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Abstract

The curvature of a contraction T in the Cowen-Douglas class is bounded above by the

curvature of the backward shift operator. However, in general, an operator satisfying the

curvature inequality need not be contractive. In this thesis, we characterize a slightly

smaller class of contractions using a stronger form of the curvature inequality. Along

the way, we find conditions on the metric of the holomorphic Hermitian vector bundle

E corresponding to the operator T in the Cowen-Douglas class which ensures negative

definiteness of the curvature function. We obtain a generalization for commuting tuples of

operators in the Cowen-Douglas class.

Secondly, we obtain an explicit formula for the curvature of the jet bundle of the

Hermitian holomorphic bundle Ef on a planar domain Ω. Here Ef is assumed to be a

pull-back of the tautological bundle on Gr(n,H) by a nondegenerate holomorphic map

f : Ω→ Gr(n,H). Clearly, finding relationships amongs the complex geometric invariants

inherent in the short exact sequence

0→ Jk(Ef )→ Jk+1(Ef )→ Jk+1(Ef )/Jk(Ef )→ 0

is an important problem, where Jk(Ef ) represents the k-th order jet bundle. It is known

that the Chern classes of these bundles must satisfy

c(Jk+1(Ef )) = c(Jk(Ef )) c(Jk+1(Ef )/Jk(Ef )).

We obtain a refinement of this formula:(
trace⊗ Idn×n

)
(KJk(Ef ))−

(
trace⊗ Idn×n

)
(KJk−1(Ef )) = KJk(Ef )/Jk−1(Ef )(z).
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Chapter 1

Introduction

Let H be a complex Hilbert space. Given a bounded linear operator T on H, it is natural

to ask if there exists a canonical model (modulo unitary equivalence) for T and obtain a

complete set of unitary invariants. In general, it is not possible to find a solution to this

problem. However, if T is a normal operator, the spectral theorem provides both a model

(multiplication operator) and a complete set of invariants (spectrum, spectral multiplicity

function and spectral measure). For a contraction T , Sz-Nagy and Foias model theory

provides a canonical model as well as a complete set of invariants. In a very influential

paper [7], Cowen and Douglas introduced the class Bn(Ω) of operators, where Ω is a domain

in C. They showed that an operator T in Bn(Ω) determines a Hermitian holomorphic

vector bundle ET on Ω and that the equivalence classes of T and of ET are in one to

one correspondence. Exploiting this correspondence and using techniques from complex

geometry, they obtained a complete set of invariants for operators in Bn(Ω). They also

showed that an operator in Bn(Ω) can be realized as the adjoint of a multiplication operator

on a Hilbert space consisting of holomorphic functions on Ω and possessing a reproducing

kernel. This provides a model for operators in the class Bn(Ω). This latter description was

elaborated and studied in detail by Curto and Salinas to determine when two operators in

the class Bn(Ω) are unitarily equivalent (cf. [9]).

For a normal operator, via spectral theory, one attempts to synthesize the operator

from elementary operators. For example, a normal operator on a finite dimensional space

can be written as the orthogonal direct sum of scalar operators on eigenspaces, where the

scalars are just the eigenvalues of the operator, which together with multiplicities determine

the operator up to unitary equivalence. On infinite dimensional Hilbert spaces, the results

are essentially the same. In this case, the direct sum is replaced by a continuous direct sum

or direct integral. For an arbitrary operator this approach fails spectacularly. Consider

the following example.
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Let U+ : l2(N)→ l2(N) be the shift operator defined by

U+(α0, α1, α2, . . .) = (0, α0, α1, α2, . . .)

for (α0, α1, α2, . . .) in l2(N) and let U∗+ denote the adjoint of U+ defined by

U∗+(α0, α1, α2, . . .) = (α1, α2, α3, . . .).

Since

U∗+(1, λ, λ2, . . .) = λ(1, λ, λ2, . . .),

where (1, λ, λ2, . . .) is in l2(N) for |λ| < 1, it follows that the spectrum of U∗+ contains D.

We can not write l2(N) = M+N, where M and N are invariant non zero proper subspaces

for U∗+ [17, theorem 2.2.1, page 43]. Therefore, the conventional spectral theory is not of

much use in studying U∗+. Cowen and Douglas initiated, in their foundational paper [7], a

systematic study of a class of operators which includes the operator U∗+ and many other

operators possessing an open set of eigenvalues.

Definition 1.1. For a domain Ω ⊆ C and n ∈ N, the class Bn(Ω) consists of those operators

T whose spectrum σ(T ) is contained in Ω and

(1) ran (T − w) = H for w in Ω;

(2) span {ker(T − w) : w ∈ Ω} is dense in H;

(3) dim ker(T − w) = n for w in Ω.

It was shown in [7, proposition 1.11] that the eigenspaces for each T in Bn(Ω) form

a rank n Hermitian holomorphic vector bundle ET over Ω, that is,

ET := {(w, x) ∈ Ω×H : x ∈ ker(T − w)}, π(w, x) = w

and there exist a holomorphic frame w → γ(w) := (γ1(w), . . . , γn(w)) with ker(T − w) =

span {γi(w) : 1 ≤ i ≤ n}. The Hermitian structure at w is the one that ker(T − w)

inherits as a subspace of the Hilbert space H. The metric of the vector bundle ET at w is

h(w) = ((〈γj(w), γi(w)〉))ni,j=1. The curvature KT of the bundle ET is given by the following

formula [21, proposition 2.2, pp. 79]

KT (w) =
∂

∂w̄

(
h−1(w)

∂

∂w
h(w)

)
dw̄ ∧ dw.

It was also shown in [7] that the equivalence class of the Hermitian holomorphic bundle

ET and the unitary equivalence class of the operator T determine each other.



3

Theorem 1.2. [7, theorem 1.14] The operators T and T̃ in Bn(Ω) are unitarily equivalent

if and only if the corresponding Hermitian holomorphic vector bundles ET and ET̃ are

equivalent.

The curvature of a vector bundle E transforms according to the rule, [21, pp. 72]

K(fg)w = (g−1K(f)g)w, w ∈ Ω0, where f = (e1, . . . , en) is a frame for E over an open

subset Ω0 ⊂ Ω and g : Ω0 → GL(n,C) is a change of frame. In the case when the rank n of

the vector bundle E is strictly greater than 1, the curvature of E depends on the choice of

a frame. Thus the curvature K cannot be an invariant for the vector bundle E. However,

the eigenvalues of K are invariants for the bundle E. The complete set of invariants given

in [7, Definition 2.17 and Theorem 3.17] involve the curvature and the covariant derivatives

Kziz̄j 0 ≤ i ≤ j ≤ i+ j ≤ n, (i, j 6= (0, n), (n, 0)),

where rank of E = n. The curvature

K(w) =
∂2

∂w∂w̄
log ‖ γ(w) ‖2 dw̄ ∧ dw,

of the line bundle E, defined with respect to a non-zero holomorphic section γ of E, is

a complete invariant. The definition of the curvature is independent of the choice of the

section γ: If γ0 is another holomorphic section of E, then γ0 = φγ for some holomor-

phic function φ on some open subset Ω0 of Ω. The harmonicity of log|φ| completes the

verification. Hence Theorem 1.2 for the line bundle has the form

Theorem 1.3. [8, pp. 4] Operators T, T̃ in B1(Ω) are unitarily equivalent if and only if

KT (w) = KT̃ (w) for all w in Ω.

An operator T in the class B1(Ω), as is well-known (cf. [7, pp. 194 ]), is unitarily

equivalent to the adjoint M∗ of the multiplication operator M by the co-ordinate function

on some Hilbert space HK of holomorphic functions on Ω∗ := {z ∈ C : z̄ ∈ Ω} possessing

a reproducing kernel K.

The kernel K is a complex valued function defined on Ω∗ ×Ω∗ which is holomorphic

in the first variable and anti-holomorphic in the second. In consequence, the map w̄ →
K(·, w), w ∈ Ω∗, is holomorphic on Ω. We have K(z, w) = K(w, z) making it Hermitian.

It is positive definite in the sense that the n× n matrix((
K(wi, wj)

))n
i,j=1

is positive definite for every subset {w1, . . . , wn} of Ω∗, n ∈ N. Finally, the kernel K

reproduces the value of functions in HK , that is, for any fixed w ∈ Ω∗, the holomorphic

function K(·, w) belongs to HK and

f(w) = 〈f,K(·, w)〉, f ∈ HK , w ∈ Ω∗.
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The correspondence between the operator T in B1(Ω) and the operator M∗ on the

Hilbert space of holomorphic functions is easy to describe [7, pp. 194 ]). Let γ be a

non-zero holomorphic section of ET (for a bounded domain in C, a global section exists

by Grauert’s Theorem) for the operator T acting on the Hilbert space H. Consider the

map Γγ : H → O(Ω∗), where O(Ω∗) is the space of holomorphic functions on Ω∗, defined

by Γγ(x)(z) = 〈x, γ(z̄)〉, z ∈ Ω∗. Transplant the inner product from H on the range of

Γγ. The map Γγ is now unitary from H onto ran Γγ = Hγ. Define Kγ to be the function

Kγ(z, w) = Γγ
(
γ(w̄)

)
(z) = 〈γ(w̄), γ(z̄)〉, z, w ∈ Ω∗. Set (Kγ)w(·) := Kγ(·, w). Thus (Kγ)w

is the function Γγ
(
γ(w̄)

)
. It is then easily verified that Kγ has the reproducing property,

that is,

〈Γγ(x)(·), Kγ(·, w)〉ran Γγ = 〈Γγ(x)(·),Γγ(γ(w̄))(·)〉ran Γγ

= 〈x, γ(w̄)〉H
= Γγ(x)(w), x ∈ H, w ∈ Ω∗.

It follows that ‖(Kγ)w(·)‖2 = Kγ(w,w). Also, (Kγ)w(·) is an eigenvector for the operator

Γγ T Γ∗γ with eigenvalue w̄ in Ω;

Γγ T Γ∗γ((Kγ)w(·)) = Γγ T Γ∗γ
(
Γγ(γ(w̄))

)
= Γγ T γ(w̄)

= Γγ w̄ γ(w̄)

= w̄ (Kγ)w(·), w ∈ Ω∗.

Since the linear span of the vectors {(Kγ)w : w ∈ Ω∗} is dense in Hγ, it follows that

Γγ T Γ∗γ is the adjoint M∗ of the multiplication operator M on Hγ. We therefore assume,

without loss of generality, that an operator T in B1(Ω) can be viewed as the adjoint M∗ of

the multiplication operator M on some Hilbert space Hγ of holomorphic functions on Ω∗

possessing a reproducing kernel K.

More generally, an operator T ∈ Bn(Ω) can be realized as the adjoint of the multipli-

cation operator on a reproducing kernel Hilbert space of holomorphic Cn-valued functions

on Ω∗. Let ET be the Hermitian holomorphic vector bundle over Ω corresponding to T .

Let γ = {γ1, . . . , γn} be a holomorphic frame for ET .

Define the map Γγ : H → O(Ω∗,Cn) as follows

Γγ(x)(z) =
(
〈x, γ1(z̄)〉, . . . , 〈x, γn(z̄)〉

)tr
z ∈ Ω∗, x ∈ H,

where O(Ω∗,Cn) is the space of holomorphic functions defined on Ω∗ which take values in

Cn. It is easy to see that the map Γγ is an injective map. Transplant the inner product
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from H on the range of Γγ. The map Γγ is now unitary from H onto Hγ := ran Γγ. Define

Kγ to be the function on Ω∗ × Ω∗ taking values in the n× n matrices Mn(C):

Kγ(z, w) =
((
〈γj(w̄), γi(z̄)〉

))n
i,j=1

for z, w ∈ Ω∗. Set (Kγ)w(·) = Kγ(·, w). It is then easily verified that K has the reproducing

property, that is,

〈Γγ(x)(·), (Kγ)w(·)η〉ran Γγ = 〈Γγ(x)(·),
n∑
i=1

Γγ(γi(w̄))(·)ηi〉ran Γγ

=
n∑
i=1

η̄i〈Γγ(x)(·),Γγ(γi(w̄))(·)〉ran Γγ

=
n∑
i=1

〈x, γi(w̄)〉H η̄i

= 〈Γγ(x)(w), η〉Cn , x ∈ H, η ∈ Cn, w ∈ Ω∗.

Now consider,

Γγ(T
∗x)(w) = (〈T ∗x, γ1(w̄)〉, . . . , 〈T ∗x, γn(w̄)〉)tr

=
(
〈x, Tγ1(w̄)〉, . . . , 〈x, Tγn(w̄)〉

)tr

=
(
〈x, w̄γ1(w̄)〉, . . . , 〈x, w̄γn(w̄)〉

)tr

= w
(
〈x, γ1(w̄)〉, . . . , 〈x, γn(w̄)〉

)tr

= wΓγ(x)(w)

= (M(Γγ(x)))(w).

Hence

ΓγT
∗ = MΓγ.
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Also, (Kγ)w(·)η is an eigenvector for the operator M∗ = ΓγTΓ∗γ with eigenvalue w̄ in Ω;

M∗(Kγ)w(·)η = ΓγTΓ∗γ
( n∑
i=1

(Γγ(γi(w̄))(·)ηi)
)

= Γγ
( n∑
i=1

(T (γi(w̄))ηi)
)
(·)

= Γγ
( n∑
i=1

(w̄(γi(w̄))ηi)
)
(·)

= w̄Γγ
( n∑
i=1

γi(w̄)ηi
)
(·)

= w̄
n∑
i=1

Γγ(γi(w̄))(·)ηi

= w̄(Kγ)w(·)η.

A remark in [16] relates the trace of the curvature of vector bundle ET to the Hilbert-

Schmidt norm of second fundamental form of ET (viewed as a sub bundle of the trivial

bundle Ω×H) as follows. Let P : Ω→ L(H) be the map:

P (λ) = Pker(T−λ), λ ∈ Ω,

where Pker(T−λ) denotes the orthogonal projection from H to ker(T− λ). Treating ET as a

sub bundle of Ω×H, they note that − ∂
∂λ
P (λ) is the second fundamental form and

trace KT(λ) = −‖ ∂
∂λ

P(λ)‖HS ,

where ‖ · ‖HS denotes the Hilbert-Schmidt norm.

The results of the thesis are in two parts which we briefly describe below.

It is shown in [18] that the curvature KS∗ of the backward shift operator dominates the

curvature KT if T is a contraction in B1(Ω). It is natural to ask if the converse is valid.

However, it is easy to construct an example (see Chapter 3) of a non-contraction which

satisfies the curvature inequality. However, since KT (w,w) is real analytic, polarization

gives a Hermitian function KT (z, w). Thus it is natural to study the stronger inequality:

For any subset {z1, . . . , zn} of D,((
KS∗(zi, zj)−KT (zi, zj)

))n
i,j=1

is positive definite. One of the main results in this thesis says that the curvature inequality

is equivalent to T being a contraction in a stronger sense than the usual. In the first part
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of the thesis, these results have been proved using the familiar notion of infinite divisibility.

Extension to more general domains Ω in Cm and several applications have been given.

In the second part, we obtain an explicit formula for the curvature of the jet bundle

of the Hermitian holomorphic bundle Ef on a planar domain Ω. Here Ef is assumed to be

a pull-back of the tautological bundle on Gr(n,H) by a nondegenerate holomorphic map

f : Ω → Gr(n,H) as in Definition 5.14. Clearly, finding relationships among the complex

geometric invariants inherent in the short exact sequence

0→ Jk(Ef )→ Jk+1(Ef )→ Jk+1(Ef )/Jk(Ef )→ 0 (1.1)

is an important problem, where Jk(Ef ) represents the k-th order jet bundle. In the paper

[5], it is shown that the Chern classes of these bundles must satisfy

c(Jk+1(Ef )) = c(Jk(Ef )) c(Jk+1(Ef )/Jk(Ef )).

We obtain a refinement of this formula.

We now give some of the details.

Let T be an operator in B1(D), where D is the open unit disc. The following proposition

was proved in [18].

Proposition 1.4. If T is a contractive operator in B1(D), then KT (w) ≤ KS∗(w), w ∈ D,

where S∗ is the backward shift operator.

However if KT (w) ≤ KS∗(w) for all w in D, then it does not necessarily follow that

T is a contraction!

If K is a positive definite kernel on a planar domain, then by an application of the

Cauchy-Schwarz inequality, we see that ∂2

∂w∂w̄
logK(w,w) is positive. In general the real

analytic function ∂2

∂z∂w̄
logK(z, w) obtained by polarizing ∂2

∂w∂w̄
logK(w,w) need not be

a positive definite function. We provide an example of a positive definite kernel K, in

Chapter 3, for which ∂2

∂z∂w̄
logK(z, w) is not positive definite. Our main Theorem gives a

necessary and sufficient condition for the positive definiteness of ∂2

∂z∂w̄
logK(z, w).

Definition 1.5. A positive definite kernel K is said to be infinitely divisible if for all t > 0,

the kernel Kt is also positive definite.

Definition 1.6. Let G be a real analytic function of w, w̄ for w in some open connected

subset Ω of Cm. Polarizing G, we obtain a new function G̃ defined on Ω × Ω which is

holomorphic in the first variable and anti-holomorphic in the second and restricts to G on

the diagonal set {(w,w) : w ∈ Ω}, that is, G̃(w,w) = G(w,w), w ∈ Ω. If the function G̃

is positive definite, that is, the n × n matrix
((
G̃(wi, wj)

))
is positive definite for all finite

subsets {w1, . . . , wm} of Ω, then we say that G is a positive definite function on Ω.



8 1. Introduction

Theorem 1.7. Let Ω be a domain in C and let K be a positive, real analytic function on

Ω×Ω. If K is infinitely divisible then there exists a domain Ω0 ⊂ Ω such that negative of

the curvature ∂2

∂w ∂w̄
logK is a positive definite function on Ω0. Conversely, if K̂ is a real

analytic function on Ω and the function ∂2

∂w ∂w̄
log K̂ is positive definite on Ω, then there

exists a neighborhood Ω0 ⊆ Ω of w0, for every point w0 ∈ Ω, and an infinitely divisible

kernel K on Ω0 × Ω0 such that K(w,w) = K̂(w,w) for all w ∈ Ω0.

