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Abstract

Let ‖ · ‖A be a norm on Cm given by the formula ‖(z1, . . . , zm)‖A = ‖z1A1 + · · ·+ zmAm‖op

for some choice of an m-tuple of n × n linearly independent matrices A = (A1, . . . , Am).

Let ΩA ⊂ Cm be the unit ball with respect to the norm ‖ · ‖A. Given p × q matrices

V1, . . . , Vm and a function f ∈ O(ΩA), the algebra of function holomorphic on an open set

U containing the closed unit ball Ω̄A define

ρV (f) :=
(
f(w)Ip

∑m
i=1 ∂if(w)Vi

0 f(w)Iq

)
,

w ∈ ΩA. Clearly, ρV defines an algebra homomorphism. We study contractivity (resp.

complete contractivity) of such homomorphisms.

The homomorphism ρV induces a linear map LV : (Cm, ‖ · ‖∗A)→Mp×q(C),

LV (w) = w1V1 + · · ·+ wmVm.

The contractivity (resp. complete contractivity) of the homomorphism ρV determines the

contractivity (resp. complete contractivity) of the linear map LV and vice-versa. It is

known that contractive homomorphisms of the disc and the bi-disc algebra are completely

contractive, thanks to the dilation theorems of B. Sz.-Nagy and Ando respectively. How-

ever, examples of contractive homomorphisms ρV of the (Euclidean) ball algebra which are

not completely contractive was given by G. Misra.

From the work of V. Paulsen and E. Ricard, it follows that if m ≥ 3 and B is any

ball in Cm with respect to some norm, say ‖ · ‖B, then there exists a contractive linear map

L : (Cm, ‖ · ‖∗B) → B(H) which is not complete contractive. The characterization of those

balls in C2 for which contractive linear maps are always completely contractive remained

open. We answer this question for balls of the form ΩA in C2.

The class of homomorphisms of the form ρV arise from localization of operators in

the Cowen-Douglas class of Ω. The (complete) contractivity of a homomorphism in this

class naturally produces inequalities for the curvature of the corresponding Cowen-Douglas

bundle. This connection and some of its very interesting consequences are discussed.
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Chapter 1

Introduction

In 1936 von Neumann (see [29, Chapter 1, Corollary 1.2]) proved that if T is a bounded

linear operator on a separable complex Hilbert space H, then

‖p(T )‖ ≤ ‖p‖∞,D := sup{|p(z)| : |z| < 1}

if and only if ‖T‖ ≤ 1. The original proof of this inequality is intricate. A couple of decades

later, Sz.-Nazy (see [29, Chapter 4 , Theorem 4.3]) proved that a bounded linear operator

T admits a unitary (power) dilation if and only there exists a unitary operator U on a

Hilbert space K ⊇ H such that

PH p(U)|H = p(T ),

for all polynomials p. The existence of such a dilation may be established by actually

constructing a unitary operator U, dilating T. This construction is due to Schaffer [33].

Clearly, the von Neumann inequality follows from the existence of a power dilation via the

spectral theorem for unitary operators.

The von Neumann inequality says that the homomorphism ρT induced by T on the

polynomial ring P [z] by the rule ρT (p) = p(T ) is contractive. The homomorphism ρT
therefore extends to the closure of the polynomial ring P [z] with respect to the sup norm

‖p‖∞,D. This is the disc algebra which consists of all continuous functions on the closed

unit disc D̄, which are holomorphic on the open unit disc D.
Over the years many questions related to the von Neumann inequality have been

studied. Typically, these questions involve replacing, the polynomial ring (P [z], ‖ · ‖∞,D)

with some other ring of functions. For instance, the rings of rational functions Rat(Ω) with

poles off Ω̄ on some open, bounded, connected subset of C, equipped with the supremum

norm on Ω.

Suppose T is an operator with σ(T ) ⊆ Ω̄. Set r(T ) := p(T )q(T )−1, for r ∈ Rat(Ω).

Since q does not vanish on Ω̄ and σ(T ) ⊆ Ω̄, it follows that r(T ) is well-defined. It is
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natural to ask, prompted by the inequality of von Neumann, when the homomorphism ρT ,

defined by the rule ρT (r) = r(T ), is contractive on Rat(Ω). There is no good answer to this

question, in general. Also, in this more general setting, let us say that a homomorphism

ρT : Rat(Ω)→ B(H) admits a normal dilation if there exists a normal operator N : K → K,
H ⊆ K and σ(N) ⊆ ∂Ω such that

PHr(N)|H = r(T ).

Clearly, if there exists a normal dilation, then it would follow that ‖r(N)‖op ≤ ‖r‖∞,Ω
making the homomorphism r 7→ r(N) contractive. However, in most cases, the converse

fails.

In 1984, J. Agler (see [3]) proved that if Ω is the annulus A, then every contractive

homomorphism of the ring Rat(A) admits a normal dilation. Recently, M. Dristchell and S.

McCullough [13] have shown that for a domain of connectivity ≥ 2 the converse statement

is false in general.

In the very fundamental work of Arveson [1,2], he studied the normal dilation in detail

and showed that the existence of a normal dilation is equivalent to complete contractivity

of the homomorphism ρT :

Let R = ((rij)) , rij ∈ Rat(Ω) be a matrix valued rational function. Let

‖R‖ = sup{‖ ((rij(z))) ‖op : z ∈ Ω}.

Define R(T ) naturally to be the operator ((rij(T ))) . The homomorphism ρT is said to be

completely contractive if ‖R(T )‖ ≤ ‖R‖∞,Ω for allR ∈ Rat(Ω)⊗Mk(C), k = 1, 2, . . . , n, . . . .

A deep theorem proved by Arveson says that T has a normal dilation if and only if

ρT is completely contractive. Clearly, if ρT is completely contractive, then it is contractive.

The dilation theorems due to Sz.-Nazy and Agler give the non-trivial converse. Thus

for the case of the disc and the annulus algebras contractive homomorphisms are always

completely contractive.

Most of these notions apply to the rings of polynomials in more than one variable,

or even to the ring of holomorphic functions, in a neighborhood of Ω̄, where Ω is some

open bounded connected subset of Cm. Indeed, the theorem of Arveson remains valid in

this more general setting.

The first dilation theorem for a commuting pair of contractions was proved by Ando.

He showed that if T1, T2 are a pair of commuting contractions, then there exists a pair of

commuting unitaries, which dilate T1, T2 simultanously, that is,

PH(p(U1, U2))|H = p(T1, T2)
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(see [29, Chapter 5, Theorem 5.5]). In otherwords, every contractive homomorphisms of

the bi-disc algebra is completely contractive. The only other dilation theorem, in the multi-

variable context is due to Agler and Young which is for the Symmetrized bi-disc [4]. Soon

after, Parrott showed that there are three commuting contractions for which it is impossible

to find commuting unitaries dilating them. This naturally leads to the question, in view

of Arveson’s theorem, for which function algebras A(Ω), all contractive homomorphisms

must be necessarily completely contractive. At the moment, this is known to be true of the

disc, bi-disc, Symmetrized bi-disc and the annulus algebras. Counter examples are known

for domains of connectivity ≥ 2 and the ball algebra and any balls in Cm, m ≥ 3, as we

will explain below.

Neither Ando’s proof of the existence of a unitary dilation for a pair of commuting

contractions, nor the counter example to such an existence theorem due to Parrott involved

the notion of complete contractivity directly. However, G. Misra in the papers [23], [24]

and [25] began the study of Parrott like examples, comparing the norm and the cb-norm,

on domains Ω ⊂ Cm other than the tri-disc. This was further studied in depth by V.

Paulsen [30], where he showed that the question of contractive vs completely contractive

for Parrott like homomorphisms ρV includes the question of contractive vs completely

contractive for linear maps LV from some finite dimensional Banach space X to Mn(C).

The counter examples we mentioned in the previous paragraph were found by him for such

linear maps for m ≥ 5. Such examples were found for m = 3, 4 later by E. Ricard leaving

the question of what happens when m = 2 open. This is the question we answer in this

thesis. We point out that the results of Paulsen used deep ideas from geometry of finite

dimensional Banach spaces. In contrast, our results are elementary in nature, although

the computations, at times, are somewhat involved.

1.1 Preliminaries

Let Ω be a bounded domain (open connected set) in Cm and O(Ω) be the algebra of

bounded functions holomorphic in some neighborhood of Ω. We equip the algebra O(Ω)

with the sup norm, that is,

‖f‖∞ = sup
z∈Ω
|f(z)|, f ∈ O(Ω).

For i = 1, . . . ,m and any choice of Vi inMp,q(C), let Ti =
(wiIp Vi

0 wiIq

)
, w = (w1, . . . , wm) ∈

Ω. The m-tuple T = (T1, . . . , Tm) of linear transformations on Cp+q is commuting and de-
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fines a homomorphism ρV : O(Ω)→Mp+q(C) given by the formula

ρV (f) := f(T1, . . . , Tm) =
(
f(w)Ip

∑m
i=1 ∂if(w)Vi

0 f(w)Iq

)
, f ∈ O(Ω),

where V denotes the m-tuple (V1, . . . , Vm). The homomorphism ρV induces the linear map

LV : Cm →Mp,q(C) given by the formula

LV (z) = z1V1 + · · ·+ zmVm.

For v in Cm,

CΩ,w(v) := sup{|
∑

vi∂if(w)| : f ∈ O(Ω), f(w) = 0, ‖f‖∞ ≤ 1}

defines a norm on Cm. It is the Carathéodory norm of Ω at w. We see that ‖ρV ‖ ≤ 1

if and only if ‖LV ‖(Cm,CΩ,w)→(Mp,q ,‖·‖op) ≤ 1 (here ‖ · ‖1,2 denotes the operator norm from

(X, ‖ · ‖1) to (Y, ‖ · ‖2)). We can say a little more after tensoring with Mk. Let ρ
(k)
V be

the operator ρV ⊗ Ik : O(Ω)⊗Mk → (Mp+q(C)⊗Mk, ‖ · ‖op), where for F ∈ O(Ω)⊗Mk.

We define ‖F‖ = supz∈Ω ‖((fij(z)))‖, fij ∈ O(Ω). Similarly, set L
(k)
V := LV ⊗ Ik. Now, we

have ‖ρ(k)
V ‖ ≤ 1 if and only if ‖L(k)

V ‖(Cm⊗Mk,‖·‖∗k)→(Mk⊗Mp+q ,‖·‖op) ≤ 1 (cf. [7, Proposition

2.1] and [30, Proposition 3.5]).

Here we study homomorphisms ρV defined on O(ΩA), where ΩA is a bounded domain

of the form

ΩA := {(z1, z2, . . . , zm) : ‖z1A1 + · · ·+ zmAm‖op < 1}

for some choice of a linearly independent set of n× n matrices {A1, . . . , Am}.
By definition, ΩA is the unit ball obtained via an isometric embedding into (Mn, ‖ · ‖op).

It is therefore a unit ball in Cm with respect to some norm, say, ‖ · ‖A. It also has a nat-

ural operator space structure obtained via this embedding. However, it is possible to pick

different isometric embeddings of a (Cm, ‖ · ‖A) into the operators on some Hilbert space.

Whether these different (isometric) embeddings give the same operator space structure is

an interesting question on its own right. Picking A1 =
(

1 0
0 0

)
and A2 =

(
0 1
0 0

)
gives the em-

bedding of the Euclidean ball as the space of “row vectors”, while if we pick the transpose

of A1 and A2, we would be embedding it as the space of column vectors. As is well known,

these two embeddings give rise to different operator space structures leading to an example

of a contractive homomorphism on the ball algebra which is not completely contractive.

While for any n in N, if we pick A1 = I2n, A2 =
(

0 B
0 0

)
, then they determine the same

norm (independent of n) on C2 as long as ‖B‖ = 1. However, the operator space structure

is also independent of n, which we show in Chapter 3. Following the example of the ball,

even if we pick the new pair to be A1 = I2n and A2 =
(

0 B
0 0

)t
, the operator space we obtain
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remains the same. The ball ΩA, in this case, is the set {(z1, z2) ∈ C2 : |z1|2 + |z2| < 1}.
We see that it has several distinct isometric embeddings into M2n(C). Surprisingly, all of

these give the same operator space structure on (C2, ‖ · ‖A). Therefore, unlike the case of

the Euclidean ball, we have to find some other way of showing the existence of distinct

operator space structures on this normed space, which we do in Chapter 3.

From the work of V. Paulsen and E. Ricard (cf. [30], [28]), it follows that if m ≥ 3

and B is any ball in Cm, then there exists a contractive linear map which is not completely

contractive. It is known that contractive homomorphisms of the disc and the bi-disc

algebra are completely contractive, thanks to the dilation theorem of B. Sz.-Nagy and Ando.

However, an example of a contractive homomorphism of the (Euclidean) ball algebra which

is not completely contractive was given in [23, 24]. The characterization of those balls in

C2 for which “contractive linear maps are always completely contractive” remained open.

We answer this question in Chapter 5 for domains of the form ΩA, A = (A1, A2) in

C2 ⊗M2(C). Along the way we obtain some interesting applications for domains of the

form ΩA in Cm,m ∈ N.
The (linear) polynomial PA defined by the rule

PA(z1, z2, . . . , zm) = z1A1 + z2A2 + · · ·+ zmAm,

maps the ball ΩA into (Mn(C), ‖ · ‖op)1 by definition. We develop several methods to

determine when ‖LV ‖ ≤ 1. We recall that ‖LV ‖ ≤ 1 if and only if ‖ρV ‖ ≤ 1. We show that

‖LV ‖ ≤ ‖L(n)
V (PA)‖. Finding a V such that

‖LV ‖(Cm,CΩ,w)→(Mp,q(C),‖·‖op) ≤ 1

for which ‖L(n)
V (PA)‖op > 1 gives an example of a contractive homomorphism on O(ΩA)

which is not completely contractive. However, finding such a V is far from obvious, as we

will see.

Furthermore, in Chapter 2, we show that for homomorphisms of our class, the prop-

erty “contractivity implies complete contractivity”, remains unaffected under bi-holomorphic

equivalence. Thus we describe some natural bi-holomorphic, actually linear, equivalence

for domains of the form ΩA and work with a convenient representative from each equiva-

lence class. We give a list of such representatives for the class of domains ΩA in Chapter

2.

The class of homomorphisms of the form ρV arise from localization of operators

in the Cowen-Douglas class of Ω. The (complete) contractivity of a homomorphism in

this class naturally produces inequalities for the curvature of the corresponding Cowen-

Douglas bundle (cf. [24, Theorem5.2]). This connection and some of its very interesting

consequences are discussed in Chapter 4.
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In the paper [27], Parrott showed that if U1 and U2 are a pair of non-commuting

unitaries then the homomorphism ρV , V = (I, U1, U2), is contractive on the tri-disc algebra

A(D3) which is not completely contractive. Equivalently, he shows that there does not exist

commuting unitaries dilating the commuting contractions
(
I2 0
0 I2

)
, ( 0 U1

0 0

)
and ( 0 U2

0 0

)
. This

shows that Ando’s theorem does not generalize to m > 2. The Parrott examples were

further studied in a series of papers [23–26,30].

Let Ω∗A be the unit ball for the dual norm ‖ · ‖∗A. We point out that contractive

homomomorphisms of our class are completely contractive for O(ΩA) if and only if it is

true for O(Ω∗A) (see [26] and [30]).

Let PA : ΩA → (Mn(C))1 be the matrix valued polynomial on ΩA defined by

PA(z1, z2, . . . , zm) = z1A1 + z2A2 + · · · + zmAm, where (Mn(C))1 is the matrix unit ball

with respect to the operator norm. For (z1, z2, . . . , zm) in ΩA, the norm

‖PA‖∞ := sup
(z1,...,zm)∈ΩA

‖PA(z1, . . . , zm)‖op

is at most 1 by definition of the polynomial PA. We say that PA is a defining function

for ΩA. As we have indicated earlier, we detect the failure of complete contractivity by

checking if ‖ρV (PA)‖ ≤ 1 or not. Often, one works with a defining function which is

assumed to be smooth. Our defining function takes values in Mn(C), it is holomorphic,

indeed, it is a linear map.

For (α, β) ∈ B× B, define p
(α,β)
A : ΩA → D to be the linear map

p
(α,β)
A (z1, . . . , zm) = 〈PA(z1, . . . , zm)α, β〉 .

The sup norm ‖p(α,β)
A ‖∞ on ΩA, for any pair of vectors (α, β) in B × B, is at most 1

by definition. Let ℘
(α,β)
A denote the set of linear functions {p(α,β)

A : (α, β) ∈ B × B}.
Let V = (V1, . . . , Vm), Vi ∈ Mp,q, and ρV : ℘

(α,β)
A 7−→ B(Cp ⊕ Cq) ∼= B(Cp+q) be the

homomorphism defined by

ρV (p
(α,β)
A ) =

(
p

(α,β)
A (0)Ip ∂1p

(α,β)
A (0)V1 + . . .+ ∂mp

(α,β)
A (0)Vm

0 p
(α,β)
A (0)Iq

)
, p

(α,β)
A ∈ ℘(α,β)

A .

Lemma 1.1. sup‖α‖=‖β‖=1 ‖ρV (p
(α,β)
A )‖ ≤ ‖ρ(n)

V (PA)‖.
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Proof. The proof is a straightforward computation:

sup
|α‖=‖β‖=1

‖ρV (p
(α,β)
A )‖ = sup

‖α‖=‖β‖=1
‖ ∂1p

(α,β)
A (0)V1 + · · ·+ ∂mp

(α,β)
A (0)Vm ‖

= sup
‖α‖=‖β‖=1

‖ 〈A1α, β〉V1 + · · ·+ 〈Amα, β〉Vm ‖

= sup
‖α‖=‖β‖=‖u‖=‖v‖=1

|〈A1α, β〉〈V1u, v〉+ · · ·+ 〈Amα, β〉〈Vmu, v〉|

= sup
‖α‖=‖β‖=‖u‖=‖v‖=1

|〈(A1 ⊗ V1 + · · ·+Am ⊗ Vm)α⊗ u, β ⊗ v〉|

= sup
‖α‖=‖β‖=‖u‖=‖v‖=1

|〈ρ(n)
V (PA)α⊗ u, β ⊗ v〉|

≤ ‖ρ(n)
V (PA)‖. (1.1)

This completes the proof.

Since p
(α,β)
A is linear, the derivative Dp

(α,β)
A (0) = p

(α,β)
A . The set of vectors

{(〈A1α, β〉, . . . , 〈Amα, β〉) : α, β ∈ B2} ⊆ Cm

is a subset of the dual unit ball Ω∗A by definition. We will not distinguish between this set

of vectors and the set of linear maps ℘
(α,β)
A induced by them.

The linear map LV , V = (V1, . . . , Vm), is contractive if and only if

sup
(λ1,...,λm)∈Ω∗A

‖λ1V1 + · · ·+ λmVm‖op = sup
(λ1,...,λm)∈Ω∗A

sup
‖u‖2=1

‖λ1V1u+ · · ·+ λmVmu‖2 ≤ ‖(λ1, . . . , λm)‖∗A.

Or, equivalently,

sup
(λ1,...,λm)∈Ω∗A

sup
‖u‖2=1=‖v‖2

|λ1〈V1u, v〉+ · · ·+ λm〈Vmu, v〉| ≤ ‖(λ1, . . . , λm)‖∗A,

that is, ‖LV ‖ ≤ 1 if and only if (〈V1u, v〉, . . . , 〈Vmu, v〉) is in ΩA for every pair of unit

vectors u and v. We find that

sup
‖u‖2=1=‖v‖2

‖(〈V1u, v〉, . . . , 〈Vmu, v〉)‖2
A = ‖〈V1u, v〉A1 + · · ·+ 〈Vmu, v〉Am)‖2

op

= sup
‖u‖2=1=‖v‖2

sup
‖α‖2=1=‖β‖2

|〈
m∑
j=1

〈Ajα, β〉Vju, v〉 |2

= sup
‖u‖2=1

sup
‖α‖2=1=‖β‖2

‖
m∑
j=1

〈Ajα, β〉Vju ‖2
2

= sup
‖u‖2=1

sup
‖α‖=‖β‖=1

‖LV
(
(〈A1α, β〉, . . . , 〈Amα, β〉)

)
.u‖2

2

= sup
‖α‖=‖β‖=1

‖LV
(
(〈A1α, β〉, . . . , 〈Amα, β〉)

)
‖op

(1.2)
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We have seen that {(〈V1u, v〉, . . . , 〈Vmu, v〉) : ‖u‖2 ≤ 1, ‖v‖2 ≤ 1} ⊆ ΩA for any fixed

but arbitrary m tuple V for which LV is contractive. However, it is not clear if there

is a collection of contractive homomorphisms which produce all of ΩA. Similarly, the set

{(〈A1α, β〉, . . . , 〈Amα, β〉) : ‖α‖2 ≤ 1, ‖β‖2 ≤ 1} ⊆ Ω∗A. Again, we don’t know if for some

choice of A equality occurs.

Thus we have shown that LV is contractive if and only if it is contractive on the

set ℘
(α,β)
A . However, as we have pointed out earlier, LV is contractive if and only if the

homomorphism ρV is contractive. Similarly, LV is contractive on the set ℘
(α,β)
A if and only

if the restriction ρV |℘(α,β)
A

of the homomorphism ρV to ℘
(α,β)
A is contractive. Therefore we

have proved the following.

Proposition 1.2. The following conditions are equivalent.

(i) ‖ρV ‖ = sup‖p‖∞≤1{‖ρV (p)‖ : p ∈ O(ΩA), p(0) = 0} ≤ 1

(ii) sup‖α‖=‖β‖=1{‖ρV (p
(α,β)
A )‖ : p

(α,β)
A ∈ ℘(α,β)

A } ≤ 1

(iii) ‖LV ‖(Cm,‖·‖∗A)→(Mn,‖·‖op) ≤ 1

(iv) sup‖α‖=‖β‖=1 ‖LV
(
(〈A1α, β〉, . . . , 〈Amα, β〉)

)
‖op ≤ 1

Corollary 1.3. If ‖ρ(n)
V (PA)‖ ≤ 1 then ρV is contractive.

Proof. It is enough to check the contractivity of the restriction of ρV to the set ℘
(α,β)
A . On

this set, as we have shown in Lemma 1.1, the norm of ρV is bounded above by ‖ρ(n)
V (PA)‖.

Remark 1.4. This proposition says that checking the contractivity of ρV on the algebra

O(ΩA) may be reduced to checking it on ℘
(α,β)
A . Thus this class of homomorphisms ℘

(α,β)
A

serves as a class of “Test functions”. Apart from this, for this class of homomorphisms ρV ,

we have the property ‖ρV ‖ ≤ ‖ρ(n)
V (PA)‖. This inequality often happens to be strict making

it possible to construct examples of contractive homomorphisms which are not completely

contractive.

Choosing A = (( 1 0
0 0 ) , ( 0 1

0 0 )) , we see that ΩA defines the Euclidean ball in C2. Choose

V1 = (v11 v12), V2 = (v21 v22). We will prove that

sup
‖α‖=‖β‖=1

‖ρV (p
(α,β)
A )‖ < ‖ρV (PA)‖op.

This example, of a contractive homomorphism of the ball algebra which is not completely

contractive, was found in [23,24].
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Theorem 1.5. For ΩA = B2, we have

sup
‖α‖=‖β‖=1

‖ρV (p
(α,β)
A )‖ < ‖ρV (PA)‖op.

Proof. By definition of ρV , we have

sup
‖α‖=‖β‖=1

‖ρV (p
(α,β)
A )‖2 = sup

‖α‖=‖β‖=‖u‖=‖v‖=1

|〈A1α, β〉〈V1u, v〉+ 〈A2α, β〉〈V2u, v〉|2

= sup
‖α‖=‖β‖=‖u‖=1

|α1(v11u1 + v12u2) + α2(v21u1 + v22u2)|2|β1|2

= sup
‖α‖=‖u‖=1

|α1(v11u1 + v12u2) + α2(v21u1 + v22u2)|2

= sup
‖u‖=1

|v11u1 + v12u2|2 + |v21u1 + v22u2|2

=
∥∥ ( v11 v12

v21 v22 )
∥∥2

op
.

On the other hand, we have

‖ρV (PA)‖2
op = ‖V1‖2 + ‖V2‖2

where ‖V1‖2 = |v11|2 + |v12|2, ‖V2‖2 = |v21|2 + |v22|2. It follows that∥∥ ( v11 v12
v21 v22 )

∥∥2

op
< ‖V1‖2 + ‖V2‖2.

Hence we have

sup
‖α‖=‖β‖=1

‖ρV (p
(α,β)
A )‖ < ‖ρV (PA)‖op.

Remark 1.6. It is therefore natural to ask which of the domains ΩA ⊂ C2 has the property

sup
‖α‖=‖β‖=1

‖ρV (p
(α,β)
A )‖ < ‖ρ(n)

V (PA)‖.

If the answer is affirmative, then there is a possibility of producing an example of a con-

tractive homomorphism of O(ΩA) which is not completely contractive. However, as we

will see, unlike the case of the Euclidean ball, this requires lot more work in general.

If a normed linear space (Cm, ‖ · ‖A) admits only one operator space structure, then

every contractive linear map from (Cm, ‖ · ‖A) into Mk(C), k ∈ N must be completely

contractive. As before, for some linearly independent set of n× n matrices {A1, . . . , Am},
setting

‖(z1, · · · , zm)‖A := ‖z1A1 + · · ·+ zmAm‖op,
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we obtain an m-dimensional normed linear space VA. This makes the map

(z1, . . . , zm)→ z1A1 + · · ·+ zmAm

an isometry from VA into (Mn, ‖·‖op). Therefore, VA inherits an operator space structure

fromMn. Similarly we can think of VAt as an operator space via the isometric embedding

(z1, . . . , zm)→ z1A
t
1 + · · ·+ zmA

t
m

into Mn(C), where At = (At
1, . . . , A

t
m) is obtained by taking the transpose.

