτ(d)(PN +P⊥

N )T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d)PN

= PN T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d)P
⊥
N Tτ(d)PN + [

PN T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d)PN ,PN Tτ(d)PN
]

−PN Tτ(d)P
⊥
N T ∗

η(1)Tτ(1)T
∗
η(2) . . .T ∗

η(d)PN

= PN T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d)P
⊥
N Tτ(d)PN + [

PN T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d)PN ,PN Tτ(d)PN
]
,

where, the validity of the last equality follows from the assumption that PN T j P⊥
N = 0, j =

1,2, . . . ,d . If A,B are any two operators with one in trace class and the other bounded, then



3.6. Trace estimate of the determinant operators 49

trace(AB) = trace(B A). A bounded operator of finite rank is trace class. Therefore, the com-

mutator of any two bounded operators of finite rank must be 0. Hence

trace
([

PN T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d)PN ,PN Tτ(d)PN
])= 0.

Putting these together we obtain the equality below

trace(PN dEt
([[

T ∗,T
]])

PN )

= ∑
τ∈Sd

Sgn(τ)trace
( ∑
η∈Sd

Sgn(η)PN T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d)P
⊥
N Tτ(d)PN

)
.

By Lemma 3.8 we have the inequalities:

rank
(( ∑
η∈Sd

Sgn(η)PN T ∗
η(1)Tτ(1)T

∗
η(2)T

∗
η(d)P

⊥
N

)(
P⊥

N Tτ(d)PN
))

≤ rank(P⊥
N Tτ(d)PN ) ≤ m

(N+d−1
d−1

)
. (3.13)

This implies∣∣trace(PN dEt
([[

T ∗,T
]])

PN )
∣∣

≤ ∑
τ∈Sd

∣∣trace
( ∑
η∈Sd

Sgn(η)PN T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d)P
⊥
N Tτ(d)PN

)∣∣
≤ ∑
τ∈Sd

{∥∥( ∑
η∈Sd

Sgn(η)PN T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d)P
⊥
N Tτ(d)PN

)∥∥
rank

( ∑
η∈Sd

Sgn(η)PN T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d)P
⊥
N Tτ(d)PN

)}
≤ ∑
τ∈Sd

∥∥( ∑
η∈Sd

Sgn(η)PN T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d)P
⊥
N Tτ(d)PN

)∥∥rank
(
P⊥

N Tτ(d)PN
)

≤ m
(N+d−1

d−1

)( ∑
τ∈Sd

∥∥( ∑
η∈Sd

Sgn(η)PN T ∗
η(1)Tτ(1)T

∗
η(2) . . .T ∗

η(d)P
⊥
N Tτ(d)PN

)∥∥)
.

The two penultimate inequalities follow from the inequality 3.13.

The following Theorem shows that the operator dEt
([[

T ∗,T
]])

is in trace class whenever

T is in BSm,ϑ(Ω).

Theorem 3.18. Let T = (T1, . . . ,Td ) be a commuting tuple of operators on a Hilbert space H

such that T is in the class BSm,ϑ(Ω). Then the determinant operator dEt
([[

T ∗,T
]])

is in trace-

class and

trace
(
dEt

([[
T ∗,T

]]))≤ mϑd !
d∏

i=1
‖Ti‖2.
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Proof. By hypothesis,

∥∥PN
( ∑
η∈Sd

Sgn(η)T ∗
η(1)Tτ(1)T

∗
η(2) . . .Tτ(d−1)T

∗
η(d)

)
P⊥

N Tτ(d)PN
∥∥≤ ϑ(N+d−1

d−1

) d∏
i=1

∥∥Ti
∥∥2.

Thus combining this inequality with the one from Lemma 3.17, we have

∣∣trace
(
PN dEt

([[
T ∗,T

]])
PN

)∣∣≤ mϑd !
d∏

i=1

∥∥Ti
∥∥2.

Since dEt
([[

T ∗,T
]])

is non-negative definite by assumption and PN ↑ I , we obtain the inequal-

ity

trace
(
dEt

([[
T ∗,T

]]))≤ mϑd !
d∏

i=1

∥∥Ti
∥∥2

completing the proof.

From Theorems 7.1 and 7.2 of [24], it follows that the trace of the generalized commuta-

tor GC(T ∗,T ) of a class of analytic Toeplitz operators is bounded above by 1. In particular, the

explicit formula given in Theorem 7.2 (a) of [24] shows that equality is achieved for the tuple

of multiplication by the coordinate functions. Of course, the same is true of the determinant

operator dEt
([[

T ∗,T
]])

. In the example of weighted Bergman spaces over the Euclidean ball

B1,1, we have been able to compute the trace of the operator dEt
([[

T ∗,T
]])

and shown that

trace
(
dEt

([[
T ∗,T

]])) = md !
πd ν(B1,1). Also, for the generalized ellipsoid B1,2, we have numerical

evidence for such an equality. Taking all of this into account, we make the following conjec-

ture.

Conjecture 3.19. Suppose that T = (T1, . . . ,Td ) is a commuting tuple of operators on a Hilbert

space H in the class BSm,ϑ(Ω). Then

trace
(
dEt

([[
T ∗,T

]]))≤ md !

πd
ν(Ω),

where ν is the Lebesgue measure.

3.7 The tensor product model

For i = 1,2, let T (i ) = (T (i )
1 , . . . ,T (i )

di
) be a di - tuple of commuting bounded operators. Set

(T (1) #T (2)) := (T (1) ⊗ I , I ⊗T (2))

= (T (1)
1 ⊗ I , . . . ,T (1)

d1
⊗ I , I ⊗T (2)

1 , . . . I ⊗T (2)
d2

)

This definition clearly extends to di - tuples of commuting operators, i = 1, . . . ,n.
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Lemma 3.20. The spectrum σ
(
T (1) #T (2)

)
of the operator T (1) #T (2) is σ

(
T (1)

)×σ(
T (2)

)
. More-

over, if the di - tuples T (i ), i = 1,2, are mi - cyclic, then the operator T (1) #T (2) is m- cyclic, where

m ≤ m1m2.

Proof. The joint spectrum of T (1) #T (2) is explicitly given in [10, Theorem 2.2]. If ξT (i ) [mi ],

i = 1,2, is the cyclic set for the di - tuple T (i ), then the cyclic set of the operator T (1) #T (2) is

clearly contained in the set of vectors{
x ⊗ y | x ∈ ξT (1) [m1] and y ∈ ξT (2) [m2]

}
.

Thus the claim that m ≤ m1m2 is verified.

We now obtain a trace inequality for the operator dEt
([[

(T (1) #T (2))∗, (T (1) #T (2))
]])

. A

similar inequality can be proved for T (1)# · · ·#T (n).

Theorem 3.21. Assume that T (i ) is in the class BSmi ,1(Ωi ), i = 1,2. Then the determinant op-

erator

dEt
([[

(T (1) #T (2))∗, (T (1) #T (2))
]])

is non-negative definite and

trace
(
dEt

([[
(T (1) #T (2))∗, (T (1) #T (2))

]]))≤ 2d1!d2!m1m2

d1∏
i=1

∥∥T (1)
i

∥∥2
d2∏

i=1

∥∥T (2)
i

∥∥2.

Proof. It is easy to see that

[[
(T (1) #T (2))∗, (T (1) #T (2))

]]=

[[

(T (1))∗,T (1)
]]⊗ I 0

0 I ⊗ [[
(T (2))∗,T (2)

]]
 .

Thus

dEt
([[

(T (1) #T (2))∗, (T (1) #T (2))
]])= 2dEt

([[
T (1)∗,T (1)]]) ⊗dEt

([[
T (2)∗,T (2)]]).

Since for i = 1,2, T (i ) is in the class BSmi ,1(Ωi ), dEt
([[

(T (i ))∗,T (i )
]])

is non-negative definite

and

trace
(
dEt

([[
(T (i ))∗,T (i )]]))≤ di !mi

di∏
j=1

∥∥T (i )
j

∥∥2.

Hence, dEt
([[

(T (1) #T (2))∗, (T (1) #T (2))
]])

is non-negative definite and

trace
(
dEt

([[
(T (1) #T (2))∗, (T (1) #T (2))

]]))= 2trace
(
dEt

([[
(T (1))∗,T (1)]]))trace

(
dEt

([[
(T (2))∗,T (2)]]))

≤ 2d1!m1

d1∏
i=1

∥∥T (1)
i

∥∥2 ·d2!m2

d2∏
i=1

∥∥T (2)
i

∥∥2

= 2d1!d2!m1m2

d1∏
i=1

∥∥T (1)
i

∥∥2
d2∏

i=1

∥∥T (2)
i

∥∥2.

This completes the proof.
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Remark 3.22. 1. Let T (i ), i = 1, . . . ,n be a set of n commuting di - tuple of operators. A

similar proof, as given above, shows that if T (i ) ∈ BSmi ,1(Ωi ), then

dEt
([[

(T (1) # · · ·#T (n))∗, (T (1) # · · ·#T (n))
]])

is non-negative definite and

trace
(
dEt

([[
(T (1) # · · ·#T (n))∗, (T (1) # · · ·#T (n))

]]))≤ n!d1! · · ·dn !m1 · · ·mn

n∏
i=1

‖T (i )‖2,

where ‖T (i )‖2 =∏di
j=1 ‖T (i )

j ‖2.

2. If di = 1, i = 1, . . . ,n, then (T (1)# · · ·#T (n)) is of the form (T1⊗ I · · ·⊗ I , . . . I ⊗·· ·⊗Tn). Now,

we can apply the Berger-Shaw inequality to each of the operators Ti , 1 ≤ i ≤ n, to con-

clude

trace
(
dEt

([[
(T (1) # · · ·#T (n))∗, (T (1) # · · ·#T (n))

]]))≤ n!m1 · · ·mn
ν(Ω1 ×·· ·×Ωn)

πn
.