Definition 1.8. If K is a non negative definite kernel such that (1−zw̄)K(z, w) is infinitely

divisible then we say that M∗ on HK is an infinitely divisible contraction.

The following Corollary completes the study of curvature inequalities begun in [18].

Corollary 1.9. Let K be a positive definite kernel on the open unit disc. Assume that the

adjoint M∗ of the multiplication operator M on the reproducing kernel Hilbert space (H, K)

belongs to B1(D). The function ∂2

∂z ∂w̄
log
(
(1− zw̄)K(z, w)

)
is positive definite if and only

if the multiplication operator M is an infinitely divisible contraction.

Definition 1.10. Let H be a Hilbert space and let TTT = (T1, . . . , Tm) be a commuting tuple

of bounded linear operators on H. We say that TTT is a row contraction if
∑m

i=1 TiT
∗
i ≤ IH.

Let Bm be the unit ball in Cm and MMM = (M1, . . . ,Mm) be the m-tuple of (co-

ordinate) multiplication operators on a reproducing kernel Hilbert space with reproducing

kernel K, which is assumed to be bounded. Then MMM is a row contraction if and only if

(1− 〈z, w〉)K(z, w) is positive definite.

Definition 1.11. Let K be positive definite kernel on Bm and MMM = (M1, . . . ,Mm) be the

m-tuple of (co-ordinate) multiplication operators on a reproducing kernel Hilbert space

with reproducing kernel K. Then we say that MMM is an infinitely divisible row contraction

if (1− 〈z, w〉)K(z, w) is an infinitely divisible kernel.

In Chapter 4, a multi-variate analogue of Theorem 1.7 is given. The following corol-

lary is an immediate consequence.

Corollary 1.12. Let K be a positive definite kernel on the open unit ball Bm ⊂ Cm.

Assume that the adjoint MMM∗ = (M∗
1 , . . . ,M

∗
m) of the tuple of multiplication operators

MMM = (M1, . . . ,Mm) on the reproducing kernel Hilbert space (H, K) belongs to B1(Bm).

The function
((

∂2

∂wi ∂w̄j
log(1−〈w,w〉)K(w,w)

))m
i,j=1

, w ∈ Bn, is positive definite if and only

if the operator MMM is an infinitely divisible row contraction.

Several other applications are given for domain like the polydisc.

In Chapter 5, we compute the curvature of the jet bundle obtained from a Hermitian

holomorphic line bundle Lf in closed form. Here Lf is the line bundle on a planar domain
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Ω which is the pull-back of the tautological bundle S(n,H) on Gr(1,H) by a holomorphic

nondegenerate map f : Ω→ Gr(1,H).

The following Theorem is an immediate consequence of this curvature formula for

the jet bundle.

Theorem 1.13. Let Lf and Lf̃ be Hermitian holomorphic line bundles. Let Jk(Lf ) and

Jk(Lf̃ ) be corresponding jet bundles of rank k+1. The two jet bundles Jk(Lf ) and Jk(Lf̃ )
are locally equivalent as Hermitian holomorphic vector bundles if and only if the two line

bundles Lf and Lf̃ are locally equivalent as Hermitian holomorphic vector bundles.

Also, the curvature of the determinant bundle of the jet bundle Jk(Lf ) corresponding

to the line bundle Lf is explicitly obtained.

Proposition 1.14. The curvature of the determinant bundle det Jk(Lf ) is given by the

following formula

KdetJk(Lf )(z) =
(detJk−1h)(z)(detJk+1h)(z)

(detJkh)2(z)
dz ∧ dz.

The following Corollary is an immediate consequence of this formula.

Corollary 1.15. Let Lf and Lf̃ be Hermitian holomorphic line bundles over a domain

Ω ⊂ C. The following statements are equivalent:

(1) detJk(Lf ) is locally equivalent to detJk(Lf̃ ) and detJk+1(Lf ) is locally equivalent

to detJk+1(Lf̃ ), for some k ∈ N

(2) Lf is locally equivalent to Lf̃ .

We now describe a formula for a Hermitian holomorphic vector bundle Ef on a

bounded domain Ω ⊂ Cm.

Let {s1, · · · , sn} be a local holomorphic frame for Ef . Set

τ jp (z) = s1(z) ∧ · · · ∧ sn(z) ∧ ∂sp
∂zj

(z), 1 ≤ p ≤ n, 1 ≤ j ≤ m.

and

hij(z) =
((
〈τ ip(z), τ jq (z)〉

))n
p,q=1

, 1 ≤ i, j ≤ m, z ∈ Ω.

With this notation, the curvature KEf of the vector bundle Ef may be expressed as

KEf (z) = (deth(z))−1h−1(z)
m∑

i,j=1

hij(z)dzj ∧ dzi,
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where h is the metric h(z) = ((〈sj(z), si(z)〉)). Applying this formula to domains in C, we

obtain a natural generalization for the curvature formula of the jet bundle Jk(Ef ), where

the rank of the Hermitian holomorphic vector bundle Ef is assumed to be n. This closed

form for the curvature of Jk(Ef ) gives to a very interesting relationship involving the jet

bundles Jk(Ef ), k = 1, 2, . . . and their quotients:(
trace⊗ Idn×n

)
(KJk(Ef ))−

(
trace⊗ Idn×n

)
(KJk−1(Ef )) = KJk(Ef )/Jk−1(Ef )(z).

involving the short exact sequence 1.1.



Chapter 2

Preliminaries

2.1 Reproducing Kernel

Let Ω be a bounded, connected, open subset of Cm and Mn(C) be the set of all n × n

matrices over C.

Definition 2.1. A non negative definite function K : Ω×Ω→Mn(C) which is holomorphic

in the first variable and antiholomorphic in the second variable is said to be a reproducing

kernel on Ω if it satisfies the positivity condition:

q∑
i,j=1

〈K(w(i), w(j))ζj, ζi〉Cn ≥ 0, w(1), . . . , w(q) ∈ Ω, ζ1, . . . , ζq ∈ Cn, q ≥ 1. (2.1)

Given a non negative definite kernel K, consider the linear span H0 of all vector from

the set

S := {K(·, w)ζ, w ∈ Ω, ζ ∈ Cn}.

Define the inner product on H0 as follows,

〈 p∑
i=1

K(·, w(i))ζi,

p∑
i=1

K(·, w(i))ζi
〉

=

p∑
i,j=1

〈K(w(i), w(j))ζj, ζi〉Cn . (2.2)

The completionH of the inner product spaceH0 is a Hilbert space of holomorphic functions

on Ω. It can be seen easily that

〈f(w), ζ〉Cn = 〈f,K(·, w)ζ〉H, w ∈ Ω, ζ ∈ Cn, f ∈ H. (2.3)

Remark 2.2. In the above definition, we have assumed that the function K defines a non

negative definite sesquilinear form. It then follows that K is positive definite. This is a
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consequence of the Cauchy-Schwarz inequality: For f ∈ H, ζ ∈ Cn and w ∈ Ω, we have

|〈f(w), ζ〉Cn| = |〈f,K(., w)ζ〉H|
≤ ||f ||H〈K(w,w)ζ, ζ〉Cn .

Thus if ||f ||H = 0 then f = 0.

Conversely, If H is a Hilbert space of holomorphic functions defined on Ω taking

values in Cn and the evaluation function ew is bounded for each w ∈ Ω, then there exists a

function e∗w : Cn → H such that 〈ew(f), ζ〉 = 〈f, e∗w(ζ)〉, for all f ∈ H and ζ ∈ Cn. Clearly,

f⊥ ran e∗w if and only if 〈ewf, ζ〉 = 〈f, e∗w(ζ)〉 = 0 for every ζ ∈ Cn. Hence f⊥ ran e∗w for all

w ∈ Ω if and only if f = 0. Hence H is generated by the subspaces e∗w(Cn). Therefore the

linear space

H̃ :=

{
r∑
j=1

e∗wj(ζj)|wj ∈ Ω, ζj ∈ Cn, r ∈ N

}
is dense in H. For f ∈ H̃,

||f ||2 =

〈
r∑
j=1

e∗wj(ζj),
r∑
j=1

e∗wj(ζj)

〉

=
r∑

j,k=1

〈
ewke

∗
wj

(ζj), ζk

〉
.

Since ||f ||2 ≥ 0, it follows that the function K(z, w) = eze
∗
w is non negative definite as in

(2.1). The function K has the reproducing property

〈f,K(., w)ζ〉H = 〈f, e∗w(ζ)〉H
= 〈ew(f), ζ〉Cn
= 〈f(w), ζ〉Cn .

The reproducing property (2.3) implies that K is uniquely determined.

Definition 2.3. A Hilbert space of holomorphic functions on some bounded domain Ω ⊂ Cm

will be called a reproducing kernel Hilbert space if the evaluation ew at w is bounded for

w in some open subset of Ω.

If K is a reproducing kernel for some Hilbert space H, then

H = span{K(·, w)ζ : w ∈ Ω, ζ ∈ Cn}.

We can give an alternative description of a reproducing kernel K in terms of an orthonormal
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basis {ek : k ≥ 0} of the Hilbert space H as follows; We think of ek(w) ∈ Cn as a column

vector for a fixed w ∈ Ω and let ek(w)∗ be the row vector (e1
k(w), . . . , enk(w)). We see that

〈K(z, w)ζ, η〉 = 〈K(., w)ζ,K(., z)η〉

=

〈
∞∑
j=0

〈K(., w)ζ, ej〉ej,
∞∑
k=0

〈K(., z)η, ek〉ek

〉

=
∞∑
k=0

〈K(., w)ζ, ek〉〈K(., z)η, ek〉

=
∞∑
k=0

〈ek(w), ζ〉〈ek(z), η〉

=
∞∑
k=0

〈ek(z)ek(w)∗ζ, η〉

for any pair of vectors ζ, η ∈ Cn. Therefore, we have the following very useful representation

for the reproducing kernel K;

K(z, w) =
∞∑
k=0

ek(z)ek(w)∗, (2.4)

where {ek : k ≥ 0} is any orthonormal basis in H.

Definition 2.4. A non negative definite kernel K is said to be normalized at w0 ∈ Ω if

there exist a neighborhood Ω0 of w0 in Ω such that K(z, w0) = 1 for all z ∈ Ω0.

A detailed discussion of reproducing kernels is given in [3].

2.2 The Cowen-Douglas Class

LetH be a separable Hilbert space and Ti : H → H, 1 ≤ i ≤ m, be bounded linear operators

such that TiTj = TjTi, 1 ≤ i, j ≤ m. Let TTT = (T1, . . . , Tm) denote the m-tuple of operators.

We associate with the m-tuple TTT a bounded linear operator DTTT : H → H⊕ . . .⊕H defined

by DTTT (x) = (T1x, . . . , Tmx), x ∈ H. Let Ω be a domain (open and connected set) in Cm.

For w = (w1, . . . , wm) in Ω, let TTT − w denote the operator tuple (T1 − w1, . . . , Tm − wm).

Let n be a positive integer.

Definition 2.5. The m-tuple TTT is said to be in the Cowen-Douglas class Bn(Ω) if

(1) ran DTTT−w is closed for all w ∈ Ω;
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(2) span{ker DTTT−w : w ∈ Ω} is dense in H; and

(3) dim kerDTTT−w = n for all w ∈ Ω.

For TTT in Bn(Ω) let (ETTT , π) denote the sub-bundle of the trivial bundle Ω×H defined

by

ETTT = {(w, x) ∈ Ω×H : x ∈ kerDTTT−w} and π(w, x) = w.

To show that ETTT is actually a holomorphic vector bundle over Ω we need to show that

locally in a neighborhood of each point w0 ∈ Ω there exist holomorphic H- valued functions

γ1(w), . . . , γn(w), whose values span kerDTTT−w. This is given in [8, pp. 16]. Since π−1(w) =

(ETTT )w = kerDTTT−w is a subspace ofH, the Hermitian structure on ETTT comes fromH. Hence

ETTT is a Hermitian holomorphic vector bundle.

Theorem 2.6. Two commuting tuples of operators TTT and T̃TT in Bn(Ω) are unitarily equiva-

lent if and only if the vector bundles ETTT and ET̃TT are equivalent as Hermitian holomorphic

vector bundles over some open subset Ω0 of Ω ⊂ Cm.

When Ω is an open subset of C and T, T̃ ∈ Bn(Ω), Theorem 2.6 is proved in [7,

Theorem 1.14].

For a domain Ω in Cm, it is noted in [8, pp. 16] that theorem 2.6 is valid. In general,

for a vector bundle ETTT of rank n, n ≥ 1, the curvature of ETTT , along with certain covariant

derivatives of the curvature, form a complete set of invariants for the operator TTT (cf. [7]

and [8]). For line bundles, however, the curvature forms a complete invariant. In this case,

theorem 2.6 amounts to saying that two operators TTT , T̃TT in B1(Ω) are unitarily equivalent if

and only if the curvatures of the corresponding line bundles ETTT and ET̃TT are equal on some

open subset of Ω.

Every commuting m-tuple of operators TTT = (T1, . . . , Tm) ∈ Bn(Ω) can be realized as

the adjoint of an m-tuple of multiplication operators by coordinate functions on a Hilbert

space of holomorphic functions on an open set Ω∗ = {w ∈ Cm : w̄ ∈ Ω}. We choose a

holomorphic frame {γ1, . . . , γn} on some open subset Ω0 of Ω. The map Γ : Ω0 → L(Cn,H)

defined by

Γ(w)ζ =
n∑
i=1

ζiγi(w), ζ = (ζ1, . . . , ζn)

is holomorphic. Let O(Ω∗0,Cn) be the set of all holomorphic Cn-valued functions on Ω∗0.

Define the map UΓ : H → O(Ω∗0,Cn) by

(UΓx)(w) = Γ(w)∗(x), x ∈ H, w ∈ Ω0.
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It is easy to see that UΓ is linear and injective. Let HΓ = ranUΓ and define the sesquilinear

form 〈 , 〉Γ on HΓ by

〈UΓx, UΓy〉Γ = 〈x, y〉, x, y ∈ H.

It is shown in [9, Remark 2.6] that

(1) UΓTi = M∗
i UΓ, where (Mif)(z) = zif(z), z = (z1, . . . , zm) ∈ Ω.

(2) KΓ(z, w) = Γ(z̄)∗Γ(w̄), z, w ∈ Ω∗0 is a reproducing kernel for the Hilbert space HΓ.

(3) There exists w0 ∈ Ω∗0 such that KΓ(z, w0) = I for all z ∈ Ω∗0.

Conversely, by imposing certain conditions on the kernel K : Ω × Ω → Mn(C) we

can ensure the boundedness of each of the multiplication operators M1, . . . ,Mm on the

associated reproducing kernel Hilbert space. One may impose additional conditions on K

to ensure that MMM∗ = (M∗
1 , . . . ,M

∗
m) is in Bn(Ω∗) by following [9].

Let HK be the reproducing kernel Hilbert space of holomorphic functions with repro-

ducing kernel K defined on Ω. Let the multiplication operators Mi : HK → HK , 1 ≤ i ≤ m,

be bounded linear operators. Let ζ, η ∈ Cn and for fixed w̃ ∈ Ω, 1 ≤ i ≤ m,

〈K(·, w)ζ,M∗
i K(·, w̃)η〉 = 〈MiK(·, w)ζ,K(·, w̃)η〉

= 〈ziK(·, w)ζ,K(·, w̃)η〉
= 〈w̃iK(w̃, w)ζ, η〉
= 〈K(·, w)ζ, w̃iK(·, w̃)η〉.

Hence

M∗
i K(·, w̃)η = w̃iK(·, w̃)η. (2.5)

Let MMM = (M1, . . . ,Mm) be the commuting m-tuple of multiplication operators and

let MMM∗ be the (M∗
1 , . . . ,M

∗
m). It then follows from 2.5 that the eigenspace of MMM∗ at w̃ ∈ Ω∗

contains the n- dimensional subspace ranK(·, w̃).

SupposeMMM∗ is in Bn(Ω∗) and K(w,w) is invertible for every w ∈ Ω. For fixed w0 ∈ Ω

there exists a neighborhood ∆0 of w0 such that K(z, w0) is invertible for all z ∈ ∆0. Let

Kres be the restriction of K on ∆0 ×∆0. Define a kernel function K0 on ∆0 by

K0(z, w) = φ(z)K(z, w)φ(w)∗, z, w ∈ ∆0 (2.6)

where φ(z) = Kres(w0, w0)1/2Kres(z, w0)−1. Clearly K0 is normalized at w0. Let MMM0 be

the m-tuple of multiplication operators on HK0 . It is not hard to establish the unitary
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equivalence of the two m-tuples MMM and MMM0 (cf. [9, Lemma 3.9 and Remark 3.8]). First

the restriction map res : f 7→ f|res, which restricts a function in HK to ∆0 is a unitary

map intertwining the m-tuple MMM on HK and the m-tuple MMM on (HK)res = ran res. The

Hilbert space (HK)res is the reproducing kernel Hilbert space with reproducing kernelKres.

Second, suppose that the m-tuples MMM defined on two different reproducing kernel Hilbert

spaces H1 and H2 are in Bn(Ω) and X : H1 → H2 is a bounded operator intertwining these

two operator tuples. Then X must map the joint kernel of one tuple in to the other, that is,

XK1(·, w)η = K2(·, w)φ(w)η, η ∈ Cn, for some function φ : Ω →Mn(C). Assuming that

the kernel functions K1 and K2 are holomorphic in the first variable and anti-holomorphic

in the second variable, it follows, as in [9, pp. 472], that φ is anti-holomorphic. An

easy calculation shows that X∗ is the multiplication operator M
φ
tr. If the two operator

tuples are unitarily equivalent then there exists an unitary operator U intertwining them.

Hence U∗ must be of the form Mψ for some holomorphic function ψ. Also, the operator

U must map the joint kernel of (MMM − w)∗ acting on H1 isometrically onto the joint kernel

of (MMM − w)∗ acting on H2 for all w ∈ Ω. The unitarity of U is equivalent to the relation

K1(·, w)η = U∗K2(·, w)ψ(w)
tr
η for all w ∈ Ω and η ∈ Cn. It then follows that

K1(z, w) = ψ(z)K2(z, w)ψ(w)
tr

(2.7)

where ψ : ∆0 → GL(Cn) is some holomorphic function. Here GL(Cn) denotes the group of

all invertible linear transformation on Cn.