Let A = (( 1 0
0 0 ) , ( 0 1

0 0 )) . The norm it determines on VA(∼= C2) is the `2 norm. Note

that PA : VA → M2(C) defines a linear isometric embedding. Suppose V = ((vij)) ∈
Mk(VA), where vij ∈ VA. Define P

(k)
A := PA⊗Ik :Mk(VA)→Mk(M2(C)) by P

(k)
A (V ) =

((PA(vij))). Let vij = (v1
ij v

2
ij), i, j = 1, . . . , k, then

P
(2)
A (V ) =

(
V1 V2
0 0

)
,

where V1 = ((v1
ij)) and V2 = ((v2

ij)). Similarly if we take At = (( 1 0
0 0 ) , ( 0 0

1 0 )) then VAt

becomes an operator space. Therefore we have

P
(2)
At (V ) =

(
V1 0
V2 0

)
.

For the record, the norm of P
(2)
A (V ) and P

(2)
At (V ) are given in the following lemma.

Lemma 1.7. If v1 = (v11 v12),v2 = (v21 v22), then∥∥ ( v1 v2
0 0 )

∥∥2
= ‖v1‖2 + ‖v2‖2 = |v11|2 + |v12|2 + |v21|2 + |v22|2

and ∥∥ ( v1 0
v2 0

) ∥∥2
=
∥∥(v11 v12

v21 v22

)∥∥2

op
.

Consequently, for this choice of V, the norms ‖P (2)
A (V )‖ and ‖P (2)

At (V )‖ are not equal.

The existence of two distinct operator space structures on VA follows from this.

However, most of the time, this trick doesn’t work, that is, the operator space struc-

tures induced by A and At are completely isometric. In that situation, the following al-

gorithm is adopted, which involves a careful “case by case” analysis. Fix v1 = (v, 0),v2 =

(0, w). Let L(v1,v2) : (C2, ‖ · ‖∗ΩA
)→ (C2, ‖ · ‖2) be the linear map (z1, z2) 7→ (z1v, z2w).

(i) For β in C2, and v1 = (v, 0), v2 = (0, w) as above, let

g(v,w)(β) := {1− |v|2‖A∗1β‖2− |w|2‖A∗2β‖2 + |vw|2(‖A∗1β‖2‖A∗2β‖2− | 〈A1A
∗
2β, β〉 |2)}.

We show that L(v1,v2) : (C2, ‖ · ‖∗ΩA
) → (C2, ‖ · ‖2) is contractive if and only if

|v|2 ≤ 1
‖A∗1‖2

and (v, w) is in E := {(v, w) : infβ,‖β‖2=1 g(v,w)(β) ≥ 0}.
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(ii) We then show that there exists v1,v2 for which L(v1,v2) is contractive while L
(2)
(v1,v2)(PA)

is not contractive. Therefore, this contractive linear map, namely, L(v1,v2) cannot be

completely contractive.

(iii) The contractivity of L(v1,v2)(PA) is shown to be equivalent to the condition

inf
β
{1− |v|2‖A∗1β‖2 − |w|2‖A∗2β‖2 : ‖β‖2 = 1} ≥ 0.

(iv) There exists β ∈ C2 such that either (A∗2 − µA∗1)β = 0 or (A∗1 − νA∗2)β = 0 for some

µ, ν in C. The set

B := {β : ‖β‖2 = 1, (A∗2 − µA∗1)β = 0 or (A∗1 − νA∗2)β = 0 for some µ, ν ∈ C}

of these vectors is non-empty.

In the last chapter we show that there exists a λ > 0, say λ0, such that (v, λ0v) is in

E with the property:

g(v,λ0v)(β
′′) > g(v,λ0v)(β

′) > g(v,λ0v)(β) or g(v,λ0v)(β
′) > g(v,λ0v)(β

′′) > g(v,λ0v)(β) when-

ever β′, β′′ ∈ B.
Also, we then prove that there exists a v (|v| < 1

‖A∗1‖
, this is necessary for contractiv-

ity), say v0, such that (v0, λv0) is in E0 := {(v, w) : infβ g(v,w)(β) = 0}.
Hence there exists a v0, λ0 and β0 such that

1− |v0|2‖A∗1β0‖2 − |λ0v0|2‖A∗2β0‖2 + λ2
0|v0|4(‖A∗1β0‖2‖A∗2β0‖2 − | 〈A1A

∗
2β0, β0〉 |2) = 0

which is equivalent to ‖L(v1,v2)(PA)‖ > 1.

We now discuss the relationship of homomorphisms of the form ρV with m tuple

of operators T in the Cowen-Douglas class B1(Ω), Ω ⊆ Cm. In the papers [10] and [12],

it is shown that the operator T can be realized as the adjoint of the commuting tuple

M = (M1, . . .Mm) of multiplication operators defined by the coordinate functions on a

reproducing kernel Hilbert space (H, K) consisting of holomorphic functions on Ω∗ := {w̄ :

w ∈ Ω}. It then follows that the joint kernel ∩mi=1 ker (Mi − wi)∗ is spanned the vector

Kw. We think of w 7→ Kw as a frame for a anti-holomorphic line bundle LM on Ω. The

Hermitian metric of this line bundle is Kw(w) on the fiber at w.

Fix an operator T in the Cowen-Douglas class B1(Ω). This is the same as fixing a

Hilbert space H of holomorphic functions on Ω and a positive definite kernel K, which

is holomorphic in the first variable and anti-holomorphic in the second, on Ω. Then the

operator T is unitarily equivalent to M ∗. Let N (w) = ∩mi=1 ker (Mi − wi)∗2 and let Ni(w)
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be the commuting tuple of finite dimensional operators obtained by restricting M∗
i to

N (w), i = 1, . . . ,m. The commuting tuple N(w) is of the form

((w̄1 v1

0 w̄1I

)
, . . . ,

(w̄m vm
0 w̄mI

))
,

it is the localization of T at w. These pairwise commuting operators induce a homomor-

phism ρV except that the v1, . . . ,vm are of size 1 ×m. (It is also possible to add several

rows of zeros to each of these vectors making them m×m matrices.) It is easy to show that

the (m+ 1) dimensional space N (w) is spanned by the vectors {Kw, ∂̄1Kw, . . . , ∂̄mKw}. It

therefore has a natural inner product, which it inherits from the Hilbert space H, namely,

〈∂̄iKw, ∂̄jKw〉 = (∂j ∂̄iKw)(w), i, j = 0, 1, . . . ,m, where ∂̄0Kw := Kw. The curvature of the

line bundle is a (1, 1) form given by the formula
∑m

i,j=1
∂2

∂wi∂w̄j
log ‖γ(w)‖2dwi∧dw̄j. We let

K(w) denote the matrix of the coefficients of the curvature (1, 1) form.

There is a close relationship between the operators N1(w), . . . , Nm(w) and the cur-

vature K(w), namely,

−
((

trNi(w)Nj(w)∗
))t

= K(w)−1.

This relationship was derived in [10] for m = 1 and in [11] for m = 2.

Suppose K is a positive definite kernel. Then for any natural number n, the ker-

nel Kn(z, w), the point-wise product of the kernel K, is positive definite. This is no

longer true if we replace the natural numbers n by positive real numbers λ. However, we

show that
((

(∂j ∂̄iK
λ)(w,w)

))m
i,j=0

is positive definite for all positive real numbers λ and

therefore it defines an inner product on the space N (λ)(w), the linear span of the vec-

tors {Kλ(·, w), ∂̄1K
λ(·, w), . . . , ∂̄mK

λ(·, w)}. We conclude that the first order jet bundle

determined by these vectors possesses a non-degenerate Hermitian inner product. The

Hermitian metric induced on the jet bundle of order k by the kernel Kλ ( λ > 0) need not

be non-degenerate in general for k > 1.

We define, for i = 1, . . . ,m, the operators N
(λ)
i (w) on N (λ)(w) by the rule

(
N

(λ)
i (w)− w̄iIm+1

)
(∂iK

λ)(·, w) =

Kλ(·, w) if i 6= 0

0 if i = 0
.

These are pairwise commuting nilpotent operators. However, they need not be the local-

ization of some operator in B1(Ω) unless λ is a natural number. We study the contractivity

(resp. complete contractivity) properties of the homomorphism induced by the operators

N (λ) starting with a fixed operator T in B1(Ω). The contractivity properties of the ho-

momorphism induced by the localization operators is equivalent to a curvature inequality.

We study the Bergman kernel of the matrix unit ball and some of its open subsets. This
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provides examples to show that the curvature inequality does not necessarily imply the

stronger inequality ‖p(T )‖ ≤ ‖p‖∞ for all polynomials p in m variables.



Chapter 2

Biholomorphic equivalence

2.1 Linear equivalence

We describe a natural class of domains in Cm which admit an isometric embedding into the

normed linear space (Mn(C), ‖ · ‖op), where ‖ · ‖op denotes the operator norm on the space

of n×n complex matrices. For any m-tuple of matrices A = (A1, . . . , Am) in Cm⊗Mn(C),

let

ΩA := {(w1, w2, . . . , wm) : ‖w1A1 + · · ·+ wmAm‖op < 1}.

Clearly, ΩA = (Cm, ‖ · ‖A)1 is the unit ball in Cm with respect to some norm. Similarly, let

ΩÃ be the ball in Cm defined by the m-tuple of matrices Ã = (Ã1, . . . , Ãm) in Cm⊗Mn(C),

that is,

ΩÃ := {(z1, z2, . . . , zm) : ‖z1Ã1 + · · ·+ zmÃm‖op < 1}.

Again, ΩÃ = (Cm, ‖ · ‖Ã)1 with respect to some norm ‖ · ‖Ã.

Proposition 2.1. The two domains ΩÃ and ΩA are bi-holomorphic via an invertible linear

map R : Cm → Cm if and only if (R⊗ I)(A) = Ã.

Proof. Suppose ΩÃ is biholomorphic to ΩA. Let e1, . . . , em be the standard basis for Cm.

Let R : Cm → Cm be a linear map. Set w := Rz, z ∈ Cm. Since ΩÃ is biholomorphic to

ΩA, via the invertible linear map R, it follows that

(R⊗ I)(A) =
(
R⊗ I

)
(e1 ⊗ A1 + . . .+ em ⊗ Am)

= R(e1)⊗ A1 + . . .+R(em)⊗ Am
= (R11e1 + . . .+Rm1em)⊗ A1 + . . .+ (R1me1 + . . .+Rmmem)⊗ Am
= e1 ⊗ (R11A1 + . . .+R1mAm) + . . .+ em ⊗ (Rm1A1 + . . .+RmmAm)

= e1 ⊗ Ã1 + . . .+ em ⊗ Ãm,
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where Ãi =
∑m

j=1RijAj. This shows that (R⊗ I)(A) = Ã.

Conversely, assume that (R⊗I)(A) = Ã for some invertible linear mapR : Cm → Cm,

that is, Ãi =
∑m

j=1RijAj. Now,
∑m

i=1 ziÃi =
∑m

i=1 zi
∑m

j=1 RijAj =
∑m

j=1(
∑m

i=1Rijzi)Aj =∑m
j=1wjAj, where

∑m
i=1Rijzi = wj. SinceR is invertible, it follows that ΩÃ is bi-holomorphic

to ΩA via the linear map R.

This Proposition prompts the following Definition.

Definition 2.2. The m-tuple of matrices A = (A1, . . . , Am) is equivalent to another m-

tuple of matrices Ã = (Ã1, . . . , Ãm) if there exist a invertible linear map R : Cm → Cm

such that (R⊗ I)(A) = Ã. Thus A and Ã belong to the same equivalence class if and only

if Ãi is in the span of {A1, . . . , Am} for each i.

2.1.1 Examples

Example 2.3. Let D2 = {(z1, z2) : max{|z1|, |z2|} < 1}. Then D2 is of the form ΩA, where

A = (( 1 0
0 0 ) , ( 0 0

0 1 )) .

Pick a, b, c, d in C with the property that det ( a cb d ) 6= 0. Then the pair of 2×2 matrices

Ã = (( a 0
0 b ) , ( c 0

0 d )) defines a domain ΩÃ in C2 bi-holomorphic to ΩA via the linear map

R = ( a cb d ) .

Example 2.4. The Euclidean ball B2 = {(z1, z2) : |z1|2 + |z2|2 < 1} is determined by the

pair A = (( 1 0
0 0 ) , ( 0 1

0 0 )), which is equivalent to Ã = (( a c0 0 ) , ( b d0 0 )) for any choice of a, b, c

and d in C with det ( a bc d ) 6= 0.

The biholomorphic equivalent copy of the ball B2 is the ellipsoid:

ΩÃ = {(z1, z2) : |(a+ b)z1|2 + |(c+ d)z2|2 < 1}.

Example 2.5. Let ΩA = {(z1, z2) : |z1|2 + |z2| < 1}, where A = (( 1 0
0 1 ) , ( 0 1

0 0 )) . The domain

ΩA is biholomorphic ΩÃ for any pair

Ã = (( a b0 a ) , ( c d0 c )) , a, b, c, d ∈ C with det ( a bc d ) 6= 0.

Corollary 2.6. A domain ΩA in C2 is bi-holomorphic to ΩÃ, where Ã1 = p
(
d1 0
0 d2

)
+q ( a bc d ) ,

Ã2 = r
(
d1 0
0 d2

)
+ s ( a bc d ) and the equivalence is implemented via the linear map R = ( p qr s ) ,

which is assumed to be invertible.

Proof. Let ΩA be a domain in C2 determined by some pair of 2 × 2 matrices, say A =

(A1, A2). Clearly, if U, V are unitaries on C2, then the pair (UA1V, UA2V ) determines

the same set ΩA. So, we may assume without loss of generality that A is of the form((
d1 0
0 d2

)
, ( a bc d )

)
. The proof is completed by appealing to Proposition 2.1.
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As a consequence of the above corollary, we will prove the following corollary.

Corollary 2.7. Let A1 be of the form
(

1 0
0 d2

)
or
(
d1 0
0 1

)
and A2 be of the form ( 0 b

c 0 ) , ( 1 b
c 0 ) or

( 0 b
c 1 ) with one of b or c positive real. Any domain of the form ΩA in C2 is bi-holomorphically

equivalent to ΩA.

Proof. Since d1 and d2 are not simultaneously zero, we let p = 1
d1

or p = 1
d2
. If we choose

q = 0, then we have A1 =
(

1 0
0 d2

)
,
(
d1 0
0 1

)
.

Now, suppose d2 6= 0. Choose r = − d
d2
s then there are two possibilities.

(i) If det
(
d1 a
d2 d

)
= 0, then we will get A2 = ( 0 b

c 0 ) .

(ii) If det
(
d1 a
d2 d

)
6= 0, that is, s = 1

d1d−d2a
, then A2 = ( 1 b

c 0 ) .

Similarly, if we assume d1 6= 0, then we may assume A2 = ( 0 b
c 1 ) .

If we conjugate A1,A2 by a diagonal unitary U =
(

exp(iθ) 0
0 exp(iφ)

)
, then we may

assume one of b or c is positive real.

Example 2.8. The upper triangular matrices in the unit ball of M2 corresponds to

A = (( 1 0
0 0 ) , ( 0 1

0 0 ) , ( 0 0
0 1 )) , that is, ΩA = {(z1, z2, z3) : ‖ ( z1 z20 z3 ) ‖ < 1}.

This domain is biholomorphic to ΩÃ, where Ã =
((

a1 b1
0 c1

)
,
(
a2 b2
0 c2

)
,
(
a3 b3
0 c3

))
for any

choice of ai, bi, ci ∈ C, i = 1, 2, 3, with det
( a1 a2 a3
b1 b2 b3
c1 c2 c3

)
6= 0.

Example 2.9. The unit ball in (M2, ‖ · ‖op) corresponds to the choice:

A = (( 1 0
0 0 ) , ( 0 1

0 0 ) , ( 0 0
1 0 ) , ( 0 0

0 1 )) .

Pick ai, bi, ci, di, i = 1, 2, 3, 4, in C such that the determinant of R =

( a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4
d1 d2 d3 d4

)
is not

zero and let

Ã =
((

a1 b1
c1 d1

)
,
(
a2 b2
c2 d2

)
,
(
a3 b3
c3 d3

)
,
(
a4 b4
c4 d4

))
.

Then the unit ball in (M2, ‖ · ‖op) is biholomorphic to ΩÃ via the linear map induced by

R on C4.

2.2 Carathéodory norm and contractive Homomor-

phisms

We recall the definition of Carathéodory norm from Jarnicki and Pflug(cf. [19]).
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Definition 2.10. For any v ∈ Cm and Ω a domain in Cm, the Carathéodory norm CΩ,w(v)

of the vector v at w ∈ Ω is defined to be the extremal quantity

sup
f
{|f ′(w)v| : f ∈ Hol(Ω,D), f(w) = 0}.

Let B be the open unit ball in Cm with respect to some norm, say ‖ · ‖B in Cm. Thus B
is the open set

(Cm, ‖ · ‖B)1 = {(z1, . . . , zm) ∈ Cm : ‖(z1, . . . , zm)‖B < 1}.

Proposition 2.11. For any holomorphic function f : B → D with f(0) = 0 and a vector

v ∈ Cm, we have

|
m∑
i=1

(∂if(0))vi| ≤ ‖v‖B.

Proof. Let gv : D→ B be the holomorphic function defined by

gv(λ) = λ
v

‖v‖B
, λ ∈ D.

The Schwartz Lemma for the unit disc now applies to the function f ◦ gv and gives

1 ≥ |(f ◦ gv)′(0)| = |f ′(gv(0))g′v(0)| = |f ′(0)
v

‖v‖B
| = |f

′(0)v|
‖v‖B

completing the proof.

Let Ω ⊂ Cm be an open bounded and connected set, w ∈ Ω. Let

DΩ,w = {f ′(w) : f ∈ Hol(Ω,D), f(w) = 0} ⊆ Cm.

The Proposition merely says that DB,0 is a subset of the dual unit ball (Cm, ‖ · ‖∗B)1.

Corollary 2.12. The set DB,0 is the dual unit ball (Cm, ‖ · ‖∗B)1.

Proof. Clearly, any l ∈ (Cm, ‖ · ‖∗B)1 defines a holomorphic function l : B→ D with l(0) = 0

and l
′
(0) = l.

The set DΩ,w is the unit ball with respect to some norm(cf. [30, Proposition 3.1] [7,

Theorem 1.1]). Except when Ω is the ball with respect to some norm and w = 0, describing

the set DΩ,w appears to be a hard problem.

The set DΩ,w is determined by calculating the Carathéodory norm for the domain Ω.

It is the unit ball with respect to the norm dual to the Carathéodory norm. The explicit

form of the Carathéodory norm is known, for instance, in the case of the annulus in C
(cf. [19]).

Let f : Ω → Ω̃ be a holomorphic map. Define the push forward f∗(v) of a vector v

under the function f to be the vector f ′(w)v.
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Lemma 2.13. CΩ̃,f(w)(f∗(v)) ≤ CΩ,w(v).

Proof. The proof is straightforward:

CΩ̃,f(w)(f∗(v)) = sup{|g′(f(w))f∗(v)| : g ∈ Hol(Ω̃,D), g(f(w)) = 0}

= sup{|g′(f(w))f
′
(w)(v)| : g ∈ Hol(Ω̃,D), g(f(w)) = 0}

= sup{|(g ◦ f)′(w)v| : g ∈ Hol(Ω̃,D), g(f(w)) = 0}
≤ sup{|h′(w)v| : h ∈ Hol(Ω,D), h(w) = 0}.

Corollary 2.14. Suppose v ∈ Cm with CΩ,w(v) ≤ 1. Then for any holomorphic function

F : Ω→ (Mk)1 with F (w) = 0, we have C(Mk)1,0(F∗(v)) ≤ CΩ,w(v) ≤ 1.

If we pick v = (v1, . . . , vm) ∈ Cm with CΩ,w(v) ≤ 1, then the commuting tuple

N(v, w) := (( w1 v1
0 w1

) , · · · , ( wm vm
0 wm ))

defines a contractive homomorphism of the algebra O(Ω). This homomorphism is then

completely contractive. To prove this, notice that the induced homomorphism ρ is given

by the formula

ρv(f) =
(
f(w) f ′(w)v

0 f(w)

)
, f ∈ O(Ω).

We may assume f(w) = 0 without loss of generality (cf. [23, Lemma 3.3] [30, Lemma 4.1]).

Hence contractivity of ρv amounts to

‖ρv‖ = sup
f
{|f ′(w)v| : f ∈ Hol(Ω,D), f(w) = 0} = CΩ,w(v) ≤ 1.

Let F : Ω→Mk be a holomorphic function. Now, we have

ρ(k)
v (F ) := (ρv(Fij)) =

(
F (w) F ′(w)v

0 F (w)

)
.

We may again assume, without loss of generality, that F (w) = 0 (cf. [23, Lemma 3.3]).

Hence we have (by the norm decreasing property of the Carathéodory norm) that

‖ρ(k)
v ‖ = sup

F
{‖F ′(w)v‖op : F ∈ Hol(Ω, (Mk)1), F (w) = 0}

= sup
F
{C(Mk)1,0(F∗(v)) : F ∈ Hol(Ω, (Mk)1), F (w) = 0}

≤ CΩ,w(v).

This shows that ‖ρ(k)
v ‖ ≤ 1 whenever ‖ρv‖ = CΩ,w(v) ≤ 1. Here we have made essential

use of the two properties: (i) the Carathéodory norm decreases under holomorphic maps

and (ii) C(Mk)1,0 = ‖ · ‖op.
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Before we proceed any further, we note that the set

D(k)
Ω,w := {DF (w) : F ∈ Hol(Ω, (Mk)1), F (w) = 0} ⊆ Cm ⊗Mk

is the unit ball in Cm ⊗ Mk with respect to some norm, say, ‖ · ‖∗k (cf. [30]). Thus

contractivity of ρ
(k)
v , in this case, is the same as the contractivity of the linear map

L
(k)
N(v,w) : (Cm ⊗Mk, ‖ · ‖∗k)→ (Mk, ‖ · ‖op)

given by the formula L
(k)
N(v,w)(Θ) = v1Θ1+· · ·+vmΘm, where Θ = (Θ1, . . . ,Θm) ∈ Cm⊗Mk.

We have shown that L
(k)
N(v,w) is contractive for all k > 1, without knowing anything about

the norm (Cm ⊗Mk, ‖ · ‖∗k), as long as we know it is contractive for k = 1.

What happens if we pick V = (V1, . . . , Vm) in Cm⊗Mp,q and consider the homomor-

phism induced by the commuting tuple of matrices:

N(V,w) :=
((

w1Ip V1

0 w1Iq

)
, · · · ,

(
wmIp Vm

0 wmIq

))
.

As before, the contractivity of the induced homomorphism is the requirement that

sup{‖
(
f(w) f ′(w)V

0 f(w)

)
‖ : f ∈ Hol(Ω,D), f(w) = 0} ≤ 1,

where f ′(w)V = (∂1f)(w)V1 + · · ·+ (∂mf)(w)Vm. Again we assume, without loss of gener-

ality, that f(w) = 0. Therefore the contractivity of ρV is equivalent to the contractivity of

the linear operator

LN(V,w) : (Cm, CΩ,w)∗ → (Mp,q, ‖ · ‖op),

where LN(V,w)(θ) = V1θ1 +· · ·+Vmθm for θ ∈ Cm. For a holomorphic function F : Ω→Mk,

we have

ρ
(k)
V (F ) := (ρV (Fij)) =

(
F (w)⊗I F ′(w)V

0 F (w)⊗I

)
,

where F ′(w)V = (∂1F )(w)⊗ V1 + · · ·+ (∂mF )(w)⊗ Vm.
For one final time, assume F (w) = 0, without loss of generality (cf. [23, Lemma 3.3]).

Hence

‖ρ(k)
V ‖ := sup

F
{‖F ′(w)V ‖op : F ∈ Hol(Ω, (Mk)1), F (w) = 0}.

This is the norm of the linear operator

L
(k)
N(V,w) : (Cm ⊗Mk, ‖ · ‖∗k)→ (Mk ⊗Mp,q, ‖ · ‖op)

given by the formula L
(k)
N(V,w)(Θ) = Θ1 ⊗ V1 + · · · + Θm ⊗ Vm for Θ = (Θ1, . . . ,Θm) ∈

Cm⊗Mk. Clearly L
(1)
N(V,w) = LN(V,w), which we have already encountered. We will attempt

to determine whether ‖LN(V,w)‖ ≤ 1 implies that ‖L(k)
N(V,w)‖ ≤ 1 for k > 1.
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When V is in Cm ⊗ C, this is easily done as we have seen, by using the two basic

properties of the Carathéodory norm listed above. However, in general, it is the following

question: Given that

‖θ1 ⊗ V1 + · · ·+ θm ⊗ Vm‖ ≤ 1

for θ = (θ1, . . . , θm) ∈ DΩ,w, does it follow that

‖Θ1 ⊗ V1 + · · ·+ Θm ⊗ Vm‖ ≤ 1

for Θ = (Θ1, . . . ,Θm) ∈ D(k)
Ω,w for all k > 1?