Let M = (M1, . . . Md ) be the d- tuple of multiplication by the coordinate functions on

the Hardy space H 2(Dd ). Clearly, M = M# · · ·#M where M is the multiplication operator on

H 2(D).

Corollary 3.23. For the d- tuple M = M# · · ·#M on the Hardy space H 2(Dd ), we have that the

operator dEt
([[

M∗, M
]])

is non-negative definite and

trace
(
dEt

([[
M∗, M

]]))= trace
(
dEt

([[
(M# · · ·#M)∗, (M# · · ·#M)

]])≤ d !.

Remark 3.24. The inequality of the Corollary 3.23 is actually an equality which follows from

an easy direct computation. This shows that the inequality obtained in Theorem 3.21 is sharp.



53

Chapter 4

K-Homogeneous Operators on Bounded

Symmetric Domains

Let T = (T1, . . . ,Td ) be a commuting d- tuple of bounded linear operators acting on a complex

separable Hilbert space H . Also, let DT : H →H ⊕·· ·⊕H be the operator

DT h := (T1h, . . . ,Td h), h ∈H .

We note that kerDT =∩d
i=1 kerTi is the joint kernel andσp (T ) = {w ∈Cd : kerDT−w I 6= 0} is the

joint point spectrum of the d- tuple T = (T1, . . . ,Td ).

The groupK acts onΩ by the rule

k · z := (
k1(z), . . . ,kd (z)

)
, k ∈K and z ∈Ω.

Note that k1(z), . . . ,kd (z) are linear polynomials. Thus k ∈K acts on any commuting d- tuple

of bounded linear operators T = (T1, . . . ,Td ), defined on complex separable Hilbert space H ,

naturally, via the map

k ·T := (
k1(T1, . . . ,Td ), . . . ,kd (T1, . . . ,Td )

)
.

Definition 4.1. A d- tuple T = (T1, . . . ,Td ) of commuting bounded linear operators on H is

said to be K-homogeneous if for all k in K the operators T and k ·T are unitarily equivalent,

that is, for all k inK there exists a unitary operator Γ(k) on H such that

T jΓ(k) = Γ(k)k j (T1, . . . ,Td ), j = 1,2, . . . ,d . (4.1)

For brevity, we will write

TΓ(k) = Γ(k)(k ·T ).

Definition 4.2. A commuting d- tuple ofK-homogeneous operators T possessing the follow-

ing properties
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(i) dimkerDT ∗ = 1,

(ii) any non-zero vector e in kerDT ∗ is cyclic for T ,

(iii) Ω⊆σp (T ∗)

is said to be in the class AK(Ω).

4.1 Model for operators in AK(Ω)

We begin this section by providing a well known family of examples, namely, the d- tuple of

multiplication by the coordinate functions on the weighted Bergman spaces, which belongs

to the class AK(Ω).

Recall that the Wallach set W (Ω) of a classical bounded symmetric domain Ω is of the

form Wd (Ω)∪Wc (Ω), where

Wd (Ω) :=
{

0,
a

2
, . . . ,

a

2
(r −1)

}
, Wc (Ω) :=

(a

2
(r −1),∞

)
,

see [22]. For λ> 0 consider the function K (λ) :Ω×Ω→C given by the formula

K (λ)(z , w ) =∑
s

(λ)sKs(z , w ), z , w ∈Ω,

where (λ)s is the generalized Pochhammer symbol

(λ)s :=
r∏

j=1

(
λ− a

2
( j −1)

)
s j

=
r∏

j=1

s j∏
l=1

(
λ− a

2
( j −1)+ l −1

)
.

The function K (λ) is non-negative definite if and only if λ is in the Wallach set W (Ω). Let H (λ)

denote the Hilbert space determined by the non-negative definite kernel K (λ), λ ∈ W (Ω). If

λ= d
r and λ= a

2 (r −1)+ d
r , then the Hilbert spaces H (λ) coincide with the Hardy space H 2(S)

over the Shilov boundary S of Ω and the classical Bergman space A2(Ω) respectively. For this

reason with a slight abuse of language, the Hilbert spaces H (λ), λ ∈W (Ω), are called weighted

Bergman spaces.

For λ> a
2 (r −1), the multiplication d- tuple M (λ) = (M (λ)

1 , . . . , M (λ)
d ) on H (λ) is bounded

and homogeneous (cf. [6], [2]). One can also verify that M (λ) is in AK(Ω). Replacing (λ)s by

any arbitrary positive number as with some boundedness condition, we get a large class of

operator tuples in AK(Ω) and we prove that they are the all.

To facilitate the study of K-homogeneous operators, we recall the following result from

[1] describing all theK-invariant kernels onΩ.
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Proposition 4.3 (Proposition 3.4, [1]). For anyK-invariant semi-inner product 〈·, ·〉 on the the

space of polynomials P , the following statements hold:

(i) P s is orthogonal to P s′ whenever s 6= s′.

(ii) There exists a constant bs ≥ 0 associated to each s ∈−→
N r

0 such that

〈p, q〉 = bs〈p, q〉F , for all p, q ∈P s .

(iii) bs > 0 for all s ∈−→
N r

0 if and only if 〈·, ·〉 is an inner product.

(iv) If the evaluation map at each point of Ω is continuous on (P ,〈·, ·〉), then the completion

H of (P ,〈·, ·〉) is a reproducing kernel Hilbert space. Moreover the kernel K (z , w ) is of the

form

K (z , w ) = ∑
s∈−→N r

0

b−1
s Ks(z , w ),

where convergence is both pointwise and uniformly on compact subsets of Ω×Ω and in

norm.

The following result is a generalization of [11, Lemma 2.10] which is necessary for the

proof of Theorem 4.5 giving a model for commuting d- tuple of operators in the class AK(Ω).

Lemma 4.4. Let T = (T1, . . . ,Td ) be a K-homogeneous d- tuple of commuting operators on H .

Suppose that kerDT ∗ is one-dimensional and is spanned by a vector e ∈ H which is cyclic

for T . Then there exists a sequence {as}
s∈−→N r

0
of non-negative real numbers such that for any

polynomial p ∈P ,

||p(T )e||2H =
deg p∑
k=0

∑
|s|=k

as‖ps‖2
F , (4.2)

where deg p is the degree of p and

p =
deg p∑
k=0

∑
|s|=k

ps

is the Peter-Weyl decomposition.

Proof. Since T is K-homogeneous, for each k ∈K, there exists a unitary operator Γ(k) on H

such that

T jΓ(k) = Γ(k)k j (T ), j = 1, . . . ,d .

Hence T ∗
j Γ(k) = Γ(k)k j (T )∗, j = 1, . . . ,d . Since k j (T ) is a linear combination of T1, . . . ,Td and

e ∈ kerDT ∗ , it follows that Γ(k)e belongs to kerDT ∗ for all k ∈K.
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Furthermore, since kerDT ∗ is one dimensional and spanned by e, we obtain thatΓ(k)e =
η(k)e for some η(k) such that |η(k)| = 1. We now define a semi-inner product on P s for all

s ∈−→
N r

0 by the formula

〈ps , qs〉P s := 〈ps(T )e, qs(T )e〉H , ps , qs ∈P s .

Now for any k ∈Kwe have

〈ps(k · z), qs(k · z)〉P s = 〈ps(k ·T )e, qs(k ·T )e〉H
= 〈Γ(k)∗ps(T )Γ(k)e,Γ(k)∗qs(T )Γ(k)e〉H
= 〈ps(T )Γ(k)e, qs(T )Γ(k)e〉H
= 〈ps(T )η(k)e, qs(T )η(k)e〉H
= |η(k)|2〈ps(T )e, qs(T )e〉H
= 〈ps(T )e, qs(T )e〉H
= 〈ps , qs〉P s .

So 〈·, ·〉P s is aK-invariant semi-inner product on P s for each s. Therefore, on P ,

〈p, q〉 := ∑̀
k=0

∑
|s|=k

〈ps , qs〉P s ,

where p and q have the Peter-Weyl decomposition
∑deg p

k=0

∑
|s|=k ps and

∑deg q
k=0

∑
|s|=k qs respec-

tively and `= min{deg p,deg q}, defines a K-invariant semi-inner product. Thus by Proposi-

tion 4.3, there exists a sequence of non-negative real numbers as such that

〈p, q〉 = ∑̀
k=0

∑
|s|=k

as〈ps , qs〉F .

This completes the proof.

For all the classical bounded symmetric domains, it can be easily verified thatΩ= {w ∈
Cd : w ∈Ω}. Consequently, in the following theorem, the Hilbert space that we construct con-

sists of holomorphic functions onΩ rather than {w ∈Cd : w ∈Ω}. The next result provides an

analytic model for any d- tuple of operators T in AK(Ω).

Theorem 4.5. If T is a d- tuple of operators in AK(Ω), then T is unitarily equivalent to a d-

tuple M = (M1, . . . , Md ) of multiplication by the coordinate functions z1, . . . , zd on a reproducing

kernel Hilbert space HK of holomorphic functions defined on Ω with K (z , w ) = ∑
a−1

s Ks(z , w )

for all z , w ∈Ω, for some choice of positive real numbers as with a0 = 1.
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Proof. SinceΩ⊆σp (T ∗), for each w ∈Ω there exists a non-zero vector x ∈H , such that T ∗
j x =

w̄ j x for all j = 1, . . . ,d . Thus for any polynomial p ∈ P , we have p(T ∗)x = p(w )x. Let e ∈
ker DT ∗ be a cyclic vector for T of norm 1. Then

p(w )〈e, x〉H = 〈e, p(w )x〉H = 〈e, p̄(T ∗)x〉H = 〈p(T )e, x〉H , (4.3)

where p̄(z) = p(z̄), z ∈Ω. Since x 6= 0 and e is cyclic for T , we get 〈e, x〉H 6= 0 and

|p(w )| ≤ ‖p(T )e‖H ‖x‖H

|〈e, x〉H | . (4.4)

Thus it follows that evaluation at w ∈ Ω is bounded and therefore, the semi-inner product

defined by the rule 〈p, q〉P s = 〈p(T )e, q(T )e〉H is an inner product on each P s . This gives rise

to an inner product 〈·, ·〉 on the space of polynomials P . The sequence {as}
s∈−→N r

0
of Lemma

4.4, using Proposition 4.3(iii), is now evidently positive. Moreover, since ‖e‖ = 1, it follows

from (4.2) that a0 = 1. Thus, by Proposition 4.3(iv), the completion of (P ,〈·, ·〉), say HK , is a

reproducing kernel Hilbert space, where

K (z , w ) =∑
a−1

s Ks(z , w ), z , w ∈Ω. (4.5)

Clearly, the map p 7→ p(T )e extends to a unitary from HK to H , which intertwines T with the

multiplication d- tuple M = (M1, . . . , Md ) on HK .

