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Abstract

The curvature of a contraction 7' in the Cowen-Douglas class is bounded above by the
curvature of the backward shift operator. However, in general, an operator satisfying the
curvature inequality need not be contractive. In this thesis, we characterize a slightly
smaller class of contractions using a stronger form of the curvature inequality. Along
the way, we find conditions on the metric of the holomorphic Hermitian vector bundle
E corresponding to the operator T in the Cowen-Douglas class which ensures negative
definiteness of the curvature function. We obtain a generalization for commuting tuples of
operators in the Cowen-Douglas class.

Secondly, we obtain an explicit formula for the curvature of the jet bundle of the
Hermitian holomorphic bundle E; on a planar domain 2. Here E; is assumed to be a
pull-back of the tautological bundle on Gr(n,H) by a nondegenerate holomorphic map
f:Q — Gr(n,H). Clearly, finding relationships amongs the complex geometric invariants
inherent in the short exact sequence

0= Ti(Ef) = Ter1(Er) = T (Ey)/ Ti(Ef) =0

is an important problem, where Jj(Ey) represents the k-th order jet bundle. It is known
that the Chern classes of these bundles must satisfy

(Tr1(Ey)) = c(Tu(Ey)) (T (Ey) / Ti(Ey))-

We obtain a refinement of this formula:

(trace ® Idnxn) (Kjk(Ef)) - (trace ® Idnxn) (’Cjk—l(Ef)) = ’Cjk(Ef)/jkfl(Ef)(Z»

v
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Chapter 1

Introduction

Let H be a complex Hilbert space. Given a bounded linear operator 1" on H, it is natural
to ask if there exists a canonical model (modulo unitary equivalence) for 7" and obtain a
complete set of unitary invariants. In general, it is not possible to find a solution to this
problem. However, if T" is a normal operator, the spectral theorem provides both a model
(multiplication operator) and a complete set of invariants (spectrum, spectral multiplicity
function and spectral measure). For a contraction 7', Sz-Nagy and Foias model theory
provides a canonical model as well as a complete set of invariants. In a very influential
paper [7], Cowen and Douglas introduced the class B,,(€2) of operators, where €2 is a domain
in C. They showed that an operator T in B,(f2) determines a Hermitian holomorphic
vector bundle Er on ) and that the equivalence classes of T" and of Ep are in one to
one correspondence. Exploiting this correspondence and using techniques from complex
geometry, they obtained a complete set of invariants for operators in B, (£2). They also
showed that an operator in B,,(2) can be realized as the adjoint of a multiplication operator
on a Hilbert space consisting of holomorphic functions on 2 and possessing a reproducing
kernel. This provides a model for operators in the class 5,,(£2). This latter description was
elaborated and studied in detail by Curto and Salinas to determine when two operators in
the class B, () are unitarily equivalent (cf. [9]).

For a normal operator, via spectral theory, one attempts to synthesize the operator
from elementary operators. For example, a normal operator on a finite dimensional space
can be written as the orthogonal direct sum of scalar operators on eigenspaces, where the
scalars are just the eigenvalues of the operator, which together with multiplicities determine
the operator up to unitary equivalence. On infinite dimensional Hilbert spaces, the results
are essentially the same. In this case, the direct sum is replaced by a continuous direct sum
or direct integral. For an arbitrary operator this approach fails spectacularly. Consider

the following example.



2 1. Introduction

Let U, : [*(N) — [*(N) be the shift operator defined by
Ui(ao, g, ag,...) = (0,0, 1, g, . .. .)
for (ap, a1, a2, ...) in (*(N) and let U} denote the adjoint of U, defined by
Ul(ag, o, a9,...) = (1,00, 0, . ..).

Since

Ur(1,0 N0 = AM1,0 02,0,

where (1,2, A2,...) is in [*(N) for |A] < 1, it follows that the spectrum of U} contains D.
We can not write [2(N) = M+ N, where M and N are invariant non zero proper subspaces
for Uy [17, theorem 2.2.1, page 43]. Therefore, the conventional spectral theory is not of
much use in studying U}. Cowen and Douglas initiated, in their foundational paper [7], a
systematic study of a class of operators which includes the operator U} and many other

operators possessing an open set of eigenvalues.

Definition 1.1. For a domain 2 C C and n € N, the class B,,(2) consists of those operators
T whose spectrum o(7') is contained in €2 and

(1) ran (T — w) = H for w in §;
(2) span {ker(T' — w) : w € Q} is dense in H;
(3) dim ker(T — w) = n for w in €.

It was shown in [7, proposition 1.11] that the eigenspaces for each T" in B,(2) form
a rank n Hermitian holomorphic vector bundle Er over €2, that is,

Er:={(w,z) € QxH:x €ker(T —w)}, n(w,z) =w

and there exist a holomorphic frame w — y(w) = (y1(w), ...,y (w)) with ker(T — w) =
span {7;(w) : 1 < i < n}. The Hermitian structure at w is the one that ker(7" — w)
inherits as a subspace of the Hilbert space H. The metric of the vector bundle Er at w is
h(w) = ({(vj(w), yi(w)))7;=1- The curvature Kr of the bundle E7 is given by the following
formula [21, proposition 2.2, pp. 79

Kr(w) = %(h_l(w)%h(w)) dw N dw.

It was also shown in [7] that the equivalence class of the Hermitian holomorphic bundle

Er and the unitary equivalence class of the operator T determine each other.



Theorem 1.2. [7, theorem 1.14] The operators T and T in B,.(QY) are unitarily equivalent
if and only if the corresponding Hermitian holomorphic vector bundles Er and Ez are
equivalent.

The curvature of a vector bundle E transforms according to the rule, [21, pp. 72]
K(fg)w = (¢g7'K(f)g)w, w € Qy, where f = (ey,...,e,) is a frame for E over an open
subset Qy C Q and g : Qy — GL(n,C) is a change of frame. In the case when the rank n of
the vector bundle FE is strictly greater than 1, the curvature of £ depends on the choice of
a frame. Thus the curvature K cannot be an invariant for the vector bundle E. However,
the eigenvalues of IC are invariants for the bundle E. The complete set of invariants given
in [7, Definition 2.17 and Theorem 3.17] involve the curvature and the covariant derivatives

where rank of £ = n. The curvature

2

0
K(w) = 5—=log || 7(w) || dw A duw,

of the line bundle E, defined with respect to a non-zero holomorphic section v of E, is

a complete invariant. The definition of the curvature is independent of the choice of the
section : If 7o is another holomorphic section of E, then 79 = ¢y for some holomor-
phic function ¢ on some open subset 2y of €. The harmonicity of log|¢| completes the
verification. Hence Theorem 1.2 for the line bundle has the form

Theorem 1.3. /8, pp. 4] Operators T, T in By(Q) are unitarily equivalent if and only if
Kr(w) = Ks(w) for all w in S2.

An operator T in the class B;(2), as is well-known (cf. [7, pp. 194 ]), is unitarily
equivalent to the adjoint M* of the multiplication operator M by the co-ordinate function
on some Hilbert space Hx of holomorphic functions on Q* := {z € C: z € Q} possessing
a reproducing kernel K.

The kernel K is a complex valued function defined on €2* x * which is holomorphic
in the first variable and anti-holomorphic in the second. In consequence, the map w —
K(-,w), w € Q*, is holomorphic on Q. We have K (z,w) = K (w, z) making it Hermitian.
It is positive definite in the sense that the n x n matrix

(K (wiswy)75

is positive definite for every subset {ws,...,w,} of Q*, n € N. Finally, the kernel K
reproduces the value of functions in H g, that is, for any fixed w € Q*, the holomorphic
function K (-, w) belongs to Hyx and

f(w):<f7K(7w)>v fEHKa w € O,
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The correspondence between the operator 7' in B;(2) and the operator M* on the
Hilbert space of holomorphic functions is easy to describe [7, pp. 194 |). Let v be a
non-zero holomorphic section of Ep (for a bounded domain in C, a global section exists
by Grauert’s Theorem) for the operator T' acting on the Hilbert space H. Consider the
map I, : H — O(Q*), where O(Q2*) is the space of holomorphic functions on *, defined
by I'(z)(2) = (z,7v(2)), 2 € Q. Transplant the inner product from H on the range of
I'y. The map I', is now unitary from H onto ranI', = H,. Define K, to be the function
K (w) = T (1)) (2) = (3(0),7(2), 20w € @ Set (K)o () 1= Ky (- w). Thus (K,),
is the function I' (y(w)). It is then easily verified that K, has the reproducing property,
that is,

(Cy () () By (5 w))eanr, = (T5(2)(), Ty (7(@)) (4))ranr,
= (z,7(0))x
= I'\(z)(w), z e H, we Q"

It follows that ||(K,)w(-)||* = K, (w,w). Also, (K,),(-) is an eigenvector for the operator
[, T'T'7 with eigenvalue w in €2

Dy TT((K)w() = Ty TT(I(v(w)))

Since the linear span of the vectors {(K,), : w € Q*} is dense in H,, it follows that
I, TT% is the adjoint M* of the multiplication operator M on H.. We therefore assume,
without loss of generality, that an operator T in B;(£2) can be viewed as the adjoint M* of
the multiplication operator M on some Hilbert space H., of holomorphic functions on *
possessing a reproducing kernel K.

More generally, an operator T' € B,,(2) can be realized as the adjoint of the multipli-
cation operator on a reproducing kernel Hilbert space of holomorphic C"-valued functions
on 2*. Let Ep be the Hermitian holomorphic vector bundle over €2 corresponding to 7.
Let v = {7,...,7} be a holomorphic frame for Er.

Define the map I'; : H — O(Q*,C") as follows

Ly(@)(2) = (@ (@), (2, m(2)T 2€Q we,

where O(Q*,C") is the space of holomorphic functions defined on Q* which take values in

C". It is easy to see that the map I'; is an injective map. Transplant the inner product



from H on the range of I',. The map I'; is now unitary from H onto H., :=ranI',. Define
K., to be the function on * x Q* taking values in the n x n matrices M,,(C):

Ky (zw) = (s(@), D)7,

for z,w € Q*. Set (K) () = K, (-, w). It is then easily verified that K has the reproducing
property, that is,

(Cy (@) (), (B )w()Mranr, = (Fy(x)(-),ZFW(%(@)(.)mmm
= D @) (), Dy (@) (Deanr
= D@ m(@)u i
= (Iy(z)(w),n)er, z€H,neC" weQ"

Now consider,

L (T*x)(w) = (T2, (@), ..., (T2, 3 (@))"
= (2, Tn(®)), ... (, Ty ()"
= ((z,om (), ..., (@, 07,(0)))"
= w((z,nw), ..., (w@))"

Hence

7= MT,,.
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Also, (K, )w()n is an eigenvector for the operator M* = I',TT with eigenvalue w in €;

n

M*(K-)w()n = FvTri(Z(Fw(%(@D))()m))

A remark in [16] relates the trace of the curvature of vector bundle Er to the Hilbert-

Schmidt norm of second fundamental form of Er (viewed as a sub bundle of the trivial
bundle 2 x H) as follows. Let P : Q — L(H) be the map:

P(A) = Brer(r—»), A€,

where P (r—») denotes the orthogonal projection from H to ker(T — \). Treating Er as a
sub bundle of Q x H, they note that —(%P()\) is the second fundamental form and

trace Kr(A) = —[[ ZP(X)|lus,

where || - ||3s denotes the Hilbert-Schmidt norm.
The results of the thesis are in two parts which we briefly describe below.

It is shown in [18] that the curvature g« of the backward shift operator dominates the
curvature KCr if T is a contraction in B;(£2). It is natural to ask if the converse is valid.
However, it is easy to construct an example (see Chapter 3) of a non-contraction which
satisfies the curvature inequality. However, since Kr(w,w) is real analytic, polarization
gives a Hermitian function Kr(z,w). Thus it is natural to study the stronger inequality:
For any subset {z1,...,2,} of D,

(Ks+ (24, 2j) — Ko (2, zj)))n

3,j=1

is positive definite. One of the main results in this thesis says that the curvature inequality

is equivalent to T" being a contraction in a stronger sense than the usual. In the first part



of the thesis, these results have been proved using the familiar notion of infinite divisibility.
Extension to more general domains €2 in C™ and several applications have been given.

In the second part, we obtain an explicit formula for the curvature of the jet bundle
of the Hermitian holomorphic bundle £y on a planar domain 2. Here E; is assumed to be
a pull-back of the tautological bundle on Gr(n,H) by a nondegenerate holomorphic map
f:Q — Gr(n,H) as in Definition 5.14. Clearly, finding relationships among the complex

geometric invariants inherent in the short exact sequence

0 = Ti(Ey) = T (Ef) = Te1(Ef)/ Ti(Ef) — 0 (1.1)

is an important problem, where J;(Ey) represents the k-th order jet bundle. In the paper
[5], it is shown that the Chern classes of these bundles must satisfy

A(Tkr1(Ey)) = c(Ti(Ey)) (T (Ep) /| Tn(Ey))-

We obtain a refinement of this formula.
We now give some of the details.

Let T be an operator in B;(ID), where D is the open unit disc. The following proposition

was proved in [18].

Proposition 1.4. If T is a contractive operator in By(D), then Kr(w) < Kg«(w), w € D,
where S* 1s the backward shift operator.

However if Kr(w) < Kg«(w) for all w in D, then it does not necessarily follow that
T is a contraction!
If K is a positive definite kernel on a planar domain, then by an application of the

Cauchy-Schwarz mequahty, we see that log K (w,w) is p081tlve In general the real

dwdw a*
analytic function %log K(z,w) obtained by polarizing mlog K(w,w) need not be
a positive definite function We provide an example of a positive definite kernel K, in
Chapter 3, for which %= log K(z,w) is not positive definite. Our mam Theorem gives a

necessary and sufﬁClent Condltlon for the positive definiteness of 55— log K (2, w).

Definition 1.5. A positive definite kernel K is said to be z'nﬁm'tely divisible if for all t > 0,
the kernel K is also positive definite.

Definition 1.6. Let G be a real analytic function of w,w for w in some open connected
subset Q) of C™. Polarizing G, we obtain a new function G defined on Q x © which is
holomorphic in the first variable and anti-holomorphic in the second and restricts to G on
the diagonal set {(w,w) : w € Q}, that is, G(w,w) = G(w,w), w € Q. If the function G
is positive definite, that is, the n x n matrix ((é(wi, wj))) is positive definite for all finite

subsets {w1, ..., w,} of £, then we say that G is a positive definite function on €.
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Theorem 1.7. Let ) be a domain in C and let K be a positive, real analytic function on
QO x Q. If K is infinitely divisible then there exists a domain )y C ) such that negative of

62
Oow 0w

analytic function on 2 and the function 5

log K is a positive definite function on €)y. Conversely, z'ff( s a real
82

w 0w
exists a neighborhood Qo C € of wq, for every point wg € €2, and an infinitely divisible

~

kernel K on Qg x Qg such that K(w,w) = K(w,w) for all w € Q.

the curvature

log K is positive definite on €, then there

Definition 1.8. If K is a non negative definite kernel such that (1 —zw) K (z,w) is infinitely

divisible then we say that M* on Hg is an infinitely divisible contraction.
The following Corollary completes the study of curvature inequalities begun in [18].