Conversely, if two kernels are related as in equation 2.7, then the corresponding tuples

of operators are unitarily equivalent since

M∗
i K(·, w)η = wiK(·, w)η, w ∈ Ω, η ∈ Cn,

where (Mif)(z) = zif(z), f ∈ HK for 1 ≤ i ≤ m.

2.3 A Co-ordinate Free Approach to the Operators in

the Cowen-Douglas Class

A slightly different description of these ideas is given in [14], where the vector bundle of

Cowen-Douglas appears as an antiholomorphic vector bundle instead of a holomorphic one.

We reproduce, closely following [14, pp. 5339], the correspondence between an operator in

the Cowen-Douglas class and its realization as the adjoint of a multiplication operator.
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2.3.1 Vector Bundles

Let N be a complex manifold and let E
π→ N be complex vector bundle over N of rank n.

We shall assume for our discussion that E is a trivial vector bundle, that is, there exists

a holomorphic function E → N × Cn such that φ(v) = (z, φz(v)) for v ∈ Ez = π−1(z)

with φz : Ez → Cn linear. Let E∗z be the complex anti-linear dual of Ez for z ∈ M . We

write [u, v] for u(v), u ∈ Ez∗, v ∈ Ez. We consider Cn to be equipped with its natural inner

product and identify it with its own anti-linear dual (so ξ ∈ Cn is identified with the anti-

linear map η 7→ 〈ξ, η〉Cn). Then φ∗z : Cn → E∗z is the dual of the map φz : Ez → Cn. We set

ψz = φ∗−1
z and ψ(u) = (z, ψz(u)) for u ∈ E∗z . This makes E∗ into a complex vector bundle

with trivialization ψ. If E is a holomorphic vector bundle then E∗ is an anti holomorphic

vector bundle and vice-versa.

2.3.2 Reproducing Kernels

Let H be a Hilbert space whose elements are sections of a vector bundle E → M and

suppose the evaluation maps ez : H → Ez are continuous for all z ∈ M . Then setting

Kz = e∗z, we have

[u, f(z)] = [u, ez(f)] = 〈Kzu, f〉H, u ∈ E∗z , f ∈ H. (2.8)

For all w ∈ M , Kwu is in H and is linear in u. So we can write Kw(z)u = ez(Kwu) =

eze
∗
w(u). We also write K(z, w) = Kw(z) = eze

∗
w which is a linear map E∗w → Ez, and is

called the reproducing kernel of H, (2.8) is the reproducing property.

Clearly, K(z, w)∗ = K(w, z). We have the positivity
∑p

j,k=1[uk, K(zk, zj)uj] ≥ 0 for

any z1, . . . , zp in M and u1, . . . , up ∈ E∗z which is nothing but the inequality

p∑
j,k=1

〈e∗zkuk, e
∗
zj
uj〉H ≥ 0.

conversely, a K with these properties is always the reproducing kernel of a Hilbert space

of sections of E (cf. [4]).

Suppose each ez is non-singular, that is, its range is the whole of Ez. Then Kz = e∗z
is an embedding of E∗z into H. Postulating that this embedding is an isometry we obtain

a canonical Hermitian structure on E∗. Using (2.8) we can write for the norm on E∗,

‖u‖2
z = ‖Kzu‖2

H = [u,K(z, z)u], u ∈ E∗z .

The vector bundle E has the dual Hermitian structure. For v ∈ Ez we have

‖v‖2
z = [K(z, z)−1v, v].
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It follow that

|[u, v]|2 ≤ [K(z, z)−1v, v][u,K(z, z)u]

for all u and v. Since K(z, w) is bijective by hypothesis, any v ∈ Ez can be written as

v = K(z, z)u′ with u′ ∈ E∗z and the inequality to be proved is equivalent to

|[u,K(z, z)u′]|2 ≤ [u′, K(z, z)u′][u,K(z, z)u].

But this is just the Cauchy-Schwarz inequality.

When E is a holomorphic vector bundle, K(z, w) depends on z holomorphically and

on w anti-holomorphically. Hence K(z, w) is completely determined by K(z, z). It follows

that K(z, w) is completely determined by the canonical Hermitian structure of E(or E∗).

In the last paragraphs, we had a Hilbert space H of sections of E and (under the

assumption that each ez is surjective) we associated to it a family of embeddings of E∗z ,

the fibre of E∗, into H. This procedure can be reversed. Suppose now that E is a vector

bundle and fibres E∗z of E∗ form a smooth family of subspaces of some Hilbert space H

which together span H, that is, E∗ is an anti-holomorphic sub-bundle of the trivial bundle

M × H. We write ιz : E∗z → H for the (identity) embeddings. We define f̃(z) = ι∗zf for

f ∈ H, z ∈ M . If we denote by H the Hilbert space of all f̃ , where f ∈ H, with norm

‖f̃‖ = ‖f‖, each ez is continuous, so we have a reproducing kernel Hilbert space. The

reproducing kernel is determined by Kzu = ι̃zu.

2.3.3 Operators in the Cowen-Douglas Class

Given a domain Ω ⊂ C, we say an operator T on a Hilbert space H is in Bn(Ω) if z̄

is an eigenvalue of T , the range of the operator T − z̄ is closed, and the corresponding

eigenspaces Fz are of constant dimension n for every z ∈ Ω. It is proved in [7] that the

spaces Fz determine an anti-holomorphic Hermitian vector bundle F ⊂ Ω×H. (In [7] the

eigenvalues z are assumed to be in Ω so, F is a holomorphic vector bundle.) We write, for

z ∈ Ω, ιz : Fz → H for the identity embedding. Hence, E = F ∗ is a holomorphic vector

bundle.

To the element f of H there corresponds the section f̃ of E (defined by f̃(z) = ι∗zf)

and these sections form a Hilbert space H isomorphic with H and having the reproducing

kernel determined by Kzu = ι̃zu.

Under this isomorphism, the operator on H corresponding to T is M∗, where M is

the multiplication operator Mf̃(z) = zf̃(z). In fact (cf. [7]) for any u ∈ E∗z ,

[u, T̃ ∗f(z)] = 〈ιzu, T ∗f〉 = 〈Tιzu, f〉 = z̄〈ιzu, f〉 = [u, zf̃(z)] = [u,Mf̃(z)].



Chapter 3

Infinitely Divisible Metrics and

Curvature Inequalities - Planar Case

In this section we consider operators in the Cowen-Douglas class B1(Ω), where Ω is a

planar domain. Let T ∈ B1(Ω). Fix w ∈ Ω and let γ be a holomorphic section of the

line bundle ET . From [7, Lemma 1.22], it follows that the vectors γ(w) and ∂
∂w
γ(w)

from a basis of ker(T − w)2. Let NT (w) = T |ker(T−w)2 and {γ1(w), γ2(w)} be the basis

obtained by applying Gram-Schmidt ortho-normalization to the vectors γ(w) and ∂
∂w
γ(w).

The linear transformation NT (w) with respect to the basis {γ1(w), γ2(w)} has the matrix

representation

NT (w) =

(
w hT (w)

0 w

)
,

where hT (w) =
(
−KT (w)

)− 1
2 .

The curvature KT (w) of an operator T in B1(Ω) is negative. To see this, recall that

the curvature may also be expressed (cf. [7, pp. 195]) in the form

KT (w) = −‖γ(w)‖2‖γ′(w)‖2 − |〈γ′(w), γ(w)〉|2

‖γ(w)‖4
(3.1)

Applying the Cauchy-Schwarz inequality, we see that the numerator is positive.

Let {e0, e1} be an orthonormal set of vectors. Suppose N is a nilpotent linear trans-

formation defined by the rule

e1 → a e0, e0 → 0, a ∈ C.

Then |a| determines the unitary equivalence class of N .

The localization NT (w) − wI2 =
(

0 hT (w)
0 0

)
of the operator T in B1(Ω) is nilpotent.

Now, hT (w) > 0 since we have shown that the curvature KT (w) is negative. Hence the cur-

vature KT (w) is an invariant for the operator T . The non-trivial converse of this statement
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follows from Theorem 2.6. Thus the operators T and T̃ in B1(Ω) are unitarily equivalent

if and only if NT (w) is unitarily equivalent to NT̃ (w) for every w in Ω.

Note that if T ∈ B1(D) is a contraction, that is, ‖T‖ ≤ 1, then NT (w) is a con-

traction for each w ∈ D. Observe that ( a c0 b ) is a contraction if and only if |a| ≤ 1

and |c|2 ≤ (1− |a|2)(1− |b|2). Thus ‖NT (w)‖ ≤ 1 if and only if KT (w) ≤ − 1
(1−|w|2)2 ,

w ∈ D. The adjoint S∗ of the unilateral shift operator S is in B1(D). It is easy to see that

γS∗(w) = (1, w, . . . , wn, . . .) ∈ `2
+, w ∈ D, is a holomorphic section for the correspond-

ing Hermitian holomorphic line bundle ES∗ . The norm ‖γS∗(w)‖2 of the section γS∗ is

(1 − |w|2)−1 and hence the curvature KS∗(w) of the operator S∗ is given by the formula

− 1
(1−|w|2)2 , w ∈ D. We have therefore proved:

Proposition 3.1. If T is a contractive operator in B1(D), then the curvature of T is bounded

above by the curvature of the backward shift operator S∗.

We think of the operator S∗ as an extremal operator within the class of contractions

in B1(D). This is a special case of the curvature inequality proved in [18]. The curvature

inequality is equivalent to contractivity of the operators NT (w), w ∈ D, while the contrac-

tivity of the operator T is global in nature. So, it is natural to expect that the validity of

the inequality KT (w) ≤ − 1
(1−|w|2)2 , w ∈ D, need not force T to be a contraction. Indeed,

there exists an operator T , ‖T‖ > 1, in B1(D) with KT (w) ≤ KS∗(w). We provide such an

example here.

Remark 3.2. The main point of this note is to investigate additional conditions on the cur-

vature, apart from the inequality we have discussed above, which will ensure contractivity.

We give an alternative proof the curvature inequality. A stronger inequality becomes ap-

parent from this proof. It is this stronger inequality which, as we will show below, admits

a converse.

The contractivity of the adjoint M∗ of the multiplication operator M on some re-

producing kernel Hilbert space HK is equivalent to the requirement that K‡(z, w) :=

(1− zw̄)K(z, w) is positive definite on D (cf. [1, Corollary 2.37] and [12, Lemma 1]). Sup-

pose that the operator M∗ is in B1(D). Here is a second proof of the curvature inequality:

We have

∂2

∂w∂w̄
logK(w,w) =

∂2

∂w∂w̄
log

1

(1− |w|2)
+

∂2

∂w∂w̄
logK‡(w,w), w ∈ D,

which we rewrite as

KM∗(w) = KS∗(w)− ∂2

∂w∂w̄
logK‡(w,w), w ∈ D.
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Recalling that ∂2

∂w∂w̄
logK‡(w,w) must be positive (see (3.1)) as long as K‡ is positive

definite, we conclude that

KM∗(w) ≤ KS∗(w), w ∈ D.

The fibre at w̄ of the holomorphic bundle EM∗ for M∗ in B1(Ω) is the one-dimensional

kernel of the operatorM∗−w̄ spanned byKw(·), w ∈ Ω∗. In general, there is no obvious way

to define an inner product between the two vectors Kw(·) and ( ∂
∂w̄
Kw)(·). However since

these vectors belong to the same Hilbert space (cf. [9, Lemma 4.3]), in our special case, there

is a natural inner product defined between them. This ensures, via the Cauchy-Schwarz

inequality, the negativity of the curvature KT . The reproducing kernel function K of the

Hilbert space HK encodes the mutual inner products of the vectors {Kw(·) : w ∈ Ω∗}. The

Cauchy-Schwarz inequality, in turn, is just the positivity of the Gramian of the two vectors

Kw(·) and ( ∂
∂w̄
Kw)(·), w ∈ Ω∗. The positive definiteness of K is a much stronger positivity

requirement involving all the derivatives of the holomorphic section Kw(·) defined on Ω∗.

We exploit this to show that the function −
(

∂2

∂z∂w̄
logK

)
(z, w) obtained by polarizing the

curvature −
(

∂2

∂w∂w̄
logK

)
(w,w) is actually negative definite not just negative, whenever Kt

is assumed to be positive definite for all t > 0.

We now construct an example of an operator which is not contractive but its cur-

vature is dominated by the curvature of the backward shift. Expanding the function

K(z, w) = 8+8zw̄−z2w̄2

1−zw̄ in zw̄, we see that it has the form 8 + 16zw̄ + 15 z2w̄2

1−zw̄ . Therefore, it

defines a positive definite kernel on the unit disk D. The monomials zn

‖zn‖ (with ‖1‖2 = 1
8
,

‖z‖2 = 1
16

and ‖zn‖2 = 1
15

for n ≥ 2) form an orthonormal basis in the corresponding

Hilbert space HK . The multiplication operator M maps zn

‖zn‖ to ‖zn+1‖
‖zn‖

zn+1

‖zn+1‖ . Hence it

corresponds to a weighted shift operator W with the weight sequence {
√

1
2
,
√

16
15
, 1, 1, . . .}.

Evidently, it is not a contraction. (This is the same as saying that the function K‡(z, w) =

8 + 8zw̄− z2w̄2 is not positive definite.) The operator W is similar to the forward shift S.

Since the class B1(D) is invariant under similarity and S ∈ B1(D), it follows that W is in

it as well. However,

− ∂2

∂w∂w̄
logK‡(w,w) = −8(8− 4|w|2 − |w|4)

(8 + 8|w|2 − |w|4)2
, w ∈ D,

is negative for |w| < 1. Hence we have shown thatKM∗(w) = − ∂2

∂w∂w̄
logK(w,w) ≤ KS∗(w),

w ∈ D, although M∗ is not a contraction.

This is not an isolated example, it is easy to modify this example to produce a family

of examples parameterized by a real parameter.
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3.1 Infinite Divisibility and Curvature Inequality

Starting with a positive definite kernel K on a bounded domain Ω in C, it is possible to

construct several new positive definite kernel functions. For instance, if K is positive defi-

nite then the kernel Kn, n ∈ N, is also positive definite. Indeed, a positive definite kernel

K is said to be infinitely divisible if, for all t > 0, the kernel Kt is also positive definite.

The following Lemma shows that if K is positive definite then the kernel
(

∂2

∂z ∂w̄
K
)
(z, w)

is positive definite as well.

Lemma 3.3. For any bounded domain Ω in C, if K defines a positive definite kernel on Ω

then
(

∂2

∂z ∂w̄
K
)
(z, w) is also positive definite.

First Proof. Without loss of generality, assume that 0 is in Ω and let

K(z, w) =
∞∑
m,n

amnz
mw̄n

be the power series expansion of K around 0. It is shown in [9, Lemma 4.1 and 4.3] that the

positivity of the kernel K is equivalent to the positivity of the matrix of Taylor co-efficients

of K at 0, namely,

Hn(0;K) :=


a00 a01 a02 · · · a0n

a10 a11 a12 · · · a1n

...
...

...
. . .

...

an0 an1 an2 · · · ann


for each n ∈ Z+. The function ∂2

∂z ∂w̄
K(z, w) admits the expansion

∞∑
m,n=0

(m+ 1)(n+ 1)a(m+1)(n+1)z
mw̄n.

Therefore,

Hn−1(0; ∂2

∂z ∂w̄
K) =


a11 2a12 · · · na1n

2a21 4a22 · · · 2na2n

...
...

. . .
...

nan1 2nan2 · · · n2ann

 .

Clearly, we have ( 01×1 01×n

0n×1 Hn−1(0;
∂2

∂z ∂w̄
K)

)
= D

(
Hn(0;K)

)
D,
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where D : Cn+1 → Cn+1 is the linear map which is diagonal and is determined by the

sequence {0, 1, . . . , k, . . . , n}. It therefore follows that Hn(0; ∂2

∂z ∂w̄
K) is positive definite for

all n ∈ N. Consequently, ∂2

∂z ∂w̄
K is a positive definite kernel.

This completes the proof.

Second Proof. Let K#(z, w) =
(

∂2

∂z ∂w̄
K
)
(z, w). Let w1, . . . , wl be l points in Ω and

α1, . . . , αl be scalars in C. We have

l∑
i,j=1

αiK
#(wi, wj)ᾱj =

l∑
i,j=1

αiᾱj〈 ∂∂w̄Kwj ,
∂
∂w̄
Kwi〉HK

= ||
l∑

i=1

ᾱi
∂
∂w̄
Kwi ||2HK

≥ 0

This completes the proof.

Definition 3.4. Let G be a real analytic function of w, w̄ for w in some open connected

subset Ω of Cm. Polarizing G, we obtain a new function G̃ defined on Ω × Ω which is

holomorphic in the first variable and anti-holomorphic in the second and restricts to G on

the diagonal set {(w,w) : w ∈ Ω}, that is, G̃(w,w) = G(w,w), w ∈ Ω. If the function G̃

is positive definite, that is, the n × n matrix
((
G̃(wi, wj)

))
is positive definite for all finite

subsets {w1, . . . , wm} of Ω, then we say that G is a positive definite function on Ω.

The curvature K of a line bundle is a real analytic function. We have shown that

−K(w), w ∈ Ω, is positive. However, the following example shows that −K need not be

positive definite!

Example 3.5. Let K(z, w) = 1 +
∑∞

i=1 aiz
iw̄i be a positive definite kernel on the unit disc

D. The kernel K then admits a power series expansion on some small neighborhood of 0.

Consequently, we have

logK(z, w) = log(1 +
∞∑
i=1

aiz
iw̄i)

=
∞∑
i=1

aiz
iw̄i − (

∑∞
i=1 aiz

iw̄i)2

2
+

(
∑∞

i=1 aiz
iw̄i)3

3
− · · ·

= a1zw̄ + (a2 − a2
1

2
)z2w̄2 + (a3 − a1a2 +

a3
1

3
)z3w̄3 + . . .

It follows that(
∂2

∂z ∂w̄
logK

)
(z, w) = a1 + 4(a2 − a2

1

2
)zw̄ + 9(a3 − a1a2 +

a3
1

3
)z2w̄2 + . . .
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Thus if we choose 0 < ai, i ∈ N, such that a2 <
a2

1

2
, then from [9, Lemma 4.1 and 4.3], it

follows that ∂2

∂z ∂w̄
logK is not positive definite.