If T is a K-homogeneous d- tuple of operators, then, in general, the map k 7→ Γ(k) of

(4.1) need not be a homomorphism. The next proposition assures that if T is in the class

AK(Ω), then there exists a choice of Γ(k) for which the map k 7→ Γ(k) is a homomorphism.

Proposition 4.6. If T is a d-tuple of operators in AK(Ω), then there exists a unitary represen-

tation Γ :K→U (H ) such that

TΓ(k) = Γ(k)(k ·T ).

Proof. By Theorem 4.5, T is unitarily equivalent to the d- tuple M = (M1, . . . , Md ) of multi-

plication operators on a reproducing kernel Hilbert space HK of holomorphic functions de-

fined on Ω with a kernel K (z , w ) which is K-invariant. Clearly, the map Γ on HK given by

Γ(k)( f ) = f ◦k−1(·) is a unitary representation ofK satisfying the intertwining condition.

Remark 4.7. SinceK is a subgroup of the group U (d) of unitary linear transformations on Cd ,

every spherical d- tuple T = (T1, . . . ,Td ) is K-homogeneous. Conversely, a K-homogeneous

d- tuple of Theorem 4.5 is spherical if and only if as = as′ for all s, s′ ∈−→
N r

0 with |s| = |s′|.
Remark 4.8. We also point out that, by the spectral mapping theorem, the Taylor joint spec-

trum σ(T ) of a K-homogeneous operator T is K-invariant, that is, if w belongs to σ(T ), then

k ·w also belongs to σ(T ) for all k ∈K.
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4.2 Boundedness of the multiplication tuple

Let K (a) :Ω×Ω→Cdenote the kernel function given by the formula K (a)(z , w ) =∑
s asKs(z , w ),

z , w ∈Ω, for some choice of positive real numbers as for which the series is convergent. The

positivity of the sequence as ensures that K (a) is a positive definite kernel. Thus it determines

a unique Hilbert space H (a) ⊆ Hol(Ω) with the reproducing property: 〈 f ,K (a)(·, w )〉 = f (w ),

f ∈ H (a), w ∈Ω. It follows from Proposition 4.3 that the polynomial ring P is dense in H (a)

and P s is orthogonal to P s′ whenever s 6= s′, that is, H (a) = ⊕
s∈−→N r

0
P s . In this section, we

discuss the boundedness of the d- tuple M (a) := (M (a)
1 , . . . , M (a)

d ) of multiplication by the coor-

dinate functions z1, . . . , zd on H (a). We begin with the following basic lemma, which is surely

known to the experts, but we provide a proof for the sake of completeness.

Lemma 4.9. For the bounded d- tuple of multiplication operators M (a) := (M (a)
1 , . . . , M (a)

d ), the

operators
∑d

i=1 M (a)
i

∗
M (a)

i and
∑d

i=1 M (a)
i M (a)

i

∗
, acting on H (a), are block diagonal with respect

to the decomposition ⊕
s∈−→N r

0
P s , where each block is a non-negative scalar multiple of the iden-

tity operator.

Proof. It is enough to give the proof for the operator
∑d

i=1 M (a)
i

∗
M (a)

i since the proof for the

operator
∑d

i=1 M (a)
i M (a)

i

∗
follows exactly in the same way. First, note that Γ(k)∗M (a)

i Γ(k) =
M (a)

zi ◦k−1 for k ∈ K. Let e1, . . . ,ed be the standard basis vectors in Cd . Note that M (a)
zi ◦k−1 =∑d

j=1〈k−1e j ,ei 〉M (a)
j . In consequence, we have

Γ(k)∗
(

d∑
i=1

M (a)
i

∗
M (a)

i

)
Γ(k) =

d∑
i=1
Γ(k)∗M (a)

i

∗
Γ(k)Γ(k)∗M (a)

i Γ(k)

=
d∑

i=1
M (a)

zi ◦k−1

∗
M (a)

zi ◦k−1

=
d∑

i=1

d∑
p,q=1

〈ei ,k−1ep〉〈k−1eq ,ei 〉M (a)
p

∗
M (a)

q

=
d∑

p,q=1
〈k−1eq ,k−1ep〉M (a)

p
∗

M (a)
q

=
d∑

i=1
M (a)

i

∗
M (a)

i .

Here the last equality follows from the fact that the subgroup K is contained in the group

U (d) of unitary linear transformations on Cd . Since {P s}
s∈−→N r

0
are K-irreducible, mutually K-

inequivalent subspaces of H (a) and H (a) = ⊕
s∈−→N r

0
P s , the conclusion follows from Schur’s

lemma.
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For any s in
−→
N r

0, let I+(s) and I−(s) denote the sets given by

I+(s) := { j : 1 ≤ j ≤ r, s +ε j ∈−→
N r

0},

I−(s) := { j : 1 ≤ j ≤ r, s −ε j ∈−→
N r

0}.

Further, in the remaining portion of this paper, we set

cs( j ) = ∏
k 6= j

s j − sk + a
2 (k − j +1)

s j − sk + a
2 (k − j )

, j = 1, . . . ,r,

and

c ′s( j ) = ∏
k 6= j

s j − sk + a
2 (k − j −1)

s j − sk + a
2 (k − j )

, j = 1, . . . ,r.

If j ∈ I+(s), then it is easy to see that cs( j ) > 0. Otherwise, cs( j ) = 0. Similarly, if j ∈ I−(s), then

c ′s( j ) > 0. Otherwise, c ′s( j ) = 0.

The following lemma describing the operator
∑d

i=1 M (a)
i M (a)

i

∗
on the Hilbert space H (a)

was obtained for weighted Bergman spaces by Arazy and Zhang [2, Proposition 4.4]. Al-

though the proof for this much larger class of operators is very similar to the original proof

[2, Proposition 4.4], we recall it for completeness.

Lemma 4.10. For f ∈P s , we have
∑d

i=1 M (a)
i M (a)

i

∗
f = τ(s) f , where

τ(s) =


∑

j∈I−(s)
as−ε j

as

( d
r )s

( d
r )s−ε j

a
2 (r− j )+s j

b+ a
2 (r− j )+s j

c ′s( j ) if s 6= 0,

0 if s = 0.

Proof. Let f ∈ P s be arbitrary. It follows from Lemma 4.9 that
∑d

i=1 M (a)
i M (a)

i

∗
f = τ(s) f for

some complex number τ(s). In order to find τ(s), first note that

τ(s) f (w ) = 〈( d∑
i=1

M (a)
i M (a)

i

∗)
f ,K (a)(·, w )〉

= 〈 f ,
( d∑

i=1
M (a)

i M (a)
i

∗)
K (a)(·, w )〉

= 〈 f ,〈·, w〉K (a)(·, w )〉.

Since for any signature s′, 〈z , w〉Ks′(z , w ) is aK-invariant kernel, it follows from [2, Lemma 4.2

and Lemma 4.3] that

〈z , w〉Ks′(z , w ) = ∑
j∈I+(s)

βs′( j )Ks′+ε j (z , w ) (4.6)
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for some constants βs′( j ). Thus

〈z , w〉K (a)(z , w ) =∑
s′

as′
∑

j∈I+(s′)
βs′( j )Ks′+ε j (z , w )

=∑
s′

( ∑
j∈I−(s′)

βs′−ε j ( j )as′−ε j

)
Ks′(z , w ).

Since f ∈P s , we obtain

τ(s) f (w ) = 〈
f ,〈·, w〉K (a)(·, w )

〉
=

( 1

as

∑
j∈I−(s)

βs−ε j ( j )as−ε j

)〈
f , asKs(·, w )

〉
=

( 1

as

∑
j∈I−(s)

βs−ε j ( j )as−ε j

)
f (w ).

Hence τ(s) =∑
j∈I−(s)

as−ε j

as
βs−ε j ( j ). Also it follows from the proof of [2, Proposition 4.4] that

βs−ε j ( j ) =
(a

2
(r − j )+ s j

) ∏
l 6= j

s j − sl + a
2 (l − j −1)

s j − sl + a
2 (l − j )

= ( d
r )s

( d
r )s−ε j

a
2 (r − j )+ s j

b + a
2 (r − j )+ s j

c ′s( j ).

This completes the proof.

The following lemma, while of independent interest, is useful in obtaining a criterion

for the boundedness of M (a) and in many other proofs.

Lemma 4.11. For any fixed but arbitrary s ∈−→
N r

0, we have

r∑
j=1

c ′s( j ) =
r∑

j=1
cs( j ) = r.