2.2.1 Invariance of L
(k)
N(V,w), k ≥ 1 under bi-holomorphic maps

Let ϕ : Ω̃ → Ω be the bi-holomorphic map with ϕ(w) = z. The linear map Dϕ(w) :

(Cm, CΩ̃,w) → (Cm, CΩ,z) is a contraction by definition. Since ϕ is invertible, Dϕ−1(z) :

(Cm, CΩ,z) → (Cm, CΩ̃,w) is also a contraction. However, since Dϕ−1(z) = Dϕ(w)−1,

it follows that Dϕ(w) must be an isometry. The map F → F ◦ ϕ is a bijection from

Holz(Ω, (Mk)1) onto Holw(Ω̃, (Mk)1). Therefore for each w in Ω̃ and a bi-holomorphic ϕ

from Ω̃ to Ω such that ϕ(w) = z we have

{DF (z) : F ∈ Hol(Ω, (Mk)1), F (z) = 0} = {DF◦ϕ(w) : F ∈ Hol(Ω̃, (Mk)1), F◦ϕ(w) = 0}.

Set Dϕ(w) :=

( ϕ11 ϕ12 ...ϕ1m

...
...

...
ϕm1 ϕm2 ...ϕmm

)
and DF (z) = (A1, . . . , Am). By the chain rule we have

DF (ϕ(w))Dϕ(w) = (ϕ11A1 + · · ·+ ϕm1Am, . . . , ϕ1mA1 + · · ·+ ϕmmAm).

Thus Dϕ(w) ⊗ Ik maps (Cm ⊗ Mk, ‖ · ‖∗Ω,k) onto (Cm ⊗ Mk, ‖ · ‖∗Ω̃,k). Since Dϕ(w) is

an isometry, it follows that Dϕ(w) ⊗ Ik is an isometry with respect to the two norms

‖ · ‖∗Ω,k and ‖ · ‖∗
Ω̃,k
. Let LV : (Cm, CΩ̃,w)∗ → (Mp,q, ‖ · ‖op) be the linear map induced by

V = (V t
1 , . . . , V

t
m)

t
, where CΩ̃,w is the Carathéodory norm of Ω̃ at a fixed but arbitrary

w ∈ Ω̃. The linear map LV (which depends on the point w in Ω) is contractive if and only

if LDϕ(w).V is contractive, where Dϕ(w).V = (Dϕ(w)⊗ I)(V ).

Lemma 2.15.

‖LV ‖(Cm,C
Ω̃,w

)∗→(Mp,q ,‖·‖op) ≤ 1

if and only if

‖L(Dϕ(w)⊗I)(V ) ‖(Cm,CΩ,z)∗→(Mp,q ,‖·‖op) ≤ 1.
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Proof. Let q : Ω̃ 7−→ D be a holomorphic map with q(w) = 0 and ‖q‖∞,D ≤ 1, then Dq(w)

is in D1
Ω̃,w

. Thus ‖LV ‖(Cm,C
Ω̃,w

)∗→(Mp,q ,‖·‖op) ≤ 1 is equivalent to |〈Dq(w), V 〉| ≤ 1. Similarly,

if p : Ω 7−→ D is a holomorphic map with p(z) = 0, then Dp(z) is also in D1
Ω,z. Consider

the commutative diagram

Ω̃
ϕ→ Ω

↘q ↓p
D.

Thus q = p ◦ ϕ. We therefore have Dq(w) = Dp(ϕ(w))Dϕ(w). Hence, we have

‖LV ‖ = sup
Dq(w)∈D1

Ω̃,w

‖〈Dq(w), V 〉|

= sup
Dq(w)∈D1

Ω̃,w

|〈Dp(ϕ(w))Dϕ(w), V 〉|

= sup
Dp(z)∈D1

Ω,z

|〈(∂1p(ϕ(w), . . . , ∂mp(ϕ(w))

(
ϕ11 ϕ12 ...ϕ1m

...
...

...
ϕm1 ϕm2 ...ϕmm

)
, V 〉|

= sup
Dp(z)∈D1

Ω,z

|〈Dp(ϕ(w)), (Dϕ(w)⊗ I)(V )〉|

completing the proof.

The following corollary is a consequence of Lemma 2.15.

Corollary 2.16.

‖LV ‖(Cm,‖ · ‖
Ω̃

)∗→(Mp,q ,‖·‖op) ≤ 1

if and only if

‖L(Dϕ(w)⊗I)(V ) ‖(Cm,‖ · ‖Ω)∗→(Mp,q ,‖·‖op) ≤ 1.

Proof. We know that CΩ̃,0(v) = ‖v‖Ω̃ and CΩ,0(v) = ‖v‖Ω. Using Lemma (2.15) we get the

desired result.

We have indicated that contractivity of ρV |(k) is the same as contractivity of the

linear map

L
(k)
N(V,w) : (Cm ⊗Mk, ‖ · ‖∗k)→ (Mk ⊗Mp,q, ‖ · ‖op).

We recall from [18, Theorem 2] that for Z,W in the matrix ball (Mk)1 and u ∈ Ck×k, we

have

DψW (Z) · u = (I −WW ∗)
1
2 (I − ZW ∗)−1u(I −W ∗Z)−1(I −W ∗W )

1
2 .

The following Proposition characterizes the contractivity of ρ(k) (cf. [23, Lemma 3.3]).
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Proposition 2.17. ‖ρ(k)
V (PA)‖ ≤ 1 if and only if

sup
z∈ΩA

‖((I−PA(z)PA(z)∗)−
1
2⊗In)(A1⊗V1 +· · ·+Am⊗Vm)((I−PA(z)∗PA(z))−

1
2⊗In)‖ ≤ 1.

The homomorphism ρ
(k)
V is contractive if and only if ρ

(k)
(Dϕ(w)⊗I)(V ) is contractive for

all w in Ω̃.

Proposition 2.18.

‖L(k)
N(V,w)‖(Cm⊗Mk,‖·‖∗

Ω̃,k
)→(Mk⊗Mp,q ,‖·‖op) ≤ 1

if and only if

‖L(k)
N((Dϕ(w)⊗I)(V ),z)‖(Cm⊗Mk,‖·‖∗Ω,k)→(Mk⊗Mp,q ,‖·‖op) ≤ 1.

Proof. Let P : Ω̃ → (Mk(C))1 be a matrix valued polynomial on Ω̃ which is of the form

P (w) = w1P1 + · · ·+wmPm. Then it is easy to see that DP (w) is in Dk
Ω̃,w

. By Proposition

2.17 we have ‖L(k)
N(V,w)‖(Cm⊗Mk,‖·‖∗

Ω̃,k
)→(Mk⊗Mp,q ,‖·‖op) ≤ 1 if and only if

‖(I − P (w)P (w)∗)−
1
2 (P1 ⊗ V1 + · · ·+ Pm ⊗ Vm)(I − P (w)∗P (w))−

1
2‖ ≤ 1.

Similarly, if Q : Ω → (Mk(C))1 is a matrix valued polynomial on Ω which is of the

form Q(z) = z1Q1 + · · ·+zmQm, then DQ(z) is in DkΩ,z. Consider the commutative diagram

Ω̃
ϕ→ Ω

↘P ↓Q
(Mk)1.

Thus P = Q ◦ ϕ. Hence we have DP (w) = DQ(ϕ(w))Dϕ(w). Hence we have

‖L(k)
N(V,w)‖(Cm⊗Mk,‖·‖∗

Ω̃,k
)→(Mk⊗Mp,q ,‖·‖op)

= (I − P (w)P (w)∗)−
1
2 (P1 ⊗ V1 + · · ·+ Pm ⊗ Vm)(I − P (w)∗P (w))−

1
2

= r
(
(ϕ11Q1 + · · ·+ ϕm1Qm)⊗ V1 + · · ·+ (ϕ1mQ1 + · · ·+ ϕmmQm)⊗ Vm

)
s

= r(Q1 ⊗ (ϕ11V1 + · · ·+ ϕ1mVm) + · · ·+Qm ⊗ (ϕm1V1 + · · ·+ ϕmmVm))s

= ‖L(k)
N((Dϕ(w)⊗I)(V ),z)‖(Cm⊗Mk,‖·‖∗Ω,k)→(Mk⊗Mp,q ,‖·‖op),

where r = (I −Q(ϕ(w))Q(ϕ(w))∗)−
1
2 and s = (I −Q(ϕ(w))∗Q(ϕ(w)))−

1
2 . This completes

the proof.

We have seen that if Ω̃ and Ω are bi-holomorphic then ‖ρ(k)
V ‖ = ‖ρ(k)

(Dϕ(w)⊗I)(V )‖.
Evidently we have the following corollary.
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Corollary 2.19. Suppose ϕ : Ω̃ → Ω with ϕ(0) = 0, is a bi-holomorphic map. Then every

contractive linear map from (Cm, ‖ · ‖Ω) to Mn(C) is completely contractive if and only if

every contractive linear map of (Cm, ‖ · ‖Ω̃) to Mn(C) is completely contractive.

Proof. From Lemmas 2.15 and Proposition 2.18 it follows that every contractive linear

map of (Cm, ‖ · ‖∗Ω) is completely contractive if and only if every contractive linear map of

(Cm, ‖ · ‖∗
Ω̃

) is also completely contractive. This property does not change if we replace a

ball with the dual ball completing the proof.

This means in finding contractive homomorphisms which are not completely contrac-

tive, we need not distinguish between balls which are bi-holomorphically equivalent ball

(with 0 as a fixed point).

Example 2.20. In Example 2.3 we have seen that D2 is bi-holomorphic to ΩÃ via the linear

map R = ( a cb d ) , where Ã = (( a 0
0 b ) , ( c 0

0 d )) . By Corollary 2.19 we see that αΩÃ
= 1.



Chapter 3

Contractivity and complete

contractivity – some examples

3.1 Dual norm computation

We have discussed the class of domains ΩA = {(z1, z2) : ‖z1A1 + z2A2‖op < 1} in C2, where

A1 =
(

1 0
0 d2

)
or
(
d1 0
0 1

)
and A2 is one of ( 0 b

c 0 ) , ( 1 b
c 0 ) or ( 0 b

c 1 ) with b ∈ R+. We have seen

that the contractivity of the homomorphism ρV is equivalent to the contractivity of the

linear map LV : (C2, ‖ · ‖∗ΩA
)→ (C2, ‖ · ‖2). Thus if we know the norm ‖ · ‖∗ΩA

dual to the

norm ‖ · ‖ΩA
, then we may be able to compute the norm of LV . However, computing the

dual norm ‖ · ‖∗ΩA
appears to be a hard problem. The `∞2 and `2

2 unit balls are of the form

ΩA, and one knows the duals of these norms. Let X be the two dimensional normed linear

space with respect to the norm

‖(x, y)‖ =
|y|+

√
|y|2 + 4|x|2
2

, (x, y) ∈ X.

The unit ball with respect to the norm is equal to ΩA = {(x, y) : |y| + |x|2 < 1}, where

A = (A1, A2) with A1 = I2, A2 = ( 0 1
0 0 ) . Therefore {I2, ( 0 1

0 0 )} forms a basis of X. It is also

easy to see that {1
2
I2, ( 0 0

1 0 )} forms a dual basis of X. We recall the definition of annihilator

from Rudin [32]. Suppose Ỹ is a Banach space, M is a subspace of Ỹ and N is a subspace

of Ỹ ∗. Neither M nor N are assuned to be closed.

Definition 3.1. The annihilators of M⊥ and ⊥N are defined as follows:

M⊥ = {ỹ∗ ∈ Ỹ ∗ : 〈ỹ, ỹ∗〉 = 0∀ ỹ ∈M},

⊥N = {ỹ ∈ Ỹ : 〈ỹ, ỹ∗〉 = 0∀ ỹ∗ ∈ N}.
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If M is assumed to be a closed subspace of Ỹ , then the quotient Ỹ /M is also a Banach

space, with respect to the quotient norm. The duals of M and of Ỹ /M can be describe

using the annihilator M⊥ of M. The following Theorem (cf. [32, Theorem 4.9]) describes

this relation explicitly.

Theorem 3.2. Let M be a closed subspace of a Banach space Ỹ . The Hahn-Banach theorem

ensures that each m∗ in M∗ extends to a linear functional ỹ∗ ∈ Ỹ ∗. Define

σm∗ = ỹ∗ +M⊥.

Then σ is an isometric isomorphism of M∗ onto Ỹ ∗/M⊥.

This Theorem is used in the first computation of the dual of the normed linear space

X. We also obtain the dual norm by a direct computation.

Theorem 3.3. The dual norm of X is given by

‖(α, β)‖ =

{
|α|2+4|β|2

4|β| if |β| ≥ |α|
2

;

|α| if |β| ≤ |α|
2
.

Proof. (First proof) Let X∗ be the dual of X. It is easy to verify that the annihilator of X

is spanned by the elements of the form {( 1 0
0 −1 ) , ( 0 1

0 0 )}, that is, X⊥ = span{( 1 0
0 −1 ) , ( 0 1

0 0 )}.
The set {1

2
I2, ( 0 0

1 0 )} forms a basis of X∗. We extends elements of X∗ to linear functional

on (M2(C), ‖ · ‖op). From Theorem 3.2, it follows that

‖(α, β)‖2 = inf
a,b

∥∥( α
2

+a b

β α
2
−a

)∥∥2

tr
,

where ‖ · ‖tr denote the trace norm. Now,

inf
a,b

∥∥( α
2

+a b

β α
2
−a

)∥∥2

tr

= inf
a,b
{|α|

2

2
+ 2|a|2 + |b|2 + |β|2 + 2

∣∣α2

4
− a2 − bβ

∣∣}
= inf

a,b
{|α|

2

2
+ 2|a|2 + |b|2 + |β|2 + 2

∣∣| |α|2
4
− bβ| − |a|2

∣∣}.
To compute this infimum, we consider the two cases

∣∣ |α|2
4
−bβ

∣∣ ≥ |a|2 and |a|2 ≥
∣∣ |α|2

4
−bβ

∣∣.
In either case, we have

inf
a,b

∥∥( α
2

+a b

β α
2
−a

)∥∥2

tr
= inf

b
{|α|

2

2
+ |b|2 + |β|2 + 2

∣∣ |α|2
4
− bβ

∣∣}
= inf

b
{|α|

2

2
+ |b|2 + |β|2 + 2

∣∣ |α|2
4
− |bβ|

∣∣}. (3.1)
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Let

M = inf
b,|b|≤ |α|

2

4|β|

{|α|
2

2
+ |b|2 + |β|2 + 2

∣∣ |α|2
4
− |bβ|

∣∣}
and

N = inf
b,|b|≥ |α|

2

4|β|

{|α|
2

2
+ |b|2 + |β|2 + 2

∣∣ |α|2
4
− |bβ|

∣∣}.
Now,

M = inf
b,|b|≤ |α|

2

4|β|

{|α|
2

2
+ |b|2 + |β|2 + 2

∣∣ |α|2
4
− |bβ|

∣∣}
= inf

b,|b|≤ |α|
2

4|β|

{|α|2 + (|b| − |β|)2}. (3.2)

If |α|
2

4|β| ≥ |β|, then we can take |b| = |β| in Equation (3.2) and the infimum is |α|2. If
|α|2
4|β| ≤ |β|, then the largest value |b| can take is |α|

2

4|β| . In this case, M = ( |α|
2+4|β|2
4|β| )2. Therefore,

M =

{
( |α|

2+4|β|2
4|β| )2 if |β| ≥ |α|

2
;

|α|2 if |β| ≤ |α|
2
.

N = inf
b,|b|≥ |α|

2

4|β|

{|α|
2

2
+ |b|2 + |β|2 + 2

∣∣ |α|2
4
− |bβ|

∣∣}
= inf

b,|b|≥ |α|
2

4|β|

{(|b|+ |β|)2}

= (
|α|2 + 4|β|2

4|β|
)2. (3.3)

If |β| ≤ |α|
2
, we have

inf
a,b

∥∥( α
2

+a b

β α
2
−a

)∥∥2

tr
= min{|α|2, ( |α|

2 + 4|β|2

4|β|
)2}

= |α|2

and if |β| ≥ |α|
2
, we have

inf
a,b

∥∥( α
2

+a b

β α
2
−a

)∥∥2

tr
= (
|α|2 + 4|β|2

4|β|
)2.

Hence

‖(α, β)‖ =

{
|α|2+4|β|2

4|β| if |β| ≥ |α|
2

;

|α| if |β| ≤ |α|
2
.
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This completes the proof.

(Second proof) Let fα,β : X → C be a linear functional defined by fα,β(x, y) = αx + βy.

Now,

‖fα,β‖2 = sup
|x|2+|y|=1

|αx+ βy|2

= sup
|x|2+|y|=1

(|α||x|+ |β||y|)2

= sup
|x|2+|y|=1

(|α||x|+ |β|(1− |x|2))2

= sup
0≤|x|2≤1

|αx|2 + |β|2(1− |x|2)2 + 2|α||x||β|(1− |x|2).

Note that the supremum has to be taken with |x|2 ≤ 1−|y|. Let g(|x|) = |α||x|+|β|(1−|x|2).

The derivative of g with respect |x| is equal to g′(|x|) = |α| − 2|β||x|. Now, g′(|x|) = 0

is equivalent to |x| = |α|
2|β| . Also g′′(|x|) = −2|β| which is less than zero. Therefore, the

supremum of g is attained at |x| = |α|
2|β| . If |β| ≤ |α|

2
, then the derivative does not vanish for

x with 0 ≤ |x|2 ≤ 1. In fact, the derivative is positive in the range 0 ≤ |x|2 ≤ 1 and the

supremum is attained at |x| = 1. Therefore, we have two cases:

(a).

‖(α, β)‖ = |α|2+4|β|2
4|β| if |β| ≥ |α|

2
.

(b).

‖(α, β)‖ = |α| if |β| ≤ |α|
2
.

This completes the proof.

3.2 Contractivity and complete contractivity

Let ΩA = {(z1, z2) : ‖z1A1 + z2A2‖op < 1} in C2, where A = (A1, A2) and A1 = I2, A2 =

( 0 1
0 0 ) . We now describe contractivity of the special class of homomorphisms ρV : O(ΩA)→
M3(C) induced by a pair of the form (( w1 v1

0 w1I2 ) , ( w2 v2
0 w2I2 )) , where vi ∈ C2 for i = 1, 2.

We have seen that ‖ ρV ‖O(ΩA)→M3(C) ≤ 1 if and only if ‖LV ‖(C2,‖ · ‖∗ΩA
)→(C2,‖ · ‖2) ≤ 1 if and

only if ‖L∗V ‖(C2,‖ · ‖2)→(C2,‖ · ‖ΩA
) ≤ 1. Let LV : (C2, ‖ · ‖∗ΩA

)→ (C2, ‖ · ‖2) be the linear map

induced by the pair v1 and v2. The matrix representing L∗V : (C2, ‖ · ‖2)→ (C2, ‖ · ‖ΩA
)

is of the form ( v11 v12
v21 v22 ) , V := ( v1

v2 ) , where v1 = (v11 v12) and v2 = (v21 v22). The following

theorem provides a characterization of contractivity of the homomorphism ρV in terms of

V.
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Theorem 3.4. ‖LV ‖(C2,‖ · ‖∗ΩA
)→(C2,‖ · ‖2) ≤ 1 if and only if ‖L∗V ‖(C2,‖ · ‖2)→(C2,‖ · ‖ΩA

) ≤ 1 if

and only if(
‖v1‖2 +

‖v2‖2

4
+

√
(‖v1‖2 − ‖v2‖2

4
)2 + |〈v1,v2〉|2

)2

≤ 4

√
(‖v1‖2 − ‖v2‖2

4
)2 + |〈v1,v2〉|2.

Proof. (First proof) Suppose ‖L∗V ‖(C2,‖ · ‖2)→(C2,‖ · ‖ΩA
) ≤ 1. Since the matrix representation

of L∗V is of the form ( v11 v12
v21 v22 ) . We have ( v11 v12

v21 v22 ) ( xy ) ∈ (C2, ‖ · ‖ΩA
). We are interested in

the expression

(v11x+ v12y)A1 + (v21x+ v22y)A2 =
(
v11x+v12y v21x+v22y

0 v11x+v12y

)
= xA

′

1 + yA
′

2, (3.4)

where A
′
1 = ( v11 v21

0 v11
) and A

′
2 = ( v12 v22

0 v12
) . Thus ‖L∗V ‖(C2,‖ · ‖2)→(C2,‖ · ‖ΩA

) ≤ 1 if and only if

sup|x|2+|y|2=1 ‖xA
′
1 + yA

′
2‖2

op ≤ 1.

sup
|x|2+|y|2=1

‖xA′1 + yA
′

2‖2 = sup
|x|2+|y|2=1

sup
‖α‖2=‖β‖2=1

|〈(xA′1 + yA
′

2)α, β〉|2

= sup
|x|2+|y|2=1

sup
‖α‖2=‖β‖2=1

|x〈A′1α, β〉+ y〈A′2α, β〉|2

= sup
‖α‖2=‖β‖2=1

(|〈A′1α, β〉|2 + |〈A′2α, β〉|2). (3.5)

Now,

〈A′1α, β〉 = v11α1β1 + v11α2β2 + v21α2β1 = v11〈α, β〉+ v21α2β1.

Similarly we have 〈A′2α, β〉 = v12〈α, β〉 + v22α2β1. Putting the value of 〈A′1α, β〉 and

〈A′2α, β〉 in Equation (3.5) we have

sup
‖α‖2=‖β‖2=1

(|〈A′1α, β〉|2 + |〈A′2α, β〉|2) = sup
‖α‖2=‖β‖2=1

‖v1‖2||〈α, β〉|2 + ‖v2‖2|α2β1|2

+ 2Re 〈v1,v2〉 〈α, β〉α2β1,

where ‖v1‖2 = |v11|2 + |v12|2 ,〈v1,v2〉 = (v11v̄21 + v12v̄22) and ‖v2‖2 = |v̄21|2 + |v̄22|2.

Choosing α′ = (α1 exp(iθ), α2 exp(−iθ)), β′ = (β1 exp(iθ), β2 exp(−iθ)) we have

sup
‖α‖2=‖β‖2=1

(|〈A′1α, β〉|2 + |〈A′2α, β〉|2)

= sup
‖α‖2=‖β‖2=1

‖v1‖2||〈α, β〉|2 + ‖v2‖2|α2β1|2 + 2| 〈v1,v2〉 〈α, β〉α2β1|

= sup
‖α‖2=‖β‖2=1

‖v1‖2||〈Uα,Uβ〉|2 + ‖v2‖2|(Uα)2(Uβ)1|2 + 2| 〈v1,v2〉 〈Uα,Uβ〉(Uα)2(Uβ)1|

= sup
||β||=1,U

‖v1‖2|〈Ue2, Uβ〉|2 + ‖v2‖2|(Ue2)2(Uβ)1|2

+2|〈v1,v2〉〈Ue2, Uβ〉(Ue2)2(Uβ)1|, (3.6)
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where U : C2 → C2 is a unitary which is of the form U =
(
a −b
b a

)
with |a|2 + |b|2 = 1

and e2 = ( 0
1 ) . Let α = ( α1

α2 ) and β =
(
β1

β2

)
, then Uα =

(
a −b̄
b ā

)
( α1
α2 ) =

(
aα1−b̄α2
bα1+āα2

)
. Hence

(Uα)2 = bα1 + āα2 and (Uβ)1 = (āβ̄1 − bβ̄2). Thus we have

(Uα)2(Uβ)1 = ābα1β̄1 + ā2α2β̄1 − b2α1β̄2 − ābα2β̄2

= 〈
(
āb ā2

−b2 −āb

)
( α1
α2 ) ,

(
β1

β2

)
〉.

In particular, we have (Ue2)2(Uβ)1 = ā2β̄1 − ābβ̄2.

We claim that supU |(Ue2)2(Uβ)1| = (1+|β1|)
2

.

In order to prove the claim, it is sufficient to observe that

sup
U
|(Ue2)2(Uβ)1|2 = sup

|a|2+|b|2=1

|a2β1 − abβ2|2

= sup |(cos t)2 cosψ exp i(−2θ − x)− cos t sin t sinψ exp i(−θ − y + φ)|2

= sup(cos t)4 (cosψ)2 +
sin 2t2

4
(sinψ)2

− (cos t)2 cosψ sin 2t sinψ cos(θ + x+ φ− y) (3.7)

where a = cos t exp iθ, b = sin t exp iφ, β1 = cosψ exp ix and β2 = sinψ exp iy. If we choose

θ + x+ φ = y, then the right hand side of (3.7) is

sup
t

((cos t)2 cosψ +
sin 2t

2
sinψ)2.

Let f(t) =
(
(cos t)2 cosψ + sin 2t

2
sinψ

)
. The derivative of f with respect to t is

f ′(t) = − sin 2t cosψ+cos 2t sinψ. If we assume 0 = f ′(t), then we have ψ − 2t = nπ, where

n ∈ Z. Also, f ′′(t) = −2 cos 2t cosψ − 2 sin 2t sinψ = −2 cos(ψ − 2t). If ψ − 2t = 2nπ,

then f ′′(t) ≤ 0. Therefore, we conclude that the maximum value of f(t) is achieved at

ψ − 2t = 2nπ and the maximum value of f(t) is equal to (1+|β1|)
2

. This proves the claim.