Corollary 1.9. Let K be a positive definite kernel on the open unit disc. Assume that the
adjoint M* of the multiplication operator M on the reproducing kernel Hilbert space (H, K)

belongs to By(D). The function azd;m log ((1 — zw)K(z,w)) is positive definite if and only
if the multiplication operator M s an infinitely divisible contraction.

Definition 1.10. Let H be a Hilbert space and let T = (T}, ...,T,,) be a commuting tuple
of bounded linear operators on H. We say that T is a row contraction if > " ;T < Iy.

Let B™ be the unit ball in C™ and M = (M,,...,M,,) be the m-tuple of (co-
ordinate) multiplication operators on a reproducing kernel Hilbert space with reproducing
kernel K, which is assumed to be bounded. Then M is a row contraction if and only if
(1 — (z,w))K(z,w) is positive definite.

Definition 1.11. Let K be positive definite kernel on B™ and M = (M, ..., M,,) be the
m-tuple of (co-ordinate) multiplication operators on a reproducing kernel Hilbert space
with reproducing kernel K. Then we say that M is an infinitely divisible row contraction
if (1 — (z,w))K(z,w) is an infinitely divisible kernel.

In Chapter 4, a multi-variate analogue of Theorem 1.7 is given. The following corol-

lary is an immediate consequence.

Corollary 1.12. Let K be a positive definite kernel on the open unit ball B™ C C™.
Assume that the adjoint M* = (M{,..., M) of the tuple of multiplication operators
M = (M,,...,M,,) on the reproducing kernel Hilbert space (H,K) belongs to Bi(B™).
The function ( __og(1— (w,w))K(w,w)))TT;

ow; 8u7j i,j=1"

w € B", is positive definite if and only
if the operator M is an infinitely divisible row contraction.
Several other applications are given for domain like the polydisc.

In Chapter 5, we compute the curvature of the jet bundle obtained from a Hermitian

holomorphic line bundle £; in closed form. Here L is the line bundle on a planar domain



Q) which is the pull-back of the tautological bundle S(n,H) on Gr(1,H) by a holomorphic
nondegenerate map f : Q — Gr(1,H).

The following Theorem is an immediate consequence of this curvature formula for
the jet bundle.

Theorem 1.13. Let Ly and L be Hermitian holomorphic line bundles. Let J(Ly) and
Ji(Lj) be corresponding jet bundles of rank k+1. The two jet bundles Jx(Ly) and Jix(Lf)
are locally equivalent as Hermitian holomorphic vector bundles if and only if the two line
bundles Ly and Ef are locally equivalent as Hermitian holomorphic vector bundles.

Also, the curvature of the determinant bundle of the jet bundle J;(L¢) corresponding
to the line bundle Ly is explicitly obtained.

Proposition 1.14. The curvature of the determinant bundle det Jy(Ly) is given by the
following formula
(det Jr—1h)(z)(det Tri1h)(2)

Kaet 7.2, (2) = (et Th)2(2) dz A dz.

The following Corollary is an immediate consequence of this formula.

Corollary 1.15. Let Ly and L be Hermitian holomorphic line bundles over a domain
Q C C. The following statements are equivalent:

1) det Jp(Ly) is locally equivalent to det Jp(L;) and det Jri1(Lyr) is locally equivalent
f f f
to det Jy41(Lj), for some k € N

(2) Ly is locally equivalent to L;.

We now describe a formula for a Hermitian holomorphic vector bundle E; on a
bounded domain 2 C C™.

Let {s1, -+, s,} be a local holomorphic frame for Ey. Set
J Isp .
Tp(,z):sl(z)/\--~/\5n(z)/\£(2), 1<p<n,1<j<m.
j

and
hij(z) = (((T"(z),rg(z»))n 1<i,j<m, z€q.

P p,q=1’

With this notation, the curvature Kg, of the vector bundle E; may be expressed as

m

K, (2) = (deth(2))'h™'(2) Y hyj(2)dz; Adz,

i,j=1
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where h is the metric h(z) = (((s;(2), si(2)))). Applying this formula to domains in C, we
obtain a natural generalization for the curvature formula of the jet bundle J;(Ey), where
the rank of the Hermitian holomorphic vector bundle Fy is assumed to be n. This closed
form for the curvature of J,(Ey) gives to a very interesting relationship involving the jet
bundles Ji(Ef), k =1,2,... and their quotients:

(trace & Iann) (ICJ;C(E‘,«)) — (trace & Iann) (’Cjk—l(Ef)) = ICJk(Ef)/Jk—l(Ef)(Z>'

involving the short exact sequence 1.1.



Chapter 2

Preliminaries

2.1 Reproducing Kernel

Let € be a bounded, connected, open subset of C™ and M, (C) be the set of all n x n

matrices over C.

Definition 2.1. A non negative definite function K : Qx Q) — M,,(C) which is holomorphic
in the first variable and antiholomorphic in the second variable is said to be a reproducing
kernel on ) if it satisfies the positivity condition:

q

Z<K<w(l)7w0))§]7<—l>@” > 07 U)(l), s 7w(q) S Q7 <17 st 7((1 S an q= L. (21)

ij=1

Given a non negative definite kernel K, consider the linear span H° of all vector from
the set
S ={K(,w)(,we,(eC"}.

Define the inner product on H° as follows,

P P P
(DK w)G, Yy K(w?)g) =Y (K, w)g, Ghen. (2:2)
i=1 i=1 t,j=1

The completion H of the inner product space H' is a Hilbert space of holomorphic functions
on €. It can be seen easily that

(f(w),Qcn = (f, K(,w)(n, we€Q, C€C”, feEH. (2.3)

Remark 2.2. In the above definition, we have assumed that the function K defines a non

negative definite sesquilinear form. It then follows that K is positive definite. This is a
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consequence of the Cauchy-Schwarz inequality: For f € H,( € C" and w € €2, we have

[(f(w), Qenl = [(f, K( w)Onl
< K (w, w)¢, Cen

Thus if || f|] = 0 then f = 0.

Conversely, If H is a Hilbert space of holomorphic functions defined on €2 taking
values in C™ and the evaluation function e,, is bounded for each w € €1, then there exists a
function e : C* — H such that (e, (f),() = (f, e’ (()), for all f € H and ¢ € C". Clearly,
fLrane! if and only if (e, f, () = (f, e (()) = 0 for every ¢ € C". Hence f_Lrane for all
w € Qif and only if f = 0. Hence H is generated by the subspaces e} (C™). Therefore the

linear space

H = {Ze;;j(gjﬂwj €0, eChre N}

j=1

e = <

€u,; (G, Zezj(@)>
j=1 j=1

= 3 (e, (6).G)-

jk=1

is dense in ‘H. For f € ﬁ,

<

Since || f||? > 0, it follows that the function K (z,w) = e.e’, is non negative definite as in
(2.1). The function K has the reproducing property

(L K w)n = (f en(Q)n
= (ew(f), Ocn
= (f(w),Qcn.

The reproducing property (2.3) implies that K is uniquely determined.

Definition 2.3. A Hilbert space of holomorphic functions on some bounded domain 2 C C™
will be called a reproducing kernel Hilbert space if the evaluation e, at w is bounded for
w in some open subset of ).

If K is a reproducing kernel for some Hilbert space H, then
H =span{K(-,w)( :w € Q,{ € C"}.

We can give an alternative description of a reproducing kernel K in terms of an orthonormal
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basis {ex : k > 0} of the Hilbert space H as follows; We think of ex(w) € C" as a column
vector for a fixed w € Q and let e, (w)* be the row vector (el (w),...,ef(w)). We see that

<K(Zv w)Cv 77> = <K(’ w)Ca K('> Z)U)

for any pair of vectors ¢, € C". Therefore, we have the following very useful representation
for the reproducing kernel K;

K(z,w) = Z ex(2)er(w)”, (2.4)

where {e : k > 0} is any orthonormal basis in H.

Definition 2.4. A non negative definite kernel K is said to be normalized at wy € § if
there exist a neighborhood € of wy in Q such that K(z,wy) =1 for all z € Q.

A detailed discussion of reproducing kernels is given in [3].

2.2 The Cowen-Douglas Class

Let H be a separable Hilbert space and T; : H — H,1 < i < m, be bounded linear operators
such that T;T; = 1;7;,1 < 4,5 <m. Let T = (11, ...,T,,) denote the m-tuple of operators.
We associate with the m-tuple T' a bounded linear operator Dy : H — H & ... ® H defined
by Dr(z) = (Tvz, ..., Thx),x € H. Let  be a domain (open and connected set) in C™.
For w = (wy,...,wy) in Q, let T — w denote the operator tuple (T} — wy, ..., T, — Wy,).
Let n be a positive integer.

Definition 2.5. The m-tuple T is said to be in the Cowen-Douglas class B,,(?) if

(1) ran Dr_,, is closed for all w € Q;



14 2. Preliminaries

(2) span{ker Dr_,, : w € Q} is dense in H; and
(3) dim ker Dp_,, = n for all w € Q.

For T in B,,(2) let (Er, ) denote the sub-bundle of the trivial bundle © x #H defined
by
Er ={(w,z) € Q x H:x € ker Dr_,,} and w(w,z) = w.

To show that Er is actually a holomorphic vector bundle over {2 we need to show that

locally in a neighborhood of each point wg € €) there exist holomorphic H- valued functions
1 (w), ...,y (w), whose values span ker Dr_,,. This is given in [8, pp. 16]. Since 7! (w) =
(Er), = ker Dp_,, is a subspace of ‘H, the Hermitian structure on Er comes from #. Hence

Er is a Hermitian holomorphic vector bundle.

Theorem 2.6. Two commuting tuples of operators T and T in B.,.() are unitarily equiva-
lent if and only if the vector bundles Ex and Ez are equivalent as Hermitian holomorphic

vector bundles over some open subset 2y of @ C C™.

When  is an open subset of C and T,7T € B,.(2), Theorem 2.6 is proved in [7,
Theorem 1.14].

For a domain 2 in C™, it is noted in [8, pp. 16] that theorem 2.6 is valid. In general,
for a vector bundle E7 of rank n, n > 1, the curvature of Er, along with certain covariant
derivatives of the curvature, form a complete set of invariants for the operator T' (cf. [7]
and [8]). For line bundles, however, the curvature forms a complete invariant. In this case,
theorem 2.6 amounts to saying that two operators T', T in B () are unitarily equivalent if
and only if the curvatures of the corresponding line bundles Er and Ez are equal on some
open subset of €.

Every commuting m-tuple of operators T = (T1,...,T,,) € B,() can be realized as
the adjoint of an m-tuple of multiplication operators by coordinate functions on a Hilbert
space of holomorphic functions on an open set Q* = {w € C™ : w € Q}. We choose a
holomorphic frame {~i,...,7,} on some open subset 5 of Q. The map I" : Qg — L(C", H)
defined by

is holomorphic. Let O(2§, C") be the set of all holomorphic C"-valued functions on €.
Define the map Ur : H — O(€25, C") by

(Urz)(w) =T(w)*(z), xe€H, we .
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It is easy to see that Ur is linear and injective. Let Hpr = ran Ur and define the sesquilinear
form (, )r on Hr by
<UFx7 Ur@)r = <‘Tay>7 T,y € H.

It is shown in [9, Remark 2.6] that
(1) UrT; = M;}Ur, where (M;f)(2) = z;f(2),2 = (21, .., 2m) € Q.
(2) Kr(z,w)=T(2)T(w),z,w € Qf is a reproducing kernel for the Hilbert space Hr.
(3) There exists wy € € such that Kr(z,wy) = I for all z € .

Conversely, by imposing certain conditions on the kernel K :  x Q@ — M,,(C) we
can ensure the boundedness of each of the multiplication operators My, ..., M,, on the
associated reproducing kernel Hilbert space. One may impose additional conditions on K
to ensure that M* = (M{,..., M) is in B,,(2*) by following [9].

Let H g be the reproducing kernel Hilbert space of holomorphic functions with repro-
ducing kernel K defined on €2. Let the multiplication operators M; : Hx — Hg,1 < i < m,
be bounded linear operators. Let ¢, € C™ and for fixed w € 2, 1 < i < m,

(K(,w)(, MK (-, w)n) = (M;K(-,w)(, K(-,w)n)
(2K (-, w)¢, K (-, w)n)
(w; K (w, w)¢,m)
(K(-,w)¢, wi K (-, @)n).

Hence
MK (@) = @K (-, @), (2.5)

Let M = (M, ..., M,,) be the commuting m-tuple of multiplication operators and
let M* be the (M;,..., M}). It then follows from 2.5 that the eigenspace of M* at w € Q*

contains the n- dimensional subspace ran K (-, w).

Suppose M* is in B,,(Q2*) and K (w, w) is invertible for every w € Q. For fixed wy € 2
there exists a neighborhood A of wy such that K(z,wy) is invertible for all z € Aq. Let
Kreg be the restriction of K on Ay x Ag. Define a kernel function Ky on Ag by

Ko(z,w) = ¢(2)K(z,w)p(w)*, z,w € Ag (2.6)

where ¢(z) = Kres(wo, wo)?Kres(z,wo) ™. Clearly K is normalized at wy. Let M, be

the m-tuple of multiplication operators on Hg,. It is not hard to establish the unitary



16 2. Preliminaries

equivalence of the two m-tuples M and M, (cf. [9, Lemma 3.9 and Remark 3.8]). First
the restriction map res : f + fires, which restricts a function in Hg to Ay is a unitary
map intertwining the m-tuple M on Hx and the m-tuple M on (Hy)pes = ran res. The
Hilbert space (H k )yeg is the reproducing kernel Hilbert space with reproducing kernel Kres.
Second, suppose that the m-tuples M defined on two different reproducing kernel Hilbert
spaces H1 and Hs are in B,(€2) and X : H; — Hs is a bounded operator intertwining these
two operator tuples. Then X must map the joint kernel of one tuple in to the other, that is,
XKi(,w)n = Ky(-,w)p(w)n, n € C", for some function ¢ : Q@ — M, (C). Assuming that
the kernel functions K; and K5 are holomorphic in the first variable and anti-holomorphic
in the second variable, it follows, as in [9, pp. 472], that ¢ is anti-holomorphic. An
easy calculation shows that X* is the multiplication operator Matr. If the two operator

tuples are unitarily equivalent then there exists an unitary operator U intertwining them.
Hence U* must be of the form M, for some holomorphic function . Also, the operator
U must map the joint kernel of (M — w)* acting on H; isometrically onto the joint kernel
of (M — w)* acting on H, for all w € Q. The unitarity of U is equivalent to the relation

—t
Ki(,w)n = U"Ky(-,w)(w) rn for all w € Q and n € C". It then follows that

Ky (2w) = () K (2, w)d(w) (27)

where ¢ : Ay — GL(C") is some holomorphic function. Here GL(C™) denotes the group of

all invertible linear transformation on C".