Proof. Evidently, we have

r∑
j=1

c ′s( j ) =
r∑

j=1

∏
k 6= j

s j − sk + a
2 (k − j −1)

s j − sk + a
2 (k − j )

=
r∑

j=1

∏
k 6= j

(
1−

a
2

s j − sk + a
2 (k − j )

)
=

r∑
j=1

∏
k 6= j

(
1−

a
2

(s j − a
2 j )− (sk − a

2 k)

)
.
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Setting s′j =
s j− a

2 j
a
2

, we see that s′1 > s′2 > ·· · > s′r , and

r∑
j=1

c ′s( j ) =
r∑

j=1

∏
k 6= j

(
1− 1

s′j − s′k

)
= r +

r∑
j=1

∑
A⊆{1,..., j−1, j+1,...,r }

A 6=φ

(−1)|A|
∏

k∈A

1

s′j − s′k

= r + ∑
A⊆{1,...,r }
|A|≥2

(−1)|A|−1
∑
j∈A

∏
k∈A
k 6= j

1

s′j − s′k
,

where for any finite set A, |A| denotes the cardinality of A. Now, by [6, Corollary 2.3], it follows

that
∑

j∈A
∏

k∈A
k 6= j

1
s′j−s′k

= 0 for all A ⊆ {1, . . . ,r } with |A| ≥ 2. Therefore,
∑r

j=1 c ′s( j ) = r . The proof

of the other part follows exactly in the same way.

Theorem 4.12. The commuting d- tuple M (a) = (M (a)
1 , . . . , M (a)

d ) of multiplication operators on

H (a) is bounded if and only if

A := sup

{
as−ε j

as

( d
r )s

( d
r )s−ε j

: s, s −ε j ∈−→
N r

0, j = 1, . . . ,r

}

is finite.

Proof. First assume that A is finite. Then we show that τ(s) is bounded for all s ∈−→
N r

0:

τ(s) = ∑
j∈I−(s)

as−ε j

as

( d
r )s

( d
r )s−ε j

a
2 (r − j )+ s j

b + a
2 (r − j )+ s j

c ′s( j )

≤ A
r∑

j=1

a
2 (r − j )+ s j

b + a
2 (r − j )+ s j

c ′s( j )

≤ A
r∑

j=1
c ′s( j )

= Ar.

for any s ∈ −→
N r

0. Here, the last equality follows from Lemma 4.11. It follows form the proof of

Lemma 4.10 that 〈z, w〉K (a)(z, w) =∑
s τ(s)asKs(z, w). Consequently, (supτ(s)−〈z, w〉)K (a)(z, w)

is non-negative definite. Hence by [6, Lemma 3.1] it follow that the d-tuple M (a) = (M (a)
1 , . . . , M (a)

d )

on H (a) is bounded.

To prove the other direction, assume that M (a) is bounded. This implies that
∑d

i=1 M (a)
i M (a)

i

∗

is bounded and therefore τ(s) is bounded, that is, τ(s) ≤ B for some positive real number B

and for all s ∈−→
N r

0. Thus

as−ε j

as

( d
r )s

( d
r )s−ε j

a
2 (r − j )+ s j

b + a
2 (r − j )+ s j

c ′s( j ) ≤ τ(s) ≤ B , j ∈ I−(s).
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Now, note that if j ∈ I−(s), then

1

c ′s( j )
= ∏

k 6= j

s j − sk + a
2 (k − j )

s j − sk + a
2 (k − j −1)

= ∏
k< j

s j − sk + a
2 (k − j )

s j − sk + a
2 (k − j −1)

∏
k> j

s j − sk + a
2 (k − j )

s j − sk + a
2 (k − j −1)

≤ ∏
k> j

s j − sk + a
2 (k − j )

s j − sk + a
2 (k − j −1)

≤ ∏
k> j

s j − sk + a
2 (k − j )

s j − sk

≤ ∏
k> j

(1+
a
2 (k − j )

s j − sk
)

≤ (1+ a

2
(r −1))r . (4.7)

Here the third inequality holds since
s j−sk+ a

2 (k− j )
s j−sk+ a

2 (k− j−1) ≤ 1 for k < j . Now, it follows that

as−ε j

as

( d
r )s

( d
r )s−ε j

≤ B

c ′s( j )

b + a
2 (r − j )+ s j

a
2 (r − j )+ s j

≤ B(1+ a

2
(r −1))r (1+b).

This completes the proof.

Corollary 4.13. The multiplication d- tuple M (λ) on the weighted Bergman space H (λ) is

bounded if λ> a
2 (r −1).

Proof. If λ> a
2 (r −1), then

(λ)s−ε j

(λ)s

( d
r )s

( d
r )s−ε j

=
d
r − a

2 ( j −1)+ s j −1

λ− a
2 ( j −1)+ s j −1

≤ max
{

1,
1+b

λ− a
2 (r −1)

}
.

Therefore, from Theorem 4.12, it follows that M (λ) is bounded.

4.2.1 Cowen-Douglas Class

Having determined (a) the condition for boundedness of the operator M (a), (b) noting that

each w in Ω is a joint eigenvalue for the multiplication d- tuple M (a)∗ and finally since the

constant vector 1 is cyclic for M (a), it is natural to investigate the question of which of these are

in the Cowen-Douglas class B1(Ω), see [12], [13] for the definition of this very important class

of operators. As shown in [19, pp. 285], the cyclicity implies that the dimension of the joint
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eigenspace at each w in Ω is 1. Thus to determine the membership in the Cowen-Douglas

class in a neighbourhood of the origin contained inΩ, we only need to find when ranDM (a)∗ is

closed. The following theorem provides the precise condition for this.

Theorem 4.14. For a multiplication d- tuple M (a) = (M (a)
1 , . . . , M (a)

d ) on H (a), ranDM (a)∗ is

closed if and only if

B := inf

{ ∑
j∈I−(s)

as−ε j

as

( d
r )s

( d
r )s−ε j

: s ∈−→
N r

0

}
is positive.

Proof. It is elementary to see that ranDM (a)∗ is closed if and only if
∑d

i=1 M (a)
i M (a)

i

∗
is bounded

below on (kerDM (a)∗)⊥. Also, for the d- tuple M (a) on H (a), we have kerDM (a)∗ =P0, the space

of constant functions. Therefore, in view of Lemma 4.10, it suffices to show that B is non-zero

positive if and only if inf{τ(s) : s 6= 0, s ∈−→
N r

0} is non-zero positive. Suppose that B is a non-zero

positive number. Now, for any non-zero s ∈−→
N r

0, we have

τ(s) = ∑
j∈I−(s)

as−ε j

as

( d
r )s

( d
r )s−ε j

a
2 (r − j )+ s j

b + a
2 (r − j )+ s j

c ′s( j )

≥ 1

b +1

∑
j∈I−(s)

as−ε j

as

( d
r )s

( d
r )s−ε j

c ′s( j )

≥ 1

b +1

∑
j∈I−(s)

as−ε j

as

( d
r )s

( d
r )s−ε j

1

(1+ a
2 (r −1))r

≥ B

(b +1)(1+ a
2 (r −1))r

.

Here the third inequality follows from (4.7).

Conversely, assume that inf{τ(s) : s 6= 0, s ∈ −→
N r

0} is a non-zero positive number, say C .

Thus for each non-zero s ∈−→
N r

0,

∑
j∈I−(s)

as−ε j

as

( d
r )s

( d
r )s−ε j

a
2 (r − j )+ s j

b + a
2 (r − j )+ s j

c ′s( j ) ≥C . (4.8)

Hence, noting that c ′s( j ) ≤ r by Lemma 4.11 and
a
2 (r− j )+s j

b+ a
2 (r− j ) ≤ 1, it follows that

∑
j∈I−(s)

as−ε j

as

( d
r )s

( d
r )s−ε j

≥ C

r
.

Corollary 4.15. The range of DM (λ)∗ is closed if λ> a
2 (r −1).
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Proof. Suppose λ= a
2 (r −1)+ε for some ε> 0. Then

∑
j∈I−(s)

(λ)s−ε j

(λ)s

( d
r )s

( d
r )s−ε j

= ∑
j∈I−(s)

b + a
2 (r − j )+ s j

a
2 (r − j )+ s j +ε−1

which is always bounded below by 1 if ε≤ b+1. On the other hand, for ε≥ b+1, it is bounded

below by 1
ε

. Hence, by Theorem 4.14, ranDM (λ)∗ is closed.

Now, we wish to show that the adjoint M (λ)∗ of the d- tuple of multiplication operators

on H (λ) is in the Cowen-Douglas class B1(Ω) for λ> a
2 (r −1).

Recall that the left essential spectrum π`,0
e (T ) of a commuting d- tuple of operators T is

defined to be the complement of the set of all w ∈Cd with the property:

1. dimkerD(T−w I ) is finite,

2. ranD(T−w I ) is closed.

If 0 6∈π`,0
e (T ), then the d- tuple T is said to be left semi-Fredholm.

The essential ingredient of the proof of the following theorem is based on the spectral

mapping property of the left essential spectrum, which appears in [21] and was pointed out

to G. Misra by J. Eschmeier during a conversation at University of Saarbrucken in February

2014.

Theorem 4.16. The adjoint M (λ)∗ of the multiplication d- tuple on H (λ) is in the Cowen-

Douglas class B1(Ω) whenever λ> a
2 (r −1).

Proof. Since polynomials are dense in the Hilbert space H (λ), it follows that dimkerDM (λ)∗

is 1. By Corollary 4.15, we also have that ran DM (λ)∗ is closed. Therefore, DM (λ)∗ is left semi-

Fredholm and hence there is an ε > 0 such that for w ∈ Ω with
∑d

i=1 |wi |2 < ε, the operators

D(M−w I )∗ are left semi-Fredholm. Thus M (λ)∗ is in the Cowen-Douglas class B1(Ωε), where

Ωε = {w ∈ Ω :
∑d

i=1 |wi |2 < ε}. Note that the operator M (ν) is homogeneous (see [2]). This

together with the spectral mapping property of the left essential spectrum shows that M (ν)∗

is actually in B1(Ω).

To complete the proof, first note that if w ∈Ω is any fixed but arbitrary point, then there

exists a biholomorphic automorphism ϕ of Ω with the property: ϕ(0) = w . We have seen

that 0 6∈ π`,0
e (M (λ)∗). An analytic spectral mapping property for the left essential spectrum is

ensured by [21, Corollary 2.6.9]. It follows that

w =ϕ(0) 6∈ϕ(π`,0
e (M (λ)∗)) =π`,0

e (ϕ(M (λ)∗)) =π`,0
e (M (λ)∗).