Putting supU |(Ue2)2(Uβ)1| = (1+|β1|)
2

in Equation (3.6) we have

sup
‖β‖=1

‖v1‖2|β2|2 +
‖v2‖2

4
(1 + |β1|)2 + |〈v1,v2〉||(1 + |β1|)|β2|. (3.8)

Let β1 = cos t exp(ix2), β2 = sin t exp(ix1) then the Equation (3.8) simplifies to the

equation ax2 + cxy + by2, where a = ‖v1‖2, b = ‖v2‖2
4
, c = |〈v1,v2〉|, y = 1 + cos t, x = sin t

and supremum is taken over x2 + y2 = 2y, that is, x2 + (y − 1)2 = 1. Also, note that

sup
x2+(y−1)2=1

‖ax2 + cxy + by2‖ = sup
x2+(y−1)2=1

‖ ( xy )t
(

a c/2
c/2 b

)
( xy ) ‖

= sup
x2+(y−1)2=1

‖ ( x
y−1+1 )t

(
a c/2
c/2 b

)
( x
y−1+1 ) ‖

= sup
x2+w2=1

‖ ( x
w+1 )t

(
a c/2
c/2 b

)
( x
w+1 ) ‖, (3.9)
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where (y−1) = w. Let u = ( xw ) , then ( x
w+1 ) = ( xw )+( 0

1 ) = u+e2. Also, let T =
(

a c/2
c/2 b

)
,

then T is self-adjoint matrix. Since T is self-adjoint matrix, there exist a unitary matrix

U such that U−1TU = D, where D =
(
c1 0
0 c2

)
. Therefore, Equation (3.9) is equivalent to

sup
‖u‖2=1

‖(u+ e2)trT (u+ e2)‖ = sup
‖u‖2=1

‖(u+ e2)trU−1TU(u+ e2)‖

= sup
‖u‖2=1

= ‖utrDu+ etr
2 Du+ utrDe2 + etr

2 De2‖

= sup
x2+w2=1

c1x
2 + c2w

2 + 2c2w + c2

= sup
w
c1(1− w2) + c2w

2 + 2c2w + c2

= sup
w

(c2 − c1)w2 + 2c2w + c2 + c1. (3.10)

Suppose g(w) = supw(c2 − c1)w2 + 2c2w + c2 + c1. The derivative of g with respect to

w is g′(w) = 2(c2 − c1)w + 2c2. Now, 0 = g′(w) implies that w = −c2
(c2−c1)

. Also, g′′(w) =

2(c2 − c1) and g′′(w) ≤ 0 if c1 > c2 . Therefore, the maximum value of g(w) is achieved

at w = −c2
(c2−c1)

and is equal to g(w) =
c21

(c1−c2)
. The eigen values of

(
a c/2
c/2 b

)
are equal to

c1 =

(
a+b+
√

(a−b)2+c2

)
2

, c2 =

(
a+b−
√

(a−b)2+c2

)
2

. Therefore, from Equation (3.10) we have

g(w) =

(
a+ b+

√
(a− b)2 + c2

)2

4
√

(a− b)2 + c2

=

(
‖v1‖2 + ‖v2‖2

4 +

√
(‖v1‖2 − ‖v2‖2

4 )2 + |〈v1,v2〉|2
)2

4

√
(‖v1‖2 − ‖v2‖2

4 )2 + |〈v1,v2〉|2
. (3.11)

Hence ‖LV ‖2 ≤ 1 if and only if

(
‖v1‖2+

‖v2‖
2

4
+

√
(‖v1‖2− ‖v2‖2

4
)2+|〈v1,v2〉|2

)2

4

√
(‖v1‖2− ‖v2‖2

4
)2+|〈v1,v2〉|2

≤ 1 which is equiv-

alent to(
‖v1‖2 +

‖v2‖2

4
+

√
(‖v1‖2 − ‖v2‖2

4
)2 + |〈v1,v2〉|2

)2

≤ 4

√
(‖v1‖2 − ‖v2‖2

4
)2 + |〈v1,v2〉|2.

(Second proof) Suppose ‖LV ‖(C2,‖ · ‖∗ΩA
)→(C2,‖ · ‖2) ≤ 1. Since the matrix representation of

L∗V is of the form ( v11 v21
v12 v22 ) . Therefore, we have ‖LV ‖(C2,‖ · ‖∗ΩA

)→(C2,‖ · ‖2) ≤ 1 if and only if

sup‖(α,β)‖=1 |v11α + v21β|2 + |v12α + v22β|2 ≤ 1. Now,

sup
‖(α,β)‖=1

|v11α + v21β|2 + |v12α + v22β|2 = sup
‖(α,β)‖=1

‖v1‖2|α|2 + ‖v2‖2|β|2 + 2<〈v1,v2〉αβ̄,

(3.12)
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where ‖v1‖2 = |v11|2 + |v12|2 ,〈v1,v2〉 = (v11v̄21 + v12v̄22) and ‖v2‖2 = |v̄21|2 + |v̄22|2.
Choosing α and β in such a way that <〈v1,v2〉αβ̄ = |〈v1,v2〉αβ̄|. Hence from Equation

(3.12) we have

sup
‖(α,β)‖=1

|v11α + v21β|2 + |v12α + v22β|2 = sup
‖(α,β)‖=1

‖v1‖2|α|2 + ‖v2‖2|β|2 + 2|〈v1,v2〉αβ̄|.

(3.13)

We have seen in previous section that if |β| ≤ |α|
2
, then ‖(α, β)‖ = |α|. Therefore,

‖(α, β)‖ = 1 implies that |β| ≤ 1
2
. For this case, we have

sup
‖(α,β)‖=1

|v11α + v21β|2 + |v12α + v22β|2 = ‖v1‖2 +
‖v2‖2

4
+ <〈v1,v2〉.

Also, if |β| ≥ 1
2
, then ‖(α, β)‖ = |α|2+4|β|2

4|β| . Hence ‖(α, β)‖ = 1 implies that |α|2 + (2|β| −
1)2 = 1. Setting x = |α| and y = 2|β| − 1 we have |β| = y+1

2
. Therefore, we have

sup
x2+y2=1

x2‖v1‖2 + ‖v2‖2 (y + 1)2

4
+ |〈v1,v2〉x(y + 1)|.

Hence from Equation (3.11) we have

sup
‖(α,β)‖=1

|v11α + v21β|2 + |v12α + v22β|2 =

(
‖v1‖2 + ‖v2‖2

4
+
√

(‖v1‖2 − ‖v2‖2
4

)2 + |〈v1,v2〉|2
)2

4
√

(‖v1‖2 − ‖v2‖2
4

)2 + |〈v1,v2〉|2
.

Therefore, we have

‖LV ‖2 = max{

(
‖v1‖2 + ‖v2‖2

4
+
√

(‖v1‖2 − ‖v2‖2
4

)2 + |〈v1,v2〉|2
)2

4
√

(‖v1‖2 − ‖v2‖2
4

)2 + |〈v1,v2〉|2
, ‖v1‖2 +

‖v2‖2

4
+ <〈v1,v2〉}

=

(
‖v1‖2 + ‖v2‖2

4
+
√

(‖v1‖2 − ‖v2‖2
4

)2 + |〈v1,v2〉|2
)2

4
√

(‖v1‖2 − ‖v2‖2
4

)2 + |〈v1,v2〉|2

This completes the second proof.

Let PA : ΩA → (M2)1 be the matrix valued polynomial on ΩA defined earlier. The

contractivity of ρ
(2)
V is equivalent to ‖A1 ⊗ v1 + A2 ⊗ v2‖ ≤ 1. Now, we will compute

‖A1 ⊗ v1 + A2 ⊗ v2‖.
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Theorem 3.5. ‖A1 ⊗ v1 + A2 ⊗ v2‖ ≤ 1 if and only if

2‖v1‖2 + ‖v2‖2 +
√
‖v2‖4 − 4|〈v1,v2〉|2 ≤ 2.

Proof. Suppose ‖A1 ⊗ v1 + A2 ⊗ v2‖ ≤ 1. Now,

‖A1 ⊗ v1 +A2 ⊗ v2‖2 = ‖(v11A1 + v21A2, v12A1 + v22A2)‖2

=
∥∥∥(v11A1 + v21A2, v12A1 + v22A2)

(
(v11A1 + v21A2)∗

(v12A1 + v22A2)∗

)∥∥∥
= ‖‖v1‖2A1A

∗
1 + 〈v1,v2〉A1A

∗
2 + 〈v2,v1〉A2A

∗
1 + ‖v2‖2A2A

∗
2‖

=
∥∥∥(‖v1‖2 + ‖v2‖2 〈v2,v1〉

〈v1,v2〉 ‖v1‖2

)∥∥∥.
Let C̃ =

(
‖v1‖2 + ‖v2‖2 〈v2,v1〉
〈v1,v2〉 ‖v1‖2

)
. C̃ is a self-adjoint matrix. The norm of C̃ is

2‖v1‖2 + ‖v2‖2 +
√
‖v2‖4 − 4|〈v1,v2〉|2

2
.

Hence ‖A1 ⊗ v1 + A2 ⊗ v2‖ ≤ 1 is equivalent to the inequality

2‖v1‖2 + ‖v2‖2 +
√
‖v2‖4 − 4|〈v1,v2〉|2 ≤ 2.

This completes the proof.

As a consequence of this Theorem, we have the following corollary.

Corollary 3.6. There exists a contractive homomorphism of O(ΩA) which is not complete

contractive.

Proof. Let v1 = ( 1√
2
, 0) and v2 = (0, 1). Then it follows from Theorem 3.4 that ‖ρV ‖ ≤ 1

for this pair (v1,v2). Also, we have ‖ρ(2)
V (PA)‖ > 1. This completes the proof.

Let ΩA = {(z1, z2, z3) : ‖z1A1+z2A2+z3A3‖ < 1} ⊂ C3, whereA1 = ( 1 0
0 0 ) , A2 = ( 0 1

0 0 )

and A3 = ( 0 0
0 1 ) . The matrix representing L∗V : (C3, ‖ · ‖2) → (C3, ‖ · ‖ΩA

) is of the form(
v11 0 0
0 v22 0
0 0 v33

)
, V :=

(
v1
v2
v3

)
, where v1 = (v11, 0, 0),v2 = (0, v22, 0) and v3 = (0, 0, v33).

Theorem 3.7. ‖ρ∗V ‖(C3,‖ · ‖2)→(C3,‖ · ‖A) ≤ 1 if and only if |v11|2(1− |v33|2) ≥ (|v22|2− |v33|2).

Proof. Suppose ‖ρ∗V ‖(C3,‖ · ‖2)→(C3,‖ · ‖A) ≤ 1. Note that ‖ρ∗V ‖(C3,‖ · ‖2)→(C3,‖ · ‖A) ≤ 1 is equiva-

lent to

inf
β

det

(
1−|β1|2|v11|2 0 0

0 1−|β1|2|v22|2 −β2β̄1v22v̄33

0 −β̄2β1v̄22v33 1−|β2v33|2

)
≥ 0
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with |v11|2 ≤ 1, |v22|2 ≤ 1, |v33|2 ≤ 1, where
∑3

i=1 |βi|2 = 1. Now,

inf
β

det

(
1−|β1|2|v11|2 0 0

0 1−|β1|2|v22|2 −β2β̄1v22v̄33

0 −β̄2β1v̄22v33 1−|β2v33|2

)
= inf

β
(1− |β1|2|v11|2){(1− |β1|2|v22|2)(1− |β2|2|v33|2)− |β2|2|v33|2|β1|2|v22|2}. (3.14)

Putting |β|2 = r in Equation (3.14) we have

inf
0≤r≤1

{1− r(|v11|2 + |v22|2 − |v11|2|v33|2)− (1− r)|v33|2 + r2|v11|2(|v22|2 − |v33|2}.

Let

f(r) = inf
0≤r≤1

{1− r(|v11|2 + |v22|2 − |v11|2|v33|2)− (1− r)|v33|2 + r2|v11|2(|v22|2 − |v33|2)}.

The derivative of f with respect r is equal to

f ′(r) = −(|v11|2 + |v22|2 − |v33|2 − |v11|2|v33|2) + 2r|v11|2(|v22|2 − |v33|2).

Now, if f ′(r) = 0, then we have

r =
(|v11|2 + |v22|2 − |v33|2 − |v11|2|v33|2)

|v11|2(|v22|2 − |v33|2)
.

Also, f ′′(r) = |v11|2(|v22|2−|v33|2). If |v22|2 > |v33|2 then f ′′(r) > 0. Therefore, the infimum

is equal to

|v11|2(1− |v33|2)− (|v22|2 − |v33|2).

Hence ‖ρ∗V ‖(C3,‖ · ‖2)→(C3,‖ · ‖A) ≤ 1 if and only if

|v11|2(1− |v33|2) ≥ (|v22|2 − |v33|2).

This completes the proof.

Let PA : ΩA → (M2)1 be the matrix valued polynomial on ΩA. Now we want to

estimate the norm of ‖A1 ⊗ v1 + A2 ⊗ v2 + A3 ⊗ v3‖.

Theorem 3.8. ‖A1 ⊗ v1 + A2 ⊗ v2 + A3 ⊗ v3‖ ≤ 1 if and only if |v11|2 + |v22|2 ≤ 1 and

|v33|2 ≤ 1.

Proof. Assume that ‖A1 ⊗ v1 + A2 ⊗ v2 + A3 ⊗ v3‖ ≤ 1. Now,

‖A1 ⊗ v1 +A2 ⊗ v2 +A3 ⊗ v3‖2 = ‖(v11A1, v22A2, v33A3‖2

=
∥∥∥(|v11|2 + |v22|2 0

0 |v33|2

)∥∥∥
= max{|v11|2 + |v22|2, |v33|2}.

Therefore, ‖A1⊗v1 +A2⊗v2 +A3⊗v3‖ ≤ 1 implies that |v11|2 + |v22|2 ≤ 1 and |v33|2 ≤ 1.

This completes the proof.
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As before we will prove the following corollary.

Corollary 3.9. There exists a contractive homomorphism of O(ΩA) which is not complete

contractive.

Proof. Let v1 = (1
2
, 0, 0),v2 = (0, 1, 0) and v3 = (0, 0, 1). Then it follows from the Theorem

3.7 that ‖ρV ‖ ≤ 1. Also, we have ‖ρ(2)
V (PA)‖ > 1. This completes the proof.



Chapter 4

Operator spaces

We recall the notion of an operator space. We describe two distinguished operator spaces,

namely, the MIN and MAX operator spaces. These two operator spaces have played an

important role in the development of operator theory in the recent past.

Definition 4.1. (cf. [29, Chapter 13, 14]) An abstract operator space is a linear space V

together with a family of norms ‖ · ‖k defined on Mk(V ), k = 1, 2, 3, . . . , where ‖ · ‖1 is

simply a norm on the linear space V. These norms are required to satisfy the following

compatibility conditions:

1. ‖T ⊕ S‖p+q = max{‖T‖p, ‖S‖q} and

2. ‖ASB‖q ≤ ‖A‖op‖S‖p‖B‖op

for all S ∈Mq(V), T ∈Mp(V) and A ∈Mq p(C), B ∈Mp q(C).

Two such operator spaces (V, ‖·‖k) and (W, ‖·‖k) are said to be completely isometric

if there is a linear bijection T : V→W such that T⊗Ik : (Mk(V), ‖·‖k)→ (Mk(W), ‖·‖k)
is an isometry for every k ∈ N. Here we have identifiedMk(V) with V⊗Mk in the usual

manner. We note that a normed linear space (V, ‖ · ‖) admits an operator space structure

if and only if there is an isometric embedding of it into the algebra of operators B(H)

on some Hilbert space H. This is the well-known theorem of Ruan (cf. [14]). Here we

study “different” operator space structures on a finite dimensional normed linear space

which admit an isometric embedding onto a subspace of Mn(C). Let A = (A1, . . . , Am),

where A1, . . . , Am are n × n linearly independent matrices. For (z1, . . . , zm) in Cm, set

‖(z1, . . . , zm)‖A = ‖z1A1 + · · · + zmAm‖op. Let VA be the m-dimensional normed linear

space with respect to the norm ‖(z1, · · · , zm)‖A. This makes the map

(z1, . . . , zm)→ z1A1 + · · ·+ zmAm
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an isometry from VA into (Mn, ‖·‖op). Therefore, VA inherits an operator space structure

fromMn. Recall that ΩA is the unit ball with respect to the norm ‖(z1, · · · , zm)‖A. Let VAt

be the normed linear space obtained by using the transpose, namely, At := (At
1, . . . A

t
m). By

definition, VAt has an isometric embedding intoMn giving it an operator space structure.

Let ΩAt be the unit ball with respect to the norm ‖ · ‖At . Evidently, the two normed

linear spaces (VA, ‖ · ‖A) and (VAt , ‖ · ‖At) are isometric. We ask if the operator space

structures they inherit from Mn(C) via the embedding involving the map induced by A

and At are isometric. In case these operator space structures are isometric, what are other

possible operator space structures on (VA, ‖ ·‖A)? We answer this question, after recalling

the notions of MIN and MAX operator spaces and a measure of their distance, namely,

α(V) following [29, Chapter 14]).

Definition 4.2. The MIN operator structure MIN(V) on a (finite dimensional) normed

linear space is obtained by isometrically embedding V in the C∗ algebra C
(
(V∗)1

)
, of

continuous functions on the unit ball (V∗)1 of the dual space. Thus for ((vij)) in Mk(V),

we set

‖((vij))‖MIN = ‖((v̂ij))‖ = sup{‖((f(vij)))‖ : f ∈ (V∗)1},

where the norm of a scalar matrix ((f(vij))) in Mk is the operator norm.

For an arbitrary k × k matrix over V, we simply write ‖((vij))‖MIN(V) to denote its

norm in Mk(V). This is the minimal way in which we represent the normed space as an

operator space. However, it is not difficult to create a “maximal” representation. We shall

denote it by MAX(V).

Definition 4.3. The matrix normed space MAX(V) is defined by setting

‖((vij))‖MAX = sup{‖((T (vij)))‖ : T : V→ B(H)},

and the supremum is taken over all isometries T and all Hilbert spaces H.

It is easy to verify that every operator space structure on a normed linear space V

lies between MIN(V) and MAX(V). To aid the understanding of the extent to which

the two operator space structures MIN(V) and MAX(V) differ, Paulsen introduced the

constant α(V) (cf. [29, Chapter 14]), which we recall below.

Definition 4.4. The constant α(V) is defined by setting

α(V) = sup{‖((vij))‖MAX : ‖((vij))‖MIN ≤ 1, ((vij)) ∈Mk(V), k ∈ N}.
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Thus α(V) = 1 if and only if the identity map is a complete isometry from MIN(V)

to MAX(V). Equivalently, we conclude that there exist a unique operator space structure

on V whenever α(V) is 1. Therefore, those normed linear spaces for which α(V) = 1 are

rather special. Unfortunately, there aren’t too many of them. The known examples are

the (C, | · |) and (C, ‖ · ‖∞) (resp. the unit ball in C2 with respect to the `1 norm). Indeed,

Paulsen has shown that α(V) > 1 whenever dim(V) ≥ 5. Following this, Eric Ricard

(cf. [28] [30]) has shown that α(V) > 1 for dim(V) ≥ 3. This leaves the question open for

normed linear spaces whose dimension is 2. This is the question we address here in some

special cases.

4.1 Operator norm calculation

The operator norm of the block matrix S =
(
αIm B

0 αIn

)
, where B is an m × n matrix and

α ∈ C is not hard to compute (cf. [23, Lemma 2.1]). This computation easily extends to

an operator T of the form T =
(
α1Im Bm×n

0 α2In

)
, where α1 6= α2 are in C. Here we provide the

straightforward computation following [23, Lemma 2.1].

Lemma 4.5.

‖T‖op =
(|α2|2 + ‖B‖2 + |α1|2) +

√
(|α2|2 + ‖B‖2 − |α1|2)2 + 4‖B‖2|α1|2

2
.

Proof. Note that det ( A X
C D ) = detD det(A−XD−1C) and

TT ∗ = |α1|2Im+n +
(
BB∗ ᾱ2B

α2B∗ (|α2|2−|α1|2)Im

)
.

For x ∈ C, we have

det
(
BB∗−xIn ᾱ2B

α2B∗ (a−x)Im

)
= det{BB∗ − xIm −

|α2|2

(a− x)
BB∗} det{(a− x)In}

= (−1)m
(

det{BB∗ +
(a− x)x

|α1|2 + x
In}
)

(a− x)n−m(|α1|2 + x)m

= (−1)n
(

det(U{BB∗ +
(a− x)x

|α1|2 + x
In}U∗)

)
(a− x)n−m(|α1|2 + x)m,

where U is a unitary which makes BB∗ into a diagonal matrix D1 and (|α2|2− |α1|2) = a.

Thus the maximum eigenvalue of
(
BB∗ ᾱ2B

α2B∗ (|α2|2−|α1|2)Im

)
is

x =
(|α2|2 + ‖B‖2 − |α1|2) +

√
(|α2|2 + ‖B‖2 − |α1|2)2 + 4‖B‖2|α1|2

2
.
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Using the spectral mapping theorem, the norm of TT ∗ is

(|α2|2 + ‖B‖2 + |α1|2) +
√

(|α2|2 + ‖B‖2 − |α1|2)2 + 4‖B‖2|α1|2
2

.

Corollary 4.6.
∥∥ ( α1Im Bm×n

0 α2In

) ∥∥
op
≤ 1 if and only if ‖B‖2 ≤ (1− |α1|2)(1− |α2|2).

Proof. From Lemma 4.5, it follows that
∥∥ ( α1Im Bm×n

0 α2In

) ∥∥ ≤ 1 if and only if

(|α2|2 + ‖B‖2 + |α1|2) +
√

(|α2|2 + ‖B‖2 − |α1|2)2 + 4‖B‖2|α1|2
2

≤ 1

which is clearly equivalent to

‖B‖2 ≤ (1− |α1|2)(1− |α2|2).

This completes the proof.

Let A1 =
(
α1 0
0 α2

)
and A2 =

(
0 β
0 0

)
with z1, z2 ∈ C. The norm computation in the

preceding Corollary shows that ‖z1A1 + z2A2‖op ≤ 1 if and only if

|z2β|2 ≤ (1− |z1α1|2)(1− |z1α2|2).

However, we can say a little more. For B1, B2 in Mm+n(C) of the form B1 =
(
α1Im 0

0 α2Im

)
and B2 = ( 0 B

0 0 ) , set ‖(z1, z2)‖B := ‖z1B1 + z2B2‖op. Proof of the following lemma is the

same as that of the corollary.

Lemma 4.7. ‖(z1, z2)‖B ≤ 1 if and only if |z2|2‖B‖2 ≤ (1− |z1α1|2)(1− |z1α2|2).

Remark 4.8. Let B̃ be another pair (B̃1, B̃2) in C2 ⊗ Mm+n(C) with B1 = B̃1 and

‖B2‖ = ‖B̃2‖. It then follows that ‖ · ‖B = ‖ · ‖B̃. In conclusion, we have shown that

the normed linear space (VA, ‖ · ‖A), where A =
((

α1 0
0 α2

)
,
(

0 β
0 0

))
has several different iso-

metric embedding intoMm+n(C),m, n ∈ N. To see this simply pick any B with ‖B‖ = |β|.
However, it is not clear if any of the embedding give rise to distinct operator space.

Let VB be the two dimensional linear space with respect to the norm ‖(z1, z2)‖B.
Since B1, B2 ∈Mm+n(C), we embed VB intoMm+n(C) isometrically. Therefore we think

of VB as an operator space. Note that PB : VB → Mm+n(C) defines a linear isometric

embedding into Mm+n(C). Suppose V = ((vij)) ∈ Mk(VB), where vij ∈ VB. We define

P
(k)
B : PB ⊗ Ik : Mk(VB) → Mk(Mm+n(C)) by P

(k)
B (V ) = ((PB(vij)). Let vij = (v1

ij v
2
ij)

then

P
(k)
B (V ) =

(
α1V1⊗Im V2⊗B

0 α2V1⊗In

)
,

where V1 = ((v1
ij)) and V2 = ((v2

ij)). The cb-norm of PB is defined to be supk ‖P
(k)
B ‖. To

compute ‖P (k)
B ‖ norm, we will need the following Lemma (cf. [9, Theorem 1.3.3]).
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Lemma 4.9. Let M = ( A X
X∗ C ) be the block decomposition of M in Mm+n(C). Assume that

A,C are positive definite. The following properties hold:

1. M is positive-definite if and only if A−XC−1X∗ is positive-definite.

2. If C is positive-definite, then M is positive semi-definite if and only if A−XC−1X∗

is positive semi-definite.

Recall that a closed (resp. open) subset Ω of Cm is the closed (resp. open) unit ball

in some norm if and only if it is bounded, balanced, convex, and absorbing . If we set

‖x‖ = inf{x : t−1x ∈ Ω, t > 0},

then ‖ · ‖ is a norm on Cm and Ω is the closed (resp. open) unit ball with respect to

this norm (cf. [32, Theorem 1.34]). Now we will compute the norm ‖P (k)
B ‖. Let U, V be

unitaries that diagonalize V1V
∗

1 and BB∗, that is, D1 := UV1V
∗

1 U
∗ =

(
|d1|2 0 ··· 0

...
...

...
...

0 0 ··· |dn|2

)
and

D2 : V BB∗V ∗ =

(
|c1|2 0 ··· 0

...
...

...
...

0 0 ··· |β|2

)
.

Theorem 4.10.
∥∥∥P (k)

B

∥∥∥ < 1 if and only if In − |α2|2D1 > 0,

In − |α1|2D1 − |β|2UV2V
∗

2 U
∗ − |α2β|2UV2V

∗
1 U
∗(In − |α2|2D1)−1UV1V

∗
2 U
∗ > 0,

where ‖B‖ = |β|.

Proof. Let S =
(
α1V1⊗Im V2⊗B

0 α2V1⊗Im

)
. Note that det ( A B

C D ) = detD det(A−BD−1C) and

SS∗ =
(
|α1|2V1V ∗1 ⊗Im+V2V ∗2 ⊗BB∗ ᾱ2V2V ∗1 ⊗B

α2V1V ∗2 ⊗B∗ |α2|2V1V ∗1 ⊗Im

)
.