Conversely, if two kernels are related as in equation 2.7, then the corresponding tuples

of operators are unitarily equivalent since
MZ*K(’ w)” - le(a w)na w e Qa ne Cn7

where (M;f)(2) = zif(2), f € Hk for 1 <i<m.

2.3 A Co-ordinate Free Approach to the Operators in
the Cowen-Douglas Class

A slightly different description of these ideas is given in [14], where the vector bundle of
Cowen-Douglas appears as an antiholomorphic vector bundle instead of a holomorphic one.
We reproduce, closely following [14, pp. 5339], the correspondence between an operator in

the Cowen-Douglas class and its realization as the adjoint of a multiplication operator.



2.3. A Co-ordinate Free Approach to the Operators in the Cowen-Douglas Class 17

2.3.1 Vector Bundles

Let N be a complex manifold and let £ = N be complex vector bundle over N of rank n.
We shall assume for our discussion that E is a trivial vector bundle, that is, there exists
a holomorphic function £ — N x C" such that ¢(v) = (2,¢,(v)) for v € E, = 7 1(2)
with ¢, : £/, — C" linear. Let E} be the complex anti-linear dual of £, for z € M. We
write [u, v] for u(v),u € E,*,v € E,. We consider C" to be equipped with its natural inner
product and identify it with its own anti-linear dual (so & € C™ is identified with the anti-
linear map 1 +— (£, 1)cr). Then ¢ : C* — Ef is the dual of the map ¢, : E, — C". We set
¥, = ¢ and ¥(u) = (2,1, (u)) for u € EF. This makes E* into a complex vector bundle
with trivialization . If F is a holomorphic vector bundle then E* is an anti holomorphic

vector bundle and vice-versa.

2.3.2 Reproducing Kernels

Let H be a Hilbert space whose elements are sections of a vector bundle £ — M and
suppose the evaluation maps e, : H — E, are continuous for all z € M. Then setting

— *
K, = e}, we have

[u, f(2)] = [w, e=(f)] = (Keu, f)n, vwe EL feH. (2.8)

For all w € M, K,u is in ‘H and is linear in u. So we can write K, (2)u = e,(K,u) =
e.el(u). We also write K(z,w) = K,(z) = e.e’ which is a linear map E} — FE,, and is
called the reproducing kernel of #, (2.8) is the reproducing property.

Clearly, K(z,w)* = K(w,z). We have the positivity Z?,k:l[uk? K (2, zj)u;] > 0 for

any 2i,...,%p in M and wy,...,u, € E} which is nothing but the inequality

p

Z (€Z uk, € uj)y > 0.

J,k=1

conversely, a K with these properties is always the reproducing kernel of a Hilbert space
of sections of E (cf. [4]).

Suppose each e, is non-singular, that is, its range is the whole of E,. Then K, = €}
is an embedding of E7 into H. Postulating that this embedding is an isometry we obtain

a canonical Hermitian structure on E*. Using (2.8) we can write for the norm on E*,
lull? = | Kzull3, = [u, K (2, 2)ul, we E.
The vector bundle £ has the dual Hermitian structure. For v € E, we have

]z = [K(z,2) " v, 0.
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It follow that
|[u, v]* < [K(z,2)" v, v][u, K (2, 2)u]

for all w and v. Since K(z,w) is bijective by hypothesis, any v € E, can be written as
v = K(z,2)u with v’ € E¥ and the inequality to be proved is equivalent to

I[u, K (2, 2)u]]* < [/, K(2, 2)u][u, K (z, 2)u].

But this is just the Cauchy-Schwarz inequality.

When E is a holomorphic vector bundle, K (z,w) depends on z holomorphically and
on w anti-holomorphically. Hence K (z,w) is completely determined by K(z, z). It follows
that K (z,w) is completely determined by the canonical Hermitian structure of F(or E*).

In the last paragraphs, we had a Hilbert space H of sections of E and (under the
assumption that each e, is surjective) we associated to it a family of embeddings of E?,
the fibre of E*, into H. This procedure can be reversed. Suppose now that E is a vector
bundle and fibres E; of E* form a smooth family of subspaces of some Hilbert space H
which together span H, that is, £* is an anti-holomorphic sub-bundle of the trivial bundle
M x H. We write ¢, : E* — H for the (identity) embeddings. We define f(z) = .*f for
f e H,ze M. If we denote by M the Hilbert space of all f, where f € H, with norm
£l = IIfll, each e, is continuous, so we have a reproducing kernel Hilbert space. The
reproducing kernel is determined by K,u = ¢ u.

2.3.3 Operators in the Cowen-Douglas Class

Given a domain 2 C C, we say an operator 1" on a Hilbert space H is in B,(Q) if z
is an eigenvalue of T, the range of the operator T — Z is closed, and the corresponding
eigenspaces I, are of constant dimension n for every z € . It is proved in [7] that the
spaces F, determine an anti-holomorphic Hermitian vector bundle ' C Q x H. (In [7] the
eigenvalues z are assumed to be in €2 so, F is a holomorphic vector bundle.) We write, for
z € Q,1, : F, — H for the identity embedding. Hence, £ = F* is a holomorphic vector
bundle.

To the element f of H there corresponds the section f of E (defined by f(z) = ¢ f)
and these sections form a Hilbert space ‘H isomorphic with H and having the reproducing
kernel determined by K,u = i, u.

Under this isomorphism, the operator on ‘H corresponding to 71" is M*, where M is
the multiplication operator M f(z) = zf(z). In fact (cf. [7]) for any u € E*,

[, T*F(2)] = (0, Tf) = (Teau, f) = Zozu, f) = [u,2f(2)] = [u, M(2)].



Chapter 3

Infinitely Divisible Metrics and
Curvature Inequalities - Planar Case

In this section we consider operators in the Cowen-Douglas class B1(2), where 2 is a
planar domain. Let T' € B1(Q2). Fix w € Q and let 7 be a holomorphic section of the
line bundle Er. From [7, Lemma 1.22], it follows that the vectors v(w) and Zv(w)
from a basis of ker(T" — w)?. Let Np(w) = T|yer(r—w)2 and {y1(w),y2(w)} be the basis
obtained by applying Gram-Schmidt ortho-normalization to the vectors y(w) and %'y(w).
The linear transformation Nz (w) with respect to the basis {71 (w),7y2(w)} has the matrix

Nop(w) = (w hTW)) 7

0 w

representation

N

where hr(w) = (= Kr(w)) 2.
The curvature Kp(w) of an operator 7' in By (€2) is negative. To see this, recall that
the curvature may also be expressed (cf. [7, pp. 195]) in the form
[y () [ () [I* = [ (w), y(w)) [
[y (w)]*
Applying the Cauchy-Schwarz inequality, we see that the numerator is positive.

Let {eg,e1} be an orthonormal set of vectors. Suppose N is a nilpotent linear trans-
formation defined by the rule

e1 — aey, g — 0, a eC.

Then |a| determines the unitary equivalence class of N.
The localization Np(w) —wly = (8 hT(gw)> of the operator 7" in B;(f2) is nilpotent.
Now, hr(w) > 0 since we have shown that the curvature Kr(w) is negative. Hence the cur-

vature Cr(w) is an invariant for the operator 7. The non-trivial converse of this statement
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follows from Theorem 2.6. Thus the operators 1" and T in B1(Q2) are unitarily equivalent
if and only if Np(w) is unitarily equivalent to Nx(w) for every w in €.

Note that if T € B;(D) is a contraction, that is, ||T'|] < 1, then Np(w) is a con-
traction for each w € . Observe that (§j) is a contraction if and only if |a|] < 1
and [c> < (1 —a*)(1 — [b|*). Thus ||[Np(w)| < 1 if and only if Kr(w) < — gy
w € D. The adjoint S* of the unilateral shift operator S is in B;(ID). It is easy to see that
Y+ (w) = (Liw,...,w", ...) € {2, w € D, is a holomorphic section for the correspond-
ing Hermitian holomorphic line bundle Eg«. The norm |[|vg-(w)||? of the section g« is
(1 — Jw[*)~! and hence the curvature Kg«(w) of the operator S* is given by the formula
——+—— . w € D. We have therefore proved:

(1=|w|?)?

Proposition 3.1. If T is a contractive operator in By (D), then the curvature of T is bounded
above by the curvature of the backward shift operator S*.

We think of the operator 5* as an extremal operator within the class of contractions
in B;(D). This is a special case of the curvature inequality proved in [18]. The curvature
inequality is equivalent to contractivity of the operators Np(w), w € D, while the contrac-
tivity of the operator T' is global in nature. So, it is natural to expect that the validity of
the inequality Kp(w) < —m, w € D, need not force T to be a contraction. Indeed,
there exists an operator T', ||T'|| > 1, in By(D) with r(w) < Kg-(w). We provide such an

example here.

Remark 3.2. The main point of this note is to investigate additional conditions on the cur-
vature, apart from the inequality we have discussed above, which will ensure contractivity.
We give an alternative proof the curvature inequality. A stronger inequality becomes ap-
parent from this proof. It is this stronger inequality which, as we will show below, admits
a converse.

The contractivity of the adjoint M™* of the multiplication operator M on some re-
producing kernel Hilbert space Hy is equivalent to the requirement that K*(z,w) :=
(1 — zw)K (z,w) is positive definite on D (cf. [1, Corollary 2.37] and [12, Lemma 1]). Sup-
pose that the operator M* is in B;(ID). Here is a second proof of the curvature inequality:

We have
2 82 1 9 i
Qwow og K (w, w) Owow o8 (1—|wl?) * Owow og K*(w,w), w € D,

which we rewrite as

2

K (w) = Kg«(w) — 5 0 log K*(w,w),w € D.

wOW
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Recalling that %log K*(w,w) must be positive (see (3.1)) as long as K* is positive
definite, we conclude that

K (w) < Ks«(w), w e D.

The fibre at w of the holomorphic bundle Ej« for M* in B(€2) is the one-dimensional
kernel of the operator M*—w spanned by K, (), w € Q*. In general, there is no obvious way
to define an inner product between the two vectors K, (-) and (2 K,,)(-). However since
these vectors belong to the same Hilbert space (cf. [9, Lemma 4.3]), in our special case, there
is a natural inner product defined between them. This ensures, via the Cauchy-Schwarz
inequality, the negativity of the curvature K. The reproducing kernel function K of the
Hilbert space Hx encodes the mutual inner products of the vectors { K, (:) : w € Q*}. The
Cauchy-Schwarz inequality, in turn, is just the positivity of the Gramian of the two vectors
Ky(-) and (£ K,)(-), w € Q*. The positive definiteness of K is a much stronger positivity
requirement involving all the derivatives of the holomorphic section K, (-) defined on Q.
We exploit this to show that the function — ( 52—1log K)(z,w) obtained by polarizing the

curvature —( " Jog K )(w, w) is actually negative definite not just negative, whenever K*

Owow
is assumed to be positive definite for all ¢ > 0.

We now construct an example of an operator which is not contractive but its cur-
vature is dominated by the curvature of the backward shift. Expanding the function
K(z,w) = W# in zw, we see that it has the form 8 + 162w + 157 20”  Therefore, it
defines a positive definite kernel on the unit disk D. The monomials ==, (w1th [1]]? = 4,
+ for n > 2) form an orthonormal basis in the corresponding

I2]* = 75 and [l2"|]* =
e _sntt
ERNERAS

|2 "II

16
Hilbert space Hy. The multiplication operator M maps IIz:H to

Hence it

15
Evidently, it is not a contraction. (This is the same as saying that the function K*(z,w) =

corresponds to a weighted shift operator W with the weight sequence {\/7 VE 2T T

8 + 8zw — z%w? is not positive definite.) The operator W is similar to the forward shift S.
Since the class B;(D) is invariant under similarity and S € B;(D), it follows that W is in
it as well. However,

0 8(8 — 4fw|* — [w])
— log K* = — D
Fwas 28 KW 0) = ~ g —upy Y €D
is negative for |w| < 1. Hence we have shown that ICp/«(w) = awaw log K (w,w) < Kg«(w),

w € D, although M* is not a contraction.

This is not an isolated example, it is easy to modify this example to produce a family

of examples parameterized by a real parameter.
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3.1 Infinite Divisibility and Curvature Inequality

Starting with a positive definite kernel K on a bounded domain €2 in C, it is possible to
construct several new positive definite kernel functions. For instance, if K is positive defi-
nite then the kernel K™, n € N, is also positive definite. Indeed, a positive definite kernel
K is said to be infinitely divisible if, for all ¢ > 0, the kernel K* is also positive definite.
The following Lemma shows that if K is positive definite then the kernel (8—2K ) (z,w)

0z 0w
is positive definite as well.

Lemma 3.3. For any bounded domain € in C, if K defines a positive definite kernel on €2

then (%K) (z,w) is also positive definite.

First Proof. Without loss of generality, assume that 0 is in 2 and let

o0

K(z,w) = Z Ay 20"

m,n

be the power series expansion of K around 0. It is shown in [9, Lemma 4.1 and 4.3] that the
positivity of the kernel K is equivalent to the positivity of the matrix of Taylor co-efficients
of K at 0, namely,

app  Gop1 Qo2 - Qop
aip @11 A12 - Qip
H,(0;K) =] .
Apo QAp1 QAp2 - App
for each n € Z,.. The function %K (z,w) admits the expansion
D (m+ 1) (0 + Dagmatynen 20"
m,n=0
Therefore,
ain  2a12 - nap
2a91  4az -+ 2nag,
Hy, 1 (0; aza;mK) =
NGp1 2NGpa -+ Nlapy
Clearly, we have
O1x1 01><n2 '
<0n><1 Hn_l(O;a,me)> == D(H’n,(07 K))Dy
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where D : C**' — C"*! is the linear map which is diagonal and is determined by the
sequence {0,1,...,k,...,n}. It therefore follows that H,,(0; -2 Seom a- K) is positive definite for
all n € N. Consequently, %;DK is a positive definite kernel.

This completes the proof.
Second Proof. Let K#(z,w) = (aza;wK)(z,w). Let wq,...,w; be [ points in € and
ai,...,q; be scalars in C. We have

E _ E el
az www] aﬂ - OézOé] 8w wJ’BwK >

4,j=1 4,j=1

l
= 0
= > alK
=1

> 0

This completes the proof. ]

Definition 3.4. Let G be a real analytic function of w,w for w in some open connected
subset Q of C™. Polarizing G, we obtain a new function G defined on Q x Q which is
holomorphic in the first variable and anti-holomorphic in the second and restricts to G on
the diagonal set {(w,w) : w € Q}, that is, G(w,w) = G(w,w), w € Q. If the function G
is positive definite, that is, the n X n matrix ((C?(wi, wj))) is positive definite for all finite
subsets {wy, ..., wy,} of £, then we say that G is a positive definite function on €.