In particular, taking K to be the function 1 + zw̄ + 1
4
z2w̄2 +

∑∞
i=3 z

iw̄i, we see that

Kt(z, w) = 1 + tzw̄ +
t(2t− 1)

4
z2w̄2 + · · ·

is not positive definite for t < 1
2
.

It is therefore natural to ask if assuming that K is infinitely divisible is both necessary

and sufficient for positive definiteness of the curvature function−K. The following Theorem

provides an affirmative answer.

For the proof of the following Theorem, it will be useful to recall the notion of

conditional positive definiteness.

Definition 3.6. Let Ω be domain in Cm. A complex valued function L on Ω × Ω which

is holomorphic in the first variable and antiholomorphic in the second variable is called

a Hermitian kernel if L(z, w) = L(w, z) for all z, w ∈ Ω. A Hermitian kernel is said to

be conditionally positive definite if, for any positive integer n and any choice of elements

w1, . . . , wn in Ω and complex scalars α1, . . . , αn with
∑n

i=1 αi = 0, the inequality

n∑
i,j=1

αiᾱjL(wi, wj) ≥ 0

holds.

Theorem 3.7. Let Ω be a domain in C and let K be a positive, real analytic function on

Ω×Ω. If K is infinitely divisible then there exists a domain Ω0 ⊂ Ω such that negative of

the curvature ∂2

∂w ∂w̄
logK is a positive definite function on Ω0. Conversely, if K̂ is a real

analytic function on Ω and the function ∂2

∂w ∂w̄
log K̂ is positive definite on Ω, then there

exists a neighborhood Ω0 ⊆ Ω of w0, for every point w0 ∈ Ω, and an infinitely divisible

kernel K on Ω0 × Ω0 such that K(w,w) = K̂(w,w) for all w ∈ Ω0.

Proof. For each t > 0, assume that Kt is positive definite on Ω. This is the same as the

positive definiteness of exp(t logK), t > 0. Clearly t−1(exp(t logK) − 1) is conditionally

positive definite. By letting t tends to 0, it follows that logK is conditionally positive

definite. Hence at an arbitrary point in Ω, in particular at w0, the kernel

Lw0(z, w) = logK(z, w)− logK(z, w0)− logK(w0, w) + logK(w0, w0)

is positive definite. This is essentially the Lemma 1.7 in [19]. From Lemma 3.3, it follows

that ∂2

∂w ∂w̄
Lw0 is positive definite on Ω. Note that that there exist a neighborhood Ω0 ⊆ Ω of
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w0 such that logK(z, w0) is holomorphic on Ω0. Hence from the equation above, negative

of the curvature ∂2

∂w ∂w̄
logK is positive definite on Ω0. This proves the Theorem in the

forward direction.

For the other direction, without loss of generality, assume that w0 = 0. The function

K defined on some open neighborhood U × U of (0, 0) obtained by polarizing the real

analytic function ∂2

∂w ∂w̄
log K̂ is holomorphic in the first variable and anti-holomorphic in

the second. It is positive definite on it by hypothesis. Let K(z, w) =
∑∞

m,n amnz
mw̄n be

the power series expansion of K on U × U . The function

K̃(z, w) :=
∞∑

m,n=0

amn
(m+ 1)(n+ 1)

zm+1w̄n+1

is convergent on U × U . Then

Hn(0; K̃) :=


a00

a01

2
a02

3
· · · a0n

(n+1)
a10

2
a11

4
a12

6
· · · a1n

2(n+1)
...

...
...

. . .
...

an0

(n+1)
an1

2(n+1)
an2

3(n+1)
· · · ann

(n+1)2

 .

Just as in the proof of Lemma 3.3, this time, setting D : Cn+1 → Cn+1 to be the linear

map which is diagonal with the diagonal sequence {1, 2, . . . , n+ 1}, we find that

Hn(0; K̃) = D−1
(
Hn(0;K)

)
D−1.

Appealing to [9, Lemma 4.1 and 4.3], as before, we conclude that K̃ is a positive definite

kernel on U × U . We also have

∂2

∂w ∂w̄
(log K̂ − K̃)(w,w) = 0, w ∈ U.

Therefore, (log K̂ − K̃)(w,w) is a real harmonic function on U and hence there exists a

holomorphic function φ such that

log K̂(w,w)− K̃(w,w) = (<φ)(w) :=
φ(w) + φ(w)

2

and thus

K̂(w,w) = exp(φ(w)
2

) exp(K̃(w,w)) exp(φ(w)
2

), w ∈ U.

Let K : Ω× Ω→ C be the function defined by the rule

K(z, w) = exp(φ(z)
2

) exp(K̃(z, w)) exp(φ(w)
2

), z, w ∈ U.
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For t > 0, we then have

Kt(z, w) = exp(tφ(z)
2

) exp(tK̃(z, w)) exp(tφ(w)
2

), z, w ∈ U.

By construction K(w,w) = K̂(w,w), w ∈ U . Since K̃ is a positive definite kernel as

shown above, it follows from [19, Lemma 1.6] that exp(tK̃) is a positive definite kernel

and therefore Kt is a positive definite kernel on U for t > 0 completing the proof of the

converse.

Remark 3.8. If K is a non negative definite kernel such that (1− zw̄)K(z, w) is infinitely

divisible then we say that M∗ on HK is an infinitely divisible contraction.

We now give an example to show that a contraction need not be infinitely divisible.

Take

K(z, w) = (1− zw̄)−1
(
1 + zw̄ + 1

4
z2w̄2 +

3∑
i=1

ziw̄i
)

= 1 + 2zw̄ +
∞∑
n=2

(n+ 1
4
)znw̄n

Clearly K defines a positive definite kernel on D. Since (1 − zw̄)K(z, w) is also positive

definite, it follows that the adjoint of the multiplication operator M∗ on HK is contractive.

But (
(1− zw̄)K(z, w)

)t
= 1 + tzw̄ +

t(2t− 1)

4
z2w̄2 + · · ·

is not positive definite for t < 1
2

as was pointed out earlier. Hence M∗ is not an infinitely

divisible contraction on HK .

The following Corollary is a partial converse to the curvature inequality from [18] for

operators in the Cowen-Douglas class B1(D).

Corollary 3.9. Let K be a positive definite kernel on the open unit disc. Assume that the

adjoint M∗ of the multiplication operator M on the reproducing kernel Hilbert space HK

belongs to B1(D). The function ∂2

∂z ∂w̄
log
(
(1− zw̄)K(z, w)

)
is positive definite if and only

if the multiplication operator M is an infinitely divisible contraction.

Proof. Theorem 3.7 says that the positive definiteness of

∂2

∂z ∂w̄
log
(
(1− zw̄)K(z, w)

)
is equivalent to

(
(1 − zw̄)K(z, w)

)t
is positive definite for all t ≥ 0. Hence the function

∂2

∂z ∂w̄
log
(
(1− zw̄)K(z, w)

)
is positive definite if and only if the multiplication operator M

is an infinitely divisible contraction. In particular, M is a contraction (t = 1).



Chapter 4

Infinitely Divisible Metrics and

Curvature Inequalities - Higher

Dimensional Case

We generalize the results of the previous chapter to operators in the Cowen-Douglas class

B1(Ω) when Ω is a domain in Cm.

4.1 Negativity of the Curvature in General

In this section, we discuss the Cowen-Douglas class of commuting m-tuples of operators

TTT = (T1, . . . , Tm), acting on a separable complex Hilbert space H, for a bounded domain

Ω, not necessarily planar, the corresponding Hermitian holomorphic vector bundle

ETTT = {(w, x) ∈ Ω×H : x ∈ ker DTTT−w}

and the curvature of ETTT (cf. [8,9]). Here, the operator DTTT : H → H⊕ . . .⊕H is defined by

DTTT (x) = (T1x, . . . , Tmx), x ∈ H. For w = (w1, . . . , wm) ∈ Ω, let TTT −w denote the operator

tuple (T1 − w1, . . . , Tm − wm). We see that kerDTTT−w = ∩mj=1 ker(Tj − wj). Recall that the

curvature of the holomorphic hermitian line bundle ETTT is the (1, 1) form

KTTT (w) = −
m∑

i,j=1

∂2 log ‖γ(w)‖2

∂wi∂w̄j
dwi ∧ dw̄j, w ∈ Ω0,

for some open subset Ω0 ⊆ Ω and a non-zero holomorphic section γ of ETTT defined on Ω0.

Let

KTTT (w) =
((
− ∂2 log ‖ γ(w) ‖2

∂wi∂w̄j

))m
i,j=1

, w ∈ Ω0,
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denote the curvature matrix. In general, for a Hermitian holomorphic vector bundle, there

are two well-known notions of positivity due to Nakano and Griffiths (cf. [10, page 338]).

These two notions coincide in the case of a line bundle, and one talks of a positive line

bundle in an unambiguous manner. The following Proposition shows that the line bundle

corresponding to a commuting tuple of operators in B1(Ω) is negative.

Proposition 4.1. For an operator TTT in B1(Ω∗), the matrix KTTT (w) is negative definite for

each w ∈ Ω∗.

First Proof. Fix w0 ∈ Ω. As before (cf. [9]), it follows that TTT can be realized as MMM∗ =

(M∗
1 , . . . ,M

∗
m) where Mi is the multiplication operator by the co-ordinate function zi on

the Hilbert space HK of holomorphic functions on Ω0 ⊆ Ω possessing a reproducing kernel

K with K(w,w) 6= 0 for w ∈ Ω0. Fix w0 ∈ Ω0. The function

K0(z, w) = K(w0, w0)
1
2ϕ(z)−1K(z, w)ϕ(w)−1K(w0, w0)

1
2

is defined on some open neighborhood U ×U of (w0, w0), where U is the open set on which

K(z, w0) is non-zero and ϕ(z) = K(z, w0) is holomorphic on U . The kernel K0 is said to

be normalized at w0 (cf. [9]). The operator of multiplication by the holomorphic function

ϕ−1 then defines a unitary operator from the Hilbert space HK determined by the kernel

function K to the Hilbert space HK0 determined by the normalized kernel function K0.

This unitary operator intertwines the two multiplication operators on HK and HK0 . Thus

KMMM∗(w0) is equal to the curvature KMMM(0)∗(w0) [9, Lemma 3.9], where MMM (0) is the m-tuple

of multiplication operators by the co-ordinate functions on the Hilbert space HK0 . Let

K0(z, w) =
∑
I,J

aIJ(z − w0)I(w̄ − w̄0)J , z, w ∈ U, I, J ∈ Zm+ ,

be the power series expansion of K0 around the point (w0, w0). Here, as usual zI is

zi11 . . . z
im
m , I = (i1, . . . , im). Since K0(z, w0) = 1, we have that a00 = 1 and aI0 = 0 for all

I with |I| > 0. Similarly, K0(w0, z) = K0(z, w0) shows that a0J = 0 for all J with |J | > 0.

Also note that if

K0(z, w)−1 =
∑
I,J

bIJ(z − w0)I(w̄ − w̄0)J , z, w ∈ U, I, J ∈ Zm+ ,

then b00 = 1 and bI0 = 0 = b0J for all I, J with |I|, |J | > 0. Since γ(w) = K0(·, w̄),

w ∈ U∗ := {z̄ : z ∈ U}, is a section of the Hermitian holomorphic line bundle EMMM(0)∗ over
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U∗, we have

∂2 log ‖ γ(w) ‖2

∂wi∂w̄j

∣∣
w=w0

=
∂

∂w̄j
(K0(w̄, w̄)−1 ∂

∂wi
K0(w̄, w̄))

∣∣
w=w0

=
∂

∂w̄j

{
(1 +

∑
|I|≥1

|J |≥1

bIJ(w̄ − w̄0)I(w − w0)J)(
∑
|I|≥1

|J |≥0

aIJ+εi (Ji+1)(w̄ − w̄0)I(w − w0)J)
}
|w=w0

= aεjεi

where εi is the standard unit vector in Cm with 1 at the i-th co-ordinate and 0 elsewhere.

On the other hand, we have

aεjεi =
∂2K0(w̄, w̄)

∂wi∂w̄j

∣∣
w=w0

= 〈 ∂
∂wi

K0(·, w̄),
∂

∂wj
K0(·, w̄)〉

∣∣
w=w0

.

Thus for any complex constants α1, . . . , αm,

−
m∑

i,j=1

αiᾱj
∂2 log ‖ γ(w) ‖2

∂wi∂w̄j

∣∣
w=w0

= −‖
m∑
i=1

αi
∂

∂wi
K0(·, w̄)‖2

∣∣
w=w0

≤ 0.

This completes the proof.

Second Proof. We show that −KTTT (w) is the Gramian of a set of n vectors which can be

explicitly exhibited. These vectors are

ei(w) = Kw ⊗
∂

∂w̄i
Kw −

∂

∂w̄i
Kw ⊗Kw, 1 ≤ i ≤ n,

in HK ⊗HK . Then

〈ei(w), ej(w)〉 = 〈Kw ⊗
∂

∂w̄i
Kw −

∂

∂w̄i
Kw ⊗Kw, Kw ⊗

∂

∂w̄j
Kw −

∂

∂w̄j
Kw ⊗Kw〉

= 2(K(w,w)
∂2K(w,w)

∂wi∂w̄j
− ∂

∂wi
K(w,w)

∂

∂w̄j
K(w,w)).

Thus

∂2 log ‖ γ(w) ‖2

∂wi∂w̄j

∣∣
w=w0

=
K(w,w)∂

2K(w,w)
∂wi∂w̄j

− ∂
∂wi

K(w,w) ∂
∂w̄j

K(w,w)

K(w,w)2

∣∣
w=w0

=
〈ei(w0), ej(w0)〉

2K(w0, w0)2
.

This completes the proof.
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Definition 4.2. Let H be a Hilbert space and let T = (T1, . . . , Tm) be a commuting tuple

of bounded linear operators on H. We say that T is a row contraction if
∑m

i=1 TiT
∗
i ≤ IH.

The following Lemma is well known, however we provide a proof for completeness.

Lemma 4.3. Let Bm be the unit ball in Cm and MMM = (M1, . . . ,Mm) be the m-tuple of

multiplication operators on a reproducing kernel Hilbert space with reproducing kernel K.

Then MMM is a row contraction if and only if (1− 〈z, w〉)K(z, w) is positive definite.

Proof. For 1 ≤ i ≤ k, k ∈ N, let αi ∈ C and wi ∈ Bm, we have

〈(
IH −

m∑
l=1

MlM
∗
l

) k∑
i=1

αiKwi ,
k∑
i=1

αiKwi
〉

= ‖
k∑
i=1

αiKwi‖2 −
m∑
l=1

〈
MlM

∗
l

k∑
i=1

αiKwi ,
k∑
i=j

αjKwj
〉

= ‖
k∑
i=1

αiKwi‖2 −
m∑
l=1

〈
M∗

l

k∑
i=1

αiKwi ,M
∗
l

k∑
i=j

αjKwj
〉

= ‖
k∑
i=1

αiKwi‖2 −
m∑
l=1

( k∑
i,j=1

αiᾱj〈w̄ilKwi , w̄
j
lKwj〉

)
= ‖

k∑
i=1

αiKwi‖2 −
m∑
l=1

( k∑
i,j=1

αiᾱjw̄
i
lw

j
lK(wj, wi)

)
= ‖

k∑
i=1

αiKwi‖2 −
k∑

i,j=1

αiᾱj
( m∑
l=1

wjl w̄
i
l

)
K(wj, wi)

=
k∑

i,j=1

αiᾱjK(wj, wi)−
k∑

i,j=1

αiᾱj〈wj, wi〉K(wj, wi)

=
k∑

i,j=1

αiᾱj(1− 〈wj, wi〉)K(wj, wi).

Hence
m∑
i=1

MiM
∗
i ≤ IH if and only if

k∑
i,j=1

αiᾱj(1− 〈wj, wi〉)K(wj, wi) ≥ 0,

which is equivalent to the positive definiteness of the kernel (1− 〈z, w〉)K(z, w).

Let R∗m be the adjoint the commuting tuple (M1, . . . ,Mm) on the Dury-Arveson

space H2
m which is determined by the reproducing kernel 1

1−〈z,w〉 , z = (z1, . . . , zm), w =

(w1, . . . , wm) ∈ Bm. As in Remark 3.2, using Proposition 4.1 and Lemma 4.3, we obtain a
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version of curvature inequality for the multi-variate case. It appeared earlier in [12] with

a different proof.

Corollary 4.4. If TTT = (T1, . . . , Tm) is a row contraction in B1(Bm), then KR∗m(w)−KTTT (w)

is positive for each w in the unit ball Bm.

4.2 Infinitely Divisible Metrics and Curvature Inequal-

ities

Starting with a positive definite kernel K on a bounded domain Ω in Cm, it is possible

to construct several new positive definite kernel functions. For instance, if K is positive

definite then the kernel Kn, n ∈ N, is also positive definite. Indeed, a positive definite

kernel K is said to be infinitely divisible if for all t > 0, the kernel Kt is also positive

definite. While the Bergman kernel for the Euclidean ball is easily seen to be infinitely

divisible, it is not infinitely divisible for the unit ball of the n × n matrices (with respect

to the operator norm). We give the details for n = 2 in the final section of this note.

The following Lemma shows that if K is positive definite then the matrix valued kernel((
∂2

∂zi ∂w̄j
K
)
(z, w)

)m
i,j=1

is positive definite as well.

Lemma 4.5. For any bounded domain Ω in Cm, if K defines a positive definite kernel on

Ω, then
((

∂2

∂zi ∂w̄j
K
)
(z, w)

)m
i,j=1

is also a positive definite kernel on Ω.

Proof. Let K(z, w) =
((

∂2

∂zi ∂w̄j
K
)
(z, w)

)m
i,j=1

. Let u1, . . . , un be n points in Ω and

ξi = (ξi(1), . . . , ξi(m)), 1 ≤ i ≤ m, be vectors in Cm. From [9], it follows that

n∑
i,j=1

〈K(ui, uj)ξj, ξi〉Cm =
n∑

i,j=1

m∑
k,l=1

(
∂2

∂wk ∂w̄l
K
)
(ui, uj)ξj(l)ξi(k)

=
n∑

i,j=1

m∑
k,l=1

〈 ∂
∂w̄l
Kuj ,

∂
∂w̄k

Kui〉HKξj(l)ξi(k)

= ‖
n∑
i=1

m∑
k=1

ξi(k) ∂
∂w̄k

Kui‖2
HK

≥ 0

This completes the proof.