If ‖S‖ < 1 then we have I2n+2m − SS∗ > 0 and conversely. Hence I2n+2m − SS∗ > 0 is

equivalent to the condition that(
In⊗Im−|α1|2V1V ∗1 ⊗Im+V2V ∗2 ⊗BB∗ −ᾱ2V2V ∗1 ⊗B

−α2V1V ∗2 ⊗B∗ In⊗Im−|α2|2V1V ∗1 ⊗Im

)
> 0. (4.1)

Let Ũ =
(
U⊗V 0

0 U⊗V
)
. Then it is easy to see that Ũ is an unitary. Multiply both side of the

Equation (4.1) by Ũ and Ũ∗ we have(
In ⊗ Im − |α1|2D1 ⊗ Im + UV2V

∗
2 U
∗ ⊗D2 −ᾱ2UV2V

∗
1 U
∗ ⊗ V BV ∗

−α2UV1V
∗

2 U
∗ ⊗ V B∗V ∗ In ⊗ Im − |α2|2D1 ⊗ Im

)
> 0. (4.2)

Using Lemma 4.9 together with the Equation (4.2) we have In − |α2|2D1 > 0 and

In − |α1|2D1 − |β|2UV2V
∗

2 U
∗ − |α2β|2UV2V

∗
1 U
∗(In − |α2|2D1)−1UV1V

∗
2 U
∗ > 0.

The converse statement is easily verified.
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Let A1 =
(
α1 0
0 α2

)
, A2 =

(
0 β
0 0

)
and A = (A1, A2). We can think of VA as an operator

space via the linear isometric embedding PA : VA →M2. Therefore, we have

P
(k)
A (V ) =

(
α1V1 βV2

0 α2V1

)
.

Taking B to be the scalar operator β and m = n = 1, we have:

Theorem 4.11.
∥∥∥P (k)

A

∥∥∥ < 1 if and only if In − |α2|2D1 > 0,

In − |α1|2D1 − |β|2UV2V
∗

2 U
∗ − |α2β|2UV2V

∗
1 U
∗(In − |α2|2D1)−1UV1V

∗
2 U
∗ > 0

where UV1V
∗

1 U
∗ = D1.

Remark 4.12. Theorems 4.10 and 4.11 together imply that ‖P (k)
A ‖ = ‖P (k)

B ‖, k = 1, 2, . . . .

Therefore, the operator space structure on VA obtained via PB is independent of B.

4.2 Domains in C2

In this section we study the class domains ΩA = {(z1, z2) : ‖z1A1 + z2A2‖op < 1} in

C2, where A1 =
(
d1 0
0 d2

)
, A2 = ( a bc d ) and A = (A1, A2). We may assume without loss of

generality, as shown in Chapter 1 that A1 =
(

1 0
0 d2

)
or A1 =

(
d1 0
0 1

)
and A2 = ( 0 b

c 0 ) , ( 1 b
c 0 )

or A2 = ( 0 b
c 1 ) with b ∈ R+.

Consider the case: A1 =
(

1 0
0 d2

)
, A2 = ( 1 b

c 0 ) and A = (A1, A2). In particular, for

m = 2, n = 2, we can give an operator space structure on the normed linear space VA via

the linear isometric embedding PA : VA →M2. For V = ((vij)) ∈Mk(VA), we have

P
(k)
A (V ) =

(
V3 bV2
cV2 d2V1

)
,

where vij ∈ VA and V1 = ((v1
ij)), V2 = ((v2

ij)), V3 = V1 +V2. Similarly we can think VAt as an

operator space via the linear isometric embedding PAt : VAt →M2, where At = (At
1, A

t
2).

Therefore, we have

P
(k)
At (V ) =

(
V3 cV2
bV2 d2V1

)
.

Therefore, it is natural to ask if these two operator space structure are same. The following

theorem says, in particular, that ‖P (2)
A (V )‖op 6= ‖P (2)

At (V )‖op if and only if b 6= |c| and

1 6= |d2|, for some V in M2(VA).

Theorem 4.13. For V1 = ( v11 v12
0 0 ) and V2 = ( v21 v22

0 0 ) , V = (V1, V2) we have ‖P (2)
A (V )‖op =

‖P (2)
At (V )‖op if and only if either 1 = |d2| or b = |c|.
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Proof. Note that

‖P (2)
A (V )‖2

op =
∥∥∥( V3 bV2

cV2 d2V1

) ( V ∗3 c̄V ∗2
bV ∗2 d̄2V ∗1

)∥∥∥
op

=
∥∥∥( V3V ∗3 +b2V2V ∗2 c̄V3V ∗2 +bd̄2V2V ∗1

cV2V ∗3 +bd2V1V ∗2 |c|2V2V ∗2 +|d̄2|2V1V ∗1

)∥∥∥
op
. (4.3)

Similarly we have

‖P (2)
At (V )‖2

op =
∥∥∥( V3V ∗3 +|c|2V2V ∗2 bV3V ∗2 +cd̄2V2V ∗1

bV2V ∗3 +c̄d2V1V ∗2 b2V2V ∗2 +|d̄2|2V1V ∗1

)∥∥∥
op
. (4.4)

We first assume that ‖P (2)
A (V )‖2

op = ‖P (2)
At (V )‖2

op. Therefore, the above condition is equiv-

alent to∥∥∥( V3V ∗3 +b2V2V ∗2 c̄V3V ∗2 +bd̄2V2V ∗1
cV2V ∗3 +bd2V1V ∗2 |c|2V2V ∗2 +|d̄2|2V1V ∗1

)∥∥∥
op

=
∥∥∥( V3V ∗3 +|c|2V2V ∗2 bV3V ∗2 +cd̄2V2V ∗1

bV2V ∗3 +c̄d2V1V ∗2 b2V2V ∗2 +|d̄2|2V1V ∗1

)∥∥∥
op
. (4.5)

Putting v1 = (v11, v12),v2 = (v21, v22) and v3 = v1 + v2 in Equation (4.5) we have∥∥∥( ‖v3‖2+b2‖v2‖2 c̄〈v3,v2〉+bd̄2〈v2,v1〉
c〈v2,v3〉+bd2〈v1,v2〉 |c|2‖v2‖2+|d̄2|2‖v1‖2

)∥∥∥
op

=
∥∥∥( ‖v3‖2+|c|2‖v2‖2 b〈v3,v2〉+cd̄2〈v2,v1〉

b〈v2,v3〉+c̄d2〈v1,v2〉 b2‖v2‖2+|d̄2|2‖v1‖2

)∥∥∥
op
. (4.6)

The maximum eigenvalue of
(

‖v3‖2+b2‖v2‖2 c̄〈v3,v2〉+bd̄2〈v2,v1〉
c〈v2,v3〉+bd2〈v1,v2〉 |c|2‖v2‖2+|d̄2|2‖v1‖2

)
is

x =
p1 +

√
p2

1 − 4q1

2
,

where p1 = ‖v3‖2 + b2‖v2‖2 + |c|2‖v2‖2 + |d̄2|2‖v1‖2, q1 = (‖v3‖2 + b2‖v2‖2)(|c|2‖v2‖2 +

|d̄2|2‖v1‖2)− |c̄〈v3,v2〉+ bd̄2〈v2,v1〉|2.
Similarly the maximum eigenvalue of

(
‖v3‖2+|c|2‖v2‖2 b〈v3,v2〉+cd̄2〈v2,v1〉

b〈v2,v3〉+c̄d2〈v1,v2〉 b2‖v2‖2+|d̄2|2‖v1‖2

)
is

y =
p1 +

√
p2

1 − 4q2

2
,

where q2 = (‖v3‖2 + |c|2‖v2‖2)(b2‖v2‖2 + |d̄2|2‖v1‖2)− |b〈v3,v2〉 + cd̄2〈v2,v1〉|2. Since we

are assuming x = y, it follows that q1 = q2. This simplifies to the equation

(|c|2 − b2){(‖v3‖‖v2‖2 − |〈v3,v2〉|2)− |d̄2|2(‖v2‖‖v1‖2 − |〈v2,v1〉|2)} = 0. (4.7)

Since v3 = v1 + v2, we have (‖v3‖‖v2‖2 − |〈v3,v2〉|2) = (‖v2‖‖v1‖2 − |〈v2,v1〉|2). Hence

either b = |c| or 1 = |d2|.
Conversely if either b = |c| or 1 = |d2|, then q1 = q2. Therefore,, we have x = y,

that is, the two maximum eigenvalue are equal. Hence ‖P (2)
A (V )‖op = ‖P (2)

At (V )‖op. This

completes our theorem.
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Remark 4.14. From Theorem 4.13 it follows that if b 6= |c| and |d2| 6= 1, then ‖P (2)
A (V )‖op 6=

‖P (2)
At (V )‖op for V ∈ M2(VA) of the form ((vij)),vij ∈ VA,vij = 0 if i > 1. Thus PA and

PAt induce different operator space structure on VA. Equivalently, there is a contractive

homomorphism on O(ΩA), which is not completely contractive. Let A1 ∈ {A11, A12} and

A2 ∈ {A21, A22}, where A11 =
(

1 0
0 d2

)
, A12 =

(
d1 0
0 1

)
;A21 = ( 1 b

c 0 ) , A22 = ( 0 b
c 1 ) . We have

proved the theorem for A1 = A11 and A2 = A21. The proof in the remaining cases, namely,

A1 = A11 and A2 = A22; A1 = A12 and A2 = A21 and A1 = A12 and A2 = A22 follow

similarly.

If we consider the case A =
((

1 0
0 d2

)
, A2 = ( 0 b

c 0 )
)
, then we have P

(k)
A (V ) =

(
V1 bV2
cV2 d2V1

)
and P

(k)
At (V ) =

(
V1 cV2
bV2 d2V1

)
. The following theorem is similar to Theorem 4.13.

Theorem 4.15. Suppose V1 = ( v11 v12
0 0 ) and V2 = ( v21 v22

0 0 ) . Then ‖P (2)
A (V )‖op = ‖P (2)

At (V )‖op

if and only if either 1 = |d2| or b = |c|.

Proof. Note that

‖P (2)
A (V )‖2

op =
∥∥∥( ‖v1‖2+b2‖v2‖2 c̄〈v1,v2〉+bd̄2〈v2,v1〉

c〈v2,v1〉+bd2〈v1,v2〉 |c|2‖v2‖2+|d̄2|2‖v1‖2

)∥∥∥
op

and

‖P (2)
At (V )‖2

op =
∥∥∥( ‖v1‖2+|c|2‖v2‖2 b〈v1,v2〉+cd̄2〈v2,v1〉

b〈v2,v1〉+c̄d2〈v1,v2〉 b2‖v2‖2+|d̄2|2‖v1‖2

)∥∥∥
op
.

Let x, y the maximum eigen value of ‖P (2)
A (V )‖2

op, ‖P
(2)
At (V )‖2

op respectively. Since we are

assuming x = y, it follows that

(|c|2 − b2){‖v1‖2‖v2‖2 − |〈v1,v2〉|2 − |d̄2|2(‖v2‖2‖v1‖2 − |〈v2,v1〉|2} = 0. (4.8)

Therefore, we have either 1 = |d2| or b = |c|. The converse is also easy to verify.

Remark 4.16. As before we conclude that if b 6= |c| and 1 6= |d2|, then the operator

structures induced by PA and PAt are not isomorphic. Let A1 ∈ {A11, A12} and A2 =

( 0 b
c 0 ) , where A11 =

(
1 0
0 d2

)
, A12 =

(
d1 0
0 1

)
. We have proved the theorem for A1 = A11

and A2 = ( 0 b
c 0 ) . The proof in the remaining case, namely, A1 = A12 and A2 = ( 0 b

c 0 )

follows similarly. Equivalently, we also say that there exists a contractive linear map from

(C2, ‖ · ‖ΩA
) to Mn(C) which is not completely contractive.

This phenomenon also occurs for the Euclidean Ball as the following example.

Example 4.17. Let A = (( 1 0
0 0 ) , ( 0 1

0 0 )) . Then ΩA defines Euclidean ball. As before we

have P
(k)
A (V ) =

(
V1 V2
0 0

)
and P

(k)
At (V ) =

(
V1 0
V2 0

)
. For V1 = (v11 v12), V2 = (v21 v22) and

V = (V1 V2), it is easy to verify that ‖P (k)
A (V )‖op 6= ‖P (k)

At (V )‖op. Hence two embedding of

(VA, ‖ · ‖2) into M2(C) give two distinct operator space structure.



Chapter 5

Bergman kernel

We recall the definition of the well known class of operators Pn(Ω) which was introduced

in the foundational paper of Cowen and Douglas [10]. An alternative point of view was

discussed in the paper of Curto and Salinas [12].

Definition 5.1. The class Pn(Ω) consists of m-tuples of commuting bounded operators

T = (T1, T2, . . . Tm) on a Hilbert space H satisfying the following conditions:

• the operators T1, T2, . . . , Tm commute,

• for w = (w1, . . . , wm) ∈ Ω, the dimension of the joint kernel
⋂m
k=1 ker(Tk − wk) is n,

• for w ∈ Ω, the operator DT−w : H → H ⊕ · · · ⊕ H has closed range, where the

operator DT is defined by DT h = ⊕mk=1Tkh, h ∈ H,

• closed span{
⋂m
k=1 ker(Tk − wk) : w ∈ Ω} = H.

Here we relate the contractivity of the homomorphism ρT (w) naturally induced by

the localization NT (w), w ∈ Ω, of an m-tuple of operator T in P1(Ω) to that of its curvature

K(w) corresponding to the holomorphic Hermtian bundle corresponding to the commuting

tuple T .

For an m-tuple of operators T in Pn(Ω), Cowen and Douglas establish the existence

of a non-zero holomorphic map γ : Ω0 → H with γ(w) in
⋂m
k=1 ker(Tk−wk), w in some open

subset Ω0 of Ω. We fix such an open set and call it Ω. The map γ defines a holomorphic

Hermitian vector bundle, say ET , on Ω. They show that the equivalence class of the vector

bundle ET determines the equivalence class (with respect to unitary equivalence) of the

operator T and conversely. The determination of the equivalence class of the operator T

in P1(Ω) then is particularly simple since the curvature of the line bundle ET

−K(w) =
m∑

i,j=1

∂2

∂wi∂w̄j
log ‖γ(w)‖2dwi ∧ dw̄j
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is a complete invariant. We reproduce the well-known proof of this fact for the sake of

completeness.

Suppose that E is a holomorphic Hermitian line bundle over a bounded domain

Ω ⊆ Cm. Pick a holomorphic frame γ for the line bundle E and let Γ(w) = 〈γw, γw〉 be

the Hermitian metric. The curvature (1, 1) form K(w) ≡ 0 on an open subset Ω0 ⊆ Ω

if and only if log Γ is harmonic on Ω0. Let F be a second line bundle over the same

domain Ω with the metric Λ with respect to a holomorphic frame η. Suppose that the two

curvatures KE and KF are equal on the open subset Ω0. It then follows that u = log(Γ/Λ)

is harmonic on this open subset. Thus there exists a harmonic conjugate v of u on Ω0,

which we assume without loss of generality to be simply connected. For w ∈ Ω0, define

η̃w = e(u(w)+iv(w))/2ηw. Then clearly, η̃w is a new holomorphic frame for F . Consequently,

we have the metric Λ(w) = 〈η̃w, η̃w〉 for F and we see that

Λ(w) = 〈η̃w, η̃w〉
= 〈e(u(w)+iv(w))/2ηw, e

(u(w)+iv(w))/2ηw〉
= eu(w)〈ηw, ηw〉
= Γ(w).

This calculation shows that the map U : ηw 7→ γw defines an isometric holomorphic bundle

map between E and F . The map, as shown in (cf. [11, Theorem 1]),

U
( ∑
|I|≤n

αI(∂̄
Iη)(w0)

)
=
∑
|I|≤n

αI(∂̄
Iγ)(w0), αI ∈ C, (5.1)

where w0 is a fixed point in Ω and I is a multi-index of length n, is well-defined, extends to

a unitary operator on the Hilbert space spanned by the vectors (∂̄Iη)(w0) and intertwines

the two m-tuples of operators in P1(Ω) corresponding to the vector bundles E and F .

It is natural to ask what other properties of T are directly reflected in the curvature

K. One such property that we explore here is the contractivity and complete contractivity

of the homomorphism induced by the m-tuple T via the map ρT : f → f(T ), f ∈ O(Ω),

where O(Ω) is the set of all holomorphic function in the neighborhood of Ω.

It will be useful for us to work with the matrix of the co-efficient of the (1, 1) - form

defining the curvature K, namely,

K(w) := −
((

∂2

∂wi∂w̄j
log ‖γ(w)‖2

))m
i,j=1

We recall the curvature inequality from Misra and Sastry cf. [24, Theorem 5.2] and

produce a large family of examples to show that the “curvature inequality” does not imply

contractivity of the homomorphism ρT .
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5.1 Localization of Cowen-Douglas operators

For T in P1(Ω), we define N (w) to be the subspace
⋂m
j,k=1 ker

(
(Tj − wj)(Tk − wk)

)
of H.

The localization N(w) of T at w is the m-tuple N(w) = (N1(w), N2(w), . . . , Nm(w)), where

Nk(w) = Tk − wk|N (w). The subspace N (w) is easily seen to be spanned by the vectors

{γ(w), ∂̄1γ(w), . . . , ∂̄mγ(w)}.

The localization N(w) of Tk at w then has the matrix representation (recall (Ti−wi)γ(w) =

0 and (Ti − wi)(∂jγ)(w) = δijγ(w) for 1 ≤ i, j ≤ m) Nk(w) =
(

0 ek
0 0

)
, k = 1, . . . ,m. Here

{ek}mk=1 is the standard basis of Cm. Representing Nk(w) with respect to an orthonormal

basis in N (w), it is possible to read off the curvature of T at w using the relationship:

−
(
K(w)t

)−1
=
((

tr
(
Nk(w)Nj(w)

t) ))m
kj=1

= A(w)tA(w), (5.2)

where the kth-column of A(w) is the vector αk (depending on w) which appears in the

matrix representation of Nk(w) with respect to any choice of an orthonormal basis in

N (w).

This formula is established for a pair of operators in P1(Ω) (cf. [11, Theorem 7]).

However, it is easy to verify it for an m-tuple T in P1(Ω).

Fix w0 in Ω. We may assume without loss of generality that ‖γ(w0)‖ = 1. The

function 〈γ(w), γ(w0)〉 is invertible in some neighborhood of w0. Then setting γ̂(w) :=

〈γ(w), γ(w0)〉−1γ(w), we see that

〈∂kγ̂(w0), γ(w0)〉 = 0, k = 1, 2, . . . ,m.

Thus γ̂ is another holomorphic section of E. The norms of the two sections γ and γ̂ differ

by the absolute square of a holomorphic function, that is, ‖γ̂(w)‖
‖γ(w)‖ = |〈γ(w), γ(w0)〉|. Hence

the curvature is independent of the choice of the holomorphic section. Therefore, without

loss of generality, we will prove the claim assuming: for a fixed but arbitrary w0 in Ω,

(i) ‖γ(w0)‖ = 1,

(ii) γ(w0) is orthogonal to (∂kγ)(w0), k = 1, 2, . . . ,m.

Let G be the Grammian corresponding to the m + 1 dimensional space spanned by

the vectors

{γ(w0), (∂1γ)(w0), . . . , (∂mγ)(w0)}.

This is just the spaceN (w0). Let v, w be any two vectors inN (w0). Find c = (c0, . . . , cm),d =

(d0, . . . , dm) in Cm+1 such that v =
∑m

i=0 ci∂iγ(w0) and w =
∑m

j=0 dj∂jγ(w0).Here (∂0γ)(w0) =
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γ(w0). We have

〈v, w〉G = 〈
m∑
i=0

ci∂iγ(w0),
m∑
j=0

dj∂jγ(w0)〉

= 〈Gt(w0)c,d〉Cm+1

= 〈(Gt)
1
2 (w0)c, (Gt)

1
2 (w0)d〉Cm+1 .

Let {ei}mi=0 be the standard orthonormal basis for Cm+1. Also, let (Gt)−
1
2 (w0)ei :=

αi(w0), where αi(j)(w0) = αji(w0), i = 0, 1, . . . ,m. We see that the vectors εi :=∑m
j=0 αji(∂jγ)(w0), i = 0, 1, . . . ,m, form an orthonormal basis in N (w0):

〈εi, εl〉 =
〈 m∑
j=0

αij∂jγ(w0),
m∑
p=0

αlp∂pγ(w0)
〉

= 〈(Gt)−
1
2αi, (G

t)−
1
2 (w0)αl〉G(w0)

= δil,

where δil is the Kornecker delta. Since Nk

(
(∂jγ)(w0)

)
= γ(w0) for j = k and 0 otherwise,

we have Nk(εi) =
(

0 αt
k

0 0

)
. Hence

tr
(
Ni(w0)N∗j (w0)

)
= αi(w0)tαj(w0)

=
(
(Gt)−

1
2 (w0)ei

)t(
(Gt)−

1
2 (w0)ej

)
= 〈G−

1
2 (w0)ei, G

− 1
2 ej(w0)〉 = (Gt)

−1
(w0)ij.

Since the curvature, computed with respect to the holomorphic section γ satisfying the

conditions (i) and (ii), is of the form

K(w0)ij =
∂2

∂wi∂̄wj
log ‖γ(w)‖2

|w=w0

=
(‖γ(w)‖2

(
∂2γ

∂wi∂w̄j

)
(w)−

(
∂γ
∂wi

)
(w)
(
∂γ
∂w̄j

)
(w)

‖γ(w)‖4

)
|w=w0

=
( ∂2γ

∂wi∂w̄j

)
(w0) = G(w0)ij,

we have verified the claim (5.2).

The following theorem was proved for m = 2 in (cf. [11, Theorem 7]). However, for

any natural number m, the proof is evident from the preceding discussion.

Theorem 5.2. Two m-tuples of operators T and T̃ in P1(Ω) are unitarily equivalent if and

only if Nk(w) and Ñk(w) are simultaneously unitarily equivalent for w in some open subset

of Ω.
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Proof. Let us fix an arbitrary point w in Ω. In what follows, the dependence on this w is

implicit. Suppose that there exists a unitary operator U : N → Ñ such that UNi = ÑiU ,

i = 1, . . . ,m. For 1 ≤ i, j ≤ m, we have

tr
(
ÑiÑj

∗)
= tr

((
UNiU

∗)(UNjU
∗)∗)

= tr
(
UNiN

∗
j U
∗)

= tr
(
NiN

∗
j U
∗U
)

= tr
(
NiN

∗
j

)
.

Thus the curvature of the operators T and T̃ coincide making them unitarily equivalent

proving the Theorem in one direction. In the other direction, we simply have to observe

that if the operators T and T̃ are unitarily equivalent then the unitary U given in (5.1)

evidently maps N to Ñ . Thus the restriction of U to the subspace N intertwines Nk and

Ñk simultaneously for k = 1, · · · ,m.

As is well-known (cf. [12] and [10]), the m-tuple T in P1(Ω) can be represented as the

adjoint of the m-tuple of multiplications M by the co-ordinate functions on a Hilbert space

H of holomorphic functions defined on Ω∗ = {w̄ ∈ Cm : w ∈ Ω} possessing a reproducing

kernel K : Ω∗ × Ω∗ → C which is holomorphic in the first variable and anti-holomorphic

in the second.

In this representation, if we set γ(w) = K(·, w̄), w ∈ Ω, then we obtain a natural

non-vanishing “holomorphic” map into the Hilbert space H defined on Ω.

The localization N(w) obtained from the commuting tuple of operators T defines a

a homomorphism ρT on the algebra O(Ω) of functions, holomorphic in some neighborhood

of the closed set Ω̄, by the rule

ρT (f) =
(
f(w) ∇f(w)A(w)t

0 f(w)Im

)
, f ∈ O(Ω). (5.3)

We recall from (cf. [24, Theorem5.2]) that the contractivity of the homomorphism implies

the curvature inequality ‖
(
K(w)t

)−1‖ ≤ 1. Here K(w) is thought of as a linear transfor-

mation from the normed linear space (Cm, CΩ,w)∗ to the normed linear space (Cm, CΩ,w).

The operator norm is computed accordingly with respect to these norms.

5.1.1 Infinite divisibility

Let K be a positive definite kernel defined on the domain Ω and let λ > 0 be arbitrary.

Since Kλ is a real analytic function defined on Ω, it admits a power series representation

of the form

Kλ(w,w) =
∑
I J

aI J(λ)(w − w0)I(w − w0)
J
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in a small neighborhood of a fixed but arbitrary w0 ∈ Ω. The polarization Kλ(z, w) is the

function represented by the power series

Kλ(z, w) =
∑
I J

aI J(λ)(z − w0)I(w − w0)
J
, w0 ∈ Ω.

It follows that the polarization Kλ(z, w) of the function K(w,w)λ defines a Hermitian ker-

nel, that is, Kλ(z, w) = K(w, z)λ. Schur’s Lemma (cf. [9]) ensures the positive definiteness

of Kλ whenever λ is a natural number. However, it is not necessary that Kλ must be

positive definite for all real λ > 0. Indeed a positive definite kernel K with the property

that Kλ is positive definite for all λ > 0 is called infinitely divisible and plays an important

role in studying curvature inequalities (cf. [6, Theorem 3.3]).

Although, Kλ need not be positive definite for all λ > 0, in general, a related question

raised here is relevant to the study of localization of the Cowen-Douglas operators.

Let w0 in Ω be fixed but arbitrary. Also, fix a λ > 0. Define the mutual inner product

of the vectors

{(∂̄IKλ)(·, w0) : I = (i1, . . . , im)},

by the formula

〈(∂̄JKλ)(·, w0), (∂̄
I
Kλ)(·, w0)〉 =

(
∂I∂̄

J
Kλ
)
(w0, w0).