The curvature K of a line bundle is a real analytic function. We have shown that
—K(w), w € Q, is positive. However, the following example shows that —K need not be
positive definite!

Example 3.5. Let K(z,w) =14 0, a;z2'@w" be a positive definite kernel on the unit disc
D. The kernel K then admits a power series expansion on some small neighborhood of 0.
Consequently, we have

log K(z,w) = log(1l+ Z ;2" w")
i=1
_ f:aiziwi _ o ;L iZ'w')? i o giziwi)g

=1

= a;zw+ (ag — 7)22102 + (ag — a1ag + )23w3 +...

It follows that

(323'1OgK)( w) = a1—|—4(a2—“—j)zw+9(a3_a1a2+%)Z2w2+”'
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Thus if we choose 0 < a;, i € N, such that ay < %, then from [9, Lemma 4.1 and 4.3], i
follows that 5 3 —log K is not positive definite.

In partlcular, taking K to be the function 1 + 2w + $2%w? + > o, z'w’, we see that

t2t — 1
K'(z,w) =1+ tzw + %22102 +

is not positive definite for ¢ < %

It is therefore natural to ask if assuming that K is infinitely divisible is both necessary
and sufficient for positive definiteness of the curvature function —KC. The following Theorem
provides an affirmative answer.

For the proof of the following Theorem, it will be useful to recall the notion of
conditional positive definiteness.

Definition 3.6. Let ) be domain in C™. A complex valued function L on Q x € which
is holomorphic in the first variable and antiholomorphic in the second variable is called
a Hermitian kernel if L(z,w) = L(w, z) for all z,w € Q. A Hermitian kernel is said to
be conditionally positive definite if, for any positive integer n and any choice of elements
wy, ..., w, in Q and complex scalars oy, ..., a, with Y"1 a; = 0, the inequality

Z @i@jL(wi, wj) Z 0

ij=1
holds.

Theorem 3.7. Let 2 be a domain in C and let K be a positive, real analytic function on
O x Q. If K s mﬁm'tely divisible then there exists a domain )y C ) such that negative of
the curvature 7= 6_ log K is a positive deﬁmte functwn on y. Conuversely, sz( s a real

analytic function on ) and the function 3 aw logK 18 positive definite on §), then there
exists a neighborhood Qo C Q of wy, for every point wg € €2, and an infinitely divisible

kernel K on Qo x Qg such that K (w,w) = K (w,w) for all w € Q.

Proof. For each t > 0, assume that K' is positive definite on . This is the same as the
positive definiteness of exp(tlog K), t > 0. Clearly t!(exp(tlog K) — 1) is conditionally
positive definite. By letting ¢ tends to 0, it follows that log K is conditionally positive
definite. Hence at an arbitrary point in €2, in particular at wy, the kernel

Ly (z,w) =log K(z,w) — log K(z,wy) — log K (wo, w) + log K (wq, wy)

is positive definite. This is essentially the Lemma 1.7 in [19]. From Lemma 3.3, it follows
that 5-—- a - L, is positive definite on (2. Note that that there exist a neighborhood €2y C 2 of
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wp such that log K (z,wy) is holomorphic on €. Hence from the equation above, negative
of the curvature %2% log K is positive definite on €)y. This proves the Theorem in the
forward direction.

For the other direction, without loss of generality, assume that wy = 0. The function
IC defined on some open neighborhood U x U of (0,0) obtained by polarizing the real
2o
the second. It is positive definite on it by hypothesis. Let K(z,w) = Zﬁn An 20" be

analytic function 5 log K is holomorphic in the first variable and anti-holomorphic in

the power series expansion of IC on U x U. The function

K(z,w) = mn ZmH gt
(z,w) m;zo (m+1)(n+1)
is convergent on U x U. Then

w B gy
B aio an a2 ., _ain
H(0:K):=| * 1 0

an0 anl an2 ... Ann
(n+1) 2(n+1) 3(n+1) (n+1)2

Just as in the proof of Lemma 3.3, this time, setting D : C**' — C"*! to be the linear
map which is diagonal with the diagonal sequence {1,2,...,n + 1}, we find that

H,(0;K) = D' (H,(0;K)) D",

Appealing to [9, Lemma 4.1 and 4.3], as before, we conclude that K is a positive definite
kernel on U x U. We also have

2

ow 0w

(log K — IE)(w,w) =0, weU.

Therefore, (log K — K)(w, w) is a real harmonic function on U and hence there exists a
holomorphic function ¢ such that

log K (w, w) — i&(w,w) = (Re)(w) := P(w) ‘; (w)

and thus

e\ ‘

K (w,w) = exp(@) exp(K(w, w)) exp( 2“’)), weU.

Let K : Q2 x 0 — C be the function defined by the rule

K(z,w) = exp(¢(22)) exp(K(z,w)) exp( (2“’ ), z,w e U.

©-
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For t > 0, we then have

K'(z,w) = exp(t¢(22)) exp(t/%(z,w))exp(t@), z,w e U.

By construction K(w,w) = K(w,w), w € U. Since K is a positive definite kernel as
shown above, it follows from [19, Lemma 1.6] that exp(tK) is a positive definite kernel
and therefore K is a positive definite kernel on U for ¢ > 0 completing the proof of the

converse. OJ

Remark 3.8. If K is a non negative definite kernel such that (1 — zw) K (z, w) is infinitely
divisible then we say that M* on Hg is an infinitely divisible contraction.

We now give an example to show that a contraction need not be infinitely divisible.
Take

3
K(zyw) = (1—z0) (L4 20+ 2220° + ) 2'w')
i=1

= 1420+ ) (n+3)z"a"
n=2
Clearly K defines a positive definite kernel on D). Since (1 — zw)K (z,w) is also positive
definite, it follows that the adjoint of the multiplication operator M* on Hy is contractive.
Bt t(2t—1
(1= zw)K(z, w))t =1+tzw+ %227@2 +
is not positive definite for ¢ < % as was pointed out earlier. Hence M* is not an infinitely

divisible contraction on Hx.

The following Corollary is a partial converse to the curvature inequality from [18] for

operators in the Cowen-Douglas class B (D).

Corollary 3.9. Let K be a positive definite kernel on the open unit disc. Assume that the
adjoint M* of the multiplication operator M on the reproducing kernel Hilbert space Hy
belongs to By(D). The function %;w log ((1 — zw)K(z,w)) is positive definite if and only
if the multiplication operator M is an infinitely divisible contraction.

Proof. Theorem 3.7 says that the positive definiteness of

2 log (1 — zw) K (2,w))

is equivalent to ((1 — zw)K(z, w))t is positive definite for all ¢ > 0. Hence the function
o2

0z 0w

is an infinitely divisible contraction. In particular, M is a contraction (¢t = 1). O

log ((1 — zw) K (z,w)) is positive definite if and only if the multiplication operator M



Chapter 4

Infinitely Divisible Metrics and
Curvature Inequalities - Higher
Dimensional Case

We generalize the results of the previous chapter to operators in the Cowen-Douglas class
B1(2) when  is a domain in C™.

4.1 Negativity of the Curvature in General

In this section, we discuss the Cowen-Douglas class of commuting m-tuples of operators
T = (T\,...,T,), acting on a separable complex Hilbert space #, for a bounded domain
), not necessarily planar, the corresponding Hermitian holomorphic vector bundle

Er ={(w,z) € Q x H :x € ker Dp_,}

and the curvature of Er (cf. [8,9]). Here, the operator Dy : H — H & ... & H is defined by
Dr(z) = (Thz,...,Tyx), x € H. For w = (wy,...,wy,) € Q, let T —w denote the operator
tuple (11 — wy, ..., T, — wy,). We see that ker Dp_,, = ML, ker(T; — w;). Recall that the
curvature of the holomorphic hermitian line bundle Er is the (1,1) form

9 log [|ly(w)]f? _
for some open subset {2y C ) and a non-zero holomorphic section v of Ep defined on €.
Let

0*log || y(w) [|\\m
KT(w> - (( - awzau—}] ))i,j:17 w e QO)
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denote the curvature matrix. In general, for a Hermitian holomorphic vector bundle, there
are two well-known notions of positivity due to Nakano and Griffiths (cf. [10, page 338]).
These two notions coincide in the case of a line bundle, and one talks of a positive line
bundle in an unambiguous manner. The following Proposition shows that the line bundle
corresponding to a commuting tuple of operators in B;(£2) is negative.

Proposition 4.1. For an operator T in B1(Q2*), the matriz Kp(w) is negative definite for
each w € .

First Proof. Fix wy € Q. As before (cf. [9]), it follows that T can be realized as M™ =
(M, ..., M) where M; is the multiplication operator by the co-ordinate function z; on

the Hilbert space Hx of holomorphic functions on €0y C €) possessing a reproducing kernel
K with K(w,w) # 0 for w € Q. Fix wy € y. The function

Ko(z,w) = K(wy, wo)%gp(z)_lK(z, w)p(w) 1K (w, wo)%

is defined on some open neighborhood U x U of (wy, wy), where U is the open set on which
K (z,wp) is non-zero and ¢(z) = K(z,wp) is holomorphic on U. The kernel Kj is said to
be normalized at wy (cf. [9]). The operator of multiplication by the holomorphic function
¢! then defines a unitary operator from the Hilbert space Hy determined by the kernel
function K to the Hilbert space Hg, determined by the normalized kernel function Kj.
This unitary operator intertwines the two multiplication operators on Hx and Hg,. Thus
K- (wo) is equal to the curvature Ky« (wo) [9, Lemma 3.9], where M(® is the m-tuple
of multiplication operators by the co-ordinate functions on the Hilbert space H,. Let

Ko(z,w) = Zau(z —wp) (0 —wy)’, z,w e U, I,J € Z7,
7

be the power series expansion of Ky around the point (wg,wp). Here, as usual z! is
20 2im I = (iy,...,im). Since Ko(z,wg) = 1, we have that agy = 1 and azo = 0 for all
I with |I| > 0. Similarly, Ko(wp, z) = Ko(z, wy) shows that ag; = 0 for all J with |.J| > 0.
Also note that if

KO(zaw)il = ZbIJ(z - wo)l(u_j - U_JO)J7 Z,w e U7 [7 J € ZTa
1,J

then boy = 1 and byg = 0 = byy for all I,J with |I],|J] > 0. Since v(w) = Ky(-, w),

w € U* :=={Z: 2z € U}, is a section of the Hermitian holomorphic line bundle E, )+ over
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U*, we have

9 log || y(w) H2|
8wi8wj w=wo

0 4 0 o
:a—@(KO(w,w) 8leo(w,w))}w:wo
a —
= 9, 1+,Z>1buw o) (0 = o)) (3 anse s — o) (w = o))},
151 17120
:aE]’&;

where ¢; is the standard unit vector in C™ with 1 at the i-th co-ordinate and 0 elsewhere.
On the other hand, we have

9” Ko(w, w) ) )
cies = T = Ko(-,w), =—Ko(-,w )
@ I 8wlau_]j ’w:wo <8wz 0( w) 8/1,[]] O( W)>‘w:w0
Thus for any complex constants aq, ..., Qun,,
O Blog ) 1P s D o
_JZZI AT o, —— ;aia—wm(-,w)u |y <O

This completes the proof.
Second Proof. We show that —Kr(w) is the Gramian of a set of n vectors which can be
explicitly exhibited. These vectors are

0 0

, — v 9 <<
ei(w) Kw@awin %in@Kw, lsism,
in Hx ® Hi. Then
9 d 0 0
i j = (K —K,— —K K, K —K,— —K, K
<€Z(w)7 e] (’LU)) < w ® au—}l w aU_}l w ® ws w ® 8?Dj w 8U7j w ® w>
K (w,w) 0 0
= 2(K - —K —K
B ) om, ~ Buy W) g, K1)
Thus
2 2 K( )BQK(w,w) _iK( )iK( )
a log H ’)/('LU) H ‘ o w,w (911),‘61Dj ow; w,w awj w,w ‘
8w2-8u‘)j w=wo K(w)w)Q w=wg
_ (ei(wo), e;(wo))
2K(w0,w0)2

This completes the proof. ]
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Definition 4.2. Let H be a Hilbert space and let T = (17, ...,7,,) be a commuting tuple
of bounded linear operators on . We say that T is a row contraction if > " T;TF < Iy.

The following Lemma is well known, however we provide a proof for completeness.

Lemma 4.3. Let B™ be the unit ball in C™ and M = (M, ..., M,,) be the m-tuple of
multiplication operators on a reproducing kernel Hilbert space with reproducing kernel K.
Then M is a row contraction if and only if (1 — (z,w))K(z,w) is positive definite.

Proof. For 1 <i <k, k€N, let a; € C and w’ € B™, we have
m k k
(L= MM " Ky, Y oK)
=1 =1 =1
k k k
= 1D Kull* =Y (MM Ky, Y ajKy)
i=1 = i=§
k
= 1D Kyl -
=1

k k
MY 0Ky, MY Ky
= i=1 i=j
k
= H ZO‘ini 2 -
=1

>

m k
Z (D it (0] Ky, 0] K 5))

=1 z‘j—l
k

= | Z@ini 2 Z Z ;] K (v, w'))
i=1 =1 1,5=1
k m

= @inz (xza w wi

J [ w

=1 i,7=1

k
= Z K (w? w') — Z o (w!  w') K (w?, w')

ij=1 ij=1
k
= Z ;i (1 — (W, w')) K (w?, w').
ij=1

Hence

m k

Z M; M} < I if and only if Z ;@ (1 — (w, w)) K (w’, w') >0,

i=1 ij=1
which is equivalent to the positive definiteness of the kernel (1 — (z, w)) K (z, w). O

Let R, be the adjoint the commuting tuple (Mj,..., M,,) on the Dury-Arveson
space H2 which is determined by the reproducing kernel %, 2= (21,00 2m), W =

(wq,...,wy,) € B™ Asin Remark 3.2, using Proposition 4.1 and Lemma 4.3, we obtain a
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version of curvature inequality for the multi-variate case. It appeared earlier in [12] with

a different proof.

Corollary 4.4. IfT = (T4,...,Ty) is a row contraction in By(B™), then Kg: (w) — Kp(w)

1s positive for each w in the unit ball B™.

4.2 Infinitely Divisible Metrics and Curvature Inequal-
ities

Starting with a positive definite kernel K on a bounded domain €2 in C™, it is possible
to construct several new positive definite kernel functions. For instance, if K is positive
definite then the kernel K™, n € N, is also positive definite. Indeed, a positive definite
kernel K is said to be infinitely divisible if for all t > 0, the kernel K is also positive
definite. While the Bergman kernel for the Euclidean ball is easily seen to be infinitely
divisible, it is not infinitely divisible for the unit ball of the n x n matrices (with respect
to the operator norm). We give the details for n = 2 in the final section of this note.
The following Lemma shows that if K is positive definite then the matrix valued kernel

(( 82?;wj K ) (z, w))?;,:l is positive definite as well.