The following Lemma encodes a way to extract scalar valued positive definite kernels

from matrix valued ones.
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Lemma 4.6. If K is a n× n matrix valued positive definite kernels on a bounded domain

Ω ⊂ Cm, then for every ζ ∈ Cn, 〈K(z, w)ζ, ζ〉Cn is also a positive definite kernel on Ω.

Proof. Let Kζ(z, w) = 〈K(z, w)ζ, ζ〉Cn . Let u1, . . . , ul be l points in Ω and αi, 1 ≤ i ≤ l,

be scalars in C. From [9], it follows that

l∑
i,j=1

αiKζ(ui, uj)ᾱj =
l∑

i,j=1

αiᾱj〈K(·, uj)ζ,K(·, ui)ζ〉HK

= ‖
l∑

j=1

ᾱjK(·, uj)ζ‖2
HK

≥ 0

This completes the proof.

Theorem 4.7. Let Ω be a domain in Cm and let K be a positive, real analytic function on

Ω×Ω. If K is infinitely divisible then there exist a domain Ω0 ⊆ Ω such that negative of the

curvature matrix
((

∂2

∂wi ∂w̄j
logK

))m
i,j=1

is a positive definite function on Ω0. Conversely, if

the function
((

∂2

∂wi ∂w̄j
log K̂

))m
i,j=1

is positive definite on Ω, then there exists a neighborhood

Ω0 ⊆ Ω of w0 and an infinitely divisible kernel K on Ω0×Ω0 such that K(w,w) = K̂(w,w)

for all w ∈ Ω0.

Proof. For each t > 0, assume that Kt is positive definite on Ω. This is the same as the

positive definiteness of exp(t logK), t > 0. Clearly t−1(exp(t logK) − 1) is conditionally

positive definite. By letting t tend to 0, it follows that logK is conditionally positive

definite. Hence at an arbitrary point in Ω, in particular at w0, the kernel

Lw0(z, w) = logK(z, w)− logK(z, w0)− logK(w0, w) + logK(w0, w0)

is positive definite. This is essentially the Lemma 1.7 in [19]. From Lemma 4.5, it follows

that the matrix
((

∂2

∂wi ∂w̄j
Lw0

))
is positive definite on Ω. Note that there exists a neighbor-

hood Ω0 ⊆ Ω of w0 such that logK(z, w0) is holomorphic on Ω0. Hence from the equation

above, negative of the curvature matrix
((

∂2

∂wi ∂w̄j
logK

))
is positive definite on Ω0. This

proves the Theorem in the forward direction.

For the other direction, without loss of generality, assume that w0 = 0. Let K(z, w)

be the function obtained by polarizing the real analytic m×m matrix valued function((
∂2

∂wi∂w̄j
log K̂(w,w)

))m
i,j=1

defined on some bounded domain Ω in Cm. Suppose that log K̂ has the power series

expansion
∑
aIJz

Iw̄J , where the sum is over all multi-indices I, J of length m and zI =
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zi11 · · · zimm , w̄J = w̄j11 · · · w̄jmm . Then

K(z, w) =
∑
I,J

aIJ
((
AIJ(k, `)zI−εkw̄J−ε`

))m
k,`=1

,

where AIJ(k, `) = ik j`, 1 ≤ k, ` ≤ m, and the sum is again over all multi-indices I, J

of size m. Clearly, AIJ can be written as the product D(I)EmD(J), where D(I) and

D(J) are the m×m diagonal matrices with (i1, . . . , im) and (j1, . . . , jm) on their diagonals

respectively, and Em is the m×m matrix all of whose entries are 1.

Let D(z) be the holomorphic function on Ω taking values in the m × m diagonal

matrices which has zi in the (i, i) position for z := (z1, z2, . . . , zm) ∈ Ω. If the function K

is assumed to be positive definite then

K̃(z, w) := D(z)K(z, w)D(w̄) =
∑
I,J

aIJD(I)EmD(J)zIw̄J

is positive definite on Ω0.

Let Λ(I) = {k : 1 ≤ k ≤ m and ik 6= 0}. Consider the m×m matrix E(I, J) defined

as below:

E(I, J)ij =

1 if i ∈ Λ(I) and j ∈ Λ(J),

0 otherwise.

Note that if Λ(I) = Λ(J) = {1, . . . ,m}, then E(I, J) = Em. Consider the function on

Ω0 × Ω0, defined by ̂̃
K(z, w) =

∑
I,J 6=0

aIJ
E(I,J)
c(I)c(J)

zIw̄J ,

where c(I) denotes the cardinality of the set Λ(I). We will prove that
̂̃
K is a positive

definite kernel on Ω0. To facilitate the proof, we need to fix some notations.

Let δ be a multi-index of size m. Also let p(δ) =
∏m

j=1(δj + 1) which is the number of

multi-indices I ≤ δ, that is, il ≤ δl, 1 ≤ l ≤ m. As per the notation in [9], given a function

L on a domain U × U which is holomorphic in the first variable and antiholomorphic in

the second, let Hδ(w0;L) be the p(δ)× p(δ) matrix whose (I, J)-entry is ∂I ∂̄JL(w0,w0)
I!J !

, 0 ≤
I, J ≤ δ. For convenience, one uses the colexicographic order to write down the matrix,

that is, I ≤c J if and only if (im < jm) or (im = jm and im−1 < jm−1) or · · · or (im =

jm and . . . i2 = j2 and i1 < j1) or I = J .

Let D(I)] be the diagonal matrix with the diagonal entry D(I)]` ` equal to 1
i`

or 0

according as i` is non-zero or zero. Using this notation, we have

D(I)]D(I)EmD(J)D(J)] = E(I, J).
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Let Aδ be the block diagonal matrix, written in the colexicographic ordering, of the form

(Aδ)IJ =


D(I)]

c(I)
if I = J(6= 0)

0 otherwise.

Therefore, in this setup, for any multi-index δ, we have

Hδ(0;
̂̃
K) = AδHδ(0; K̃)A∗δ .

Clearly Hδ(0;
̂̃
K) is positive definite since Hδ(0; K̃) is, by [9, Lemma 4.1]. Thus from [9,

Lemma 4.3], it follows that
̂̃
K is a positive definite kernel.

Let K0 be the scalar function on Ω0 × Ω0 defined by

K0(z, w) :=
∑

aIJz
Iw̄J ,

where the sum is over all pairs (I, J) excluding those of the form (I, 0) and (0, J). From

Lemma 4.6, it follows that the function K0 is positive definite since it is of the form

〈̂̃K(z, w)1,1〉, 1 = (1, . . . , 1). It is evident that(( (
∂2

∂wi∂w̄j
K0

)
(w,w)

))
= K(w,w),

that is,
∂2

∂wi ∂w̄j
(log K̂ −K0)(w,w) = 0, 1 ≤ i, j ≤ m, w ∈ Ω0.

Therefore, (log K̂−K0)(w,w) is a real pluriharmonic function on Ω0 and hence there

exists a holomorphic function φ such that

log K̂(w,w)−K0(w,w) = (<φ)(w) :=
φ(w) + φ(w)

2
.

(Alternatively, since log K̂ is real analytic, it follows that∑
I,J

aIJw
Iw̄J =

∑
I,J

āIJw
Jw̄I

Equating coefficients, we get aIJ = āJI for all multi-indices I, J . In particular, we have

aI0 = a0I for all multi-indices I. The power series

(a00/2) +
∑
I

aI0z
I

defines a holomorphic function ψ on Ω0 such that log K̂(w,w)−K0(w,w) = ψ(w)+ψ(w).)
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Thus

K̂(w,w) = exp(φ(w)
2

) exp(K0(w,w)) exp(φ(w)
2

), w ∈ Ω0.

Let K : Ω0 × Ω0 → C be the function defined by the rule

K(z, w) = exp(φ(z)
2

) exp(K0(z, w)) exp(φ(w)
2

).

For t > 0, we then have

Kt(z, w) = exp(tφ(z)
2

) exp(tK0(z, w)) exp(tφ(w)
2

), z, w ∈ Ω0.

By construction K(w,w) = K̂(w,w), w ∈ Ω0. Since K0 is a positive definite kernel as

shown above, it follows from [19, Lemma 1.6] that exp(tK0) is a positive definite kernel for

all t > 0 and therefore Kt is positive definite on Ω0 for all t > 0, completing the proof of

the converse.

4.3 Applications

Let MMM∗ be the adjoint of the commuting tuple of multiplication operators acting on the

Hilbert space HK ⊆ O(Ω). Fix a positive definite kernel K on Ω. Let us say that MMM is

infinitely divisible with respect to K if K(z, w)−1K(z, w) is infinitely divisible in some open

subset Ω0 of Ω. As an immediate application of Theorem 4.7 we obtain :

Theorem 4.8. Assume that the the adjoint MMM∗ of the multiplication operator MMM on the

reproducing kernel Hilbert space HK belongs to B1(Ω). The function((
∂2

∂wi ∂w̄j
log
(
K(w,w)−1K(w,w)

)))
is positive definite, if and only if the multiplication operator MMM is infinitely divisible with

respect to K.

We say that a commuting tuple of multiplication operatorsMMM is an infinitely divisible

row contraction if (1− 〈z, w〉)K(z, w) is infinitely divisible, that is,
(
(1− 〈z, w〉)K(z, w)

)t
is positive definite for all t > 0.

Recall that R∗m is the adjoint the commuting tuple (M1, . . . ,Mm) on the Dury-

Arveson space H2
m whose reproducing kernel is (1 − 〈z, w〉)−1. The following theorem

is a characterization of infinitely divisible row contractions.
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Corollary 4.9. Let K be a positive definite kernel on the Euclidean ball Bm. Assume that

the adjoint MMM∗ of the multiplication operator MMM on the reproducing kernel Hilbert space

HK belongs to B1(Bm). The function
((

∂2

∂wi ∂w̄j
log
(
(1 − 〈w,w〉)K(w,w)

) ))m
i,j=1

, w ∈ Bm,
is positive definite if and only if the multiplication operator MMM is an infinitely divisible row

contraction.

Proof. We have shown in theorem 4.7 that the positive definiteness of((
∂2

∂wi ∂w̄j
log(1− 〈w,w〉)K(w,w)

))m
i,j=1

is equivalent to
(
(1− 〈z, w〉)K(z, w)

)t
is positive definite for all t ≥ 0. Hence the function((

∂2

∂wi ∂w̄j
log
(
(1−〈w,w〉)K(w,w)

) ))m
i,j=1

is positive definite if and only if the multiplication

operator MMM is an infinitely divisible row contraction.

We give one last example, namely that of the polydisc Dm. In this case, we say a com-

muting tuple MMM of multiplication by the co-ordinate functions acting on the Hilbert space

HK is infinitely divisible if
(
S−1(z, w)K(z, w)

)t
, where S(z, w) :=

∏m
i=1(1−ziw̄i)−1, z, w ∈

Dm, is positive definite for all t > 0 (this amounts to infinite divisibility with respect to

the kernel S). Every commuting tuple of contractions MMM∗ need not be infinitely divisible.

Let Sm be the commuting m-tuple of the joint shift induced by the commuting tuple of

(co-ordinate) multiplication operators defined on the Hardy space H2(Dm).

Corollary 4.10. Let K be a positive definite kernel on the polydisc Dm. Assume that

the adjoint MMM∗ of the multiplication operator MMM on the reproducing kernel Hilbert space

HK belongs to B1(Dm). The function
((

∂2

∂wi ∂w̄j
log
(
S−1(w,w)K(w,w)

) ))m
i,j=1

, w ∈ Dm,

is positive definite if and only if the multiplication operator MMM is an infinitely divisible

m-tuple of contractions.

For a second application of these ideas, assume that K is a positive definite kernel

on Dm with the property:

Ki(z, w) = (1− ziw̄i)mK(z, w), 1 ≤ i ≤ m,

is infinitely divisible. Then

Km(z, w) =
( m∏
i=1

(1− ziw̄i)
)−m m∏

i=1

Ki(z, w).

It now follows that

K(z, w) = S(z, w)
( m∏
i=1

Ki(z, w)
) 1
m .
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Let MMM be the commuting tuple of multiplication operators on the Hilbert space HK , which

is contractive since K admits the Sz̈ego kernel S as a factor. Clearly, the infinite divisibility

of Ki, 1 ≤ i ≤ m, implies that K0(z, w) =
(∏m

i=1 Ki(z, w)
) 1
m is positive definite. As

pointed out in [12], in consequence, for any polynomial p in m - variables,

p(M1, . . . ,Mm) = PS p(Sm)|S ,

where S is the invariant subspace of functions in the Hilbert space H2
m⊗HK0 ⊆ O(Dm×Dm)

vanishing on the diagonal. PS is the projection onto the subspace S. We have therefore

proved the following proposition.

Proposition 4.11. If a commuting tuple in the Cowen-Douglas class B1(Dm) is infinitely

divisible with respect to the kernel S(z, w)m, then it admits an isometric dilation to the

Hardy space H2(Dm).

A basic question raised in the paper of Cowen and Douglas [7, Section 4] is the deter-

mination of nondegenerate holomorphic curves in the Grassmannian. Clearly, a necessary

condition for this is the negative definiteness of the curvature matrix function. Thus we

have the following Corollary to Theorem 4.7.

Let E be a Hermitian holomorphic vector bundle of rank 1 over a bounded domain

Ω ⊂ Cm.

Corollary 4.12. In the following, the implications “(iii) =⇒ (i)” and “(i) =⇒ (ii)” are

valid.

(i) There exists a Hilbert space H and a holomorphic map γ : Ω0 → H, Ω0 open in Ω,

such that E is isomorphic to the pullback, by the holomorphic map γ : Ω0 → Gr(1,H),

of the tautological bundle defined over Gr(1,H)

(ii) The curvature matrix K(w,w) is negative definite for w ∈ Ω0.

(iii) The Hermitian matrix valued function K(z,w) is negative definite on Ω0.

Moreover, if we assume (iii), then the existence of γ as in (i) follows, where the real

analytic function 〈γ(z), γ(w)〉 is infinitely divisible.

Here is another amusing application of Theorem 4.7. Let K be the function on the

unit ball
(
C2×2

)
1

of 2 × 2 matrices (with respect to the operator norm), given by the

formula K(Z,W ) := det(I − ZW ∗)−1, Z,W ∈
(
C2×2

)
1
. It is known (cf. [2, Corollary

4.6]) that K is not infinitely divisible. The kernel K is normalized at 0 by definition. For

δ = (1, 0, 0, 3), the matrix (
(
∂α∂̄β logK(0, 0)

α!β!
)
)

0≤α,β≤δ
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is diagonal with
∂1∂3

4 ∂̄1∂̄3
4 logK(0,0)

3!3!
= −1 < 0 (in fact for |δ| ≤ 3, the corresponding matrix is

diagonal with non-negative entries). Here, δ ≥ µ if and only if δi ≥ µi for all i ∈ {1, . . . ,m}
and the matrix is written with respect to the colexicographic ordering. From [9, Lemma 4.1

and 4.3], it follows that logK is not positive definite. Hence Theorem 4.7 shows that the

function det(I − ZW ∗)−t cannot be positive definite for all t > 0. Of course, the wallach

set for the domain
(
C2×2

)
1

(the Wallach set here is {t > 0 : det(1 − ZW ∗)−t, is nnd})
is known to be {1} ∪ {2 ≤ t < ∞}. The methods described here do not determine the

Wallach set but only help in finding out if it consists of all positive real numbers or not.



Chapter 5

Curvature Calculation for the Jet

Bundle

For a domain Ω in C and an operator T in Bn(Ω), Cowen and Douglas construct a Hermitian

holomorphic vector bundle ET over Ω corresponding to T . The Hermitian holomorphic

vector bundle ET is obtained as a pull-back of the tautological bundle S(n,H) defined over

Gr(n,H) by a nondegenerate holomorphic map z 7→ ker(T − z), z ∈ Ω as in Definition

5.14. To find the answer to the converse, namely, when a given Hermitian holomorphic

vector bundle is a pull-back of the tautological bundle by a nondegenerate holomorphic

map, Cowen and Douglas studied the jet bundle in their foundational paper [7, pp. 235].

The computations in this paper for the curvature of the jet bundle are somewhat difficult

to comprehend. They have given a set of invariants to determine if two rank n Hermitian

holomorphic vector bundle are equivalent. These invariants are complicated and not easy

to compute. It is natural to expect that the equivalence of Hermitian holomorphic jet

bundles should be easier to characterize. In fact, in the case of the Hermitian holomorphic

jet bundle Jk(Lf ), where the line bundle Lf is a pull-back of the tautological bundle on

Gr(1,H), we have shown that the curvature of the line bundle Lf completely determines

the class of Jk(Lf ). In general, however, our results are not as complete. Relating the

complex geometric invariants inherent in the short exact sequence

0→ EI → E → EII → 0. (5.1)

is an important problem. In the paper [5], it is shown that the Chern classes of these

bundles must satisfy

c(E) = c(EI) c(EII).

Donaldson [11] obtains similar relations involving what are known as secondary invariants.

We obtain a refinement, in case EI = Jk(Ef ) and E = Jk+1(Ef ), namely,
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(
trace⊗ Idn×n

)
(KJk(Ef ))−

(
trace⊗ Idn×n

)
(KJk−1(Ef )) = KJk(Ef )/Jk−1(Ef ).

5.1 Basic Definitions and Notation

5.1.1 Notation

Let E
π→ Ω be a C∞ complex vector bundle of rank n.

1. A(Ω) is the sheaf of C∞ functions on Ω.

2. Ep(Ω) is the sheaf of C∞ complex p-forms over Ω.

3. Ep,q(Ω) is the sheaf of (p, q)-forms over Ω.

4. E(Ω, E) is the sheaf of C∞ sections of the vector bundle E on Ω.

5. Ep(Ω, E) is the sheaf of C∞ complex p-forms over Ω with values in E.

6. Ep,q(Ω, E) is the sheaf of (p, q)-forms over Ω with values in E.

We recall, following [21], some basic definitions and results from complex geometry which

we will be using repeatedly in this chapter. Let Ω be a bounded domain in Cm.