Now, if Kλ were positive definite, for the λ we have picked, then this formula would extend

to an inner product on the linear span of these vectors. The completion of this inner

product space is then a Hilbert space, which we denote by H(λ). The reproducing kernel

for the Hilbert space H(λ) is easily verified to be the original kernel Kλ. The Hilbert space

H(λ) is independent of the choice of w0.

Now, even if Kλ is not necessarily positive definite, we may ask whether this formula

defines an inner product on the (m+ 1) dimensional space N (λ)(w) spanned by the vectors

{Kλ(·, w), (∂̄1K
λ)(·, w), . . . , (∂̄mK

λ)(·, w)}.

An affirmative answer to this question is equivalent to the positive definiteness of the

matrix ((
(∂i∂̄jK

λ)(w,w)
))m
i j=0

.

Let ∂̄
t
m =

(
1, ∂1, . . . , ∂m

)
and ∂m be its conjugate transpose. Now,(

∂m∂̄
t
mK

λ)(w,w) :=
((

(∂j ∂̄iK
λ)(w,w)

))m
i j=0

, w ∈ Ω ⊆ Cm.

Lemma 5.3. For a fixed but arbitrary w in Ω, the (m+1)×(m+1) matrix
(
∂m∂̄

t
mK

λ)(w,w)

is positive definite.
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Proof. The proof is by induction on m. For m = 1 and any positive λ, a direct verification,

which follows, shows that(
∂1∂̄

t
1K

λ
)
(w,w) :=

(
Kλ(w,w) ∂1Kλ(w,w)

∂̄1Kλ(w,w) ∂1∂̄1Kλ(w,w)

)
is positive.

Since Kλ(w,w) > 0 for any λ > 0, the verification that
(
∂1∂̄

t
1K

λ
)
(w,w) is positive

definite amounts to showing that det
(
∂1∂̄

t
1K

λ
)
(w,w) > 0. An easy computation gives

det
(
∂1∂̄

t
1K

λ
)
(w,w) = λK2λ−2(w,w)

{
K(w,w)(∂̄1∂1K)(w,w)− |∂1K(w,w)|2

}
= λK2λ(w,w)

‖K(·, w)‖2‖(∂̄1K)(·, w)‖2 − |〈K(·, w), (∂̄1K)(·, w) 〉|2

‖K(·, w)‖4
,

which is clearly positive since K(·, w) and (∂̄1K)(·, w) are linearly independent.

Now assume that
(
∂m−1∂̄

t
m−1K

λ
)
(w,w) is positive definite. We note that

(
∂m∂̄

t
mK

λ
)
(w,w) =

((
∂m−1∂̄

t
m−1K

λ
)

(w,w)
(
∂m∂̄

t
m−1K

λ
)

(w,w)(
∂m−1∂̄mKλ

)
(w,w) (∂m∂̄mKλ)(w,w)

)
.

Since
(
∂m−1∂̄

t
m−1K

λ
)
(w,w) is positive definite by the induction hypothesis and for λ > 0,

we have

(∂m∂̄mK
λ)(w,w) = λK(w,w)λ−2

{
K(w,w)(∂m∂̄mK)w,w) + (λ− 1)|(∂̄mK)(w,w)|2

}
> 0,

it follows that
(
∂m∂̄

t
mK

λ
)
(w,w) is positive definite if and only if det

((
∂m∂̄

t
mK

λ
)
(w,w)

)
>

0 (cf. [6]). To verify this claim, we note(
∂m∂̄

t
mK

λ
)
(w,w) =

(
Kλ(w,w) B(w,w)
B(w,w)∗ D(w,w)

)
,

where D =
((

(∂j ∂̄iK
λ)(w,w)

))m
i j=1

and B =
(
∂1K

λ(w,w), . . . , ∂mK
λ(w,w)

)
. Recall that

(cf. [17])

det
(
∂m∂̄

t
mK

λ
)
(w,w) = det

(
D(w,w)− B∗(w,w)B(w,w)

Kλ(w,w)

)
detKλ(w,w).

Now, following (cf. [6, proposition 2.1(second proof)]), we see that

D(w,w)− B∗(w,w)B(w,w)

Kλ(w,w)
= λK2λ−2(w,w)

((
K2(w,w)(∂j ∂̄i logK)(w,w)

))m
i j=1

,

which was shown to be a Grammian. Thus D(w,w) − B∗(w,w)B(w,w)
Kλ(w,w)

is a positive definite

matrix and hence its determinant is positive.
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5.2 Explicit formulae

For any bounded open connected subset Ω of Cm, let BΩ denote the Bergman kernel of Ω.

This is the reproducing kernel of the Bergman space A2(Ω) consisting of square integrable

holomorphic functions on Ω with respect to the volume measure. Consequently, it has a

representation of the form

BΩ(z, w) =
∑
k

ϕk(z)ϕk(w), (5.4)

where {ϕk}∞k=0 is any orthonormal basis of A2(Ω). This series is uniformly convergent on

compact subsets of Ω× Ω.

We now exclusively study the case of the Bergman kernel on the unit ball D (with

respect to the usual operator norm) in the linear space of all r × s matrices Mrs(C). The

unit ball D may be also described as

D = {Z ∈Mrs(C) : I − ZZ∗ ≥ 0}.

The Bergman Kernel for the domain D is BD(Z,Z) = det(I − ZZ∗)−p, where p = r + s.

In what follows we give a simple proof of this.

As an immediate consequence of the change of variable formula for integration, we

have the transformation rule for the Bergman kernel. We provide the straightforward proof.

Lemma 5.4. Let Ω and Ω̃ be two domains in Cm and ϕ : Ω→ Ω̃ be a bi-holomorphic map.

Then

BΩ(z, w) = JCϕ(z)JCϕ(w)BΩ̃(ϕ(z), ϕ(w))

for all z, w ∈ Ω, where JCϕ(w) is the determinant of the derivative Dϕ(w).

Proof. Suppose {φ̃n} be an orthonormal basis for A2(Ω̃). By change of variable formula, it

follows easily that φn = {JCϕ(w)φ̃n ◦ ϕ}, form an orthonormal basis for A2(Ω). Hence,

BΩ(z, w) =
∞∑
n=0

φn(z)φn(w) =
∞∑
n=0

JCϕ(w)(φ̃n ◦ ϕ)(z)JCϕ(w)(φ̃n ◦ ϕ)(w)

= JCϕ(w)JCϕ(w)
∞∑
n=0

φ̃n(ϕ(z))φ̃n(ϕ(w))

= JCϕ(w)JCϕ(w)BΩ̃(ϕ(z), ϕ(w))

completing our proof.

If Ω is a domain in Cm and the bi-holomorphic automorphism group, Aut(Ω) is

transitive, then we can determine the Bergman kernel as well as its curvature from its
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value at 0! A domain with this property is called homogeneous. For instance, the unit ball

D in the linear space of r×s matrices are homogeneous. If Ω is homogeneous, then for any

w ∈ Ω, there exists an bi-holomorphic automorphism ϕw with the property ϕw(w) = 0.

The following Corollary is an immediate consequence of Lemma 5.4.

Corollary 5.5. For any homogeneous domain Ω in Cm, we have

BΩ(w,w) = JCϕw(w)JCϕw(w)BΩ(0, 0), w ∈ Ω.

We recall from (cf. [18, Theorem 2] ) that for Z,W in the matrix ball D (of size r×s)
and u ∈ Cr×s, we have

DϕW (Z) · u = (I −WW ∗)
1
2 (I − ZW ∗)−1u(I −W ∗Z)−1(I −W ∗W )

1
2 .

In particular, DϕW (W ) · u = (I − WW ∗)−
1
2 u(I − W ∗W )−

1
2 . Thus DϕW (W ) = (I −

WW ∗)−
1
2 ⊗ (I −W ∗W )−

1
2 . We therefore (cf. [16, exercise 8] [15]) have

detDϕW (W ) =
(

det(I −WW ∗)−
1
2

)s(
det(I −W ∗W )−

1
2

)r
=
(

det(I −WW ∗)−
1
2

)r+s
.

It then follows that

JCϕW (W )JCϕW (W ) = det(I −WW ∗)−(r+s), W ∈ D.

With a suitable normalization of the volume measure, we may assume that BΩ(0, 0) = 1.

With this normalization, we have

BD(W,W ) = det(I −WW ∗)−(r+s), W ∈ D. (5.5)

The Bergman kernel BΩ, where Ω = {(z1, z2) : |z2| ≤ (1 − |z1|2)} ⊂ C2 is known

(cf. [19, Example 6.1.6]):

BΩ(z, w) =
3(1− z1w̄1)2 + z2w̄2

{(1− z1w̄1)2 − z2w̄2}3
, z, w ∈ Ω. (5.6)

The domain Ω is not homogeneous. However, it is a Reinhadt domain. Consequently, an

orthonormal basis consisting of monomials exists in the Bergman space of this domain.

We give a very similar example below to show that computing the Bergman kernel in a

closed form may not be easy even for very simple Reinhadt domains. We take Ω to be the

domain

{(z1, z2, z3) : |z2|2 ≤ (1− |z1|2)(1− |z3|2), 1− |z3|2 ≥ 0} ⊂ C3.
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Lemma 5.6. The Bergman kernel BΩ(z, w) for the domain Ω is given by the formula

∞∑
p,m,n=0

m+ 1

4β(n+ 1,m+ 2)β(p+ 1,m+ 2)
(z1w̄1)n(z2w̄2)m(z3w̄3)p,

where β(m,n) is the Beta function.

Proof. Let {(z1)n(z2)m(z3)p}∞n,m,p=1 be the orthonormal basis for the Bergman space A2(Ω).

Now,

‖(z1)n(z2)m(z3)p‖2 =

∫ 2π

0
dθ1dθ2dθ3

∫ 1

0
r

(2n+1)
1 dr1

∫ 1

0
r

(2p+1)
3 dr3

∫ √(1−r2
1)(1−r2

2)

0
r

(2m+1)
2 dr2

= 8π3

∫ 1

0
r

(2n+1)
1 dr1

∫ 1

0
r

(2p+1)
3 dr3

(1− r2
1)(m+1)(1− r2

2)(m+1)

2m+ 2

=
π3

m+ 1

∫ 1

0
sn1 (1− s1)(m+1)ds1

∫ 1

0
sp2(1− s2)(m+1)ds2 (5.7)

where r2
1 = s1 and r2

2 = s2. Since β(n,m) =
∫ 1

0
r(n−1)(1 − r)(m−1)dr, therefore equation

(5.7)is equal to

‖(z1)n(z2)m(z3)p‖2 =
π3

m+ 1
β(n+ 1,m+ 2)β(p+ 1,m+ 2).

From equation (5.7), it follows that ‖1‖2π3β(1, 2)β(1, 2) = π3

4
. We normalize the volume

measure in an appropriate manner to ensure

‖(z1)n(z2)m(z3)p‖2 =
4

m+ 1
β(n+ 1,m+ 2)β(p+ 1,m+ 2).

Having computed an orthonormal basis for the Bergman space, we can complete the the

computation of the Bergman kernel using the infinite expansion (5.4).

The Proposition following the Lemma (a change of variable formula from (cf. [31, The

chain rule 1.3.3]) given below provides the transformation rule for the Bergman metric

(cf. [20, proposition 1.4.12]).

Lemma 5.7. Suppose Ω is in Cm, F = (f1, . . . , fn) maps Ω into Cn, g maps the range of

F into C, and f1, . . . , fn, g are of class C2. If

h = g ◦ F = g(f1, . . . , fn)

then, for 1 ≤ i, j ≤ m and z ∈ Ω,(
DjDih

)
(z) =

n∑
k=1

n∑
l=1

(
DlDkh

)
(w)Djfl(z)Difk(z),

where Dj f̄l = Djfl(z).
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Proposition 5.8. Let Ω and Ω̃ be two domain in Cm and ϕ : Ω → Ω̃ is bi-holomorphic

map. Then

KBΩ
(w) =

(
Dϕ
)
(w)

tKB
Ω̃
(ϕ(w))

(
Dϕ
)
(w)

for all w ∈ Ω.

Proof. For any holomorphic function ϕ defined on Ω, we have ∂
∂wi∂w̄j

log |JCϕ(w)|2 = 0.

Combining this with Lemma 5.4, we get

∂2

∂wi∂w̄j
logBΩ̃(ϕ(w), ϕ(w)) =

∂2

∂wi∂w̄j
log |JCϕ(w)|−2BΩ(w,w)

= − ∂2

∂wi∂w̄j
log |JCϕ(w)|2 +

∂2

∂wi∂w̄j
BΩ(w,w)

=
∂2

∂wi∂w̄j
BΩ(w,w).

Also by Lemma 5.7 with g(z) = logBΩ̃(z, z) and F = f we have,

∂2

∂wi∂w̄j
logBΩ̃(ϕ(w), ϕ(w)) =

n∑
k,l=1

∂ϕk
∂wi

(w)
∂2

∂wk∂z̄l
logBΩ̃(z, z)(ϕ(w), ϕ(w))

∂ϕl
∂wj

(w).

Hence((
∂2

∂wi∂w̄j
logBΩ̃(ϕ(w), ϕ(w)

))
ij

=

((
∂ϕk
∂wi

(w)

))
ik

((
∂2

∂zk∂z̄l
logBΩ̃(z, z)(ϕ(w), ϕ(w)

))
kl

((
∂ϕl
∂wj

(w)

))
lj

=
(
Dϕ
)
(w)

tKB
Ω̃
(ϕ(w))

(
Dϕ
)
(w).

Therefore we have the desired transformation rule for the Bergman metric, namely,

KBΩ
(w) =

(
Dϕ
)
(w)

tKB
Ω̃
(ϕ(w))

(
Dϕ
)
(w), w ∈ Ω.

As a consequence of this transformation rule, a formula for the Bergman metric at

an arbitrary w in Ω is obtained from its value at 0. The proof follows from the transitivity

of the automorphism group.

Corollary 5.9. For a homogeneous domain Ω, pick a a bi-holomorphic automorphism ϕw
of Ω with ϕw(w) = 0, w ∈ Ω, we have

KBΩ
(w) =

(
Dϕw(w)

)tKBΩ
(0)Dϕw(w)

for all w ∈ Ω.
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For the matrix ball D, as is well-known, Bλ
D is not necessarily positive definite for

all λ > 0. However, as we have pointed out the space N (λ)(w) has a natural inner product

induced by Bλ
D. Thus we explore properties of Bλ

D for all λ > 0. In what follows, we will

repeatedly use the transformation rule for Bλ
Ω which is an immediate consequence of the

transformation rule for BΩ, namely,

KBλΩ(w) = λKBΩ
(w) = λDϕw(w)tKBΩ

(0)Dϕw(w) (5.8)

for w ∈ Ω and λ > 0.

To compute the Bergman metric, we begin with a Lemma on the Taylor expansion

of the determinant. To facilitate its proof, for Z in Mrs(C), we write Z =

( Z1

...
Zr

)
, with

Zi = (zi1, . . . , zis) , i = 1, . . . , r. In this notation,

I − ZZ∗ =

(
1−‖Z1‖2 −〈Z1,Z2〉 ··· −〈Z1,Zr〉

...
...

...
...

−〈Zr,Z1〉 −〈Zr,Z2〉 ··· 1−‖Zr‖2

)
,

where ‖Zi‖2 =
∑s

j=1 |zij|2, 〈Zi, Zj〉 =
∑s

k=1 zikz̄jk. Set Xij = 〈Zi, Zj〉, 1 ≤ i, j ≤ r.

The curvature KBD(0) of the Bergman kernel, which is often called the Bergman

metric, is easily seen to be p times the rs × rs identity as a consequence of the following

Lemma. The value of the curvature KBD(W ) at an arbitrary point W is then easy to write

down using the homogeneity of the unit ball D.

Lemma 5.10. The determinant det(I − ZZ∗) = 1 −
∑r

i=1 ‖Zi‖2 + P (X), where P (X) =∑
|`|≥2 p`X

` with

X` := X`11
11 . . . X`1r

1r . . . X
`r1
r1 . . . X`rr

rr .

Proof. The proof is by induction on r. For r = 1 we have det(I − ZZ∗) = 1 − ‖Z‖2.

Therefore in this case , P = 0 and we are done. For r = 2, we have

det(I − ZZ∗) = det
(

1−‖Z1‖2 −〈Z1,Z2〉
−〈Z2,Z1〉 1−‖Z2‖2

)
.

For r = 2, a direct verification shows that the det(I − ZZ∗) is equal to 1−
∑2

i=1 ‖Zi‖2 +

P (X), where P (X) = X11X22 − |X12|2. The decomposition

I − ZZ∗ =


1− ‖Z1‖2 −〈Z1, Z2〉 · · · −〈Z1, Zr−1〉 −〈Z1, Zr〉

...
...

...
...

...

−〈Zr−1, Z1〉 −〈Zr−1, Z2〉 · · · 1− ‖Zr−1‖2 −〈Zr−1, Zr〉
−〈Zr, Z1〉 −〈Zr, Z2〉 · · · −〈Zr, Zr−1〉 1− ‖Zr‖2
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is crucial to our induction argument. Let Aij, i, j = 1, 2, denote the blocks in this decom-

position. By induction hypothesis, we have

detA11 = 1−
r∑
i=2

‖Zi‖2 +Q(X),

where Q(X) =
∑
|`|≥2 q`X

`. Since det(A22 − A21A
−1
11 A12) is a scalar, it follows that

det(I − ZZ∗) = (A22 − A21A
−1
11 A12) detA11

= A22 detA11 − A21

(
detA11

)
A−1

11 A12

= A22 detA11 − A21

(
Adj(A11)

)
A12,

where, as usual, Adj(A11) denotes the transpose of the matrix of co-factors of A11. Clearly,

A21

(
Adj(A11)

)
A12 is a sum of (r − 1)2 terms. Each of these is of the form Xk1ajkX1j,

where ajk denotes the (j, k) entry of Adj(A11). It follows that any one term in the sum

A21

(
Adj(A11)

)
A12 is some constant multiple of X` with |`| ≥ 2. Furthermore,

A22 detA11 = 1−
r∑
i=1

‖Zi‖2 + ‖Zr‖2

r−1∑
i=1

‖Zi‖2 +Q(X)(1− ‖Zr‖2).

Putting these together, we see that

det(I − ZZ∗) = 1−
r∑
i=1

‖Zi‖2 + P (X),

where P (X) = Xrr

∑r−1
i=1 Xii+Q(X)(1−Xrr)−A21

(
Adj(A11)A12 completing the proof.

Let KBD(Z) be the curvature (some times also called the Bergman metric) of the

Bergman Kernel BD(Z,Z). Set w1 = z11, . . . , ws = z1s, . . . , wrs−s+1 = zr1, . . . , wrs = zrs.

The formula for the Bergman metric given below is due to Koranyi (cf. [21]).

Theorem 5.11. KBD(0) = pI, where I is the rs× rs identity matrix.

Proof. Lemma 5.10 says that

logBD(Z) = −p log
(
1−

r∑
i=1

‖Zi‖2 + P (X)
)
.

It now follows that
(

∂2

∂wi∂w̄j
logBD

)
(0) = 0, i 6= j. On the other hand,

(
∂2

∂wi∂w̄i
logBD

)
(0) =

p, i = 1, . . . , rs.
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In consequence, for the matrix ball D, which is a homogeneous domain in Cr×s, we

record separately, the transformation rule:(
KBD(W )t

)−1
=
(
DϕW (W )

)−1(KBΩ
(0)t
)−1(

DϕW (W )
t)−1

=
1

p

(
DϕW (W )

t
DϕW (W )

)−1
, W ∈ D, (5.9)

where p = r + s.

5.3 Curvature inequalities

5.3.1 The Euclidean Ball

Let Ω be a homogeneous domain and θw : Ω → Ω be a bi-holomorphic automorphism of

Ω with θw(w) = 0. The linear map Dθw(w) : (Cm, CΩ,w) → (Cm, CΩ,0) is a contraction by

definition. Since θw is invertible, Dθ−1
w (0) : (Cm, CΩ,0) → (Cm, CΩ,w) is also a contraction.

However, since Dθ−1
w (0) = Dθw(w)−1, it follows that Dθw(w) must be an isometry. We

paraphrase the Theorem from (cf. [24, Theorem 5.2]) slightly.

Lemma 5.12. If Ω is a homogeneous domain and θw is a bi-holomorphic automorphism

with θw(w) = 0, then ‖A(w)t‖`2→CΩ,w ≤ 1 if and only if ‖A(0)t‖`2→CΩ,0 ≤ 1.

Proof. As before, let DwΩ := {Df(w) : f ∈ Holw(Ω,D)}. The map ϕ 7→ ϕ ◦ θw(w) is

injective from Hol0(Ω,D) onto Holw(Ω,D). Therefore,

DwΩ = {D(f ◦ θw)(w) : f ∈ Hol0(Ω,D)}
= {Df(0)Dθw(w) : f ∈ Hol0(Ω,D)}
= {u ·Dθw(w) : u ∈D0Ω}

This is another way of saying that Dθw(w) is an isometry.

sup
v∈DwΩ

‖A(w)tv‖ = sup
u∈D0Ω

‖A(w)tDθw(w)u‖

= sup
u∈D0Ω

‖A(0)tu‖,

where we have set A(0)t := A(w)tDθw(w). Thus we have shown

{A(w)t : ‖A(w)t‖`2→CΩ,w ≤ 1} = {A(0)tDθw(w)−1 : ‖A(0)t‖`2→CΩ,w}
= {A(0)tDθ−1

w (0) : ‖A(0)t‖`2→CΩ,w}.

The proof is now complete since Dθw(w) is an isometry.
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We note that if ‖A(w)t‖`2→CΩ,w ≤ 1, then

‖
(
K(w)t

)−1‖C∗Ω,w→CΩ,w = ‖A(w)tA(w)‖C∗Ω,w→CΩ,w
≤ ‖A(w)t‖`2→CΩ,w‖A(w)‖C∗Ω,w→`2

= ‖A(w)t‖2
`2→CΩ,w ≤ 1, (5.10)

which is the curvature inequality of (cf. [24, Theorem 5.2]). For a homogeneous domain Ω,

using the transformation rules in Corollary 5.9 and the equation (5.9), for the curvature K
of the Bergman kernel BΩ, we have

‖
(
K(w)t

)−1‖C∗Ω,w→CΩ,w =
∥∥(Dθw(w)tK(0)Dθw(w)

)t−1∥∥
C∗Ω,w→CΩ,w

=
∥∥Dθw(w)−1

(
K(0)t

)−1
Dθw(w)−1

t
‖C∗Ω,w→CΩ,w

=
∥∥Dθw(w)−1A(0)tA(0)Dθw(w)−1

t
‖C∗Ω,w→CΩ,w

≤
∥∥Dθw(w)−1A(0)t‖2

`2→→CΩ,w =
∥∥A(0)t‖2

`2→→CΩ,0 (5.11)

since Dθw(w)−1 is an isometry. For the Euclidean ball B := Bn, the inequality for the

curvature is more explicit. In the following, we set B(w,w) :=
(
BB(w,w)

)− 1
n+1 . Thus

polarizing B, we have B(z, w) =
(
1−〈z, w〉)−1, z, w ∈ B. The inequality appearing below

(cf. [24]) is a point-wise inequality with respect to the usual ordering of Hermitian matrices.

Theorem 5.13. Let θw is a bi-holomorphic automorphism of B such that θw(w) = 0. If ρ

is contractive homomorphism of O(B) induced by the localization N(w), T ∈ P1(B), then

K(w) ≤ −Dθw(w)
t
Dθw(w) = KB(w), w ∈ B

Proof. The equation (5.10) combined with the equality CB,0 = ‖ · ‖`2 and the contractivity

of ρT implies that ‖Dθw(w)A(w)t‖`2→`2 ≤ 1. Hence

I −Dθw(w)A(w)tA(w)Dθw(w)
t
≥ 0 ⇔ (Dθw(w))−1

(
Dθw(w)

t)−1 − A(w)tA(w) ≥ 0

⇔ A(w)tA(w) ≤ (Dθw(w))−1
(
Dθw(w)

t)−1

⇔
(
−K(w)t

)−1 ≤
(
Dϕw(w)

t
Dϕw(w)

)−1
.

Since−
(
K(w)t

)−1
and

(
Dθw(w)

t
Dθw(w)

)−1
are positive definite matrices, it follows (cf. [8])

that K(w) ≤ −Dθw(w)
t
Dθw(w) = KB(w).

This inequality generalizes the curvature inequality obtained in (cf. [22]) for the unit

disc. However, assuming that KB−1K(w) is a non-negative Kernel defined on the ball B
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implies (B(w))−1K(w) is a non-negative kernel on B (cf. [6, Theorem 4.1]), indeed, it

must be infinitely divisible. This stronger assumption on the curvature amounts to the

factorization of the kernel K(z, w) = B(z, w)K̃(z, w) for some positive definite kernel K̃

on the ball B with the property:
(
B(z, w)K̃(z, w)

)λ
is non-negative definite for all λ > 0.

For λ > 0, the polarization of the function B(w,w)λ defines a positive definite kernel

Bλ(z, w) on the ball B (cf. [5, Proposition 5.5]). We note that KBλ(w) ≤ KB(w) if and only

if KBλ(0) ≤ KB(0) = −I. Since KBλ(0) = −λ(n+ 1)I, it follows that KBλ(w) ≤ KB(w) if

and only if λ ≥ 1
n+1

. Thus whenever λ ≥ 1
n+1

, we have the point-wise curvature inequality

for Bλ(w,w). However, since the operator of multiplication by the co-ordinate functions

on the Hilbert space corresponding to the kernel Bλ(w,w), is not even a contraction for
1

n+1
≤ λ < n

n+1
, the induced homomorphism can’t be contractive. We therefore conclude

that the curvature inequality does not imply the contractivity of ρT whenever n > 1. For

n = 1, an example illustrating this (for the unit disc) was given in (cf. [6, page2]). Thus the

contractivity of the homomorphism induced by the commuting tuple of the local operators

N(W ), for T ∈ P1(B) does not imply the contractivity of the homomorphism induced by

the commuting tuple of operators T .