Lemma 4.5. For any bounded domain 2 in C™, if K defines a positive definite kernel on
Q, then ((%;@K)(z,w))zzl is also a positive definite kernel on Q.

Proof. Let K(z,w) = ((az?;wj K)(z, w)):.r;:l. Let uq, ..., u, be n points in £ and

& = (&(1),...,&(m)), 1 <i < m, be vectors in C™. From [9], it follows that

n

Z<K(uiauj)€j7§i><cm = Z Z (%K)(Uu%)&(l)fi(k)

=1 i,j=1k,l=1
= DD K o K, (DGR
ij=1k,l=1
= 1222 &R g Kl
i=1 k=1
> 0
This completes the proof. a

The following Lemma encodes a way to extract scalar valued positive definite kernels
from matrix valued ones.
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Lemma 4.6. If K is a n X n matriz valued positive definite kernels on a bounded domain
Q C C™, then for every ¢ € C", (K(z,w)(,{)cn is also a positive definite kernel on Q.

Proof. Let K¢(z,w) = (K(z,w)(,()cn. Let uq,...,u; be [ points in Q and «;, 1 <1 <1,
be scalars in C. From [9], it follows that

l
Z oziKC(ui,uj)dj = Z Oéza’] *y Uy C K( )C)HK

4,j=1 t,j=1

= | ZO‘J " Uy CHHK

> 0
This completes the proof. ]

Theorem 4.7. Let Q) be a domain in C™ and let K be a positive, real analytic function on
OxQ. IfK is mﬁm'tely divisible then there exist a domain €2y C € such that negative of the
curvature matrix (( B0, 0, log K ))
the function ((aw 5,
Qo C Q of wy and an mﬁmtely divisible kernel K on Qg X Qg such that K(w,w) = k(w, w)
for all w € Q.

=1 18 a positive definite function on €y. Conversely, if

log K)) =1 18 positive definite on §), then there exists a neighborhood

Proof. For each t > 0, assume that K' is positive definite on Q. This is the same as the
positive definiteness of exp(tlog K), t > 0. Clearly ¢t !(exp(tlog K) — 1) is conditionally
positive definite. By letting ¢ tend to 0, it follows that log K is conditionally positive
definite. Hence at an arbitrary point in €2, in particular at wy, the kernel

Ly (z,w) =log K(z,w) — log K(z,wy) — log K (wo, w) + log K (wq, wp)

is positive definite. This is essentially the Lemma 1.7 in [19]. From Lemma 4.5, it follows
that the matrix (( o aw L, )) is positive definite on ). Note that there exists a neighbor-
hood €y C Q of wy such that log K (z,wy) is holomorphic on €)g. Hence from the equation
log K )) is positive definite on €2y. This

above, negative of the curvature matrix ((a o
J
proves the Theorem in the forward direction.
For the other direction, without loss of generality, assume that wy = 0. Let K(z,w)
be the function obtained by polarizing the real analytic m x m matrix valued function
log K (w, w)))

(( Bwlaﬁ; 3,7=1

defined on some bounded domain €2 in C™. Suppose that logf( has the power series

expansion Y ar;z/w’, where the sum is over all multi-indices I, J of length m and 2! =
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i1 i =J il —J
2 ez w? =yt - - wlr. Then

K(z,w) = Z ars((Ars(k, K)Z]_Ekwj_q)):fzzl’
I,J

where Arj(k,0) = irje, 1 < k,¢ < m, and the sum is again over all multi-indices I, J
of size m. Clearly, A;; can be written as the product D(I) E,, D(J), where D(I) and
D(J) are the m x m diagonal matrices with (i1, ...,%,) and (ji,...,J,) on their diagonals
respectively, and F,, is the m x m matrix all of whose entries are 1.

Let D(z) be the holomorphic function on 2 taking values in the m x m diagonal
matrices which has z; in the (4,4) position for z := (z1, 29,. .., 2;,) € Q. If the function K

is assumed to be positive definite then

K(z,w) == D(2)K(z,w) D(@) = > arsD(I) E, D(J)2"w’

1,0

is positive definite on ).
Let A(I) ={k:1 <k <mand i, # 0}. Consider the m x m matrix E(/,.J) defined
as below:

1 ifie A(I) and j € A(J),

E(I,J); =
’ 0 otherwise.

Note that if A() = A(J) = {1,...,m}, then E(I,J) = E,,. Consider the function on
Qg x g, defined by

~

K(zw) = > angiey "o,
I,J#0

where ¢(I) denotes the cardinality of the set A(I). We will prove that K is a positive
definite kernel on €2y. To facilitate the proof, we need to fix some notations.

Let 0 be a multi-index of size m. Also let p(d) = [}, (d; + 1) which is the number of
multi-indices I < 4, that is, 4; < d;, 1 <1 < m. As per the notation in [9], given a function
L on a domain U x U which is holomorphic in the first variable and antiholomorphic in
the second, let Hs(wp; L) be the p(§) x p(d) matrix whose (1, J)-entry is %ﬁo’wo), 0<
I,J <. For convenience, one uses the colexicographic order to write down the matrix,
that is, I <. J if and only if (i, < jm) or (i = Jm and iy, < Jpp_1) OF -+ O (iy, =
Jmand ...iy = jp and iy < jy) or I = J.

Let D(I)* be the diagonal matrix with the diagonal entry D(I), equal to i or 0

according as 7, is non-zero or zero. Using this notation, we have

D(I)*D(I) E,, D(J)D(J)* = E(I,J).
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Let As be the block diagonal matrix, written in the colexicographic ordering, of the form

'R
(As)ry = 28 itr=J0)
0 otherwise.

Therefore, in this setup, for any multi-index d, we have

o~

Hy(0; K) = As Hy(0; K) Aj.
Clearly Hs(0; R) is positive definite since Hs(0; R) is, by [9, Lemma 4.1]. Thus from |9,

Lemma 4.3], it follows that K is a positive definite kernel.
Let Ky be the scalar function on €y x €y defined by

Ko(z,w) := Z aryzlw’,

where the sum is over all pairs (7, J) excluding those of the form (7,0) and (0, .J). From
Lemma 4.6, it follows that the function K is positive definite since it is of the form

(K(z,w)1,1), 1 = (1,...,1). It is evident that

(( (#;@Kg)(w,w) >> = K(w, w),

that is,
2

8wi (%Dj

(log K — Ko)(w,w) =0, 1<1i,j <m, w e Qy.

Therefore, (log K — Ko)(w, w) is a real pluriharmonic function on Qy and hence there
exists a holomorphic function ¢ such that

o K (1, 0) — Kofu, ) = (o)) = X2
(Alternatively, since log K is real analytic, it follows that

E CLIJ’LUIQDJ = E d[JwJZDI
1,J 1,J

Equating coefficients, we get a;; = ay; for all multi-indices I, J. In particular, we have
arg = aps for all multi-indices I. The power series

(apo/2) + Z aroz!

defines a holomorphic function ¥ on €y such that log K (w, w) — Ko(w, w) = 1 (w) + ¢ (w).)
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Thus

K(w,w) = exp(@) exp(Ko(w, w)) exp(%), w € Q.

Let K : Qg x €9 — C be the function defined by the rule

K (2, w) = exp(“2)) exp(Ko(z, w)) exp(%32).

For t > 0, we then have

K'(z,w) = exp(t¢(2z)) exp(tKo(z,w)) exp(t@), z,w € .

~

By construction K(w,w) = K(w,w), w € Qy. Since Ky is a positive definite kernel as
shown above, it follows from [19, Lemma 1.6] that exp(tKj) is a positive definite kernel for
all t > 0 and therefore K is positive definite on Qq for all ¢ > 0, completing the proof of
the converse.

]

4.3 Applications

Let M* be the adjoint of the commuting tuple of multiplication operators acting on the
Hilbert space Hx C O(f2). Fix a positive definite kernel K on . Let us say that M is
infinitely divisible with respect to £ if £(z, w) 'K (z,w) is infinitely divisible in some open
subset )y of €2. As an immediate application of Theorem 4.7 we obtain :

Theorem 4.8. Assume that the the adjoint M* of the multiplication operator M on the
reproducing kernel Hilbert space Hy belongs to B1(Q2). The function
2 _
((aw?awj log (ﬁ(w> w) 1K(w, w))))
1s positive definite, if and only if the multiplication operator M is infinitely divisible with
respect to R.

We say that a commuting tuple of multiplication operators M is an infinitely divisible
row contraction if (1 — (z,w)) K (z,w) is infinitely divisible, that is, ((1 — (z,w))K(z, w))t
is positive definite for all t > 0.

Recall that R}, is the adjoint the commuting tuple (Mj,..., M,,) on the Dury-
Arveson space H? whose reproducing kernel is (1 — (z,w))~*. The following theorem

is a characterization of infinitely divisible row contractions.
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Corollary 4.9. Let K be a positive definite kernel on the Fuclidean ball B™. Assume that
the adjoint M* of the multiplication opemtor M on the reproducing kernel Hilbert space
Hy belongs to B1(B™). The function ((a 5, 108 (1 = (w, w)) K (w,w)) ))Z;Zl, w e B™,
1s positive definite if and only if the mulmplzcatwn operator M is an infinitely divisible row

contraction.

Proof. We have shown in theorem 4.7 that the positive definiteness of

m

(52 Tog(1 — (w, W) K (w, )" _,
is equivalent to ((1— (z,w))K(z, w))t is positive definite for all ¢ > 0. Hence the function
(5:5%= o 8 — log (1= (w, w)) K (w,w)) ) szl is positive definite if and only if the multiplication

operator M is an infinitely divisible row contraction.

[

We give one last example, namely that of the polydisc D™. In this case, we say a com-
muting tuple M of multiplication by the co-ordinate functions acting on the Hilbert space
Hx is infinitely divisible if (S’l(z,w)K(z,w))t, where S(z,w) :=[[[2,(1—zw;) !, z,w €
D™, is positive definite for all £ > 0 (this amounts to infinite divisibility with respect to
the kernel S). Every commuting tuple of contractions M* need not be infinitely divisible.
Let S,, be the commuting m-tuple of the joint shift induced by the commuting tuple of
(co-ordinate) multiplication operators defined on the Hardy space H?(D™).

Corollary 4.10. Let K be a positive definite kernel on the polydisc D™. Assume that
the adjoint M* of the multiplication opemtor M on the reproducing kernel Hilbert space

Hy belongs to B1(D™). The function ((aw o%; log (57 (w, w)K (w, w)) ))Z‘:l’ w e D™,

18 positive definite if and only if the multzplzcatzon operator M is an infinitely divisible
m-tuple of contractions.

For a second application of these ideas, assume that K is a positive definite kernel

on D™ with the property:
KZ(Z,UJ) = (1 - ziwi)mK(z7w)7 1 S [ S m,

is infinitely divisible. Then

K™z, w) = (H(1 — zw;)) " H Ki(z,w).

It now follows that
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Let M be the commuting tuple of multiplication operators on the Hilbert space Hy, which
is contractive since K admits the SZego kernel S as a factor. Clealrly, the infinite divisibility
of K;;, 1 < i < m, implies that K°(z,w) = (HZ’; K;(z, w))ﬁ is positive definite. As
pointed out in [12], in consequence, for any polynomial p in m - variables,

p<Ml7 ) Mm) = PSp(Sm)\S7

where § is the invariant subspace of functions in the Hilbert space H2®@H o C O(D™xD™)
vanishing on the diagonal. Ps is the projection onto the subspace S. We have therefore
proved the following proposition.

Proposition 4.11. If a commuting tuple in the Cowen-Douglas class By (D™) is infinitely
divisible with respect to the kernel S(z,w)™, then it admits an isometric dilation to the
Hardy space H*(D™).

A basic question raised in the paper of Cowen and Douglas [7, Section 4] is the deter-
mination of nondegenerate holomorphic curves in the Grassmannian. Clearly, a necessary
condition for this is the negative definiteness of the curvature matrix function. Thus we
have the following Corollary to Theorem 4.7.

Let E be a Hermitian holomorphic vector bundle of rank 1 over a bounded domain
QcCcm.

Corollary 4.12. In the following, the implications “(iit) = (i)” and “(i) = (ii)” are
valid.

(i) There exists a Hilbert space H and a holomorphic map v : Qo — H, Qo open in Q,
such that E is isomorphic to the pullback, by the holomorphic map v : Qo — Gr(1,H),
of the tautological bundle defined over Gr(1,H)

(ii) The curvature matriz K(w,w) is negative definite for w € .
(i1i) The Hermitian matriz valued function K(z,w) is negative definite on €.

Moreover, if we assume (7i7), then the existence of v as in (7) follows, where the real
analytic function (y(2),vy(w)) is infinitely divisible.

Here is another amusing application of Theorem 4.7. Let K be the function on the
unit ball (C?*2)  of 2 x 2 matrices (with respect to the operator norm), given by the
formula K(Z,W) = det(I — ZW*)"', Z, W € (C>?) . It is known (cf. [2, Corollary
4.6]) that K is not infinitely divisible. The kernel K is normalized at 0 by definition. For
d =(1,0,0,3), the matrix B

((8%95 log K(0,0)>)
Oé'ﬂ' 0<a,B8<6
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61825152113051((0,0) ——1<0
diagonal with non-negative entries). Here, § > p if and only if §; > p; for alli € {1,...,m}

(in fact for |0] < 3, the corresponding matrix is

is diagonal with

and the matrix is written with respect to the colexicographic ordering. From [9, Lemma 4.1
and 4.3], it follows that log K is not positive definite. Hence Theorem 4.7 shows that the
function det(I — ZW*)~* cannot be positive definite for all ¢ > 0. Of course, the wallach
set for the domain (C**?), (the Wallach set here is {t > 0 : det(1 — ZW*)™", is nnd})
is known to be {1} U{2 <t < oo}. The methods described here do not determine the
Wallach set but only help in finding out if it consists of all positive real numbers or not.



Chapter 5

Curvature Calculation for the Jet
Bundle

For a domain 2 in C and an operator 7" in B,,(€2), Cowen and Douglas construct a Hermitian
holomorphic vector bundle Ep over €2 corresponding to 7. The Hermitian holomorphic
vector bundle E7 is obtained as a pull-back of the tautological bundle S(n,H) defined over
Gr(n,H) by a nondegenerate holomorphic map z + ker(T' — z), z € € as in Definition
5.14. To find the answer to the converse, namely, when a given Hermitian holomorphic
vector bundle is a pull-back of the tautological bundle by a nondegenerate holomorphic
map, Cowen and Douglas studied the jet bundle in their foundational paper [7, pp. 235].
The computations in this paper for the curvature of the jet bundle are somewhat difficult
to comprehend. They have given a set of invariants to determine if two rank n Hermitian
holomorphic vector bundle are equivalent. These invariants are complicated and not easy
to compute. It is natural to expect that the equivalence of Hermitian holomorphic jet
bundles should be easier to characterize. In fact, in the case of the Hermitian holomorphic
jet bundle J, (L), where the line bundle £ is a pull-back of the tautological bundle on
Gr(1,H), we have shown that the curvature of the line bundle £; completely determines
the class of Ji(Ls). In general, however, our results are not as complete. Relating the

complex geometric invariants inherent in the short exact sequence
0—-E —FE— E;—0. (5.1)

is an important problem. In the paper [5], it is shown that the Chern classes of these

bundles must satisfy
C(E) = C(E[) C(E[[).