Here the last equality follows from the homogeneity assumption.
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4.3 Unitary equivalence and Similarity

In this section, we study the question of unitary equivalence and similarity of two commuting

d- tuple of operators in the class AK(Ω). In particular, when K is the unit circle T, these

results were obtained by Shields in [39] and the case when K is U (d), similarity result was

obtained in [29, Lemma 2.2].

By Theorem 4.5, any d- tuple of operators T in AK(Ω) is unitarily equivalent to M (a)

consisting of multiplication operators by the coordinate functions z1, . . . , zd on the reproduc-

ing kernel Hilbert space H (a) with the reproducing kernel K (a)(z , w ) = ∑
s asKs(z , w ), where

as > 0 with a0 = 1. Thus we assume, without loss of generality, that T ∼u M (a).

Theorem 4.17. Let T 1 and T 2 be two operator tuples in AK(Ω). Suppose that T 1 ∼u M (a) and

T 2 ∼u M (b).

Then the following statements are equivalent.

(i) T 1 and T 2 are unitarily equivalent.

(ii) as = bs for all s ∈−→
N r

0.

(iii) K (a) = K (b).

Proof. It is easy to see that (ii) and (iii) are equivalent. It is obvious that (iii) implies (i). There-

fore it remains to verify that (i) implies (iii). Assume that the d- tuples T 1 and T 2 are unitarily

equivalent. Then so are the operators M (a) and M (b). By [14, Theorem 3.7], there exists a

holomorphic function g onΩ such that

K (a)(z , w ) = g (z)K (b)(z , w )g (w ), z , w ∈Ω.

In particular, K (a)(z ,0) = g (z)K (b)(z ,0)g (0), z ∈ Ω. Therefore, a0 = b0g (z)g (0), and conse-

quently, g (z)g (0) = 1 since a0 = b0 = 1. Hence K (a) = K (b).

Recall that two commuting d- tuples A = (A1, . . . , Ad ) and B = (B1, . . . ,Bd ), defined on

H1 and H2 respectively, are said to be similar if there exists an invertible operator X : H1 →
H2 such that X Ai = Bi X for all i = 1, . . . ,d . For a non-negative integer n, as before, Pn denotes

the space of homogeneous polynomials of degree n in d variables. For two non-negative

definite kernels K and K̃ , we write K ¹ K̃ if K̃ −K is a non-negative definite kernel.

Theorem 4.18. Let Ω ⊆ Cd be any bounded domain (not necessarily symmetric ), and let H1

and H2 be two reproducing kernel Hilbert spaces determined by two positive definite kernels

K1 and K2 respectively. Suppose that

(i) the space of polynomials P is dense in both H1 and H2,
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(ii) Pn is orthogonal to Pm if m 6= n in H1 and H2,

(iii) for each i = 1,2, the d- tuple M (i ) = (M (i )
1 , . . . , M (i )

d ) of multiplication operators by the

coordinate functions z1, . . . , zd on H i is bounded.

Then the following statements are equivalent.

(i) M (1) and M (2) are similar.

(ii) There exist constants α,β> 0 such that

α‖p‖H1 ≤ ‖p‖H2 ≤β‖p‖H1 , p ∈P . (4.9)

(iii) H1 =H2(as sets).

(iv) There exist constants α,β> 0 such that

αK1 ¹ K2 ¹βK1.

Proof. The equivalence of (iii) and (iv) follows from the standard theory of reproducing kernel

Hilbert spaces (cf. [3], [38, Theorem 6.25]). Let f ∈ H1. Since polynomials are dense in H1

there exists a sequence of polynomials {pn} which converges to f in H1. Hence {pn} is Cauchy

in H1 and therefore by (ii) it is also Cauchy in H2. Thus {pn} converges to some g in H2.

Since Evaluations are continuous in both H1 and H2, we see that f (w) = lim pn(w) = g (w),

w ∈ Ω. Hence H1 ⊆ H2. Similarly we can show that H2 ⊆ H1. Hence (ii) implies (iii). If

H1 =H2 (as sets), then the identity operator from H1 to H2 is a bounded invertible operator

which intertwines the multiplication d- tuples M (1) and M (2), and consequently, (iii) implies

(i). Now, to complete the proof, it remains to show that (i) implies (ii).

Suppose that M (1) and M (2) are similar. Then there exists an invertible operator X :

H1 →H2 such that

X M (1)
j = M (2)

j X , j = 1, . . . ,d . (4.10)

Since the subspaces Pn , n ≥ 0, are mutually orthogonal, it suffices to show that (4.9) is satis-

fied for all p ∈ Pn and for some α,β > 0 (which is independent of n). Fix a polynomial p in

Pn . Clearly, it follows from (4.10) that

X M (1)
p = M (2)

p X , (4.11)

where M (i )
p is the operator of multiplication by the polynomial p on H i for i = 1,2.
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Let
(
Xr,s

)∞
r,s=0 be the matrix representation of X with respect to ⊕∞

n=0Pn , that is, Xr,s =
PPr X |P s . Similarly, let M (i )

p = (
(M (i )

p )r,s
)∞

r,s=0 be the matrix representation of M (i )
p , i = 1,2. Since

M (i )
p maps P s into P s+n , i = 1,2, it clear that

(M (i )
p )r,s =

(M (i )
p )|P s , if r = s +n

0, otherwise.
(4.12)

Therefore it follows from (4.11) that

Xr,s+n(M (1)
p )s+n,s =

(M (2)
p )r,r−n Xr−n,s , if r −n ≥ 0

0, otherwise.
(4.13)

Choosing r = n and s = 0, we see that

(M (2)
p )n,0X0,0 = Xn,n(M (1)

p )n,0. (4.14)

Therefore

(M (1)
p )∗n,0X ∗

n,n Xn,n(M (1)
p )n,0 = X ∗

0,0(M (2)
p )∗n,0(M (2)

p )n,0X0,0. (4.15)

Since ‖Xn,n‖ ≤ ‖X ‖, we have

X ∗
n,n Xn,n ¹ ‖X ‖2I .

Hence from (4.15) we obtain

X ∗
0,0(M (2)

p )∗n,0(M (2)
p )n,0X0,0 ¹ ‖X ‖2(M (1)

p )∗n,0(M (1)
p )n,0. (4.16)

Note that X0,0 is a linear map from P0 to P0 and dimP0 = 1. Hence X0,01 = η1 for some η ∈C.

Also, taking p to be the polynomial z j , 1 ≤ j ≤ d , and r = 0 in (4.13) we see that

X0,s+1(M (1)
z j

)s+1,s = 0, for all s ≥ 0.

Since this is true for all j = 1, . . . ,d , it follows that X0,s+1 = 0 for all s ≥ 0. Moreover, since

X is invertible we must have X0,0 6= 0. Otherwise, X0,s = 0 for all s ≥ 0, implying that P0 is

orthogonal to the range of X , which is a contradiction. Hence X0,0 6= 0, and consequently

η 6= 0. Therefore, from (4.16), we obtain

〈(M (2)
p )n,0X0,01,(M (2)

p )n,0X0,01〉 ≤ ‖X ‖2〈(M (1)
p )n,01,(M (1)

p )n,01〉.

Consequently,

|η|2‖p‖2
H2

≤ ‖X ‖2‖p‖2
H1

. (4.17)

To finish the proof, note that (4.10) implies

X −1M (2)
j = M (1)

j X −1, j = 1, . . . ,d .
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Hence repeating the arguments used to establish (4.17) we obtain that

|ζ|2‖p‖2
H1

≤ ‖X −1‖2‖p‖2
H2

,

where (X −1)0,01 = ζ1, ζ 6= 0. This completes the proof.

Remark 4.19. In the proof given above, we have shown that X0,s = 0 for all s ≥ 1. But using

(4.13), it can be easily verified that Xr,s = 0 for all s > r , that is, X is lower triangular with

respect to the decomposition ⊕∞
n=0Pn . Consequently, ζ= 1

η
.

Theorem 4.20. Let T 1 and T 2 be two operator tuples in AK(Ω). Suppose that T 1 ∼u M (a) and

T 2 ∼u M (b). Then the following statements are equivalent.

(i) T 1 and T 2 are similar.

(ii) There exist constants α,β> 0 such that

α‖p‖H (a) ≤ ‖p‖H (b) ≤β‖p‖H (a) , p ∈P . (4.18)

(iii) H (a) =H (b)(as sets).

(iv) There exist constants α,β> 0 such that

αK (a) ¹ K (b) ¹βK (a).

(v) there exist constants α,β> 0 such that

αas ≤ bs ≤βas , s ∈−→
N r

0.

Proof. The equivalence of (i), (ii), (iii) and (iv) follows easily from Theorem 4.18. Assume that

(ii) holds. Then (v) is easily verified by choosing any polynomial p in P s and using ‖p‖2
H (a) =

‖p‖2
F

as
and ‖p‖2

H (b) =
‖p‖2

F

bs
in (4.9). Also, it is trivial to see that (v) implies (iv).

Corollary 4.21. Let λ1,λ2 > a
2 (r − 1). Then the d- tuple of multiplication operators M (λ1) on

H (λ1) and M (λ2) on H (λ2) are similar if and only if λ1 =λ2.