Definition 5.1. Let E be a holomorphic (resp. C∞ over C) manifold of dimension m+ n

and π : E → Ω be a holomorphic (resp. C∞) map. Then π : E → Ω is called a holomorphic

(resp. C∞ over C) vector bundle of rank n if the following conditions are satisfied:

(1) Ez = π−1(z), z ∈ Ω, is a C-vector space of dimension n.

(2) For every z ∈ Ω, there exists a neighborhood U of z in Ω and a biholomorphism

(resp. diffeomorphism)

φ : π−1(U)→ U × Cn

such that the diagram

π−1(U) U × Cn

U

φ

π
Pr1

commutes and φ|Ez : Ez → {z} × Cn is a vector space isomorphism over C.



5.1. Basic Definitions and Notation 41

Definition 5.2. Let E
π→ Ω be a holomorphic (resp. C∞ over C) vector bundle of rank n.

(1) A local holomorphic (resp. C∞) section of E
π→ Ω is a map s : Ω0 → E such that

π ◦ s = IdΩ0 , on some open subset Ω0 of Ω.

(2) A local holomorphic (resp. C∞) frame on Ω0 ⊂ Ω for E
π→ Ω consists of local

holomorphic (resp. C∞ over C) sections {s1, . . . , sn} of E
π→ Ω defined on Ω0 such

that {s1(z), . . . , sn(z)} is a basis for Ez, z ∈ Ω0.

Definition 5.3. Let E
π1→ Ω and F

π2→ Ω be two holomorphic (resp. C∞) vector bundles

over Ω.

(1) A holomorphic (resp. C∞) map Ψ : E → F is called a bundle map if π2 ◦ Ψ = π1

and the restricted map Ψ|Ez : Ez → Fπ2(Ψ(z)) is linear.

(2) A bundle map Ψ is called an isomorphism if it is a biholomorphism (diffeomorphism).

Remark 5.4. Let E
π1→ Ω and F

π2→ Ω be two holomorphic (resp. C∞ over C) vector bundle

of rank n and p respectively. Let s := {s1, . . . , sn} and σ := {σ1, . . . , σp} be local frames

of E and F respectively over Ω0. For 1 ≤ j ≤ n, we have

Ψ(sj(z)) =

p∑
i=1

ψij(z)σi(z).

Hence the bundle map Ψ may be represented, with respect to frames s and σ, as a p× n
matrix valued holomorphic (resp. C∞) function on Ω0, that is,

ψ(z) =
((

Ψij(z)
))

1≤i≤p,1≤j≤n, z ∈ Ω0.

Definition 5.5. (1) Let E
π→ Ω be a C∞ complex vector bundle. A Hermitian metric

on E is an assignment of a Hermitian inner product 〈, 〉z on each fibre Ez of E such

that the function 〈ξ, η〉 : U → C given by 〈ξ, η〉(z) = 〈ξ(z), η(z)〉z is smooth for any

open subset U of Ω and for any pair of smooth sections ξ, η defined on U .

(2) A C∞ vector bundle E equipped with a Hermitian metric is called a Hermitian vector

bundle.

Definition 5.6. Let E
π→ Ω be a C∞ complex vector bundle. Then a connection D on E

is a C-linear mapping

D : E(Ω, E)→ E1(Ω, E),

which satisfies

D(φξ) = dφ.ξ + φDξ,

where φ ∈ A(Ω) and ξ ∈ E(Ω, E).
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Extend the connection D : E(Ω, E)→ E1(Ω, E) to a C-linear map

D : Ep(Ω, E)→ Ep+1(Ω, E), p ≥ 0

by setting

D(ξ.ω) = ξ.dω +D(ξ) ∧ ω for ω ∈ Ep(Ω), ξ ∈ E(Ω, E).

Using this extended D, define the curvature R of D to be the map

R : E(Ω, E)→ E2(Ω, E), R = D ◦D.

Definition 5.7. Let E
π→ Ω be a C∞ complex vector bundle with a Hermitian metric. A

connection D on E is said to be compatible with the Hermitian metric on E if

d〈ξ, η〉 = 〈Dξ, η〉+ 〈ξ,Dη〉 for ξ, η ∈ E(Ω, E).

5.1.2 The Canonical Connection and Curvature of a Hermitian

Holomorphic Vector Bundle

Suppose that E
π→ Ω is a holomorphic vector bundle. If E thought of as a C∞ vector

bundle is equipped with a Hermitian metric, then it is said to be a Hermitian holomorphic

vector bundle.

Suppose that we have a connection

D : E(Ω, E)→ E1(Ω, E) = E1,0(Ω, E)⊕ E0,1(Ω, E)

on a Hermitian holomorphic vector bundle E. Then D splits naturally into D = D′ +D′′,

where

D′ : E(Ω, E)→ E1,0(Ω, E)

D′′ : E(Ω, E)→ E0,1(Ω, E).

Theorem 5.8. If E
π→ Ω is a Hermitian holomorphic vector bundle, then the metric on E

induces a canonical connection, DE which satisfies two conditions:

(a)

d〈ξ, η〉 = 〈Dξ, η〉+ 〈ξ,Dη〉, ξ, η ∈ E(Ω0, E);

(b) D′′ξ = 0 for any local holomorphic local section ξ of E.
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Remark 5.9. (1) Let f = {s1, . . . , sn} be a local holomorphic frame over an open subset

Ω0 of Ω. Then the metric h(f) of E with respect to the frame f is define as h(f)(z) =((
〈sj(z), si(z)

))
1≤i,j≤n. The proof of Theorem 5.8, which may be found in [21, page

78, Theorem 2.1], gives a simple formula for local representation of the canonical

connection and curvature in terms of the metric h(f), namely,

θ(f)(z) = h(f)−1(z)∂h(f)(z)

KE(f)(z) = ∂̄(h(f)−1(z)∂h(f)(z))

for a holomorphic frame f .

(2) Let E and Ẽ be Hermitian holomorphic vector bundles on a bounded domain Ω

in C with canonical connections DE and DẼ, respectively, and let φ : E → Ẽ be

a C∞ isometric bundle map. As pointed out in [7, page 208, Lemma 2.13], φ is

holomorphic if and only if φ is connection-preserving, that is, if and only if

DẼ ◦ φ = φ ◦DE.

Definition 5.10. Let E
π→ Ω be a Hermitian holomorphic vector bundle of rank n over a

bounded domain Ω in Cm. For 1 ≤ r ≤ n, consider

∧r(E) =
⋃
x∈Ω

∧r(π−1(x))

where ∧r(π−1(x)) is the exterior power of the vector space π−1(x). We can give holomorphic

and Hermitian structures on ∧r(E), so that it becomes a Hermitian holomorphic vector

bundle (cf. [21, pp. 19]). For r = n, ∧n(E) becomes a Hermitian holomorphic line bundle,

called the determinant bundle, that is, det (E) := ∧n(E).

Remark 5.11. If {s1, . . . , sn} is a frame for the vector bundle E
π→ Ω over some open set

U then a frame for the bundle det (E) over U will be s1 ∧ . . . ∧ sn. Hence the metric for

the determinant bundle det (E) takes the form

hdet (E)(z) = 〈s1(z) ∧ . . . ∧ sn(z), s1(z) ∧ . . . ∧ sn(z)〉
= det

((
〈sj(z), si(z)〉

))n
i,j=1

= det hE(z).

The following Proposition is well known. However we provide a proof for completeness

following the informal Lecture Notes of M. J. Cowen.
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Proposition 5.12. Let E
π→ Ω be a Hermitian holomorphic vector bundle of rank n over a

bounded domain Ω ⊂ Cm. Then the relationship between the curvature of the determinant

bundle det (E) and that of the vector bundle E is given by the formula

Kdet (E)(z) = trace (KE(z)).

Proof. For a given holomorphic frame {s1, . . . , sn} of a Hermitian holomorphic vector bun-

dle E defined on some open subset U of Ω, the metric h on U with respect to the frame

{s1, . . . , sn} is define as h(z) =
((
〈sj(z), si(z)〉

))n
i,j=1

. The curvature of the vector bundle

E is given by the formula

KE(z) =
m∑

i,j=1

∂
∂z̄j

(
h−1(z) ∂

∂zi
h(z)

)
dz̄j ∧ dzi.

Consider

trace(KE(z)) =
m∑

i,j=1

trace
(

∂
∂z̄j

(
h−1(z) ∂

∂zi
h(z)

))
dz̄j ∧ dzi

=
m∑

i,j=1

∂
∂z̄j

(
trace

(
h−1(z) ∂

∂zi
h(z)

))
dz̄j ∧ dzi. (5.2)

Let z0 be an arbitrary but fixed point in U . For z in U , Set h̃(z) = h−1(z0)h(z). Then for

1 ≤ i ≤ m and z ∈ Ω, we have

trace
(
h−1(z) ∂

∂zi
h(z)

)
= trace

(
h̃−1(z) ∂

∂zi
h̃(z)

)
and

∂
∂zi

(
log det h(z)

)
= ∂

∂zi

(
log det h̃(z)

)
.

At z0, the two equations take the form

trace
(
h−1(z) ∂

∂zi
h(z)

)
|z=z0

= trace
(
h̃−1(z) ∂

∂zi
h̃(z)

)
|z=z0

= trace
(
∂
∂zi
h̃(z)

)
|z=z0

(5.3)

and

∂
∂zi

(
log det h(z)

)
|z=z0

= ∂
∂zi

(
log det h̃(z)

)
|z=z0

=
∂
∂zi

det h̃(z)|z=z0

det h̃(z)|z=z0

= ∂
∂zi

det h̃(z)|z=z0

= trace ( ∂
∂zi
h̃(z))|z=z0 , (5.4)
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the last equality follows from [15, pp. 11]. Hence from equations (5.3) and (5.4), it follows

that

trace
(
h−1(z) ∂

∂zi
h(z)

)
|z=z0

= ∂
∂zi

(
log det h(z)

)
|z=z0

.

Since z0 is arbitrary point in U , so we have

trace
(
h−1(z) ∂

∂zi
h(z)

)
= ∂

∂zi

(
log det h(z)

)
for z ∈ U.

Hence

trace
(
KE(z)

)
= Kdet E(z).

It is possible to pick a holomorphic frame s = {s1, . . . , sn} for the Hermitian holomor-

phic vector bundle E such that the metric h, with respect to the frame s, at an arbitrary

but fixed point z0, has the property that h(z0) = 1, ∂
∂zi
h(z0) = 0 and ∂

∂z̄i
h(z0) = 0 for

1 ≤ i ≤ m (cf. [21, page 80]).

Even a stronger normalization, more in the sprit of this thesis, is possible (see Defi-

nition 2.4). It will be useful, in the sequel, to derive the formula given in Proposition 5.12

using this stronger normalization of the metric.

Second Proof of Proposition 5.12. For a given holomorphic frame {s1, . . . , sn} of a Hermi-

tian holomorphic vector bundle E defined on some open subset U of Ω, the metric h on

U with respect to the frame {s1, . . . , sn} is define as h(z) =
((
〈sj(z), si(z)〉

))n
i,j=1

. The

curvature of the vector bundle E is given by the formula

KE(z) =
m∑

i,j=1

∂
∂z̄j

(
h−1(z) ∂

∂zi
h(z)

)
dz̄j ∧ dzi.

Let G(z, w) be the real analytic function on U , obtained by polarizing the real analytic

function h, which is holomorphic in z and antiholomorphic in w. Let z0 be an arbitrary but

fixed point in U . Let U0 be open neighborhood of z0 in U such that G(z, z0) is invertible

for all z ∈ U0. Set

G̃(z, w) = G(z0, z0)
1
2G(z, z0)−1G(z, w)G(z0, w)−1G(z0, z0)

1
2

for z, w ∈ U0. Clearly G̃(z, z0) = 1, z ∈ U0, which implies that ∂(α1+...+αm)

∂z
α1
1 ...∂zαmm

G(z, z0) = 0,

z ∈ U0 and α1 + . . .+ αm ≥ 1. It is easy to see that

m∑
i,j=1

∂2

∂zi∂z̄j

(
log det G̃(z, z)

)
dz̄j ∧ dzi =

m∑
i,j=1

∂2

∂zi∂z̄j

(
log det G(z, z)

)
dz̄j ∧ dzi (5.5)
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and

m∑
i,j=1

∂
∂z̄j

(
G̃−1(z, z) ∂

∂zi
G̃(z, z)

)
dz̄j∧dzi = φ(z)−1

( m∑
i,j=1

∂
∂z̄j

(
G−1(z, z) ∂

∂zi
G(z, z)

)
dz̄j∧dzi

)
φ(z),

where φ(z) = G(z0, z0)
1
2G(z, z0)−1. Hence

trace
( m∑
i,j=1

∂
∂z̄j

(
G̃−1(z, z) ∂

∂zi
G̃(z, z)

)
dz̄j ∧ dzi

)
= trace

( m∑
i,j=1

∂
∂z̄j

(
G−1(z, z) ∂

∂zi
G(z, z)

)
dz̄j ∧ dzi

)
. (5.6)

For 1 ≤ i, j ≤ m,

trace
(
∂
∂z̄j

(G̃−1(z, z) ∂
∂zi
G̃(z, z))

)
|z=z0

= trace
(

∂2

∂z̄j∂zi
G̃(z, z)

)
|z=z0

(5.7)

and

∂2

∂z̄j∂zi
log det G̃(z, z)|z=z0 = ∂2

∂z̄j∂zi
det G̃(z, z)|z=z0

= trace( ∂2

∂z̄j∂zi
G̃(z, z))|z=z0 , (5.8)

the last equality follows from [15, pp. 11]. Hence from the equations (5.5), (5.6), (5.7) and

(5.8), we have

trace
( m∑
i,j=1

∂
∂z̄j

(
G−1(z, z) ∂

∂zi
G(z, z)

)
|z=z0

dz̄j∧dzi
)

=
m∑

i,j=1

∂2

∂zi∂z̄j

(
log det G(z, z)

)
|z=z0

dz̄j∧dzi.

In other words,

trace
(
KE(z0)

)
= Kdet E(z0).

5.2 Jet Bundles Over an Open Subset of the Complex

Plane

Here we give the definition of a jet bundle closely following [7]. An equivalent description,

in a slightly different language, may be found in [6].

Let E be a Hermitian holomorphic bundle of rank n over a bounded domain Ω ⊂ C.

For each k = 0, 1, . . . we associate to E a (k+1)n -dimensional holomorphic bundle Jk(E),

the holomorphic k-jet bundle of E, defined as follows:
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If σ = {σ1, . . . , σn} is a holomorphic frame for E, on an open subset U contained in

Ω, then Jk(E) has an associated frame

Jk(σ) = {σ10, . . . , σn0, . . . , σ1k, . . . , σnk}

defined on U . If σ̃ is another frame for E defined on Ũ , then on U∩Ũ , we have σ̃j =
∑
aijσi,

where A = (aij) is a holomorphic, n× n, nonsingular matrix. Symbolically

σ̃ = σA.

Let Jk(A) be the (k + 1)n× (k + 1)n, non singular, holomorphic matrix

Jk(A) =



A A′ A′′ · · ·
(
k
k

)
A(k)

... A 2A′ · · ·
(
k
k−1

)
A(k−1)

... A · · ·
(
k
k−2

)
A(k−2)

...
. . .

...

0 · · · · · · · · · A


.

Then, by definition, the frames Jk(σ) and Jk(σ̃) are related on U ∩ Ũ by

Jk(σ̃) = Jk(σ)Jk(A).

A straightforward computation yields that if A and Ã are holomorphic n × n matrices,

then

Jk(AÃ) = Jk(A)Jk(Ã)

so the bundle Jk(E) is well-defined.

The Hermitian metric h on E induces a Hermitian form Jk(h) on Jk(E) such that if

h(σ) is the matrix of inner products
((
〈σj, σi〉

))n
i,j=1

, then

Jk(h)(Jk(σ)) =


h(σ) · · · ∂kh(σ)

∂zk

...
...

∂kh(σ)
∂z̄k

· · · ∂2kh(σ)
∂zk∂z̄k


is the matrix of Jk(h) relative to the frame Jk(σ). To see that Jk(h) is well-defined, we

need

Jk(h)(Jk(σ̃)) = Jk(A)∗{Jk(h)(Jk(σ))}Jk(A)

which follows from the computation: For 0 ≤ l1, l2 ≤ k

∂(l1+l2)

∂zl1∂z̄l2
h(σ̃) =

l1∑
i=1

l2∑
j=1

(
l1
i

)(
l2
j

)
∂j

∂z̄j
A∗

∂l2+i−j

∂z̄l2−j∂zi
h(σ)

∂l1−i

∂zl1−i
A. (5.9)
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Using equation (5.9), we have

Jk(h)(Jk(σ̃)) = Jk(A)∗{Jk(h)(Jk(σ))}Jk(A).

In general, the form Jk(h)(z) on the jet bundle Jk(E) need not be positive definite for

z ∈ Ω. Thus Jk(E) has no natural Hermitian metric, just a Hermitian form.

For H a complex Hilbert space and n a positive integer, let Gr(n,H) denote the

Grassmann manifold, the set of all n-dimensional subspaces of H.

Definition 5.13. For Ω an open connected subset of C, we say that a map f : Ω→ Gr(n,H)

is holomorphic at λ0 ∈ Ω if there exists a neighborhood U of λ0 and n holomorphic H-

valued functions σ1, . . . , σn on U such that f(λ) =
∨
{σ1(λ), . . . , σn(λ)} for λ in U . If this

holds for each λ0 ∈ Ω then we say that f is holomorphic on Ω.

If f : Ω → Gr(n,H) is a holomorphic map, then a natural n-dimensional Hermitian

holomorphic vector bundle Ef is induced over Ω, namely,

Ef = {(x, λ) ∈ H × Ω : x ∈ f(λ)}

and

π : Ef → Ω where π(x, λ) = λ.

Definition 5.14. Let f : Ω → Gr(n,H) be a holomorphic map. We say that f is k-

nondegenerate if, for each w0 ∈ Ω, there exists a neighborhood U of w0 and n holomorphic

H- valued functions σ1, . . . , σn on U such that σ1(w), . . . , σn(w), . . . , σ
(k)
1 (w), . . . σ

(k)
n (w) are

independent for each w in the open set U . If this holds for all k = 0, 1, . . . , then we say

that f is nondegenerate.