Donaldson [11] obtains similar relations involving what are known as secondary invariants.

We obtain a refinement, in case E; = Ji(Ey) and E = Jj+1(Ey), namely,
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(trace ® Iann) (]Cjk(Ef)> - (trace ® Iann) (’Cjkfl(Ef)) = ’Cjk(Ef)/jk—l(Ef)'

5.1 Basic Definitions and Notation

5.1.1 Notation
Let £ 5 Q be a C* complex vector bundle of rank n.
1. A(Q) is the sheaf of C* functions on .
2. EP(Q) is the sheaf of C* complex p-forms over (2.
3. EP9(Q)) is the sheaf of (p, ¢)-forms over €.
4. £(Q, E) is the sheaf of C*° sections of the vector bundle E on €.
5. EP(Q), F) is the sheaf of C'* complex p-forms over € with values in E.
6. EPI(Q), E) is the sheaf of (p, q)-forms over Q with values in F.

We recall, following [21], some basic definitions and results from complex geometry which
we will be using repeatedly in this chapter. Let {2 be a bounded domain in C™.

Definition 5.1. Let E be a holomorphic (resp. C* over C) manifold of dimension m + n
and 7 : £ — Q be a holomorphic (resp. C*°) map. Then 7 : E' — Q is called a holomorphic

(resp. C* over C) vector bundle of rank n if the following conditions are satisfied:
(1) E, =71(2), 2 € Q, is a C-vector space of dimension n.

(2) For every z € €, there exists a neighborhood U of z in Q and a biholomorphism
(resp. diffeomorphism)

¢: 7' (U)—=UxC"
such that the diagram

7 U) —2> U x C»

\ lpm

U

commutes and ¢|,, : E, — {z} x C" is a vector space isomorphism over C.
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Definition 5.2. Let £ =  be a holomorphic (resp. O over C) vector bundle of rank n.

(1) A local holomorphic (resp. C™) section of E = Q is a map s : Qy — E such that
mos = Idg,, on some open subset 2y of (2.

(2) A local holomorphic (resp. C*) frame on €y C 2 for E = Q consists of local
holomorphic (resp. C™ over C) sections {sy,...,s,} of E = Q defined on €y such
that {s1(2),...,s,(2)} is a basis for E,, z € Qy.

Definition 5.3. Let £ = Q and F 3 Q be two holomorphic (resp. C'*) vector bundles
over 2.

(1) A holomorphic (resp. C*°) map ¥ : E — F'is called a bundle map if my o ¥ = 7
and the restricted map W|g, : E, — Fr,(y(z)) is linear.

(2) A bundle map WV is called an isomorphism if it is a biholomorphism (diffeomorphism).

Remark 5.4. Let £ ™ Q and F' ™3 Q be two holomorphic (resp. C* over C) vector bundle
of rank n and p respectively. Let s := {s1,...,s,} and 0 := {oy,...,0,} be local frames
of E and F respectively over €)y. For 1 < 57 < n, we have

p

U(si(2) = Y vij()oil2).

i=1
Hence the bundle map ¥ may be represented, with respect to frames s and o, asap xn
matrix valued holomorphic (resp. C*) function on 2, that is,

I i g R

Definition 5.5. (1) Let E = Q be a C™ complex vector bundle. A Hermitian metric
on E is an assignment of a Hermitian inner product (, ), on each fibre E, of E such
that the function ({,n) : U — C given by (£, m)(z) = (£(2),n(2)). is smooth for any
open subset U of () and for any pair of smooth sections &, 7 defined on U.

(2) A C* vector bundle F equipped with a Hermitian metric is called a Hermitian vector
bundle.

Definition 5.6. Let £ 5 Q be a C* complex vector bundle. Then a connection D on E
is a C-linear mapping
D: &L E) — ENQE),
which satisfies
D(¢¢) = dp.§ + ¢ D¢,
where ¢ € A(Q2) and € € E(2, E).
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Extend the connection D : E(Q, E) — &1(Q, E) to a C-linear map
D:E&(QE)— ETHQE), p>0

by setting
D(fw)=¢&dw+ D) ANw for we EP(Q), £ € E(QE).

Using this extended D, define the curvature R of D to be the map
R:&QE)— E*(QUE), R=DoD.

Definition 5.7. Let £ 5 Q be a O complex vector bundle with a Hermitian metric. A
connection D on E is said to be compatible with the Hermitian metric on F if

d(§,m) = (D&, m) + (&, Dn)  for §,ne&(QE).

5.1.2 The Canonical Connection and Curvature of a Hermitian

Holomorphic Vector Bundle

Suppose that £ = € is a holomorphic vector bundle. If E thought of as a C* vector
bundle is equipped with a Hermitian metric, then it is said to be a Hermitian holomorphic
vector bundle.

Suppose that we have a connection
D: &L E) = EHQE)=EY(Q,E) o " (O E)

on a Hermitian holomorphic vector bundle E. Then D splits naturally into D = D’ + D",
where

D' :E&(Q,E)— EXY(QE)
D":&(Q,E) — EM(QE).

Theorem 5.8. If E 5 Q is a Hermitian holomorphic vector bundle, then the metric on E
induces a canonical connection, D which satisfies two conditions:

(a)
d(§,m) = (D&, m) + (£, D), &,n € E(Q, B);

(b) D"& =0 for any local holomorphic local section & of E.
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Remark 5.9. (1) Let f = {si,...,s,} be alocal holomorphic frame over an open subset
Qg of 2. Then the metric h(f) of E with respect to the frame f is define as h(f)(z) =
(((s;(2), si(z)))1<i7j<n. The proof of Theorem 5.8, which may be found in [21, page
78, Theorem 2.1], gives a simple formula for local representation of the canonical

connection and curvature in terms of the metric h(f), namely,
0(f)(2) = h(f)" (2)0h(f)(=)
Ke(f)(z) = o(h(f) " (2)0h(f)(2))

for a holomorphic frame f.

(2) Let F and E be Hermitian holomorphic vector bundles on a bounded domain €
in C with canonical connections Dy and D, respectively, and let ¢ : £/ — E be
a C° isometric bundle map. As pointed out in [7, page 208, Lemma 2.13|, ¢ is
holomorphic if and only if ¢ is connection-preserving, that is, if and only if

Dgo¢=¢oDg.

Definition 5.10. Let £ = Q be a Hermitian holomorphic vector bundle of rank n over a
bounded domain 2 in C™. For 1 < r < n, consider

N(E) =[N (n (@)
)
where A”(77!(z)) is the exterior power of the vector space 7~ (z). We can give holomorphic
and Hermitian structures on A"(E), so that it becomes a Hermitian holomorphic vector
bundle (cf. [21, pp. 19]). For r = n, A"(E) becomes a Hermitian holomorphic line bundle,
called the determinant bundle, that is, det (E) := A"(E).

Remark 5.11. If {s1,...,s,} is a frame for the vector bundle E = Q over some open set
U then a frame for the bundle det (E) over U will be s; A ... A s,. Hence the metric for
the determinant bundle det (£) takes the form

haet (£)(2) = (s1(2) Ao Asp(2),51(2) Ao A sp(2))
= det (((sj(z),si(z»))zj:l
= det hg(2).

The following Proposition is well known. However we provide a proof for completeness

following the informal Lecture Notes of M. J. Cowen.



44 5. Curvature Calculation for the Jet Bundle

Proposition 5.12. Let E 5 Q be a Hermitian holomorphic vector bundle of rank n over a
bounded domain 2 C C™. Then the relationship between the curvature of the determinant
bundle det (E) and that of the vector bundle E is given by the formula

Kaet (£)(2) = trace (Kg(z)).

Proof. For a given holomorphic frame {sq, ..., s,} of a Hermitian holomorphic vector bun-
dle E defined on some open subset U of €2, the metric h on U with respect to the frame
{s1,...,s,} is define as h(z) = (((s;(2), si(2)) ))?j:l' The curvature of the vector bundle

E' is given by the formula

m

Kg(z) = Z a2 (W (2) 52 h(2)) dz; A d.

J
—1

~
<

)

Consider

trace(Kg(z)) = Z trace <a% (h_l(z)a‘zih(z)n dz; N dz;

= 30 2 (trace(h7 ()2 h(2)) ) dz Ada (5.2)

Let 2, be an arbitrary but fixed point in U. For z in U, Set h(z) = h™'(2)h(z). Then for
1 <i<mand z € Q, we have

trace(h™'(z) 2 h(z)) = trace(ﬁ_l(z) 6iz(z))

Dz
and
2 (logdet h(2)) = 2 (logdet h(z)).

At zg, the two equations take the form

trace(h ™" (2) 2 h(z))|zzzo = trace(ifl(z) d ﬁ(z))|Z:ZO

0z; 0z;
= trace(a%ﬁ(z)) oz (5.3)
and
%(log det h(z))|zzzo = %(log det 71(2))|Z:Z0

% det ﬁ(z)|Z:ZO
det h(2)).=2,
= 8% det 1(2)}.=x

= trace (%ﬁ(z))p:m, (5.4)
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the last equality follows from [15, pp. 11]. Hence from equations (5.3) and (5.4), it follows
that

trace(h’l(z)a%h(z)) = a%(log det h(z))

lz=20 |z=20"

Since zj is arbitrary point in U, so we have

trace(h™'(z) 2 h(z)) = 2= (logdet h(z)) for z € U.
Hence
trace(lCE(z)) = Kaes £(2).
O]
It is possible to pick a holomorphic frame s = {s1, ..., s,} for the Hermitian holomor-

phic vector bundle E such that the metric h, with respect to the frame s, at an arbitrary
but fixed point 2o, has the property that h(zp) = 1, a%ih(zo) = 0 and %h(zo) = 0 for
1 <1 <m (cf. [21, page 80]).

Even a stronger normalization, more in the sprit of this thesis, is possible (see Defi-
nition 2.4). It will be useful, in the sequel, to derive the formula given in Proposition 5.12

using this stronger normalization of the metric.

Second Proof of Proposition 5.12. For a given holomorphic frame {si,...,s,} of a Hermi-
tian holomorphic vector bundle E defined on some open subset U of €2, the metric A on
U with respect to the frame {si,...,s,} is define as h(z) = (((s;(2), si(2)) ))ijl. The
curvature of the vector bundle E is given by the formula

Ke(z) = o (W' (2) g h(2)) d2; A dz;.
i,j=1

Let G(z,w) be the real analytic function on U, obtained by polarizing the real analytic
function A, which is holomorphic in z and antiholomorphic in w. Let 2z, be an arbitrary but
fixed point in U. Let Uy be open neighborhood of z in U such that G(z, zo) is invertible
for all z € Uy. Set

1

G(z,w) = Gz, zo)%G(z, 20) G (2, w)G (20, w) T G (20, 20) 2

for z,w € Uy. Clearly é(z,zo) =1, z € Uy, which implies that WG(@%) =0,
zeUyand ay + ...+ a,, > 1. It is easy to see that

Y 5z (logdet G(z,2))dz; Adz = ) 52— (logdet G(z, 2))dz; A dz; (5.5)

i,j=1 hj=1
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and
Z 8%]_(@’1(2, z) 81@(2, 2)) dz;Adz; = ¢(2) 7 ( Z %(G’l(z, z)a%_G(z, z)) dz;Adz;) (=),
ij=1 ij=1

where ¢(z) = G(z0, 20)2G(z, 20) L. Hence

trace Z %((N}”l(z,z) 9 G(z,2)) dz; A dz)

0z;
ij=1
= trace( Z %(Gil(z, z)é%G(z, z)) dz; Adz;). (5.6)
ij=1

For1<1,7 <m,

trace(52 (G~ (2,2) 5. G(2,2))),_, = trace(555-G(2,2)) _ (5.7)
and
%log det G(2,2)msy = %{;% det G(2,2)[2=z

= trace(%zzié(z, 2)) 2=z (5.8)

the last equality follows from [15, pp. 11]. Hence from the equations (5.5), (5.6), (5.7) and
(5.8), we have

trace( Z %(G’l(z, z)a%G(z,z))lzzzo dzjNdz;) = Z %;gj(log det G(Z7Z))|Z:zodzj/\dzi‘
i,j=1 i,j=1

In other words,
trace(Kg(20)) = Kaet £(20).

5.2 Jet Bundles Over an Open Subset of the Complex

Plane

Here we give the definition of a jet bundle closely following [7]. An equivalent description,
in a slightly different language, may be found in [6].

Let E be a Hermitian holomorphic bundle of rank n over a bounded domain 2 C C.
For each k = 0,1, ... we associate to E a (k+ 1)n -dimensional holomorphic bundle J(E),
the holomorphic k-jet bundle of E, defined as follows:
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If o = {o1,...,0,} is a holomorphic frame for E, on an open subset U contained in

2, then J;(F) has an associated frame
Te(0) = {010, -, 0005 - -+, Oty - -, Onic}

defined on U. If 5 is another frame for E defined on U , then on UN U , we have o; = > a;0;,

where A = (a;;) is a holomorphic, n x n, nonsingular matrix. Symbolically
o= JdA.

Let Ji(A) be the (k4 1)n x (k + 1)n, non singular, holomorphic matrix

A A A ( )A

A 24" ... (kﬁl)A(k 1)

Ti(A) = | A (A
O v e e A

Then, by definition, the frames Jj(c) and J5(3) are related on U N U by

Ti(0) = Ti(0) Te(A).

A straightforward computation yields that if A and A are holomorphic n x n matrices,
then
Ti(AA) = Te(A)Ti(A)
so the bundle Ji(E) is well-defined.
The Hermitian metric h on E induces a Hermitian form J;(h) on Ji(F) such that if
h(o) is the matrix of inner products (({o;,;))) ijl, then

h(o) --- 82};(15)

Tk(h)(Tk(0)) = : :
9% h(o) . 9%k k(o)
ozk 0zkozk

is the matrix of J;(h) relative to the frame Jy(c). To see that Ji(h) is well-defined, we

need

Ti(h)(Tk(@)) = Te(A){ T () (Tk(0)) } Ti(A)

which follows from the computation: For 0 < [y,l, < k

a(l1+l2 I ll 12 al2+ifj 8117@'
om0 = 2 Z ( > ( )(%JA ooz ) g (59)

i=1 j=1
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Using equation (5.9), we have
Te(h)(Ti(0)) = Ti(A){ T (h)(Ti(0)) } Ti(A).

In general, the form Ji(h)(z) on the jet bundle Jx(F) need not be positive definite for
z € Q. Thus Ji(F) has no natural Hermitian metric, just a Hermitian form.