5.3.2 The matrix ball

We recall that the positive function Bλ
D, λ > 0, defines an inner product on the finite

dimensional space N (λ)(w) for all λ > 0 irrespective of whether Bλ
D is positive definite on

the matrix ball D or not. In this section, we exclusively study the curvature inequality and

contrativity of the homomorphism ρ
(λ)

N(λ)(w)
(w) induced by the commuting tuples N (λ)(w)

on the finite dimensional Hilbert subspace N (λ)(w), λ > 0. We set K(λ)(w) := KBλD(w),

w ∈ D. If the homomorphism ρ
(λ)

N(λ)(w)
(w) is contractive for some λ > 0, then for this λ,

we have:‖
(
K(λ)t)−1

(0)‖ ≤ 1. Like the Euclidian Ball, we study several implications of the

curvature inequality in this case.

Theorem 5.14. For λ > 0, we have ‖
(
K(λ)t)−1

(0)‖C∗D,0→CD,0 = 1
λp
, p = r + s.

Proof. We have shown that
(
Kt
)−1

(0) = 1
p
Irs. Since CD,0 is the operator norm on (M)rs

and consequently C∗D,0 is the trace norm, it follows that ‖Irs‖C∗D,0→CD,0 ≤ 1. This completes

the proof.

The following Theorem provides a necessary condition for the contractivity of the

homomorphism induced by the commuting tuple of the local operators N (λ)(w).

Theorem 5.15. If the homomorphism ρ
(λ)

N(λ)(w)
is contractive, then ν ≥ 1, where ν = λp.
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Proof. The matrix unit ball D is homogenous. Let θw(w) be the bi-holomorphic au-

tomorphism of D with θw(w) = 0. We have seen that A(w)t = A(0)tDθ−1
w (0). Since

Dθ−1
w (0) is an isometry, therefore the contractivity of ρ

(λ)

N(λ)(w)
(0) implies that contractivity

of ρ
(λ)

N(λ)(w)
(w), w ∈ Ω, see Lemma 5.12. The contractivity of ρ

(λ)

N(λ)(w)
(w) is equivalent to

‖A(0)t‖`2→CD,0 ≤ 1. Therefore the contractivity of ρ
(λ)

N(λ)(w)
(w), for some w ∈ D, implies

‖
(
K(λ)t)− 1

2 (0)‖C∗D,0→CD,0 ≤ 1. Theorem 5.14 shows that ν ≥ 1.

If λ > 0 is picked such that Bλ
D is positive definite, then Arazy and Zhang (cf.

[5, Proposition 5.5]) prove that the homomorphism induced by the commuting tuple of

multiplication operators on the twisted Bergman space A(λ)(D) is bounded (k-spectral) if

and only if ν ≥ s.

It follows that if 1 ≤ ν < s, then the homomorphism induced by the commuting

tuple of multiplication operators is not contractive on twisted Bergman space A(λ)(D).

While the homomorphism ρ
(λ)

N(λ)(w)
(w), w ∈ Ω, is contractive on the finite dimensional

Hilbert space N λ(w). This is equivalent to the curvature inequality for ν ≥ 1. However,

for 1 ≤ ν < s, the rs-tuple of multiplication operators on twisted Bergman space A(λ)(D)

is not contractive .

The localization of N (λ)(w) of any commuting tuple of operators T in P1(D) in-

duces a homomorphism ρ
(λ)

N(λ)(w)
(w) : A(D)→ L(Crs+1) as described in the equation (5.3).

Therefore ρ
(λ)

N(λ)(w)
(w)⊗ Irs : A(D)⊗Mrs → L(N (w))⊗Mrs is given by the formula

ρ
(λ)

N(λ)(w)
(w)⊗ Irs(P ) :=

(
P (w)⊗Irs DP (w)·N(w)

0 P (w)⊗Irs

)
,

where

DP (w) ·N(w) = ∂1P (w)⊗N1(w) + . . .+ ∂dP (w)⊗Nrs(w). (5.12)

The contractivity of ρ
(λ)

N(λ)(w)
(w)⊗ Irs, as shown in (cf. [25, Theorem 1.7], [30, Theorm 4.2])

is equivalent to the contractivity of the operator

‖∂1P (w)⊗N1(w) + . . .+ ∂dP (w)⊗Nrs(w)‖op ≤ 1.

Let PA be the matrix valued polynomial in rs variables:

PA(z) =
r∑
i=1

s∑
j=1

zijEij,

where Eij be the r × s matrices whose (i, j) entries are 1 and other entries are 0. Let

V = (V t
1 , . . . , V

t
rs) be the rs× rs matrix, where

V1 = (v11, 0, . . . , 0sr), . . . , Vsr = (0, . . . , 0, . . . , vsr).
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We compute the norm of ρ
(λ)

N(λ)(w)
(w)⊗ Irs(PA).

Theorem 5.16. For ρ
(λ)

N(λ)(w)
(w)⊗ Irs as above, we have

‖ρ(λ)

N(λ)(w)
(w)⊗ Irs(PA)‖2 = max{

s∑
i=1

|v1i|2, . . . ,
s∑
i=1

|vri|2}.

Proof. We have

‖
(
ρ

(λ)

N(λ)(w)
(w)⊗ Irs

)
(PA)‖2 = ‖V1 ⊗ E11 + . . .+ Vs ⊗ E1s + Vs+1 ⊗ E21 + . . .+ Vrs ⊗ Ers‖2

=

∥∥∥∥∥
(

V1 ... Vs
...

...
...

Vrs−s+1 ... Vrs

)∥∥∥∥∥
2

=

∥∥∥∥(W1

...
Wr

)∥∥∥∥2

,

where Wi =
(
Vis−s+1, . . . , Vis

)
. It is easy to see that WiW

∗
j = 0 for i 6= j. Furthermore,

WiW
∗
i =

∑s
j=1 |vij|2. Hence we have

‖ρ(λ)

N(λ)(w)
(w)⊗ Irs(PA)‖2 = max{

s∑
i=1

|v1i|2, . . . ,
s∑
i=1

|vri|2}

completing the proof of the theorem.

Even for the small class of the form discussed here, homomorphisms finding the cb

norm of ρ
(λ)

N(λ)(w)
(w) is not easy. However, we determine when ‖ρ(λ)

N(λ)(w)
(w)⊗Irs(PA)‖2 ≤ 1.

This gives a necessary condition for the complete contractivity of ρ
(λ)

N(λ)(w)
(w).

Theorem 5.17. If ‖ρ(λ)

N(λ)(w)
(w)⊗ Irs(PA)‖2 ≤ 1, then ν ≥ s.

Proof. By Theorem 5.16 we have

‖ρ(λ)

N(λ)(w)
(w)⊗ Irs(PA)‖2 = max{

s∑
i=1

|v1i|2, . . . ,
s∑
i=1

|vri|2}.

Since |vij|2 = 1
ν
, 1 ≤ i ≤ r, 1 ≤ j ≤ s, it is immediate that ‖ρ(λ)

N(λ)(w)
(w) ⊗ Irs(PA)‖2 ≤ 1

implies ν ≥ s completing the proof of the theorem.

As a consequence, it follows that if 1 ≤ ν < s, then the homomorphism induced by

the commuting tuple of the local operators N (λ)(w) is not completely contractive.
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5.3.3 More examples

We have discussed the Bergman kernel BΩ(w,w) for the domain Ω = {(z1, z2) : |z2| ≤
(1− |z1|2)} ⊂ C2. The curvature KBΩ

(w) =
∑2

i,j=1 Tij(w)dwi ∧ dw̄j of the Bergman Kernel

BΩ(w,w) is (cf. [19, Example 6.2.1]):

T11(w) = 6
( 1

C(w)
− 1

D(w)

)
+ 12|w1|2|w2|2

( 1

C2(w)
+

1

D2(w)

)
,

T12(w) = T̄21(w) = 6w1w̄2(1− |w1|2)
( 1

C2(w)
+

1

D2(w)

)
,

T22(w) = 3(1− |w1|2)2
( 1

C2(w)
+

1

D2(w)

)
,

where C(w) := (1 − |w1|2)2 − |w2|2 and D(w) := 3(1 − |w1|2)2 + |w2|2. We have seen

that the polarization Bλ
Ω(z, w) of the function BΩ(w,w)λ defines a Hermitian structure for

N (λ)(w). Specializing to w = 0, since −
(
K(0)t

)−1
= A(0)tA(0), we have aλ11(0) = 1√

T11(0)

and aλ22(0) = 1√
T22(0)

, where (Aλ(0))t =
(
aλ11(0) 0

0 aλ22(0)

)
.

Theorem 5.18. The contractivity of the homomorphism ρ
(λ)

N(λ)(0) implies 16λ ≥ 5.

Proof. We have aλ11(0) = 1
2
√
λ
, aλ12(0) = 0, aλ22(0) = 3√

10λ
. Contractivity of homomorphism

ρ
(λ)

N(λ)(0) is equivalent to ‖(Aλ(0))t‖`2→CΩ,0 ≤ 1. This is equivalent to (2(aλ11(0))2 − 1)2 ≤
(1− (aλ22(0))2). Hence 16λ ≥ 5 completing our proof.

The bi-holomorphic automorphism group of Ω is not transitive. So the contractivity

of the homomorphism ρ
(λ)

N(λ)(0) does not necessarily imply the contractivity of the homomor-

phism ρ
(λ)

N(λ)(w), w ∈ Ω. Determining which of the homomorphism ρ
(λ)

N(λ)(w) is contractive,

appears to be a hard problem.

Let PA : Ω → (M2)1 be the matrix valued polynomial on Ω defined by PA(z) =

z1A1 +z2A2 where A1 = I2 and A2 = ( 0 1
0 0 ) . It is natural to ask when ρ

(λ)

N(λ)(w) is completely

contractive. As before, we only obtain a necessary condition using the polynomial PA.

Theorem 5.19. ‖ρ(2)

N(λ)(0)(PA)‖ ≤ 1 if and only if λ ≥ 11
20
.

Proof. Suppose that ‖ρ(2)

N(λ)(0)(PA)‖ ≤ 1. Then we have (aλ11(0))2 + (aλ22(0))2 ≤ 1. Hence

λ ≥ 11
20
. The converse verification is also equally easy.

We conclude that if 5
16
≤ λ < 11

20
, the homomorphism ρ

(λ)

N(λ)(0) is contractive but not

completely contractive. An explicit description of the set

{λ : ‖ρ(λ)

N(λ)(w)(PA)‖op ≤ 1, w ∈ Ω}
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would certainly provide greater insight. However, it appears to be quite intractable, at

least for now.

The formula for the Bergman kernel for the domain

Ω := {(z1, z2, z3) : |z2|2 ≤ (1− |z1|2)(1− |z3|2), 1− |z3|2 ≥ 0} ⊂ C3.

is given in Lemma 5.6. From Lemma 5.6 we have Bλ
Ω(z, 0) = 1 and ∂iB

λ
Ω(z, 0) = 0 for

i = 1, 2, 3. Hence the desired curvature matrix is of the form((
(∂i∂̄j logBλ

Ω)(0, 0)
))m
i j=1

.

Let Tij(0) = ∂i∂̄j logBλ
Ω(0, 0), that is, KBΩ

(0) =
∑3

i,j=1 Tij(0)dwi ∧ dw̄j. An easy com-

putation shows that T11(0) = 3λ = T33(0), T22(0) = 9λ
2

and Tij(0) = 0 for i 6= j. As

before, we have aλ11(0) = 1√
T11(0)

, aλ22(0) = 1√
T22(0)

and aλ33(0) = 1√
T33(0)

, where A(0)t =(
aλ11(0) 0 0

0 aλ22(0) 0

0 0 aλ33(0)

)
.

Theorem 5.20. The contractivity of the homomorphism ρ
(λ)

N(λ)(0) implies λ ≥ 1
4
.

Proof. From Lemma (5.13) we have aλ11(0) = 1√
3λ
, aλ12(0) = aλ13(0) = 0, aλ22(0) =

√
2

3
√
λ
, aλ23(0) =

0 and aλ33(0) = 1√
3λ
. The contractivity of the homomorphism ρ

(λ)

N(λ)(w)
(w)(0) is equivalent

to
∥∥A(0)t‖2

`2→CΩ,0 ≤ 1. This is equivalent to |aλ11(0)|2(1− |aλ33(0)|2) ≥ (|aλ22(0)|2− |aλ33(0)|2).

Hence we have λ ≥ 1
4
.

For our final example, let PA : Ω→ (M2)1 be also the matrix valued polynomial on

Ω defined by PA(z) = z1A1 + z2A2 + z3A3 where A1 = ( 1 0
0 0 ) , A2 = ( 0 1

0 0 ) , A3 = ( 0 0
0 1 ) .

Theorem 5.21. ‖ρ(2)

N(λ)(0)(PA)‖ ≤ 1 if and only if λ ≥ 5
9
.

Proof. Suppose that ‖ρ(2)

N(λ)(0)(PA)‖ ≤ 1. Then we have

max{(aλ11(0))2 + (aλ22(0))2, (aλ33(0))2} ≤ 1.

Hence λ ≥ 5
9
. The converse statement is easily verified.

Thus if 1
4
≤ λ < 5

9
, the homomorphism ρ

(λ)

N(λ)(0) is contractive but not completely

contractive.



Chapter 6

Contractivity vs. complete

contractivity

6.1 Homomorphisms induced by m vectors

We now assume that vi = (vi1, . . . , vim) , 1 ≤ i ≤ m, is a vector in Cm. The commuting

tuple

N(V,w) := (( w1 v1
0 w1Im ) , · · · , ( wm vm

0 wmIm )) ,

w = (w1, . . . , wm) ∈ ΩA, defines a homomorphism ρV : O(ΩA)→Mm+1 which is given by

the formula

ρV (f) =
(
f(w) ∇f(w)V

0 f(w)I

)
, f ∈ O(ΩA),

where ∇f(w)V = ∂1f(w)v1 +· · ·+∂mf(w)vm. We derive a criterion for contractivity of the

homomorphism ρV .We also compute ‖ρ(n)
V (PA)‖, where PA(z1, . . . , zm) = z1A1 + · · ·+ zmAm.

If f : ΩA 7−→ D is a holomorphic function with f(0) = 0 and ||f ||∞,D ≤ 1, then the vector

(∂1f(0), . . . , ∂mf(0)) is in the dual unit ball (Cm, ‖ · ‖∗ΩA
)1(see Corollary 2.12). Now,

sup{‖ρV (f)‖ : ‖f‖∞,D ≤ 1} = sup{‖ρV (f)‖ : ‖f‖∞,D ≤ 1, f(0) = 0}
= sup{‖ ∂1f(0)v1 + · · ·+ ∂mf(0)vm ‖ : ‖f‖∞,D ≤ 1, f(0) = 0}
= sup{‖λ1v1 + · · ·+ λmvm ‖ : (λ1, . . . , λm) ∈ (Cm, ‖ · ‖∗ΩA

)1}.

Let LV : (Cm, ‖ · ‖∗ΩA
)→ (Cm, ‖ · ‖2) be the linear map induced by the matrix (vt

1, . . . ,v
t
m).

The matrix representing LV also gives a matrix representation of the adjoint

L∗V : (Cm, ‖ · ‖2)→ (Cm, ‖ · ‖ΩA
).

Clearly, ‖LV ‖(Cm,‖ · ‖∗ΩA
)→(Cm,‖ · ‖2) ≤ 1 if and only if ‖L∗V ‖(Cm,‖ · ‖2)→(Cm,‖ · ‖ΩA

) ≤ 1 if

and only if ‖ ρV ‖O(ΩA)→M(Cm+1) ≤ 1. In characterizing the contractivity of ρV , we will often
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determine if ‖L∗V ‖(Cm,‖ · ‖2)→(Cm,‖ · ‖ΩA
) ≤ 1. The following proposition gives a criterion for

the contractivity of ρV .

Proposition 6.1. The following conditions are equivalent:

(i) ρV is contractive,

(ii) sup∑m
j=1 |xj |2≤1 ‖

∑m
j=1 xjBj‖2 ≤ 1, where Bj =

∑m
i=1 vijAi,

(iii)

B(β, β) =


1−〈B1B∗1β,β〉 −〈B1B∗2β,β〉 ... −〈B1B∗mβ,β〉

−〈B2B∗1β,β〉 1−〈B2B∗2β,β〉 ... −〈B2B∗mβ,β〉
...

...
...

...
−〈BmB∗1β,β〉 −〈BmB∗2β,β〉 ... 1−〈BmB∗mβ,β〉

 ≥ 0, (6.1)

where
∑n

i=1 |βi|2 = 1.

Proof. First we will prove that (i) and (ii) are equivalent. We have earlier seen that

‖L∗V ‖(Cm,‖ · ‖2)→(Cm,‖ · ‖ΩA
) ≤ 1 if and only if ‖ ρV ‖O(ΩA)→M(Cm+1) ≤ 1. The matrix represen-

tation of L∗V is of the form

( v11 ... v1m

...
...

...
vm1 ... vmm

)
. Since L∗V maps (Cm, ‖ · ‖2) into (Cm, ‖ · ‖ΩA

), we

have

( v11 ... v1m

...
...

...
vm1 ... vmm

)( x1

...
xm

)
∈ (Cm, ‖ · ‖ΩA

). Thus ‖L∗V ‖(Cm,‖ · ‖2)→(Cm,‖ · ‖ΩA
) ≤ 1 if and only if

sup∑m
j=1 |xj |2≤1 ‖

∑m
j=1 xjBj‖2 ≤ 1, where Bj =

∑m
i=1 vijAi. Hence (i) and (ii) are equivalent.

To see that (ii) and (iii) are equivalent note that sup∑m
j=1 |xj |2≤1 ‖

∑m
j=1 xjBj‖2 ≤ 1 if

and only if

In −
m∑
j=1

|xj |2BjB∗j −
m∑
i=1

m∑
j,i<j

xix̄jBiB
∗
j −

m∑
j=1

m∑
i,j<i

x̄jxiBiB
∗
j ≥ 0

which is clearly equivalent to

m∑
j=1

|xj|2
〈
(In −BjB

∗
j )α, α

〉
−

m∑
i=1

m∑
j,i<j

xix̄j
〈
BiB

∗
jα, α

〉
−

m∑
j=1

m∑
i,j<i

x̄jxi
〈
BiB

∗
jα, α

〉
≥ 0.

Or, equivalently,

〈
〈(In−B1B∗1 )α,α〉 −〈B1B∗2α,α〉 ... −〈B1B∗mα,α〉

−〈B2B∗1α,α〉 〈(In−B2B∗2 )α,α〉 ... −〈B2B∗mα,α〉
...

...
...

...
−〈BmB∗1α,α〉 −〈BmB∗2α,α〉 ... 〈(In−BmB∗m)α,α〉


 x1

...

...
xm

 ,

 x1

...

...
xm

〉 ≥ 0. (6.2)

Putting β = α
‖α‖ in Equation (6.2) we verify Equation (6.1). This completes the proof of

the proposition.
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In particular, if B1 = v11A1 + v21A2 and B2 = v12A1 + v22A2, then we have

sup
|x|2+|y|2≤1

‖xB1 + yB2‖2 ≤ 1,

which is equivalent to one of 1− 〈B1B
∗
1β, β〉 ≥ 0 or 1− 〈B2B

∗
2β, β〉 ≥ 0 and

inf
β
{1− 〈B1B

∗
1β, β〉 − 〈B2B

∗
2β, β〉+ 〈B1B

∗
1β, β〉 〈B2B

∗
2β, β〉 − | 〈B1B

∗
2β, β〉 |2} ≥ 0, (6.3)

for all β ∈ C2 with ‖β‖2 = 1. Hence ‖ ρV ‖O(ΩA)→M(C3) ≤ 1 if and only if 1−〈B1B
∗
1β, β〉 ≥ 0

and

inf
β
{1− 〈B1B

∗
1β, β〉 − 〈B2B

∗
2β, β〉+ 〈B1B

∗
1β, β〉 〈B2B

∗
2β, β〉 − | 〈B1B

∗
2β, β〉 |2} ≥ 0. (6.4)

The following proposition gives a criterion for the contractivity of ρ
(n)
V (PA).

Proposition 6.2. The following conditions are equivalent:

(i) ‖ρ(n)
V (PA)‖ ≤ 1,

(ii) ‖(B1, . . . , Bm)‖ ≤ 1, where Bi =
∑m

j=1 vijAj,

(iii) 1−
∑m

i=1

∑m
j=1〈BiB

∗
jβ, β〉 ≥ 0, where β = (β1, . . . , βm) ∈ Cm and

∑m
i=1 |βi|2 = 1.

Proof. First we will prove that (i) and (ii) are equivalent. Since PA(0) = 0, it follows from

Proposition 2.17 that ‖ρ(n)
V (PA)‖ ≤ 1 if and only if

‖A1 ⊗ v1 + . . .+ Am ⊗ vm‖ ≤ 1.

For vi = (vi1, . . . , vim) , we have

A1 ⊗ v1 + . . .+ Am ⊗ vm = (B1, . . . , Bm).

Thus ρ
(n)
V (PA) is contractive if and only if ‖(B1, . . . , Bm)‖ ≤ 1. Hence (i) is equivalent

to (ii).

Now, we will prove that (ii) implies (iii). Let T = (B1, . . . , Bm). The contractivity

of T is equivalent to the positivity of I − TT ∗, which is equivalent to 〈(I − TT ∗)α, α〉 ≥ 0

for all α. In particular, putting β = α
‖α‖ , we have (iii). Clearly, (iii) implies (i) completing

the proof.

Example 6.3. If A1 = I2 and A2 = ( 0 1
0 0 ) , then the homomorphism ρV is contractive if and

only if |v|2 ≤ 1 and

inf
β
{1− |v|2 − |w|2|β1|2 + |vw|2|β1|4} ≥ 0.
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Also, ‖PA(T1, T2)‖ ≤ 1 if and only if

inf
β
{1− |v|2 − |w|2|β1|2} ≥ 0.

If v1 = ( 1√
2
, 0) and v2 = (0, 1), then it is easy to see that the homomorphism ρV is

contractive. But for this choice of v1,v2 we have ‖PA(T1, T2)‖ > 1. Hence this contractive

homomorphism ρV is not completely contractive.

Let ΩA = {(z1, z2) : ‖z1A1 + z2A2‖op < 1} be a domain in C2, where A1 =
(

1 0
0 d2

)
or(

d1 0
0 1

)
and A2 = ( 0 b

c 0 ) , ( 1 b
c 0 ) or ( 0 b

c 1 ) with b ∈ R+. Let PA : ΩA → (M2)1 be the matrix

valued polynomial of the form PA(z) = z1A1 + z2A2. In particular, if B1 = v11A1 + v21A2

and B2 = v12A1 + v22A2, then ‖ρ(2)
V (PA)‖ ≤ 1 if and only if

inf
β
{1− 〈B1B

∗
1β, β〉 − 〈B2B

∗
2β, β〉} ≥ 0, (6.5)

where ‖β‖2 = 1. Finding a V such that ‖LV ‖(C2,‖ · ‖∗ΩA
)→(C2,‖ · ‖2) ≤ 1 for which ‖ρ(2)

V (PA)‖op > 1

produces an example of a contractive homomorphism of O(ΩA) which is not completely

contractive. Thus it is enough to find v1 and v2 for which inequality (6.4) is valid

while inequalities (6.5) fails. Luckily for us, to find such an example, it is enough to

choose v1 = (v, 0) and v2 = (0, w). In this case, the inequality (6.4) is equivalent to

infβ{1− |v|2‖A∗1β‖2} ≥ 0 and

inf
β
{1− |v|2‖A∗1β‖2 − |w|2‖A∗2β‖2 + |vw|2(‖A∗1β‖2‖A∗2β‖2 − | 〈A1A

∗
2β, β〉 |2)} ≥ 0. (6.6)

and the inequality (6.5) is equivalent to

inf
β
{1− |v|2‖A∗1β‖2 − |w|2‖A∗2β‖2} ≥ 0. (6.7)

Define g(v,w) : ∂B2 → R ∪ {0} by

g(v,w)(β) = 1− |v|2‖A∗1β‖2 − |w|2‖A∗2β‖2 + |vw|2(‖A∗1β‖2‖A∗2β‖2 − | 〈A1A
∗
2β, β〉 |2),

where B2 is the closed unit ball in C2 with respect to the `2 norm. Since g is continuous

and ∂B2 is compact, it follows that infβ g(v,w)(β) exists. Hence ‖ρV ‖ ≤ 1 is equivalent to

|v|2 ≤ 1
‖A∗1|2

and infβ g(v,w)(β) ≥ 0.

Theorem 6.4. If A1 and A2 are not simultaneously diagonalizable, then there exists a

contractive linear map from (C2, ‖ · ‖ΩA
) to Mn(C) which is not completely contractive.