If f is k nondegenerate, then f induces a holomorphic map

jk(f) : Ω→ Gr((k + 1)n,H)

such that jk(f)(w) is the span of σ1(w), . . . , σ
(k)
n (w). If σ is a frame for Ef on U , let

jk(σ) = {σ1, . . . , σn, . . . , σ
(k)
1 . . . , σ

(k)
n } be the induced frame for Ejk(f). Then Jk(Ef ) and

Ejk(f) are naturally equivalent Hermitian holomorphic bundles by identifying σir with σ
(r)
i ,

since 〈σir, σjs〉 = ∂r+s〈σi, σj〉/∂zr∂z̄s = 〈σ(r)
i , σ

(s)
j 〉. In this case Jk(h) is a Hermitian metric

for Jk(Ef ),that is, Jk(h) is positive definite.

Definition 5.15. Let H be a Hilbert space and Ω be a bounded domain in Cm. Let

Gn(Ω,H) be the set of all Hermitian holomorphic vector bundles of rank n over Ω which

arise as a pull-backs of the tautological bundle by nondegenerate holomorphic maps. That

is, for any nondegenerate holomorphic map f : Ω → Gr(n,H) the vector bundle Ef =

{(x, λ) ∈ H × Ω : x ∈ f(λ)} is in Gn(Ω,H).

Remark 5.16. If Ef is in Gn(Ω,H), then the preceding calculation shows that Jk(Ef ) is

in Gn(k+1)(Ω,H).
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5.3 Line Bundles

Let Lf be a Hermitian holomorphic line bundle over a bounded domain Ω ⊂ C. Assume

that Lf ∈ G1(Ω,H). Let Jk(Lf ) be a jet bundle of rank k + 1 obtained from Lf . Let σ

be a frame for Lf over an open subset Ω0 of Ω. A frame for Jk(Lf ) over the open set Ω0

is easily seen to be the set {σ, ∂σ
∂z
, ∂

2σ
∂z2 , . . . ,

∂kσ
∂zk
}. Let h be a metric for Lf , which is of the

form

h(z) = 〈σ(z), σ(z)〉.

The metric for the jet bundle Jk(h) is then of the form

Jk(h)(z) =


h(z) ∂

∂z
h(z) · · · ∂k

∂zk
h(z)

∂
∂z
h(z) ∂2

∂z∂z
h(z) · · · ∂k+1

∂z∂zk
h(z)

...
...

. . .
...

∂k

∂zk
h(z) ∂k+1

∂zk∂z
h(z) · · · ∂2k

∂zk∂zk
h(z)

 .

Let KJk(Lf ) be the curvature of the jet bundle Jk(Lf ). An explicit formula for the curvature

of a Hermitian holomorphic vector bundle E is given in [21, proposition 2.2, pp. 79]. The

curvature KJk(Lf ) of the jet bundle therefore takes the form

KJk(Lf )(z) = ∂{(Jk(h)(z))−1∂Jk(h)(z)},

with respect to the metric Jk(h) obtained from frame {σ, ∂σ
∂z
, ∂

2σ
∂z2 , . . . ,

∂kσ
∂zk
}. Set Jk(z) =

(Jk(h)(z))−1 ∂
∂z
Jk(h)(z) and note that

(Jk(h)(z))−1∂Jk(h)(z)

=


h(z) ∂

∂z
h(z) ··· ∂k

∂zk
h(z)

∂
∂z
h(z) ∂2

∂z∂z
h(z) ··· ∂k+1

∂z∂zk
h(z)

...
...

...
...

∂k

∂zk
h(z) ∂k+1

∂zk∂z
h(z) ··· ∂2k

∂zk∂zk
h(z)


−1

∂
∂z
h(z) ∂2

∂z2
h(z) ··· ∂k+1

∂zk+1 h(z)

∂2

∂z∂z
h(z) ∂3

∂z∂z2
h(z) ··· ∂k+2

∂z∂zk+1 h(z)

...
...

...
...

∂k+1

∂zk∂z
h(z) ∂k+2

∂zk∂z2
h(z) ··· ∂2k+1

∂zk∂zk+1 h(z)

 dz

=


0 0 0 ··· 0 (Jk(z))1,k+1

1 0 0 ··· 0 (Jk(z))2,k+1

0 1 0 ··· 0 (Jk(z))3,k+1

...
...

...
...

...
...

0 0 0 ··· 0 (Jk(z))k,k+1

0 0 0 ··· 1 (Jk(z))k+1,k+1

 dz,

where (Jk(z))i,k+1 is the (i, k + 1)th entry of the matrix Jk(z). The matrix product in the

first equation is of the form A−1B, where the first k columns of B are the last k column of

A.
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Therefore the curvature of the jet bundle Jk(Lf ) is seen to be of the form

KJk(Lf )(z) =



0 0 0 · · · 0 b1(z)

0 0 0 · · · 0 b2(z)

0 0 0 · · · 0 b3(z)
...

...
...

. . .
...

...

0 0 0 · · · 0 bk(z)

0 0 0 · · · 0 Kdet(JkL)(z)


dz ∧ dz,

where bi(z) = ∂
∂z̄

[(Jk(z))i,k+1], 1 ≤ i ≤ k.

Theorem 5.17. As before, let Lf and Lf̃ be two Hermitian holomorphic line bundles over

a bounded domain Ω ⊂ C. Let Jk(Lf ) and Jk(Lf̃ ) be the corresponding jet bundles of

rank k+ 1. If Jk(Lf ) is locally equivalent to Jk(Lf̃ ), then Jk−1(Lf ) is locally equivalent to

Jk−1(Lf̃ ).

Proof. Since Jk(Lf ) and Jk(Lf̃ ) are locally equivalent, for each z0 ∈ Ω, there exists a

neighborhood Ω0 and a holomorphic bundle map φ : Jk(Lf )|Ω0 → Jk(Lf̃ )|Ω0 such that φ

is an isomorphism. Let Jk(σ) = {σ, ∂σ
∂z
, ∂

2σ
∂z2 , . . . ,

∂kσ
∂zk
} and Jk(σ̃) = {σ̃, ∂σ̃

∂z
, ∂

2σ̃
∂z2 , . . . ,

∂kσ̃
∂zk
} be

frames for Jk(Lf ) and Jk(Lf̃ ) over the open subset Ω0 of Ω respectively.

Now

φ(∂
jσ
∂zj

(z)) =
k∑
i=0

φij(z)∂
iσ̃
∂zi

(z). (5.10)

So the matrix representing φ with respect to the two frames Jk(σ) and Jk(σ̃) is

φ(z) =


φ0,0(z) φ0,1(z) φ0,2(z) ··· φ0,k(z)

φ1,0(z) φ1,1(z) φ1,2(z) ··· φ1,k(z)

φ2,0(z) φ2,1(z) φ2,2(z) ··· φ2,k(z)

...
...

...
...

...
φk,0(z) φk,1(z) φk,2(z) ··· φk,k(z)

 . (5.11)

Therefore we can write(
φ(σ(z)), φ(∂σ

∂z
(z)), . . . , φ(∂

kσ
∂zk

(z))
)

=
(
σ̃(z), ∂σ̃

∂z
(z), . . . , ∂

kσ̃
∂zk

(z)
)
φ(z). (5.12)

But we know that

φ(z)KJk(Lf )(z) = KJk(Lf̃ )(z)φ(z). (5.13)

Now
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φ(z)KJk(Lf )(z) =

 φ0,0(z) φ0,1(z) ··· φ0,k(z)

φ1,0(z) φ1,1(z) ··· φ1,k(z)

...
...

...
...

φk,0(z) φk,1(z) ··· φk,k(z)

 0 0 ··· b1(z)
0 0 ··· b2(z)

...
...

...
...

0 0 ··· Kdet(Jk(Lf ))(z)

 dz ∧ dz

=


0 ··· 0

∑k−1
i=0 bi+1(z).φ0,i(z)+Kdet(Jk(Lf ))(z).φ0,k(z)

0 ··· 0
∑k−1
i=0 bi+1(z).φ1,i(z)+Kdet(Jk(Lf ))(z).φ1,k(z)

...
...

...
...

0 ··· 0
∑k−1
i=0 bi+1(z).φk−1,i(z)+Kdet(Jk(Lf ))(z).φk−1,k(z)

0 ··· 0
∑k−1
i=0 bi+1(z).φk,i(z)+Kdet(Jk(Lf ))(z).φk,k(z)

 dz ∧ dz (5.14)

and

KJk(Lf̃ )(z)φ(z) =


0 0 ··· b̃1(z)

0 0 ··· b̃2(z)

...
...

...
...

0 0 ··· Kdet(Jk(L
f̃

))(z)


 φ0,0(z) φ0,1(z) ··· φ0,k(z)

φ1,0(z) φ1,1(z) ··· φ1,k(z)

...
...

...
...

φk,0(z) φk,1(z) ··· φk,k(z)

 dz ∧ dz

=


b1(z).φk,0(z) ··· b1(z).φk,k(z)

b2(z).φk,0(z) ··· b2(z).φk,k(z)

...
...

...
bk−1(z).φk,0(z) ··· bk−1(z).φk,k(z)

Kdet(Jk(L
f̃

))(z).φk,0(z) ··· Kdet(Jk(L
f̃

))(z).φk,k(z)

 dz ∧ dz (5.15)

Hence from equations (5.13), (5.14) and (5.15), it follows that

φk,0(z) = φk,1(z) = · · · = φk,k−1(z) = 0.

So the bundle map φ has the form

φ(z) =


φ0,0(z) φ0,1(z) ··· φ0,k−1(z) φ0,k(z)

φ1,0(z) φ1,1(z) ··· φ1,k−1(z) φ1,k(z)

...
...

...
...

...
φk−1,0(z) φk−1,1(z) ··· φk−1,k−1(z) φk−1,k(z)

0 0 ··· 0 φk,k(z)

 (5.16)

with respect to the frames Jk(σ) and Jk(σ̃). Finally from equations (5.12) and (5.16), we

see that

φ|Jk−1(Lf )|Ω0
: Jk−1(Lf )|Ω0 → Jk−1(Lf̃ )|Ω0 .

Since φ is a bundle isomorphism, it follows that

φ|Jk−1(Lf )|Ω0
: Jk−1(Lf )|Ω0 → Jk−1(Lf̃ )|Ω0

is also a bundle isomorphism.
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Corollary 5.18. Let Lf and Lf̃ be Hermitian holomorphic line bundles. Let Jk(Lf ) and

Jk(Lf̃ ) be the corresponding jet bundles of rank k + 1. The two jet bundles Jk(Lf ) and

Jk(Lf̃ ) are locally equivalent as Hermitian holomorphic vector bundles if and only if the

two line bundles Lf and Lf̃ are locally equivalent as Hermitian holomorphic vector bundles.

Proof. Suppose Jk(Lf ) and Jk(Lf̃ ) are locally equivalent. Then for each z0 ∈ Ω there

exists a neighborhood Ω0 and a holomorphic map φ : Jk(Lf )|Ω0 → Jk(Lf̃ )|Ω0 such that φ

is an isomorphism.

Using Theorem 5.17, φ|Jk−1(Lf )|Ω0
: Jk−1(Lf )|Ω0 → Jk−1(Lf̃ )|Ω0 is an isomorphism.

Since φ|Jk−1(Lf )|Ω0
: Jk−1(Lf )|Ω0 → Jk−1(Lf̃ )|Ω0 is an isomorphism, by the same argument

which is given in the proof of the Theorem 5.17, it follows that

φ|Jk−2(Lf )|Ω0
: Jk−2(Lf )|Ω0 → Jk−2(Lf̃ )|Ω0

is an isomorphism. Repeating this argument, we see that φ is an isomorphism from Lf |Ω0

to Lf̃ |Ω0
.

Let A be an n× n matrix and Aî,ĵ be the (n− 1)× (n− 1) matrix which is obtained

from A by removing the ith row and jth column of the matrix A.

Lemma 5.19. Let A be an n × n matrix and B be the (n − 2) × (n − 2) matrix which is

obtained from A by removing the last two rows and last two columns of A. Then

det(An̂,n̂) det(An̂−1,n̂−1)− det(An̂,n̂−1) det(An̂−1,n̂) = det(B) det(A).

Proof. Case(1): suppose B is invertible. Let

A =

 a1,1 a1,2 ··· a1,n−1 a1,n
a2,1 a2,2 ··· a2,n−1 a2,n

...
...

...
...

...
an−1,1 an−1,2 ··· an−1,n−1 an−1,n
an,1 an,2 ··· an,n−1 an,n


and

x1 = (a1,n−1, a2,n−1, . . . , an−2,n−1)tr, x2 = (a1,n, a2,n, . . . , an−2,n)tr

y1 = (an−1,1, an−1,2, . . . , an−1,n−2), y2 = (an,1, an,2, . . . , an,n−2).

Thus the matrix A can be written in the form

A =

B x1 x2

y1 an−1,n−1 an−1,n

y2 an,n−1 an,n

 .

In this notation, we have the following equalities:
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det(An̂,n̂) = det

(
B x1

y1 an−1,n−1

)

= det(B)(an−1,n−1 − y1B
−1x1), (5.17)

det(An̂−1,n̂−1) = det

(
B x2

y2 an,n

)

= det(B)(an,n − y2B
−1x2), (5.18)

det(An̂,n̂−1) = det

(
B x2

y1 an−1,n

)

= det(B)(an−1,n − y1B
−1x2), (5.19)

det(An̂−1,n̂) = det

(
B x1

y2 an,n−1

)

= det(B)(an,n−1 − y2B
−1x1), (5.20)

and

det(A)

= det(B) det

{(
an−1,n−1 an−1,n

an,n−1 an,n

)
−

(
y1

y2

)
B−1

(
x1 x2

)}

= det(B) det

(
an−1,n−1 − y1B

−1x1 an−1,n − y1B
−1x2

an,n−1 − y2B
−1x1 an,n − y2B

−1x2

)

= det(B) {(an−1,n−1 − y1B
−1x1)(an,n−y2B−1x2)−(an−1,n−y1B−1x2)(an,n−1−y2B−1x1)} .(5.21)

From equation (5.17),(5.18),(5.19),(5.20) and (5.21), it follows that

det(A) = det(B)

{
det(An̂,n̂) det(An̂−1,n̂−1)

(detB)2
−

det(An̂−1,n̂) det(An̂,n̂−1)

(detB)2

}
,
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that is,

det(An̂,n̂) det(An̂−1,n̂−1)− det(An̂−1,n̂) det(An̂,n̂−1) = det(B) det(A). (5.22)

Case(2): Suppose B is not invertible. Then there exists a sequence of invertible matrices

Bm that approximate B, that is, ‖Bm −B‖ → 0, as m→∞. Let

Am =

Bm x1 x2

y1 an−1,n−1 an−1,n

y2 an,n−1 an,n


clearly ‖Am − A‖ → 0 as m→∞. From the proof of the previous case, we have

det{(Am)n̂,n̂} det{(Am)n̂−1,n̂−1} − det{(Am)n̂,n̂−1} det{(Am)n̂−1,n̂} = det(Bm) det(Am).

Since determinant is a continuous function, taking m→∞, it follows that

det(An̂,n̂) det(An̂−1,n̂−1)− det(An̂−1,n̂) det(An̂,n̂−1) = det(B) det(A).

Proposition 5.20. The curvature of the determinant bundle det Jk(Lf ) is given by the

following formula

KdetJk(Lf )(z) =
(detJk−1h)(z)(detJk+1h)(z)

(detJkh)2(z)
dz ∧ dz.

Proof. The curvature of the determinant bundle det(Jk(Lf )) is

KdetJk(Lf )(z) =
(detJkh)(z)( ∂2

∂z∂z
detJkh)(z)− ( ∂

∂z
detJkh)(z)( ∂

∂z
detJkh)(z)

(detJkh)2(z)
dz ∧ dz.

Here

Jkh =
((

∂i+j

∂zi∂zj
h
))k
i,j=0

and Jk+1h =
((

∂i+j

∂zi∂zj
h
))k+1

i,j=0
.

Now, we have

∂

∂z
(detJkh) = det


h ∂

∂z
h · · · ∂k−1

∂zk−1h
∂k+1

∂zk+1h
∂
∂z
h ∂2

∂z∂z
h · · · ∂k

∂z∂zk−1h
∂k+2

∂z∂zk+1h
...

...
. . .

...
...

∂k

∂zk
h ∂k+1

∂zk∂z
h · · · ∂2k−1

∂zk∂zk−1h
∂2k+1

∂zk∂zk+1h


= det((Jk+1h)

k̂+2,k̂+1
), (5.23)



5.3. Line Bundles 55

∂

∂z
(detJkh) = det


h ∂

∂z
h · · · ∂k−1

∂zk−1h
∂k

∂zk
h

∂
∂z
h ∂2

∂z∂z
h · · · ∂k

∂z∂zk−1h
∂k+1

∂z∂zk
h

...
...

. . .
...

...
∂k−1

zk−1 h
∂k

∂zk−1∂z
h · · · ∂2k−2

∂zk−1∂zk−1h
∂2k−1

∂zk−1∂zk
h

∂k+1

∂zk+1h
∂k+2

∂zk+1∂z
h · · · ∂2k

∂zk+1∂zk−1h
∂2k+1

∂zk+1∂zk
h


= det((Jk+1h)

k̂+1,k̂+2
), (5.24)

and

∂2

∂z∂z
(detJkh) = det


h ∂

∂z
h · · · ∂k−1

∂zk−1h
∂k+1

∂zk+1h
∂
∂z
h ∂2

∂z∂z
h · · · ∂k

∂z∂zk−1h
∂k+2

∂z∂zk+1h
...

...
. . .

...
...

∂k−1

∂zk−1h
∂k

∂zk−1∂z
h · · · ∂2k−2

∂zk−1∂zk−1h
∂2k

∂zk−1∂zk+1h
∂k+1

∂zk+1h
∂k+2

∂zk+1∂z
h · · · ∂2k+1

∂zk+1∂zk
h ∂2k+2

∂zk+1∂zk+1h


= det((Jk+1h)

k̂+1,k̂+1
), (5.25)

Finally, note that

detJkh = det((Jk+1h)
k̂+2,k̂+2

). (5.26)

By Lemma 5.19, we obtain

det(Jk−1h) det(Jk+1h) = det((Jk+1h)
k̂+2,k̂+2

) det((Jk+1h)
k̂+1,k̂+1

)

− det((Jk+1h)
k̂+2,k̂+1

) det((Jk+1h)
k̂+1,k̂+2

). (5.27)

From equations (5.23), (5.24), (5.25), (5.26) and (5.27), it follows that

(detJk−1h)(z)(detJk+1h)(z)

= (detJkh)(z)( ∂2

∂z∂z̄
detJkh)(z)( ∂

∂z̄
detJkh)(z)( ∂

∂z
detJkh)(z).