For H a complex Hilbert space and n a positive integer, let Gr(n,H) denote the
Grassmann manifold, the set of all n-dimensional subspaces of H.

Definition 5.13. For {2 an open connected subset of C, we say that amap f : Q@ — Gr(n, H)
is holomorphic at \g € Q if there exists a neighborhood U of Ay and n holomorphic H-
valued functions oy, ...,0, on U such that f(A) = \/{o1(\),...,0,(A)} for X in U. If this
holds for each )y € €2 then we say that f is holomorphic on (2.

If f:Q — Gr(n,H) is a holomorphic map, then a natural n-dimensional Hermitian
holomorphic vector bundle £ is induced over €2, namely,

Er={(z,\) e HxQ:ze fN)}

and
7w Ep — Q where 7(z,\) = A\

Definition 5.14. Let f : Q@ — Gr(n,H) be a holomorphic map. We say that f is k-
nondegenerate if, for each wy € €2, there exists a neighborhood U of wy and n holomorphic
H- valued functions o7, ..., 0, on U such that oy (w), ..., o,(w),... ,a%k)(w), o) (w) are
independent for each w in the open set U. If this holds for all £k = 0,1,..., then we say

that f is nondegenerate.

If f is k nondegenerate, then f induces a holomorphic map
Je(f) : @ = Gr((k 4 1)n, H)

such that jix(f)(w) is the span of al(w),...,a,(f)(w). If o is a frame for Ey on U, let
(@) = {o1,... 0n,...,0 .. o} be the induced frame for Ej.(5)- Then Jy(Ey) and
Ej, () are naturally equivalent Hermitian holomorphic bundles by identifying oy, with ay),
since (04, 0;5) = 0" (04, 0,) /02797 = (01", O'j(~s)>. In this case J;(h) is a Hermitian metric
for Ji,(Ey),that is, Ji(h) is positive definite.

Definition 5.15. Let H be a Hilbert space and €2 be a bounded domain in C™. Let
®,,(2, H) be the set of all Hermitian holomorphic vector bundles of rank n over §2 which
arise as a pull-backs of the tautological bundle by nondegenerate holomorphic maps. That
is, for any nondegenerate holomorphic map f : @ — Gr(n,H) the vector bundle E; =
{(z,\) e HxQ:xz € f(\)}isin B,(Q,H).

Remark 5.16. If £ is in &,,(2, ), then the preceding calculation shows that Ji(Ef) is
in Q§n(k+1)<Q, H)
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5.3 Line Bundles

Let £; be a Hermitian holomorphic line bundle over a bounded domain 2 C C. Assume
that £; € 61(Q,H). Let Ji(Ls) be a jet bundle of rank k + 1 obtained from Lf. Let o
be a frame for L; over an open subset € of Q. A frame for J,(Ls) over the open set {2
is easily seen to be the set {o, %, 227‘2’, e az"} Let h be a metric for £, which is of the
form

h(z) = (0(2),0(2)).

The metric for the jet bundle Ji(h) is then of the form

ah(z) %h(z) akﬂ 2" p(2)
To(h)(2) = W:(Z) 5z (%) azazk.h(z)
Zoh(z) Lih(z) o sHah(2)

Let K, ;) be the curvature of the jet bundle J(Ls). An explicit formula for the curvature
of a Hermitian holomorphic vector bundle F is given in [21, proposition 2.2, pp. 79]. The
curvature Kz, c,) of the jet bundle therefore takes the form

Kaiep(z) = {(Ti(h)(2)) " 0Tk(h)(2)},

with respect to the metric J(h) obtained from frame {o, %2, ‘327‘;, .., 52 “o1 Set Jk(z) =

(Te(h)(2)) ' 2 Tk (h)(z) and note that

(T (h)(2)) " 0Tk(h) ()

—1
ok p3) 92 okt+1
W) ) e Zen) Dnz) Dphz) - Dn
F) 3 ak:Jrl 82 83 3k+2
_ =h2) aeEh(s) o Eh(2) 7202 pEhl®) o g |
ok oh+1 52k ok+1 oh+2 92k+1
9% e) Garg hE) R h(®) oeFa:12) a2 h(®)  GrgETh(e)

000 - 0 (I*(2)1kt1
100 0 (J%2))2,kt1
010 - 0 (J¥(2))3,k+1

= |.... . o dz,
000 - 0 (I%(2))kkt1
000 - 1 (J¥(2))pq1,k41

where (J%(2)); 511 is the (i, k + 1)™ entry of the matrix J*(z). The matrix product in the
first equation is of the form A~!'B, where the first k columns of B are the last k column of

A.
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Therefore the curvature of the jet bundle 7, (L) is seen to be of the form

000 --- 0 bi(2)
000 --- 0 ba(2)
000 --- 0 b3(z)
Kauep(z) = : : dz A dz,
000 -+ 0 b (2)
0 0 0 0 Kdet(Jkﬁ) (Z)

where b;(z) = Z[(J%(2))ign1], 1<i<k.

Theorem 5.17. As before, let Ly and Lf be two Hermitian holomorphic line bundles over

a bounded domain Q@ C C. Let Jp(Ly) and Jip(L
rank k+1. If J,(Ly) is locally equivalent to Ji(L

Ti-1(Lf).
Proof. Since Ji,(Ly) and Ji(L

neighborhood €2y and a holomorphic bundle map ¢: Ji(Ly)j0, = JT(L

~) be the corresponding jet bundles of
7)s then Ji—1(Ly) is locally equivalent to

f~) are locally equivalent, for each zy € €1, there exists a

7)iqo such that ¢

: : : g 20' jod g 2 0'
is an isomorphism. Let Jx(0) = {0, %, 37, o azk} and Ji(0) = {o ,gz, gZQ,..., 5%} be
frames for Ji(Ly) and Ji (L) over the open subset €y of § respectively.
Now
6(55(2) Z b5 (2 (5.10)
So the matrix representing ¢ with respect to the two frames Ji(o) and Ji(5) is
$0,0(2) ¢0,1(2) $0,2(2) + ¢o(2)
$1,0(2) ¢1,1(2) d1,2(2) - P1,k(2)
¢(Z) — | #2,0(2) 92,1(2) P2,2(2) - P2x(2) (5_11)
61,0() Dk,1(2) Dra(2) - Brn(2)
Therefore we can write
o ko ~ o k&
(0(0(2)), 6(52(2)); - - (5F (2)) = (6(2), F(2),- -, 5F(2)) b(2) (5.12)
But we know that
(2)K ) (2) = Kgucp)(2)9(2) (5.13)

Now
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$0,0(2) ¢0,1(2) - b0,k (2) 00 - bi(z)
¢1,0(2) ¢1,1(2) - b1,x(2) 00 - ba(2)

H(2)Kg,c)( dz N dz

(4’16,(.)(2) o3 i(Z) ¢k,l;(z) 00 - Kdet(Jk.(ﬁf))(Z)
0 0 YK 01bz+1(Z)-¢>o,i(Z)+/Cdet(Jk(£f))(Z)~¢o,k(z)
0 0 Yk 01bz+1(Z)-(z)l,i(z)‘i’lcdct(Jk(Lf))(z)~¢l,k(z)
Dl : dz ANdz (5.14)

0 - 0 Z’ﬁ bi+1(2)-b—1,i(2) HKaet (7, (£ 5)) (2)- Dr—1,k(2)
0 0 Y bi+1(2)-0k,i(2)Haet(gy, (£ ) (2)-Ok 1 (2)

and

00 - bi(z) b0,0(2) 90,1(2) - ¢ok(2)
00 - ba(z) $1,0(2) ¢1,1(2) -~ d1,k(2)

Kawep2)o(z) = | ... : : oL dz A dz
00 - Kdet(Jk(ﬁf,))(Z) $e.0(2) S1(2)  Gr(2)

b1(2).¢1,0(2) b1(2).01,1(2)
b2(2).dk,0(2) b2(2).dk, k(%)

; ; ZAd: (5.15)
br—1(2)-bx,0(2) br—1(2)-bk,k(2)
Kdet(Jk 0 (2)br0(2) - Kdet(Jk(ﬁf))(z)~¢k,k(z)

Hence from equations (5.13), (5.14) and (5.15), it follows that

Gro(2) = Ppa(2) = = dpp—1(2) = 0.

So the bundle map ¢ has the form

$0,0(2)  ¢o,1(2) - dor-1(2)  Pok(2)
$1,0(2)  01,1(2) - D1 p—1(2)  P1k(2)
o(2) = : SRR : (5.16)
dr—-1,0(2) Pr—1,1(2) -~ Pr—1,k-1(2) Pr—1,x(2)
0 0 0 Pk (2)

with respect to the frames Ji (o) and Ji (7). Finally from equations (5.12) and (5.16), we
see that

O\ Te 1 (Lp)iay - Te=1 (L1120 = Te—1(Lf)i00-

Since ¢ is a bundle isomorphism, it follows that

DT 1 (Lp)ny * Th-1(Ls)i20 = Tu-1(LF)00

is also a bundle isomorphism. ]
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Corollary 5.18. Let L and Lj be Hermitian holomorphic line bundles. Let Jx(Ly) and
Ji(Ly) be the corresponding jet bundles of rank k + 1. The two jet bundles J(Ly) and
jk(ﬁf) are locally equivalent as Hermitian holomorphic vector bundles if and only if the

two line bundles Ly and Ef are locally equivalent as Hermitian holomorphic vector bundles.

Proof. Suppose Ji(Ly) and Jx(Lf) are locally equivalent. Then for each zo € €2 there
exists a neighborhood €2y and a holomorphic map ¢: Ji(Ly)10, = Ji(Lf)jq, such that ¢
is an isomorphism.

Using Theorem 5.17, ¢ 7,_,(c;) 0, @ Je—1(Ly)je — jk—l(ﬁf)mo is an isomorphism.

120
Since ¢|jk71(£f)‘90 c Th—1(Ly) 00 — jk—1(ﬁf)mo is an isomorphism, by the same argument

which is given in the proof of the Theorem 5.17, it follows that

O\ T s L)y * Th-2(Lr)i0e = Tu-2(Lf)i0q

is an isomorphism. Repeating this argument, we see that ¢ is an isomorphism from £ 19

to Ef\ﬁo' ]

Let A be an n x n matrix and A;; be the (n —1) X (n — 1) matrix which is obtained

from A by removing the i*" row and j*® column of the matrix A.

Lemma 5.19. Let A be an n X n matriz and B be the (n — 2) X (n — 2) matriz which is

obtained from A by removing the last two rows and last two columns of A. Then

det(Az,n) det(A = ;=) — det(A, =) det(A, = ) = det(B) det(A).

fl’7

Proof. Case(1): suppose B is invertible. Let

ai,1 air2 v A1p—1 aln
a1 az,2 a2 n—1 a2n
A= '
an—1,1 AGn—-1,2 *** An—-1n—1 An—1,n
an,1 an,2 " an,n—1 an,n
and
— tr _ tr

T = (@1,n71, a2.n—1,--- 7an72,n71) , Ly = (Gl,n, A2ny - - aaan,n)
Y1 = (an—l,h Ap—12,--- 7an—1,n—2)7 Y2 = (an,la Ap,2y .- 7an,n—2)-

Thus the matrix A can be written in the form

B T T2
A= Y Qn—1n-1 Gp-1n
Y2 Apn—1 Qpon

In this notation, we have the following equalities:
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B
det(Aﬁﬁ) = det( e )
Y1 Ap—1n—1

= det(B)(an_1.n1 — 1B '7),

B
det(Aﬁ rT—\l) = det ( 2 )
' Y2 an,n

= det(B)(ann, — Yo B~ wy),

B
det(Aﬁ n/—\l) = det ( 2 )
' Y1 Qp—1n

= det(B)(an-1n — 1B '22),

B
det(Aﬁ ﬁ) = det ( e )
' Y2 Qpn—1

= det<B)(an,n71 - yQBilxl)a
and

det(A)

= det(B) det{(a"_l’”_l a"‘”) - (yl)Bl(xl Q;Q)}
an,nfl an,n Y2

-1 -1
Ap—1n—-1 — y1 By Ap—1n — y1 B~ o
-1 -1

Qpn—-1 — Y2 B~y Qpn — Yo B g

= det(B) det (

(5.17)

(5.18)

(5.19)

(5.20)

= det(B) {(an—l,n—l - ylB_lwl)(an,n_y23_1$2)_(an71,n_y1B_1m2)(an,n71_y23_liﬂ1)} .(5.21)

From equation (5.17),(5.18),(5.19),(5.20) and (5.21), it follows that

n—1,n—1 n—1,n

det(Asq) det(A— —)  det(A— _)det(A

det(A) = det(B) {

(det B)? (det B)?



54 5. Curvature Calculation for the Jet Bundle

that is,

det(Azn) det(A = ;=) — det(A; = ;) det(A, =) = det(B) det(A). (5.22)

N n,n—1

Case(2): Suppose B is not invertible. Then there exists a sequence of invertible matrices
B,, that approximate B, that is, ||B,, — B|| — 0, as m — oo. Let

By, I T2
Am = Y1 Gp—1n-1 Qn-1n
Y2 An,n—1 Qn.n

clearly ||A,, — Al| — 0 as m — oco. From the proof of the previous case, we have
det{(An)nn} det{(An)-— —} — det{(An), —} det{(An)— .} = det(B,,) det(A,,).
Since determinant is a continuous function, taking m — oo, it follows that

det(Az,n) det(A = ;=) — det(A; = ;) det(A, =) = det(B) det(A).

]

Proposition 5.20. The curvature of the determinant bundle det Ji(Ly) is given by the

following formula

Kaet Ti(Ly) (2) = et jk(l(?e)t(?k(f(bi)e;(gkﬂh) = dz N dz.

Proof. The curvature of the determinant bundle det(Jx(Ly)) is

(det jkh)(z)(a‘z—;z det J,h)(2) — (& det jkh)(z)(% det Jph)(2)

. o dz N dz.
deth(Lf)( ) (det Jh)*(2)
Here
_ ({0 k = ((L2_p))Et
Jih = ((Wh))i,jzo and Jp1h = ((ay'aza‘ h))i,j=0‘
Now, we have
k—1 k1
h %h e %h %h
z 8k ak+2
0 Bh o Eh o geh gk
—(det Jxh) = det | ¢ “ - -
ok oh+1 92k—1 921
w7l el SR el

= det((jk-f'lh)k/ﬁ,k/ﬁ)? (5.23)
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9 ak-1 ak
h 8—§h . _azkkfl h a;?flh
B ) ) f)
o %h azazh T 0z0zF—1 h 0z0zF h
—(det Jph) = det : : : :
8’Z 8k71 8k 82k72 82]671
FTh gEph o s gl
8k+1 h 8k+2 a2k h 82k+1 h
FFFT azFF oz 1T 5FF g k-1 9ZF T ozk
= det((jkﬂh)k/ﬁ,@)? (5.24)
and
o ak—l 8k+1
P L S i
9 a_zh 6E<92h T 0z0zF—1 h 8z0zFT1 h
——(det Jyh) = det : : : :
azaz 61971 Bk 821@72 h 82k
9zF 1 9ZF 192" T gEF gkl OZF 19 Rt 1
ak+1 h 6k+2 h 62k+1 h 62k+2 h
Fas! a7 gt T gERtigLk G an e
= det((Tor1h) ) (5.25)
Finally, note that
det Jph = det((jk+1h)k/4-\2,k/4-\2)' (5.26)

By Lemma 5.19, we obtain

det(jk_lh) det(jk+1h) = det((jk+1h)k/4r\2,k/4r\2) det((jk‘*‘lh)k/ﬁ,k/ﬁ)
— det((ijrlh)k/-y\zﬂ\l) det((jk+1h)k/+\17m). (5.27)

From equations (5.23), (5.24), (5.25), (5.26) and (5.27), it follows that

(det Jy_1h)(2)(det Jry1h)(2)
= (det Jih)(2) (525 det Tih)(2)(Z det Jih) (2) (L2 det Tih)(z).