Proof. Suppose that M (λ1) and M (λ2) are similar. Then, by Theorem 4.20, there exist constants

α,β > 0 such that α(λ1)s ≤ (λ2)s ≤ β(λ1)s for all s ∈ −→
N r

0. Take s = (s1,0, . . . ,0), s1 ∈ N0. By the

properties of the Gamma function we have
(λ1)s

(λ2)s
= (λ1)s1

(λ2)s1
∼ s1

λ1−λ2 . Hence λ1 = λ2. The other

implication is trivial.
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Chapter 5

Computation of
∑

M∗
i Mi

We have studied the commuting tuple M (a) of multiplication by the coordinate functions on

the Hilbert space H (a). In particular, we have determined when they are bounded, when

they belong to the Cowen-Douglas class and when they are mutually unitarily equivalent,

respectively, similar. As we have pointed out earlier, the boundedness of the commuting tuple

M (a) follows form the explicit formula for
∑

M (a)
i M (a)

i

∗
. Surprisingly, no formula was worked

out for the operator
∑

M (a)
i

∗
M (a)

i . If nothing else, it should have been done for the sake of

completeness. Of course, the boundedness of the commuting d- tuple M (a) would follow

from this computation as easily as from the other one. However, the initial motivation for

computing this lies in the equality for a commuting pair of operators T = (T1,T2).

dEt
([[

T ∗,T
]])= ( 2∑

i=1
T ∗

i Ti
)2 + ( 2∑

i=1
Ti T ∗

i

)2 −
2∑

j=1
T j

( 2∑
i=1

T ∗
i Ti

)
T ∗

j −
2∑

j=1
T ∗

j

( 2∑
i=1

Ti T ∗
i

)
T j .

It is likely that a similar formula connecting dEt
([[

T ∗,T
]])

and the two sums
∑

Ti T ∗
i and∑

T ∗
i Ti exist for any commuting d- tuple of operators T = (T1, . . . ,Td ), d > 2.

The results of this Chapter are in two parts. In the first part, we obtain an explicit for-

mula for the operator
∑

M
( d

r )
i

∗
M

( d
r )

i on the Hardy space of the Shilov boundary of any classical

bounded symmetric domainΩ of rank r , using this, in the second part, a formula for this op-

erator acting on the Hilbert space H (a) is given as long as the rank of Ω is 2. Based on these

computations, a conjecture was made for the actual form of the operator for a domain of any

rank. H. Upmeier has actually verified this conjecture to be true. It follows, as a corollary, that

all the commutators of the multiplication by the coordinate functions on H (λ) are compact if

and only if rank ofΩ is 1.
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5.1 Multiplication operators on H 2(SΩ)

The Hilbert space H (λ), λ = d
r is the Hardy space of the Shilov boundary of the domain Ω.

It will be useful to first determine the form of the operator
∑

M∗
i Mi on the Shilov boundary.

This computation is particularly simple for two reasons: First, the inner product in the Hardy

space is given by integration against a quasi-invariant measure on SΩ and second, the action

of the operator
∑

M∗
i Mi on functions from H 2(SΩ) is explicit.

In this section, for each one of the classical bounded symmetric domains Ω, we com-

pute the operator
∑d

i=1 M∗
i Mi on the Hardy space H 2(SΩ) of the Shilov boundary SΩ. This is

easily done since the function
∑d

i=1 |zi |2 = r on the Shilov boundary SΩ. This was also noted

in a paper of A. Athavale [5], although, his answers are different since the realization of the

classical bounded symmetric domains that he uses are different from the Harish-Chandra

realization used here.

5.1.1 Multiplication operators on H 2(SΩ) for type-I domains

In,m : The domainsΩ of type I consists of matrices of order n ×m, n ≤ m, of norm strictly less

than 1. The rank of the domain Ω is n. It is known that the Shilov boundary SΩ consists of

maximal partial isometries in n ×m complex matrices. For a positive integer n, let H 2
n(SΩ)

denote the direct sum of n copies of H 2(SΩ). Let M : H 2
m(SΩ) → H 2

n(SΩ) be the block opera-

tor
(
Mi j

)n,m
i=1, j=1, where Mi j is the multiplication operator by the coordinate function zi j on

the Hardy space H 2(SΩ) over SΩ. Let Mt denote the block operator
(
M j i

)m,n
j=1,i=1 : H 2

n(SΩ) →
H 2

m(SΩ) andMt∗ be the adjoint of the operatorMt .

Theorem 5.1. The operator Mt∗Mt : H 2
n(SΩ) → H 2

n(SΩ) equals the identity operator In on

H 2
n(SΩ).

Proof. Since the Shilov boundary SΩ ofΩ is the set of all z ∈ Mn,m such that zz∗ = I , it follows

that
∑m

j=1 zi j z̄ j k = δi k for all i ,k = 1, . . . ,n, where z = (zi j )n,m
i=1, j=1 ∈ SΩ. Any f ∈ H 2

n(SΩ) is of the

form

( f1

...
fn

)
for some choice of f1, . . . , fn ∈ H 2(SΩ). For such a f ∈ H 2

n(SΩ), we have

‖Mt f ‖2 =
m∑

j=1

∥∥∥∥∥ n∑
i=1

zi j fi

∥∥∥∥∥
2

=
m∑

j=1

n∑
i ,k=1

〈zi j f,zk j fk〉

=
n∑

i ,k=1

m∑
j=1

∫
SΩ

zi j fi z̄k j f̄k dσ=
n∑

i ,k=1

∫
SΩ

(
m∑

j=1
zi j z̄k j

)
fi f̄k dσ

=
n∑

i ,k=1

∫
SΩ
δi k fi f̄k dσ=

n∑
i=1

∫
SΩ

| fi |2 dσ= ‖ f ‖2.
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completing the proof.

The following corollary is an immediate consequence.

Corollary 5.2. If Mi j is the multiplication operator by the coordinate function zi j on H 2(SΩ)

then
∑n,m

i=1, j=1 M∗
i j Mi j = nI on H 2(SΩ).

5.1.2 Multiplication operators on H 2(SΩ) for type-II domains

I I n : The domainsΩ of Type-II consist of symmetric complex matrices z of order n with ‖z‖ <
1. In this case, the rank of the domain Ω is n. The Shilov boundary SΩ consists of symmetric

complex matrices z of order n such that z∗z = I . Pick one of these domains of dimension
n(n+1)

2 . It is convenient to put n(n+1)
2 variables in the form of a symmetric matrix, where the

inner product is given by tr(AB∗). Now, in the space of these symmetric matrices of size n,

the matrices Ei i , i = 1, . . . ,n together with
Ei j+E j ip

2
, 1 ≤ i 6= j ≤ n, form an orthonormal basis.

Consequently, the coordinates of this domain are of the form

z̃ := (
z11,

p
2z12, . . . ,

p
2z1n , z22, . . . ,

p
2z2n , . . . , zn−1n−1,

p
2zn−1n , znn

)
,

see [25, pp. 130]. Thus the coordinate z̃i i = zi i and for (i , j ) : j > i , z̃i j =
p

2zi j .

Theorem 5.3. If Mi j is the multiplication operator by the coordinate function z̃i j on H 2(SΩ)

then
∑

i≤ j M∗
i j Mi j = nI on H 2(SΩ).

Proof. Since trace(z∗z) = trace(I ) = n it follows that
∑

i≤ j |z̃i j |2 =∑n
i , j=1 |zi j |2 = n. Thus

〈( ∑
i≤ j

M∗
i j Mi j

)
f , f

〉= ∑
i≤ j

∥∥Mi j f
∥∥2

= ∑
i≤ j

∫
SΩ

|z̃i j f (z)|2dσ

=
n∑

i , j=1

∫
SΩ

|zi j f (z)|2dσ

=
∫

SΩ

n∑
i , j=1

|zi j |2| f (z)|2dσ

= n
∫

SΩ
| f (z)|2dσ= n‖ f ‖2.

This completes the proof.
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5.1.3 Multiplication operators on H 2(SΩ) for type-III domains

I I I n : The domains Ω of Type-III consist of anti-symmetric complex matrices z of order n

with ‖z‖ < 1. In this case, the rank of the domain Ω is [ n
2 ]. If n is an even number the Shilov

boundary SΩ consists of anti-symmetric complex matrices z of order n such that z∗z = I . If n

is odd then the Shilov boundary SΩ consists of all matrices of the form U DU∗, where U is an

arbitrary unitary matrix [25] and

D =
(

0 1

−1 0

)
⊕·· ·⊕

(
0 1

−1 0

)
⊕ (0).

Coordinates of this domain are of the form

z12, z13, . . . , z1n , z23 . . . z2n , . . . , zn−1n ,

see [25, pp.138 ]

Theorem 5.4. If Mi j is the multiplication operator by the coordinate function zi j on H 2(SΩ)

then
∑

i< j M∗
i j Mi j = [ n

2 ]I on H 2(SΩ).

Proof. If z is in SΩ, then trace(z∗z) = 2[ n
2 ]. Thus

∑
i< j |zi j |2 = [ n

2 ]. The remaining portion of

the proof is the same as the proof of Theorem 5.3.

5.1.4 Multiplication operators on H 2(SΩ) for type-IV domains

Type-IV domains, which are also known as the Lie balls, consist of all z ∈ Cd (d ≥ 5) such

that 1+ 1
4 |z t z |2 > z t z and z t z < 2, where z t is the complex conjugate of the transpose z t .

These domains have rank 2 independent of the dimension d . In this case the Shilov boundary

SΩ ⊆Sd (0,
p

2), where Sd (0,
p

2) is the sphere of radius
p

2 centred at 0 in Cd , see [36, pp. 190

and Theorem X.4.6].

Theorem 5.5. If Mi is the multiplication operator by the coordinate function zi on H 2(SΩ) then∑d
i=1 M∗

i Mi = 2I on H 2(SΩ).

Proof. Since the Shilov boundary SΩ is a subset ofS(0,
p

2), it follows that
∑d

i=1 |zi |2 = 2. Hence∑d
i=1 M∗

i Mi = 2I on H 2(SΩ).

The discussion of this section is summarized in the Theorem stated below.

Theorem 5.6. Let M (
d
r ) = (M

(
d
r )

1 , . . . , M
(

d
r )

d ) be the d- tuple of multiplication operators by the

coordinate functions z1, . . . , zd on the Hardy space H 2(SΩ). Then

d∑
i=1

M
(

d
r )

i

∗
M

(
d
r )

i = r I . (5.1)
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5.2
∑d

i M∗
i Mi on H (a)

Let M (a) := (M (a)
1 , . . . , M (a)

d ) be the d-tuple of multiplication by the coordinate functions z1, . . . , zd

on H (a). In this section, we wish to compute the operator M (a)∗M (a) := ∑d
i=1 M (a)

i

∗
M (a)

i on

the Hilbert space H (a).