Hence

KdetJk(Lf )(z) =
(detJk−1h)(z)(detJk+1h)(z)

(detJkh)2(z)
dz ∧ dz.

Corollary 5.21. Let Lf and Lf̃ be Hermitian holomorphic line bundles over a domain

Ω ⊂ C. The following statements are equivalent:

(1) detJk(Lf ) is locally equivalent to detJk(Lf̃ ) and detJk+1(Lf ) is locally equivalent

to detJk+1(Lf̃ ), for some k ∈ N

(2) Lf is locally equivalent to Lf̃ .
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5.4 Rank n-Vector Bundles

We first recall some well known facts from linear algebra.

Lemma 5.22. [13, pp. 247] Let V be an inner product space of dimension n. Let

{x1, · · · , xk} be a set of vectors in V . Then {x1, · · · , xk} is independent in V if and

only if the gram matrix
((
〈xj, xi〉

))n
i,j=1

is invertible.

Lemma 5.23. [20, pp. 138] Let A,B,C and D be matrices of size n × n, n ×m,m × n
and m×m respectively. If A,D and D−1 − CA−1B are invertible, then

(A−BDC)−1 = A−1 − A−1B(D−1 − CA−1B)−1CA−1.

Lemma 5.24. [20, pp. 138] Let A,B,C and D be matrices of size n×n, n×m,m×n and

m × m respectively. If A,D and D − CA−1B are invertible, then

(
A B

C D

)
is invertible

and (
A B

C D

)−1

=

(
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

)
.

Lemma 5.25. [20, pp. 246] Let A,B,C and D be matrices of size n × n, n ×m,m × n
and m×m respectively. If A is invertible then

det

(
A B

C D

)
= det(A) det(D − CA−1B)

Proof. Let Z be an n×m matrix. Consider(
A B

C D

)(
I Z

0 I

)
=

(
A AZ +B

C CZ +D

)
.

Choose Z such that AZ +B = 0, which implies that Z = −A−1B. Thus(
A B

C D

)(
I −A−1B

0 I

)
=

(
A 0

C D − CA−1B

)
.

Hence

det

(
A B

C D

)
= det(A) det(D − CA−1B).
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Lemma 5.26. [20, pp. 247] Let A,B,C and D be matrices of size n × n, n ×m,m × n
and m×m respectively. If D is invertible then

det

(
A B

C D

)
= det(D) det(A−BD−1C).

Lemma 5.27. [7, pp. 240] If V is a proper, non-zero subspace of an inner product space

W then it induces an inner product on the quotient W/V by

([w1], [w2]) = ||v1 ∧ . . . ∧ vn||−2(v1 ∧ . . . ∧ vn ∧ w1, v1 ∧ . . . ∧ vn ∧ w2)

where [w1], [w2] denote the equivalence classes of w1 and w2 respectively in W/V and

{v1, . . . , vn} is a basis for V .

Proof. Apply Gram-Schmidt orthogonalization to the basis {v1, . . . , vn} of V . We obtain

an orthogonal basis:

ṽ1 = v1

ṽ2 = v2 −
〈v2, ṽ1〉
〈ṽ1, ṽ1〉

ṽ1

ṽ3 = v3 −
〈v3, ṽ2〉
〈ṽ2, ṽ2〉

ṽ2 −
〈v3, ṽ1〉
〈ṽ1, ṽ1〉

ṽ1

ṽi = vi −
i−1∑
j=1

〈vi, ṽj〉
〈ṽj, ṽj〉

ṽj, 1 ≤ i ≤ n

LetB be the matrix corresponding to the linear transformation taking the basis {v1, . . . , vn}
to the orthogonal basis {ṽ1, . . . , ṽn}. The determinant of B is 1. Let w1 and w2 be two

vectors in W . Then

PV ⊥(w1) = w1 −
n∑
i=1

〈w1, ṽi〉
||ṽi||2

ṽi

and

PV ⊥(w2) = w2 −
n∑
i=1

〈w2, ṽi〉
||ṽi||2

ṽi.

We have

〈PV ⊥(w1), PV ⊥(w2)〉 =
〈w1, w2〉

∏n
i=1 ||ṽi||2 −

∑n
j=1(

∏n
i=1,i 6=j ||ṽi||2)(〈w1, ṽj〉〈ṽj, w2〉)∏n

i=1 ||ṽi||2
.

Now
n∏
i=1

||ṽi||2 = 〈ṽ1 ∧ . . . ∧ ṽn, ṽ1∧, . . . , ṽn〉

= 〈v1 ∧ . . . ∧ vn, v1∧, . . . , vn〉
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and

〈w1, w2〉
n∏
i=1

||ṽi||2 −
n∑
j=1

( n∏
i=1,i 6=j

||ṽi||2
)(
〈w1, ṽj〉〈ṽj, w2〉

)
= 〈ṽ1 ∧ . . . ∧ ṽn ∧ w1, ṽ1∧, . . . , ṽn ∧ w2〉
= 〈v1 ∧ . . . ∧ vn ∧ w1, v1∧, . . . , vn ∧ w2〉.

Hence

〈PV ⊥(w1), PV ⊥(w2)〉 = ||v1 ∧ . . . ∧ vn||−2〈v1 ∧ . . . ∧ vn ∧ w1, v1 ∧ . . . ∧ vn ∧ w2〉.

Lemma 5.28. Let W be an inner product space and let V be a subspace of W . Let

{e1, . . . , er} be a basis of V and {e1, . . . , er, er+1, . . . , en} be a basis of W extending the

basis of W . Suppose

σi = e1 ∧ . . . ∧ er ∧ ei, r + 1 ≤ i ≤ n

and
A =

((
〈ei, ej〉

))
1≤i,j≤r, B =

((
〈ei, ej〉

))
r+1≤i≤n,1≤j≤r,

C =
((
〈ei, ej〉

))
1≤i≤r, r+1≤j≤n, D =

((
〈ei, ej〉

))
r+1≤i,j≤n,

Aσ =
((
〈σi, σj〉

))
r+1≤i,j≤n.

Then

det
((
〈ei, ej〉

))
1≤i,j≤n = det

(
A B

C D

)
=

det(Aσ)

(detA)n−r−1
.

Proof. Suppose xi = (〈e1, ei〉, . . . , 〈er, ei〉) and yi = x̄tr
i , r + 1 ≤ i ≤ n.

〈σi, σj〉 = det

(
A yi
xj 〈ei, ej〉

)
= det(A)(〈ei, ej〉 − xjA−1yi).

Next, note that

det
((
〈ei, ej〉

))
1≤i,j≤n = det

(
A B

C D

)
= det(A) det(D − CA−1B)

= det(A) det
((
〈ei, ej〉 − xjA−1yi

))
r+1≤i,j≤n

= det(A) det
((
〈σi, σj〉/det(A)

))
r+1≤i,j≤n

=
det(Aσ)

(detA)n−r−1
.
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Proposition 5.29. Let E be a Hermitian holomorphic vector bundle of rank n over a

bounded domain Ω in Cm and let F be a subbundle of E of rank r. Then

hdet(E/F ) =
hdetE

hdetF

where hdetE, hdet(E/F ) and hdetF are the metrics of detE, detF and detE/F respectively.

Proof. Let {s1, . . . , sr} be a frame for F over an open subset U of Ω and let {s1, . . . , sr, sr+1,

. . . , sn} be a frame of E obtained by extending the frame of F . The quotient E/F admits a

frame of the form {[sr+1], . . . , [sn]}, where [si], r+ 1 ≤ i ≤ n, denotes the equivalence class

of si in E/F . Let hE =
((
〈sj, si〉

))n
i,j=1

, hF =
((
〈sj, si〉

))r
i,j=1

and hE/F =
((
〈[sj], [si]〉

))n
i,j=r+1

be the metrics of E, F and E/F respectively. Then by the definition of the determinant

bundle hdetE = dethE, hdetF = dethF and hdetE/F = dethE/F . By Lemma 5.27 and

Lemma 5.28, we have

hdetE/F = dethE/F

= det
((
〈[sj], [si]〉

))n
i,j=r+1

= det

((
〈s1 ∧ . . . ∧ sr ∧ sj, s1 ∧ . . . ∧ sr ∧ si〉

||s1∧, . . . ∧ sr||2

))n
i,j=r+1

=
det
((
〈s1 ∧ . . . ∧ sr ∧ sj, s1 ∧ . . . ∧ sr ∧ si〉

))n
i,j=r+1

(dethF )n−r

=
hdetE

hdetF

.

Corollary 5.30. Let 0→ F → E → E/F → 0 be an exact sequence of Hermitian holomor-

phic vector bundles. Then

Kdet(E/F ) = Kdet(E) −Kdet(F )

which is equivalent to

trace(KE/F) = trace(KE)− trace(KF).

Let Ef be a Hermitian holomorphic vector bundle of rank n over an open subset Ω

in C and let Ef ∈ Gn(Ω,H). Let {σ1, . . . , σn} be a frame for Ef over an open subset Ω0 of

Ω. Let h be a metric for Ef which is defined as

h(z) =
((
〈σj(z), σi(z)〉

))n
i,j=1
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We define F k
i for each 1 ≤ k <∞ and 1 ≤ i ≤ n by

F k
i = σ1 ∧ . . . ∧ σn ∧ . . . ∧

∂k−1σn
∂zk−1

∧ ∂
kσi
∂zk

,

where wedge products between σ′is and their derivatives are taken in the Hilbert space ∧H.

Let hk be the matrix

hk(z) =
((
〈F k

j (z), F k
i (z)〉

))n
i,j=1

Proposition 5.31. Let Ef be a Hermitian holomorphic vector bundle of rank n over Ω ⊂ C.

Then the curvature KEf of Ef is given by

KEf (z) = (deth(z))−1h(z)−1h1(z) dz̄ ∧ dz.

Proof. Set xi =
(
∂
∂z̄
〈σ1, σi〉, . . . , ∂∂z̄ 〈σn, σi〉

)
and yi = x̄tr

i , 1 ≤ i ≤ n. For 1 ≤ i, j ≤ n

〈F 1
j (z), F 1

i (z)〉 = det

(
h(z) yj
xi

∂2

∂z∂z̄
〈σj(z), σi(z)〉

)
= det(h(z))

(
∂2

∂z∂z̄
〈σj(z), σi(z)〉 − xih(z)−1yj

)
.

Now we can derive the formula for the curvature of the vector bundle Ef :

KEf (z) = h−1(z)
{
∂̄∂h(z)− ∂̄h(z)h−1(z)∂h(z)

}
= h−1(z)

((
∂2

∂z∂z̄
〈σj(z), σi(z)〉 − xih(z)−1yj

))n
i,j=1

dz̄ ∧ dz

= h−1(z)
((

(deth(z))−1〈F 1
j (z), F 1

i (z)〉
))n
i,j=1

dz̄ ∧ dz
= (deth(z))−1h−1(z)h1(z) dz̄ ∧ dz

Corollary 5.32. Let Ef be a vector bundle of rank n over a bounded domain Ω ⊂ C. Then

the curvature of the bundle Ef is of rank r if and only if exactly r elements are independent

from the set {F 1
1 , . . . , F

1
n} of n elements.

Proof. By Lemma 5.31 the rank of the curvature of the bundle E is same as the rank of

h1. But rank of h1 is r if and only if r elements are independent from the set {F 1
1 , . . . , F

1
n}

of n elements.

A result from [7, page 238, Lemma 4.12], which appeared to be mysterious, now

follows from the formula derived for the rank of the curvature. Thus we have the following

corollary:

Corollary 5.33. Let Ef be a vector bundle of rank n over a bounded domain Ω in C. Then

the rank of the curvature KJk(Ef ) of the jet bundle Jk(Ef ), 1 ≤ k <∞, is at most n.
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5.4.1 Curvature Formula in General

Let Ef
π→ Ω be a Hermitian holomorphic vector bundle of rank n. Let {s1, · · · , sn} be a

local frame of Ef over an open subset Ω0 of Ω. Let h be a metric for Ef which is defined

as

h(z) =
((
〈si(z), sj(z)〉

))n
i,j=1

.

For 1 ≤ p ≤ n and 1 ≤ j ≤ m set

τ jp = s1 ∧ · · · ∧ sn ∧
∂sp
∂zj

.

For 1 ≤ i, j ≤ m set

hij(z) =
((
〈τ ip(z), τ jq (z)〉

))n
p,q=1

.

Proposition 5.34. Let Ef
π→ Ω be a Hermitian holomorphic vector bundle of rank n over

a domain Ω in Cm. Then curvature KEf of the vector bundle Ef is given by

KEf (z) = (deth(z))−1h−1(z)
m∑

i,j=1

hij(z) dzj ∧ dzi.

Proof. Set xjp =
(

∂
∂zj
〈s1, sp〉, · · · , ∂

∂zj
〈sn, sp〉

)
and yip = xip

tr
for 1 ≤ p ≤ n.

For 1 ≤ i, j ≤ m,

∂2h
∂zj∂zi

(z)− ∂h
∂zj

(z)h−1(z) ∂h
∂zi

(z) =
((

∂2

∂zj∂zi
〈sq(z), sp(z)〉 − xjph(z)−1yiq

))n
p,q=1

=
((

(deth(z))−1〈τ iq(z), τ jp (z)〉
))n
p,q=1

= (deth(z))−1hij(z).

Hence the curvature of the vector bundle Ef takes the form:

KEf (z) = h−1(z)
m∑

i,j=1

(
∂2h
∂z̄j∂zi

(z)− ∂h
∂z̄j

(z)h−1(z) ∂h
∂zi

(z)
)
dz̄j ∧ dzi

= (deth(z))−1h−1(z)
m∑

i,j=1

hij(z) dzj ∧ dzi.

5.4.2 Curvature of the Jet Bundle

Let Jk(Ef ) be a jet bundle of rank n(k + 1) over Ω, where Ω is a bounded domain in C.

If σ = {σ1, · · · , σn} is a frame for Ef then a frame for Jk(Ef ) is of the form

Jk(σ) = {σ1, · · · , σn, ∂∂zσ1, · · · , ∂∂zσn, . . . ,
∂k

∂zk
σ1, . . . ,

∂k

∂zk
σn}.
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By Lemma 5.31 the curvature KJk(Ef ) of the bundle Jk(Ef ) is given by

KJk(Ef )(z) =
(

detJk(h)(z)
)−1

(Jk(h)(z))−1

(
0nk×nk 0nk×n
0n×nk hk+1(z)

)
dz̄ ∧ dz

Let A = Jk−1(h),

C =
(
∂kh
∂z̄k

, . . . , ∂2k−1h
∂zk−1∂z̄k

)
,

B = C̄tr, D = ∂2k

∂zk∂z̄k
h,

xi =
(
∂k

∂z̄k
〈σ1, σi〉, . . . , ∂

k

∂z̄k
〈σn, σi〉, . . . , ∂2k−1

∂zk−1∂z̄k
〈σn, σi〉

)
, 1 ≤ i ≤ n,

and finally yi = x̄tr
i , 1 ≤ i ≤ n.

Now

D − CA−1B = ∂2k

∂zk∂z̄k
h− CA−1B

=
((

∂2k

∂zk∂z̄k
〈σj, σi〉 − xiA−1yj

))n
i,j=1

=
((

(detJk−1h)−1〈F k
j , F

k
i 〉
))n
i,j=1

= (detJk−1h)−1hk.

Consequently,

(Jkh)−1 =

(
A B

C D

)−1

=

(
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

)

=

(
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 det(Jk−1h)h−1
k

)
.

The curvature of the jet bundle Jk(Ef ) is

KJk(Ef )(z)

=

(
0nk×nk −

(
detJk(h)(z)

)−1
A−1(z)B(z)

(
D(z)− C(z)A−1(z)B(z)

)−1
hk+1(z)

0n×nk
(

detJk(h)(z)
)−1

det(Jk−1h(z))h−1
k (z)hk+1(z)

)
Here

detJkh(z) = (detJk−1h(z))1−n dethk(z)

and

(detJkh(z))−1 detJk−1h(z)

= (deth(z))n(1−n)k−1
(deth1(z))n(1−n)k−2 · · · (dethk−2(z))n(1−n)(dethk−1(z))n(dethk(z))−1.
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5.4.3 The Trace Formula

Let trace⊗ Idn×n :Mmn(C) ∼=Mm(C)⊗Mn(C)→ C⊗Mn(C) ∼=Mn(C) be the operator

defined as follows

(
trace⊗ Idn×n

)
(
m∑

i,j=1

Em(i, j)⊗ Ai,j) =
m∑
i=1

Ai,i,

where Em(i, j) is the m×m matrix which is defined as follows

(Em(i, j))k,l = 0 if (k, l) 6= (i, j)

= 1 if (k, l) = (i, j).

(An arbitrary element A in Mm(C)⊗Mn(C) is of the form A =
∑m

i,j=1Em(i, j)⊗ Ai,j.)

Theorem 5.35. Let 0 → Jk−1(Ef ) → Jk(Ef ) → Jk(Ef )/Jk−1(Ef ) → 0 be an exact

sequence of jet bundles. Then we have(
trace⊗ Idn×n

)
(KJk(Ef ))−

(
trace⊗ Idn×n

)
(KJk−1(Ef )) = KJk(Ef )/Jk−1(Ef )(z).

Proof. (
trace⊗ Idn×n

)
(KJk(Ef ))−

(
trace⊗ Idn×n

)
(KJk−1(Ef ))

=
(

detJk(h)(z)
)−1

det(Jk−1h(z))h−1
k (z)hk+1(z)

−
(

detJk−1(h)(z)
)−1

det(Jk−2h(z))h−1
k−1(z)hk(z)

= KJk(Ef )/Jk−1(Ef )(z).

The last equality follows from [7, page 244, Proposition 4.19].
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