Henee (det Fo_1h) (=) (det Torh) ()
e _ z e zZ
Kt 7.2, (2) = k (1det jkh)2(z)k+1 dz Adz.

]

Corollary 5.21. Let Ly and Ly be Hermitian holomorphic line bundles over a domain
Q C C. The following statements are equivalent:

1) det Jx(Lyr) is locally equivalent to det Jp(L7) and det Jri1(Lyr) is locally equivalent
f f f
to det Jy41(Lj), for some k € N

(2) Ly is locally equivalent to L.
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5.4 Rank n-Vector Bundles

We first recall some well known facts from linear algebra.

Lemma 5.22. [13, pp. 247 Let V be an inner product space of dimension n. Let
{z1, -+ ,x} be a set of vectors in V. Then {x1,--- x} is independent in V if and

only if the gram matriz ((<90j713z'>))?j:1 is invertible.

Lemma 5.23. /20, pp. 138] Let A, B,C and D be matrices of size n X n,n X m,m X n
and m x m respectively. If A, D and D™' — CA~'B are invertible, then

(A-BDC)'=A"1'-A'B(D'—CcA'B)tCcAT.
Lemma 5.24. [20, pp. 138] Let A, B,C and D be matrices of size n X n,n x m, mxn and

A B
m x m respectively. If A,D and D — CA™'B are invertible, then (C D is invertible

and

A B _1_ (A—BD_IC)_I —A_IB(D—CA_lB)—l
¢ p) “\prca-ppiop w-capr )

Lemma 5.25. /20, pp. 246] Let A, B,C and D be matrices of size n X n,n X m,m X n
and m X m respectively. If A is invertible then

A B) »
det <C’ D) = det(A) det(D — CA™"B)

Proof. Let Z be an n x m matrix. Consider

A B\ (I z\ (A AZ+B
¢ pl]\o 1) \Cc cz+D)]"

Choose Z such that AZ + B = 0, which implies that Z = —A~'B. Thus
A B\ (1 —AB\ (4 0
C DJ\o I ~\C D-CcA'B)’

A B
= det(A) det(D — CA™'B).
det ( o D) det(A) det( C )

Hence
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Lemma 5.26. /20, pp. 247] Let A, B,C and D be matrices of size n X n,n X m,m X n
and m X m respectively. If D is invertible then

det (é f)) = det(D)det(A — BD'C).

Lemma 5.27. [7, pp. 240] If V is a proper, non-zero subspace of an inner product space
W then it induces an inner product on the quotient W/V by

([wi], [wa]) = (s Ao A 201 Ao Aoy Awr, vy A A vy A ws)

where [wy], [we] denote the equivalence classes of wy and wy respectively in W/V and

{v1,...,v,} is a basis for V.

Proof. Apply Gram-Schmidt orthogonalization to the basis {vy,...,v,} of V. We obtain

an orthogonal basis:

VT = U1
~ Vg, V1) ~
Vo = Vo — <~2 ~1>’U1
<'U17 Ul)
~ V3, Ug) U3, V1)
Vs = vg— <~37 N2> Ty — <N37 ~1> o
<U27 U2> <U1, U1
i—1 ~
~ Vi, V5) ~ .
v = v — <~Z 3>Uj,1§z§n
Let B be the matrix corresponding to the linear transformation taking the basis {vy, ..., v,}
to the orthogonal basis {#,...,0,}. The determinant of B is 1. Let w; and wy be two

vectors in W. Then

Pyo(wr) = wi — Z Mfﬁi

PN
and
(w3, ;)
PVJ_<’U)2> = Wo — Z N—’Z;[J/z
—||v;]|2
=1
We have

(wr, w2) [l M0l1° — 3250 (T 18] F) (0, ) (05, w2)

(Pys(wr), Pyo(ws)) = T, [0l 2

Now

n
[P = @A AGTA, ..., T
=1

= <’U1/\.../\/Un7vl/\7""vn>
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and
n n
(wr, wy Hl\vzll2 STCTT P) ((wr, 55) (@5, w2))
=1 i=li#j
= (U1 A ... ATy Ay, UIA, ..., Uy A Wa)
= (v A ... Avy Awy, UIA, ... U A Wwa).
Hence

(Pyo(wy), Pyi(wy)) = |[os Ao Avg|] 2 {or A v Aoy Awr, v A Aoy Aws).
[

Lemma 5.28. Let W be an inner product space and let V' be a subspace of W. Let
{e1,...,e.} be a basis of V and {ey,...,eq er11,...,e,} be a basis of W extending the
basis of W. Suppose

ogo=eN...Ne, Ne;, T+1<1<n

and
A= ((<ei’€j>))1<ij<r (( €i) €; )>r+1gz§n,1§g§r
¢= ((<6i’€j>))1<z<r rH1<j<n’ D= ((<€“€J>))r+1§i,jén
(( 9i,0j ))r+1§i,j§n'
Then

A B det(A,)
det (((ei» 6j>))1§i,j§n = det (C D) - W‘

Proof. Suppose z; = ({e1,€;),...,{e;,e;)) and y; = T8, r+1 <i < n.

o) = de A Yi
(:%3) et (%’ <€i>ej>>
= det(A)((er, e5) — 1347 ).

Next, note that

A B
det (((er, €)1 0, = det (C D)
= det(A)det(D — CA™'B)
= det(A)det (((e;, ;) — ;47 ")) r+1<i,j<n
= det(A)det (({oy, Uj>/det<A>))r+1§i,jS”

det(A,)
(det A)r—r—1°



5.4. Rank n-Vector Bundles 59

O

Proposition 5.29. Let E be a Hermitian holomorphic vector bundle of rank n over a
bounded domain 2 in C™ and let F' be a subbundle of E of rank r. Then

hdet E

haey(E/F) = T

where haet £, haet(p/r) and haey p are the metrics of det I, det ' and det E/F respectively.

Proof. Let {s1,...,s.} bea frame for F over an open subset U of Q and let {s1, ..., S, Sy41,
..., 8y} be a frame of E obtained by extending the frame of F'. The quotient E/F admits a
frame of the form {[s,41],...,[sn]}, where [s;],7 +1 < i < n, denotes the equivalence class

of s;in E/F. Let hg = (({s;, Si>)>Zj:1’ he = (((s;, 5i>));j:1 and b r = ((([s5], [SiD))Zj:rJrl
be the metrics of £, F' and E/F respectively. Then by the definition of the determinant
bundle hgetp = det hg, haerp = dethp and hgeip/rp = det hgyp. By Lemma 5.27 and

Lemma 5.28, we have

haete/rp = dethg/p

= det ({[s;]: [s:D)); n

s/, Ase|? ij=r+1
det (((31 Ao NSNS ST AN S A Si)»Zj:r—&-l
- (det hp)n"
_ haetr
 haer

]

Corollary 5.30. Let0 — F — E — E/F — 0 be an exact sequence of Hermitian holomor-
phic vector bundles. Then

Kaewe/r) = Kaew(p) — Kaer(r)

which is equivalent to
trace(Kg/r) = trace(Kg) — trace(Kp).
Let E; be a Hermitian holomorphic vector bundle of rank n over an open subset (2

in C and let Ef € &,,(2,H). Let {oy,...,0,} be a frame for E; over an open subset €, of
2. Let h be a metric for £y which is defined as

h(z) = ((<0'j<z)7o-i(z)>))2j:1
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Wedeﬁneﬂkforeach1§k<ooand1§i§nby

8”‘_10n akO'Z'

Ozk=1 " Ozk”

where wedge products between o}s and their derivatives are taken in the Hilbert space AH.
Let hj; be the matrix

FF=0oiA...Nou A A

ha(2) = ((FEG). RNy
Proposition 5.31. Let Ey be a Hermitian holomorphic vector bundle of rank n over {2 C C.
Then the curvature Kg, of Ey is given by

K, (z) = (det h(z))""h(2) " hi(2) dz Adz.

Proof. Set z; = (%(01,@), . %(an,m)) and y; =7, 1<i<n.For1<i,j<n

L Pl - de h(z) Yj
(FI).F)(2) = de ( %(aj(z),m(Z»)

= det(h(=) (552 (0s(2),0:() = wih(2) s )

Now we can derive the formula for the curvature of the vector bundle Fy:
Kg,(2) = h7'(2) {00h(z) — Oh(z)h~"(2)0h(z)}
@) (322 (05(2), 04(2)) — wih(2)Myy))7,_ dz A dz
1(2)(((det h(2)"H(E; (2), F} (2)))); ;2,42 A dz
= (det h(2)) " 'h  (2)hi(2) dz Adz
O
Corollary 5.32. Let E; be a vector bundle of rank n over a bounded domain 2 C C. Then

the curvature of the bundle Ey is of rank r if and only if exactly r elements are independent
from the set {F},... . F'} of n elements.

Proof. By Lemma 5.31 the rank of the curvature of the bundle E is same as the rank of
hi. But rank of h; is r if and only if r elements are independent from the set {F}, ..., F}}

of n elements. O]

A result from [7, page 238, Lemma 4.12], which appeared to be mysterious, now
follows from the formula derived for the rank of the curvature. Thus we have the following
corollary:

Corollary 5.33. Let Ey be a vector bundle of rank n over a bounded domain €2 in C. Then
the rank of the curvature Kz, (g, of the jet bundle Ji(Ey), 1 < k < oo, is at most n.
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5.4.1 Curvature Formula in General

Let E; = Q be a Hermitian holomorphic vector bundle of rank n. Let {sy, -+ ,s,} be a
local frame of E; over an open subset €2 of 2. Let h be a metric for £y which is defined
as

h(z) = (((si(2), 5;(2))1 -

Forl1<p<nand1l<j<mset
=851 A Ny Ao

For 1 <17,7 <m set

his(z) = ((7a(2). 7 )

p,g=1"
Proposition 5.34. Let F; 5 Q be a Hermitian holomorphic vector bundle of rank n over

a domain (2 in C™. Then curvature Kg, of the vector bundle Ey is given by

K, (2) = (det h(z Z hij(2) dZ; A dz.
i,7=1
Proof. Set ), = <8‘2 (81, 8p), - ,%(sn, sp>> and y!, = x_;tr for 1 <p<n.

For 1 <14,57 <m,

e (2) = R ()2 () = (5 (54(2), sp(2)) —hh(2) i)
= (et h(=)(7i(=) T,
= (det h(2)) " i (2).

Hence the curvature of the vector bundle E; takes the form:

Ki,(2) = W) Y (325() = BN ()8 (2)) d3 A de

= (deth(z))""'h ()Zhi-()d_ A dz;

5.4.2 Curvature of the Jet Bundle

Let Jx(Ey) be a jet bundle of rank n(k + 1) over €2, where Q is a bounded domain in C.
If o ={0y, -+ ,0,} is a frame for E; then a frame for J,(Ey) is of the form

0 0 a* a*
jk<0-) = {Ula U O0ny 501, 5500y s R0y - @O—n}-
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By Lemma 5.31 the curvature Kz, (g,) of the bundle J,(Ey) is given by

Kaep(2) = (det Ju(h)(2)) " (Te(R)(2)) ! (Onkxnk Dntocn ) dz A dz

Onxnk hk+1 (Z)

Let A = jk_l(h),

_ [ 9kn 9% —1p
__ it 9%
B=C" D= szaékh’
o ak 8k 821@71 .
€Ty = (W<Ulao—i>7 ceey ﬁ(o—nao—i% Cr ) §Lh—19zk <0n70i>>7 1 S 1 S n,

and finally y; = 7, 1 <i < n.

Now
D~ CA™'B = zlgzh—CA'B
— ((%(aj, oi) — IEiA_lyj))ijl
= ((det Foah) " (EL ER)Y
= (det Ju1h) hs.
Consequently,
-1
A B
)t =
(Jih) C D)
_( (A-BDC)'  —AB(D-CAB)
— _D_IC(A_BD_lc)—l (D_CA—lB)—l
_( -BDOy —ATB(D-CATB)
= _D_IC(A_ BD—lc)_l det(jk‘flh>h];1

The curvature of the jet bundle Ji(Ey) is

Ka.ep(2)
(O —(det Tu(h)(2)) AT (2)B(2) (D(2) = C(2) A7 (2)B(2)) ™ hysa (2)
O (det Ju(h)(2)) " det(Ti_1h(2))hy ' (2)hrss (2)
Here
det Jih(2) = (det Jp_1h(2))' " det hy(2)
and

(det Jph(2)) " det Jp_1h(2)
= (det h(2))"=m"" (det by (2))" ™" o (det hy_a(2))" ™ (det hy_q (2))"(det hy(2)) 7"
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5.4.3 The Trace Formula

Let trace ®@Id, 5, : Mipn(C) =2 M, (C) @ M, (C) - Co M, (C) = M,,(C) be the operator
defined as follows

(trace & Idnxn)(z Em(zv j) ® Ai,j) = Z Al}i’
i =1 i=1

where E,, (7, j) is the m x m matrix which is defined as follows
(kD) = ().
(An arbitrary element A in M,,,(C) ® M, (C) is of the form A =", E..(i,j) ® A;;.)

Theorem 5.35. Let 0 — Jk_l(Ef) — jk(Ef) — jk(Ef)/jk_l(Ef) — 0 be an exact
sequence of jet bundles. Then we have

(trace %Y Idnxn) (Kjk(Ef)) — (trace ® Idnxn) (chk—l(Ef)) = Kjk(Ef)/Jk,l(Ef)(Z)-

Proof.
(trace ® Idnxn) (’Cjk(Ef)) — (trace ® Idnxn) (Kjkil(Ef))
= (det Ji(h)(2)) " det(Tr_1h(2))hi " (2)hisa (2)
— (det Tu1(h)(2)) " det(Tn-sh(2))hity () hu(2)

= KauB)/Ter ) (2)-

The last equality follows from [7, page 244, Proposition 4.19]. ]
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