By Lemma 4.9, note that M (a)∗M (a) is a block diagonal operator with respect to the de-

composition ⊕P s , where each block is a non-negative scalar multiple of the identity, that is,

M (a)∗M (a)p = δ(s)p, p ∈ P s for some non-negative real number δ(s). Therefore, in order to

compute the operator M (a)∗M (a), it is sufficient to find the constants δ(s) for all s in
−→
N r

0. Un-

fortunately, we are only able to find δ(s) when s ∈ −→
N r

0 and |I+(s)| ≤ 2. In particular, we have

the complete answer in case the rank r = 2.

The following lemma gives a description of the operator M (a)
i

∗
on H (a). In case of

weighted Bergman spaces, it is described in [44, Lemma 4.12.19].

Lemma 5.7. If s ∈−→
N r

0 and p is a polynomial in P s , then

M (a)
i

∗
p = ∑

j∈I−(s)

as−ε j

as
(∂i p)s−ε j ,

where ∂i denotes the partial derivative with respect to the variable zi .

Proof. By [44, Theorem 4.11.86], we have that zi P s is contained in ⊕ j∈I+(s)P s+ε j . Thus, for

any polynomial p in P s , it follows that M∗
i p belongs to ⊕ j∈I−(s)P s−ε j . Now for j ∈ I−(s) and

q ∈P s−ε j , we have

〈M∗
i p, q〉H (a) = 〈p, zi q〉H (a) = 〈p, (zi q)s〉H (a)

= 1

as
〈p, (zi q)s〉F

= 1

as
〈p, zi q〉F

= 1

as
〈∂i p, q〉F

= 1

as
〈(∂i p)s−ε j , q〉F

=
as−ε j

as
〈(∂i p)s−ε j , q〉H (a) .

Here the equality 〈p, zi q〉F = 〈∂i p, q〉F follows from [44, Proposition 4.11.36]. This completes

the proof.

The following theorem describes the operator M (a)∗M (a) on some subspace of H (a).
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Theorem 5.8. Let s ∈−→
N r

0 such that |I+(s)| ≤ 2. Then M (a)∗M (a)p = δ(s)p, p ∈P s , where

δ(s) = ∑
j∈I+(s)

as

as+ε j

( d
r )s+ε j

( d
r )s

cs( j ). (5.2)

Proof. First note that, for p ∈P s , we have

d∑
i=1

M (a)
i

∗
M (a)

i p =
d∑

i=1
M (a)

i

∗
(zi p) =

d∑
i=1

(
M (a)

i

∗( ∑
j∈I+(s)

(zi p)s+ε j

))
s

=
d∑

i=1

( ∑
j∈I+(s)

as

as+ε j

∂i
(
(zi p)s+ε j

))
s

= ∑
j∈I+(s)

as

as+ε j

d∑
i=1

(
∂i

(
(zi p)s+ε j

))
s
,

where the third equality follows from Lemma 5.7. Let Q j be the linear map on P s given by

Q j (p) =


d∑

i=1

(
∂i

(
(zi p)s+ε j

))
s
, if j ∈ I+(s)

0, otherwise.

Then clearly,

δ(s)p = ∑
j∈I+(s)

as

as+ε j

Q j (p). (5.3)

Note that, for p ∈P s , Q j satisfies the following:

∑
j∈I+(s)

Q j (p) =
d∑

i=1

∑
j∈I+(s)

(
∂i

(
(zi p)s+ε j

))
s
=

d∑
i=1

(
∂i

( ∑
j∈I+(s)

(zi p)s+ε j

))
s

=
d∑

i=1

(
∂i

(
zi p

))
s

= d p +
d∑

i=1

(
zi∂i p

)
s
.

Therefore, by Euler’s formula, we obtain∑
j∈I+(s)

Q j (p) = (d +|s|)p. (5.4)

Now, assume that |I+(s)| = 1. Then s is necessarily of the form (s1,0, . . . ,0) and I+(s) = {1}.

Thus it follows easily from (5.3) and (5.4) that δ(s) = as

as+ε1
r ( d

r + s1).
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To complete the proof, assume that |I+(s)| = 2. Then I+(s) = {1,k}, where 2 ≤ k ≤ r . Note

that by (5.3) and Theorem 5.6, we have

( d
r )s

( d
r )s+ε1

Q1(p)+ ( d
r )s

( d
r )s+εk

Qk (p) = r p. (5.5)

By solving equations (5.4) and (5.5), it is easily verified that

Q1(p) = (k −1)( d
r + s1)(s1 − sk + ar

2 )

(s1 − sk + a
2 (k −1))

p,

and

Qk (p) = (r −k +1)( d
r − a

2 (k −1)+ sk )(s1 − sk )

(s1 − sk + a
2 (k −1))

p.

Now, the proof is completed by (5.3).

As an immediate consequence of Theorem 5.8, we obtain the following corollary giving

the complete form of the operator M (a)∗M (a) on H (a) when the domainΩ is of rank 2.

Corollary 5.9. Let Ω be an irreducible bounded symmetric domain of rank 2. Then, for any

polynomial p in P s , M (a)∗M (a)p = δ(s)p, where

δ(s) = ∑
j∈I+(s)

as

as+ε j

( d
r )s+ε j

( d
r )s

cs( j ).

As a consequence of Theorem 5.8, we also obtain the following corollary about the es-

sential normality of the multiplication operators by the coordinate functions on the weighted

Bergman spaces.

Corollary 5.10. Let λ > a
2 (r − 1) and M (λ) = (M (λ)

1 , . . . , M (λ)
d ) be the d- tuple of multiplica-

tion operators on H (λ). Then the operator M (λ)
i is essentially normal, that is, the commutator

M (λ)
i

∗
M (λ)

i −M (λ)
i M (λ)

i

∗
is compact for all i = 1, . . . ,d if and only if r = 1.

Proof. If r = 1, then by a direct computation it is easily verified that each M (λ)
i is essentially

normal. For the converse part, first set l to be the signature (l ,0, . . . ,0), where l is a positive

integer. Then, by Lemma 4.10 and Theorem 5.8, we see that,

d∑
i=1

(M (λ)
i

∗
M (λ)

i −M (λ)
i M (λ)

i

∗
)p = η(l )p, p ∈P l ,

where

η(l ) = ( d
r + l )(l + ar

2 )

(λ+ l )(l + ar
2 )

+ l (r −1)( d
r − a

2 )

(λ− a
2 )(l + a

2 )
− l

λ+ l −1
. (5.6)
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Suppose that each M (λ)
i is essentially normal. Then the operator

∑d
i=1(M (λ)

i

∗
M (λ)

i −M (λ)
i M (λ)

i

∗
)

is compact. Henceη(l ) must converge to 0 as l →∞. Thus, from (5.6), we obtain that
(r−1)( d

r − a
2 )

λ− a
2

=
0. Finally, since d

r = 1+ a
2 (r −1)+b, we conclude that r = 1.

We finish this section with the following conjecture on the description of the operator

M (a)∗M (a) on the Hilbert space H (a) when the domainΩ is of arbitrary rank.

Conjecture 5.11. LetΩ be an irreducible bounded symmetric domain of rank r . Then, for any

polynomial p in P s , M (a)∗M (a)p = δ(s)p on the Hilbert space H (a), where

δ(s) = ∑
j∈I+(s)

as

as+ε j

( d
r )s+ε j

( d
r )s

cs( j ). (5.7)
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Chapter 6

Appendix

Proof of Theorem 3.12: The constant function 1 is a cyclic vector for the d- tuple S. Also,

σ(S) =Bd , see [11]. To show that dEt
([[

S∗,S
]])

is non-negative definite, we claim that( ∑
η∈Sd

sgn(η)S∗
η(1)Sτ(1) . . .Sτ(d−1)S

∗
η(d)

)
eα

= sgn(τ)

√
ατ(d)

|α|+d −1
(|α|+d −1)−(d−1)eα−ετ(d) , (6.1)

for each τ in Sd . Here we have assumed ατ(d) > 0 without loss of generality.

For any fixed but arbitrary τ ∈Sk and an arbitrary k- tuple (i1, . . . , ik ), k ≤ d , with 1 ≤
i1 < i2 < ·· · < ik ≤ d , let “Pτ(i1, . . . , ik )” be the induction hypothesis, namely, the statement( ∑

η∈Sd−1

sgn(η)S∗
iη(1)

Siτ(1) . . .Siτ(k−1) S
∗
iη(k)

)
eα

= sgn(τ)

√
αiτ(k)

|α|+d −1
(|α|+d −1)−(k−1)eα−εiτ(k)

. (6.2)

We see that the equality of Equation (6.1) is the same as the equality asserted in the statement

Pτ(i1, . . . , id ) with k = d and τ= id, the identity permutation on d elements.

Thus, a proof of the equality (6.1) follows from showing that the validity of all the equal-

ities in Pτ(i1, . . . , ik ), τ ∈Sk , k < d , implies the validity of all the equalities in Pτ(i1, . . . , ik+1)

τ ∈Sk+1.

To establish this, first note that if k = 1, then Pτ(i1), τ ∈ S1 is the equalty (αi > 0): S∗
i1

eα =√
αi1

|α|+d−1 eα−εi1
, which is clearly valid. Now if k = 2, we note that

( ∑
η∈S2

sgn(η)S∗
iη(1)

Siτ(1) S
∗
iη(2)

)
eα = sgn(τ)

√
αiτ(2)

|α|+d −1
(|α|+d −1)−1eα−εiτ(2)
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for any pair i1, i2 with 1 ≤ i1 < i2 ≤ d and any fixed but arbitrary τ ∈S2. This establishes the

validity of Pτ(i1, i2), τ ∈S2.

More generally, assume that the equalities in Pτ(i1, . . . , ik−1) are valid for each tuple

(i1, . . . , ik−1) with 1 ≤ i1 < i2 · · · < ik−1 ≤ d , and any fixed but arbitrary τ ∈ Sk−1. To show that the

equality in Pτ(i1, . . . , ik ) is valid for each fixed but arbitrary (i1, . . . , ik ) and τ ∈Sk , it is enough

to verify it with τ = i d . For this, we split the left hand side of Pi d (i1, . . . , ik ) into several sums

fixing η(k) = j , j = 1, . . . ,k, in each one of these sums, that is,( ∑
η∈Sk

sgn(η)S∗
iη(1)

Si1 S∗
iη(2)

. . .S∗
iη(k−1)

Sik−1 S∗
iη(k)

)
eα =

( ∑
η∈Sk ,η(k)=k

sgn(η)S∗
iη(1)

Si1 S∗
iη(2)

. . .S∗
iη(k−1)

Sik−1 S∗
ik

)
eα

+ ( ∑
η∈Sk ,η(k)=k−1

sgn(η)S∗
iη(1)

Si1 S∗
iη(2)

. . .S∗
iη(k−1)

Sik−1 S∗
ik−1

)
eα

+ ( ∑
η∈Sk ,η(k)=k−2

sgn(η)S∗
iη(1)

Si1 S∗
iη(2)

. . .S∗
iη(k−1)

Sik−1 S∗
ik−2

)
eα

+ . . .+ ( ∑
η∈Sk ,η(k)=1

sgn(η)S∗
iη(1)

Si1 S∗
iη(2)

. . .S∗
iη(k−1)

Sik−1 S∗
i1

)
eα. (6.3)

Pick a fixed but arbitrary sum in Pi d (i1, . . . , ik ) with η(k) = j , j = 1, . . . ,k−2. We claim that these

sums vanish. Each one of these sums is of the form∑
η∈Sk ,η(k)= j

sgn(η)S∗
iη(1)

Si1 S∗
iη(2)

. . .Si j−1 S∗
iη( j )

Si j S∗
iη( j+1)

Si j+1 S∗
iη( j+2)

. . .S∗
iη(k−1)

Sik−1 S∗
i j

. (6.4)

For a fixed η ∈Sk , let ησ ∈Sk be the permutation:

ησ(i ) =


η(i ) i 6∈ { j , j +1},

η( j +1) if i = j ,

η( j ) if i = j +1.

The sign of ησ is opposite of the sign of η and these occur in pairs. Also, S∗
i Sl S∗

p = S∗
p Sl S∗

i

for any choice of ((i , l , p) with i 6= l 6= p. Clearly, η( j ) 6= j 6= η( j +1) by choice. Putting these

observations together, we conclude that the sum (6.4) vanishes.

Now, we examine the two nonzero sums that remain on the right hand side of (6.3). The

first of these two sums, namely,( ∑
η∈Sk

sgn(η)S∗
iη(1)

Si1 S∗
iη(2)

. . .S∗
iη(k−1)

Sik−1 S∗
ik

)
eα

=( ∑
σ∈Sk−1

sgn(σ)S∗
iσ(1)

Si1 S∗
iσ(2)

. . .S∗
iσ(k−1)

)
Sik−1 S∗

ik
eα
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Applying the equality in Pi d (i1, . . . , ik−1) to the vector Sik−1 S∗
ik

eα, we have

( ∑
η∈Sk

sgn(η)S∗
iη(1)

Si1 S∗
iη(2)

. . .S∗
iη(k−1)

Sik−1 S∗
ik

)
eα =

√
αik

|α|+d −1

αik−1 +1

(|α|+d −1)(k−1)
eα−εik

. (6.5)

The second sum ( ∑
η∈Sk

sgn(η)S∗
iη(1)

Si1 S∗
iη(2)

. . .S∗
iη(k−1)

Sik−1 S∗
ik−1

)
eα

=− ( ∑
σ∈Sk−1

sgn(σ)S∗
iσ(1)

Si1 S∗
iσ(2)

. . .S∗
iσ(k)

)
Sik−1 S∗

ik−1
eα.

The verification of this equality is an immediate consequence of the following observations.

1. Each permutation η ∈ Ŝk := {η ∈Sk : η(k) = k −1} is of the form σ̂(k,k −1), where σ̂ is a

bijection from {1, . . .k −1} to {1, . . . ,k −2,k} and (k,k −1) is the cycle taking k to k −1.

2. The bijections σ̂ are in one to one correspondence with permutations Pk−1 of the set

{1, . . . ,k −2,k}.

3. Since η=σ(k,k −1) for some σ ∈Pk , it follows that sgn(η) =−sgn(σ).

4. Sk−1 is isomorphic to Pk−1.

Now, as before, applying the equality in Pi d (i1, . . . , ik−2, ik ) to the vector Sik−1 S∗
ik−1

eα, we have

( ∑
η∈Sk

sgn(η)S∗
iη(1)

Si1 S∗
iη(2)

. . .S∗
iη(k−1)

Sik−1 S∗
ik−1

)
eα =−

√
αik

|α|+d −1

αik−1

(|α|+d −1)(k−1)
eα−εik

. (6.6)

Combining (6.5) and (6.6), we obtain

( ∑
η∈Sk

sgn(η)S∗
iη(1)

Si1 S∗
iη(2)

. . .S∗
iη(k−1)

Sik−1 S∗
iη(k)

)
eα =

√
αik

|α|+d −1
(|α|+d −1)−(k−1)eα−εik

,

which verifies Pτ(i1, . . . ik ) for τ= i d . The verification of (6.1) for an arbitrary choice of τ ∈Sk

is similar. Recall the expression of determinant operator in (3.12)

dEt
([[

S∗,S
]])= ∑

τ,η∈Sd

sgn(τ)Sg n(η)S∗
η(1)Sτ(1)S

∗
η(2) . . .S∗

η(d)Sτ(d)+

− ∑
τ,η∈Sd

sgn(τ)sgn(η)Sτ(d)S
∗
η(1)Sτ(1) . . .Sτ(d−1)S

∗
η(d).

Now using the equality in (6.1) we get,∑
τ,η∈Sd

sgn(τ)sgn(η)S∗
η(1)Sτ(1)S

∗
η(2) . . .S∗

η(d)Sτ(d)eα = (d −1)!

(|α|+d)(d−1)
eα,
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and ∑
τ,η∈Sd

sgn(τ)sgn(η)Sτ(d)S
∗
η(1)Sτ(1) . . .Sτ(d−1)S

∗
η(d)eα = (d −1)!|α|

(|α|+d −1)d
eα.

Thus combining the above equalities we get

dEt
([[

S∗,S
]])

eα = ( (d −1)!

(|α|+d)(d−1)
− (d −1)!|α|

(|α|+d −1)d

)
eα.

It is easy to see dEt
([[

S∗,S
]])

is non-negative definite since

1

(|α|+d)(d−1)
− |α|

(|α|+d −1)d
≥ 0.

Now,

trace
(
dEt

([[
S∗,S

]]))= ∑
α∈Nd

0

〈
dEt

([[
S∗,S

]])
eα,eα

〉
= ∑
α∈Nd

0

(d −1)!
( 1

(|α|+d)(d−1)
− |α|

(|α|+d −1)d

)
=

∞∑
k=0

∑
α1,...,αd
|α|=k

(d −1)!
( 1

(|α|+d)(d−1)
− |α|

(|α|+d −1)d

)
=

∞∑
k=0

( (k +d −1)(k +d −2) . . . (k +1)

(k +d)(d−1)
− (k +d −2) . . . (k +1)k

(k +d −1)d−1

)
=1.

This completes the proof.

Proof of Theorem 3.13: As in the case of two variables, the d- tuple T is 1- cyclic, PN T j P⊥
N =

0, 1 ≤ j ≤ d , and its spectrum is of the form B[r ] for some r > 0 depending on {δ|α|}.

A calculation similar to the one in the proof of Theorem 3.12 given above shows that

dEt
([[

T ∗,T
]])

xα = ( (d −1)!δ2d
|α|

(|α|+d)(d−1)
−

(d −1)!|α|δ2d
|α|−1

(|α|+d −1)d

)
xα. (6.7)

Since δ|α| is an increasing sequence, it follows

( (d −1)!δ2d
|α|

(|α|+d)(d−1)
−

(d −1)!|α|δ2d
|α|−1

(|α|+d −1)d

)≥ (d −1)!δ2d
|α|−1

( 1

(|α|+d)(d−1)
− |α|

(|α|+d −1)d

)≥ 0.

Hence dEt
([[

T ∗,T
]])

is non-negative definite.
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To complete the proof, we need to verify the norm estimate (iii) of Definition 3.10. For

this, taking τ to be the identity permutation in (6.1), we obtain the equality( ∑
η∈Sd

sgn(η)T ∗
η(1)T1T ∗

η(2) . . .Td−1T ∗
η(d)

)
xα

= δ2d−1
|α|

√
αd

|α|+d −1
(|α|+d −1)−(d−1)xα−εd . (6.8)

Clearly, we have

‖PN
( ∑
η∈Sd

sgn(η)T ∗
η(1)T1T ∗

η(2) . . .Td−1T ∗
η(d)

)
P⊥

N‖

≤
(

N +d −1

d −1

)−1 ∏
{i : i 6=d}

‖Ti‖2‖Td‖. (6.9)

Consequently,

‖PN
( ∑
η∈Sd

sgn(η)T ∗
η(1)T1T ∗

η(2) . . .Td−1T ∗
η(d)

)
P⊥

N Td PN‖ ≤
(

N +d −1

d −1

)−1 d∏
i=1

‖Ti‖2. (6.10)

It follows from Remark 3.11(b) that the inequality in Equation (6.10) remains unchanged

when we replace the identity permutation by any other permutation from Sd . Therefore, the

d- tuple T is in the class BS1,1(B[r ]) and the proof is complete.
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