Proof. Fix v1 = (v, 0),v2 = (0, w). Let L(v1,v2) : (C2, ‖ · ‖∗ΩA
)→ (C2, ‖ · ‖2) be the linear

map (z1, z2) 7→ (z1v, z2w). The contractivity of L(v1,v2) : (C2, ‖ · ‖∗ΩA
) → (C2, ‖ · ‖2) is
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equivalent to |v|2 ≤ 1
‖A∗1‖2

and (v, w) ∈ E := {(v, w) : infβ,‖β‖2=1 g(v,w)(β) ≥ 0} and the

contractivity of L
(2)
(v1,v2)(PA) is shown to be equivalent to the condition

inf
β
{1− |v|2‖A∗1β‖2 − |w|2‖A∗2β‖2 : ‖β‖2 = 1} ≥ 0.

Pick (v, w) such that w = λv, λ > 0. There exists β in C2 such that either (A∗2−µA∗1)β = 0

or (A∗1 − νA∗2)β = 0 for some µ, ν ∈ C. The set

B := {β : ‖β‖2 = 1, (A∗2 − µA∗1)β = 0 or (A∗1 − νA∗2)β = 0 for some µ, ν ∈ C}

of these vectors is non-empty. The proof of the theorem involves two steps:

Claim 1: We show that there exists a λ > 0, say λ0, such that (v, λ0v) is in E with

the property:

g(v,λ0v)(β
′′) > g(v,λ0v)(β

′) > g(v,λ0v)(β) or g(v,λ0v)(β
′) > g(v,λ0v)(β

′′) > g(v,λ0v)(β) when-

ever β′, β′′ ∈ B.
Claim 2: We then prove that there exists a v (|v| < 1

‖A∗1‖
, this is necessary for con-

tractivity), say v0, such that infβ g(v0, λ0v0)(β) = 0, that is,

inf
β
{1− |v0|2‖A∗1β‖2 − |λ0v0|2‖A∗2β‖2 + λ2

0|v0|4(‖A∗1β‖2‖A∗2β‖2 − | 〈A1A
∗
2β, β〉 |2)} = 0.

Hence there exists a β0 such that

1− |v0|2‖A∗1β0‖2 − |λ0v0|2‖A∗2β0‖2 + λ2
0|v0|4(‖A∗1β0‖2‖A∗2β0‖2 − | 〈A1A

∗
2β0, β0〉 |2) = 0

which is equivalent to ‖L(2)
(v1,v2)(PA)‖ > 1. This completes the proof subject to the verifi-

cation of Claims 1 and 2.

In the remaining part of this chapter, we will carry out this verification on a case by

case basis. This involves four cases, namely, (i) b 6= |c| and |d2| = 1, (ii) b = |c| and |d2| 6= 1,

(iii) b = |c| and |d2| = 1 and (iv) b 6= |c| and |d2| 6= 1. For case (iv) we have shown in Chap-

ter 3 that there exists a contractive linear map from (C2, ‖ · ‖ΩA
) to Mn(C) which is not

completely contractive. We will prove Theorem 6.4 for the remaining cases. The existence

of a λ > 0, say λ0, such that (v, λ0v) is in E with the property:

g(v,λ0v)(β
′′) > g(v,λ0v)(β

′) > g(v,λ0v)(β) or g(v,λ0v)(β
′) > g(v,λ0v)(β

′′) > g(v,λ0v)(β) when-

ever β′, β′′ ∈ B follows from Theorems 6.5 and 6.6.

Theorem 6.5. Let A1 be of the form
(

1 0
0 d2

)
or
(
d1 0
0 1

)
and A2 be of the form ( 1 b

c 0 ) or ( 0 b
c 1 )

and assume that they are not simultaneously diagonalizable. Then there exists (v, λ0v) in

E such that neither g(v, λ0v)(β
′
) nor g(v, λ0v)(β

′′) is equal to infβ g(v, λ0v)(β).
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Proof. Suppose A1 =
(

1 0
0 d2

)
, A2 = ( 1 b

c 0 ) . The homomorphism ρV is contractive, that is,

‖ρV ‖ ≤ 1 if and only if ‖L(v1,v2)‖(C2,‖ · ‖∗ΩA
)→(C2,‖ · ‖2) ≤ 1 if and only if |v|2 ≤ 1

‖A∗1‖2
and

(v, w) ∈ E . Now,

inf
β
g(v, λv)(β) = inf

β
{1− |v|2 − λ2|v|2(1 + b2)}|β1|2 + {1− |v|2|d2|2 − λ2|v|2|c|2}|β2|2

−2λ2|v|2<cβ1β̄2 + λ2|v|4|bβ̄1
2 − d2β̄2(β̄1 + cβ̄2)|2. (6.8)

The proof of the theorem involves three distinct cases as indicated above. For each case

we will follow the following steps:

Step 1: First we show there exists a λ > 0 say λ0, such that either g(v, λ0v)(β
′′) >

g(v, λ0v)(β
′) or g(v, λ0v)(β

′′) < g(v, λ0v)(β
′).

Step 2: If g(v, λ0v)(β
′′) > g(v, λ0v)(β

′) (resp. g(v, λ0v)(β
′) > g(v, λ0v)(β

′′)), then we show

that there exists a β such that g(v, λ0v)(β
′) > g(v, λ0v)(β) (resp. g(v, λ0v)(β

′′) > g(v, λ0v)(β)).

Case (i): Here b 6= |c| and |d2| = 1, that is, A1 =
(

1 0
0 exp(iθ)

)
and A2 = ( 1 b

c 0 ) with

b 6= |c|. Let U =
(

1 0
0 exp(−iθ)

)
. Then U is a unitary and the pair (A1U,A2U) determines the

same set ΩA. So, we may assume without loss of generality that A is of the form (I2, ( 1 b
c 0 ))

with b, c ∈ C, |b| 6= |c|. Let W be a unitary such that WA2W
∗ = ( α γ

0 δ ) , where α, β are the

eigenvalue of A2 with |α|2 ≥ |δ|2. Therefore, without loss of generality we may also assume

that A1 = I2 and A2 = ( α γ
0 δ ) with |α|2 ≥ |δ|2. Then Equation (6.8) is equivalent to the

condition |v|2 ≤ 1 and

inf
β
g(v, λv)(β) = inf

β
{1− |v|2 − λ2|v|2(|α|2 + |γ|2)}|β1|2 + {1− |v|2 − λ2|v|2|δ|2}|β2|2

− 2λ2|v|2<γ̄β1β̄2δ + λ2|v|4|β̄1(γβ̄1 + δβ̄2)− β̄2αβ̄1|2. (6.9)

The roots of det(A∗2 − µA∗1) = 0 are µ1 = ᾱ, µ2 = δ̄. The vectors β′, β′′ satisfying (A∗2 −
µ1A

∗
1)β′ = 0 and (A∗2 − µ2A

∗
1)β′′ = 0 are

β′ =
( |δ − α| exp(iθ)√
|δ − α|2 + |γ|2

,
−γ̄ exp i(θ − φ)√
|δ − α|2 + |γ|2

)
,

β′′ = (0, exp(iψ)) respectively, where δ̄ − ᾱ = |δ − α| exp(iφ). From Equation (6.9) it is

easy to see that

g(v, λv)(β
′) = {1−|v|2−λ2|v|2(|α|2 +|γ|2)}|β′1|2 +{1−|v|2−λ2|v|2|δ|2}|β ′2|2−2λ2|v|2<γ̄β′1β̄

′

2δ

and g(v, λv)(β
′′) = 1− |v|2 − λ2|v|2|δ|2, where β′ = (β′1, β

′
2). Note that

g(v, λv)(β
′′)− g(v, λv)(β

′) = λ2|v|2(|α|2 + |γ|2 − |δ|2)|β′1|2 + 2λ2|v|2<γ̄β′1β̄′2δ
= λ2|v|2(|α|2 − |δ|2). (6.10)
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(a) We assume that |α|2 > |δ|2. Since |α|2 > |δ|2, from Equation (6.10) we have g(v, λv)(β
′′) >

g(v, λv)(β
′). Hence we conclude that infβ g(v, λv)(β) 6= g(v, λv)(β

′′).

In order to prove Step 2, it is sufficient to observe that

g(v, λv)(β
′)− g(v, λv)((1, 0)) = λ2|v|2(|α|2 + |γ|2 − |δ|2)|β′2|2 − 2λ2|v|2<γ̄β′1β̄′2δ − λ2|v|4|γ|2

= λ2|v|2(|α|2 + |γ|2 − |δ|2)
|γ|2

|δ − α|2 + |γ|2

+
2λ2|v|2|γ|2<δ(δ̄ − ᾱ)

|δ − α|2 + |γ|2
− λ2|v|4|γ|2

= λ2|v|2|γ|2(1− |v|2). (6.11)

The Equation (6.11) shows that for all |v| ∈ [0, 1), for all λ, there exists a β = (1, 0)

such that g(v, λv)(β
′) > g(v, λv)((1, 0)). We therefore conclude that neither g(v, λ0v)(β

′)

nor g(v, λ0v)(β
′′) is equal to infβ g(v, λ0v)(β) for any v with |v| < 1.

(b) Suppose |α|2 = |δ|2. Then from Equation (6.10) we have g(v, λv)(β
′′) = g(v, λv)(β

′).

From Equation (6.11) we see that g(v, λv)(β
′) − g(v, λv)((1, 0) = λ2|v|2|γ|2(1 − |v|2).

Therefore it follows that for all |v| ∈ [0, 1) and for all λ, there exists a β = (1, 0) such

that g(v, λv)(β
′) > g(v, λv)((1, 0)). Hence we see that neither g(v, λ0v)(β

′) nor g(v, λ0v)(β
′′)

is equal to infβ g(v, λ0v)(β) for any v with |v| < 1.

The roots of det(νA∗2 − A∗1) = 0 are ν1 = 1
ᾱ
, ν2 = 1

β̄
. The vectors β′, β′′ satisfying (ν1A

∗
2 −

A∗1)β′ = 0 and (ν2A
∗
2 − A∗1)β′′ = 0 are

β′ =
( |δ − α| exp(iθ)√
|δ − α|2 + |γ|2

,
−γ̄ exp i(θ − φ)√
|δ − α|2 + |γ|2

)
,

β′′ = (0, exp(iψ)) respectively, where δ̄− ᾱ = |δ−α| exp(iφ). Proceeding the same way, as

above, we also find that neither g(v, λ0v)(β
′) nor g(v, λ0v)(β

′′) is equal to infβ g(v, λ0v)(β) for

any v with |v| < 1.

Case (ii): In this case, A1 =
(

1 0
0 d2

)
, A2 =

(
1 |c|
c 0

)
with |d2| 6= 1. The roots of det(A∗2−

µA∗1) = 0 are

µ1 =

√
d̄2 +

√
d̄2 + 4|c|c̄

2
√
d̄2

, µ2 =

√
d̄2 −

√
d̄2 + 4|c|c̄

2
√
d̄2

.

The vectors β′, β′′ satisfying (A∗2 − µ1A
∗
1)β′ = 0 and (A∗2 − µ2A

∗
1)β′′ = 0 are

β′ =
( |c| exp(iθ1)√
|µ2|2 + |c|2

,
−µ2 exp i(θ1 − φ1)√

|µ2|2 + |c|2
)

and

β′′ =
( |c| exp(iθ2)√
|µ1|2 + |c|2

,
−µ1 exp i(θ2 − φ1)√

|µ1|2 + |c|2
)
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respectively, where c̄ = |c| exp(iφ1). Substituting β = β′ and β = β′′ in Equation (6.8) we

have

g(v, λv)(β
′) = {1− |v|2 − λ2|v|2(1 + |c|2)}|β′1|2 + {1− |v|2|d2|2 − λ2|v|2|c|2}|β′2|2 − 2λ2|v|2<cβ′1β̄′2

and

g(v, λv)(β
′′) = {1− |v|2 − λ2|v|2(1 + |c|2)}|β′′1 |2 + {1− |v|2|d2|2 − λ2|v|2|c|2}|β′′2 |2 − 2λ2|v|2<cβ′′1 β̄′′2 ,

where β′ = (β′1, β
′
2) and β′′ = (β′′1 , β

′′
2 ) . Now,

g(v, λv)(β
′)− g(v, λv)(β

′′) = {1− |v|2 − λ2|v|2(1 + |c|2)}(|β′1|2 − |β′′1 |2)

+ {1− |v|2|d2|2 − λ2|v|2|c|2}(|β′2|2 − |β′′2 |2)− 2λ2|v|2r, (6.12)

where r = <c(β′1β̄′2 − β′′1 β̄′′2 ), depends only on A1, A2.

Since A1 and A2 are not simultaneously diagonalizable by hypothesis, it follows that

c 6= 0, or equivalently, β′1 6= 0. Similarly we show that β′′2 6= 0. Without loss of generality

we can assume that |β′1|2 ≥ |β′′1 |2. This splits into two cases, namely, (a)|β′1|2 > |β′′1 |2, which

is equivalent to r 6= 0. and (b)|β′1|2 = |β′′1 |2 which is equivalent to r = 0. We now consider

these two cases separately.

(a) Suppose |β′1|2 > |β′′1 |2 which is equivalent to r 6= 0. Since |β′1|2 > |β′′1 |2 we have

|β′1|2− |β′′1 |2 = δ1 > 0. Also, from above relation it follows that (|β′2|2− |β′′2 |2) = −δ1.

Substituting (|β′1|2 − |β′′1 |2) = δ1 in Equation (6.12) we have

g(v, λv)(β
′)− g(v, λv)(β

′′) = {|v|2(|d2|2 − 1)− λ2|v|2)}δ1 − 2λ2|v|2r. (6.13)

Now, we have several possibilities which are listed below.

• 1 < |d2|, −1 + 2<µ̄1 > 0, r > 0:

From Equation (6.13) we observe that g(v, λv)(β
′) > g(v, λv)(β

′′) if λ2 < (|d2|2−1)δ1
(δ1+2r)

.

Hence infβ g(v, λv)(β) 6= g(v, λv)(β
′) for all λ, λ2 < (|d2|2−1)δ1

(δ1+2r)
.

Evaluating g(v, λv) at (0, 1), we have

g(v, λv)((0, 1)) = {1− |v|2|d2|2 − λ2|v|2|c|2}+ λ2|v|4|cd2|2

which gives

g(v, λv)(β
′′)− g(v, λv)((0, 1))

=
|c|2|v|2

(|µ1|2 + |c|2)
{(|d2|2 − 1)− λ2 + 2λ2<µ̄1 − λ2|v|2|d2|2(|µ1|2 + |c|2)}.(6.14)

Since |d2| > 1, from Equation (6.14), we have g(v, λv)(β
′′) > g(v, λv)((0, 1)) for all

λ and for all v, |v|2 ≤ −1+2<µ̄1

|d2|2(|µ1|2+|c|2)
.
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Also, from Equation (6.14), we obtain g(v, λv)(β
′′) > g(v, λv)((0, 1)) for all λ,

λ2 <
(|d2|2 − 1)

1− 2<µ̄1 + |v|2|d2|2(|µ1|2 + |c|2)

and for all v, |v|2 > −1+2<µ̄1

|d2|2(|µ1|2+|c|2)
. Thus we have g(v, λv)(β

′′) > g(v, λv)((0, 1)) for

all λ,

λ2 <
(|d2|2 − 1)

1− 2<µ̄1 + |v|2|d2|2(|µ1|2 + |c|2)
)

for all v, v > 0.

We therefore conclude that neither g(v, λv)(β
′) nor g(v, λv)(β

′′) is equal to infβ g(v, λv)(β)

for any v with |v| in (0, 1
‖A∗1‖

] and for any λ with

λ2 < min
{ (|d2|2 − 1)

1− 2<µ̄1 + |v|2|d2|2(|µ1|2 + |c|2)
,
(|d2|2 − 1)δ1

(δ1 + 2r)

}
.

• 1 < |d2|, −1 + 2<µ̄1 < 0, r > 0:

From Equation (6.13) we observe that g(v, λv)(β
′) > g(v, λv)(β

′′) if λ2 < (|d2|2−1)δ1
(δ1+2r)

.

Hence infβ g(v, λv)(β) 6= g(v, λv)(β
′) for all λ, λ2 < (|d2|2−1)δ1

(δ1+2r)
.

Since |d2| > 1, from Equation (6.14), we have g(v, λv)(β
′′) > g(v, λv)((0, 1)) for all

λ,

λ2 <
(|d2|2 − 1)

1− 2<µ̄1 + (|µ1|2 + |c|2)

and for all v, |v| in (0, 1
‖A∗1‖

].

Thus we conclude that neither g(v, λv)(β
′) nor g(v, λv)(β

′′) is equal to infβ g(v, λv)(β)

for any v with |v| in (0, 1
‖A∗1‖

] and for any λ with

λ2 < min
{ (|d2|2 − 1)

1− 2<µ̄1 + (|µ1|2 + |c|2)
,
(|d2|2 − 1)δ1

(δ1 + 2r)

}
.

• |d2| > 1, 1− 2<µ̄1 > 0, r < 0, 2r + δ1 < 0:

From Equation (6.13) we have g(v, λv)(β
′′) < g(v, λv)(β

′) for all λ. Hence we have

infβ g(v, λv)(β) 6= g(v, λv)(β
′) for all λ.

Since |d2| > 1, from Equation (6.14) we have g(v, λv)(β
′′) > g(v, λv)((0, 1)) for all

λ and for all v, |v|2 ≤ −1+<µ̄1

|d2|2(|µ1|2+|c|2)
.

Also, from Equation (6.14) we obtain g(v, λv)(β
′′) > g(v, λv)((0, 1)) for all λ,

λ2 <
(|d2|2 − 1)

1− 2<µ̄1 + |v|2|d2|2(|µ1|2 + |c|2)
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and for all v, |v|2 > −1+<µ̄1

|d2|2(|µ1|2+|c|2)
. Thus we have g(v, λv)(β

′′) > g(v, λv)((0, 1)) for

all λ,

λ2 <
(|d2|2 − 1)

1− 2<µ̄1 + |v|2|d2|2(|µ1|2 + |c|2)

and for all v, v > 0.

We therefore conclude that neither g(v, λv)(β
′) nor g(v, λv)(β

′′) is equal to infβ g(v, λv)(β)

for any v with |v| in (0, 1
‖A∗1‖

] and for any λ with

λ2 <
(|d2|2 − 1)

1− 2<µ̄1 + |d2|2|v|2(|µ1|2 + |c|2)
,

• |d2| > 1, 1− 2<µ̄1 < 0, r < 0, 2r + δ1 < 0:

From Equation (6.13) we have g(v, λv)(β
′′) < g(v, λv)(β

′) for all λ. Hence we con-

clude that infβ g(v, λv)(β) 6= g(v, λv)(β
′) for all λ.

Since |d2| > 1, from Equation (6.14), we have g(v, λv)(β
′′) > g(v, λv)((0, 1)) for all

λ with

λ2 <
(|d2|2 − 1)

1− 2<µ̄1 + (|µ1|2 + |c|2)

and for all v with |v| in (0, 1
‖A∗‖ ].

Hence if λ is chosen with

λ2 <
(|d2|2 − 1)

1− 2<µ̄1 + (|µ1|2 + |c|2)
,

then it follows that neither g(v, λv)(β
′) nor g(v, λv)(β

′′) is equal to infβ g(v, λv)(β)

for any v with |v| in (0, 1
‖A∗1‖

].

• |d2| > 1, 1− 2<µ̄1 > 0, r < 0, 2r + δ1 > 0:

From Equation (6.13), we have g(v, λv)(β
′′) < g(v, λv)(β

′) if λ2 < (|d2|2−1)δ1
(δ1+2r)

. Hence

we have infβ g(v, λv)(β) 6= g(v, λv)(β
′) for all λ, λ2 < (|d2|2−1)δ1

(δ1+2r)
.

From Equation (6.14) we have g(v, λv)(β
′′) > g(v, λv)((0, 1)) for all λ and for all v,

|v|2 ≤ −1+<µ̄1

|d2|2(|µ1|2+|c|2)
.

Also, from Equation (6.14) we obtain g(v, λv)(β
′′) > g(v, λv)((0, 1)) for all λ,

λ2 <
(|d2|2 − 1)

1− 2<µ̄1 + |v|2|d2|2(|µ1|2 + |c|2)

and for all v, |v|2 > −1+<µ̄1

|d2|2(|µ1|2+|c|2)
.

Thus we have g(v, λv)(β
′′) > g(v, λv)((0, 1)) for all λ,

λ2 <
(|d2|2 − 1)

1− 2<µ̄1 + |v|2|d2|2(|µ1|2 + |c|2)
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and for all v, v > 0.

If λ is chosen with

λ2 < min
{ (|d2|2 − 1)

1− 2<µ̄1 + |v|2|d2|2(|µ1|2 + |c|2)
,
(|d2|2 − 1)δ1

(δ1 + 2r)

}
,

then neither g(v, λv)(β
′) nor g(v, λv)(β

′′) is equal to infβ g(v, λv)(β) for any v with

|v| in (0, 1
‖A∗1‖

].

• |d2| > 1, 1− 2<µ̄1 < 0, r < 0, 2r + δ1 > 0:

From Equation (6.13), we have g(v, λv)(β
′′) < g(v, λv)(β

′) if λ2 < (|d2|2−1)δ1
(δ1+2r)

. Hence

we have infβ g(v, λv)(β) 6= g(v, λv)(β
′) for all λ, λ2 < (|d2|2−1)δ1

(δ1+2r)
.

From Equation (6.14), we also have g(v, λv)(β
′′) > g(v, λv)((0, 1)) for all λ,

λ2 <
(|d2|2 − 1)

1− 2<µ̄1 + (|µ1|2 + |c|2)

and for all v, |v| in (0, 1
‖A∗1‖

].

If λ is chosen with

λ2 < min
{ (|d2|2 − 1)

1− 2<µ̄1 + (|µ1|2 + |c|2)
,
(|d2|2 − 1)δ1

(δ1 + 2r)

}
,

then neither g(v, λv)(β
′) nor g(v, λv)(β

′′) is equal to infβ g(v, λv)(β) for any v with

|v| in (0, 1
‖A∗1‖

].

• |d2| < 1, |µ2|2 + 2|c|2<µ̄2 > 0, r > 0:

From Equation (6.13), it is easy to see that g(v, λv)(β
′′) > g(v, λv)(β

′) for all λ.

Hence infβ g(v, λv)(β) 6= g(v, λv)(β
′′) for all λ.

Also, note that

g(v, λv)(β
′)− g(v, λv)((1, 0)) =

|v|2

(|µ2|2 + |c|2)
{(1− |d2|2)|µ2|2 + λ2|µ2|2

+ 2λ2|c|2<µ̄2 − λ2|v|2(|µ2|2 + |c|2)|c|2}. (6.15)

From Equation (6.15), We have g(v, λv)(β
′) > g(v, λv)((1, 0)) for all λ and for all

v, |v|2 ≤ (|µ2|2+2|c|2<µ̄2)
|c|2(|µ2|2+|c|2)

.

Also, from Equation (6.15), we obtain g(v, λv)(β
′) > g(v, λv)((1, 0)) for all λ,

λ2 <
(1− |d2|2)|µ2|2

|v|2|c|2(|µ2|2 + |c|2)− |µ2|2 − 2|c|2<µ̄2

and for all v, |v|2 > (|µ2|2+2|c|2<µ̄2)
|c|2(|µ2|2+|c|2)

. Thus we have g(v, λv)(β
′) > g(v, λv)((1, 0)) for

all

λ2 <
(1− |d2|2)|µ2|2

|v|2|c|2(|µ2|2 + |c|2)− |µ2|2 − 2|c|2<µ̄2
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and for all v, v > 0.

We therefore conclude that neither g(v, λv)(β
′) nor g(v, λv)(β

′′) is equal to infβ g(v, λv)(β)

for any v with |v| in (0, 1
‖A∗1‖

] and for any λ with

λ2 <
(1− |d2|2)|µ2|2

|v|2|c|2(|µ2|2 + |c|2)− |µ2|2 − 2|c|2<µ̄2

.

• |d2| < 1, |µ2|2 + 2|c|2<µ̄2 < 0, r > 0:

From Equation (6.13), it is easy to see that g(v, λv)(β
′′) > g(v, λv)(β

′) for all λ.

Hence infβ g(v, λv)(β) 6= g(v, λv)(β
′′) for all λ.

If λ is chosen with

λ2 <
(1− |d2|2)|µ2|2

|c|2(|µ2|2 + |c|2)− |µ2|2 − 2|c|2<µ̄2

,

then from Equation (6.15), we have g(v, λv)(β
′) > g(v, λv)((1, 0)) for any v with

|v| in (0, 1].

Thus we conclude that neither g(v, λv)(β
′) nor g(v, λv)(β

′′) is equal to infβ g(v, λv)(β)

for any v with |v| in (0, 1] and for any λ with

λ2 <
(1− |d2|2)|µ2|2

|c|2(|µ2|2 + |c|2)− |µ2|2 − 2|c|2<µ̄2

.

• |d2| < 1, |µ2|2 + 2|c|2<µ̄2 > 0, r < 0, 2r + δ1 < 0:

From Equation (6.13), we have g(v, λv)(β
′′) > g(v, λv)(β

′) if λ2 < (1−|d2|2)δ1
−(δ1+2r)

. Hence

infβ g(v, λv)(β) 6= g(v, λv)(β
′′) for all λ, λ2 < (1−|d2|2)δ1

−(δ1+2r)
.

From Equation (6.15), we have g(v, λv)(β
′) > g(v, λv)((1, 0)) for all λ and for all v,

|v|2 ≤ |µ2|2+2|c|2<µ̄2

(|µ2|2+|c|2)|c|2 .

Also, from Equation (6.15), we obtain g(v, λv)(β
′) > g(v, λv)((1, 0)) for all λ,

λ2 <
(1− |d2|2)|µ2|2

|v|2(|µ2|2 + |c|2)|c|2 − |µ2|2 − 2|c|2<µ̄2

and for all v, |v|2 > |µ2|2+2|c|2<µ̄2

(|µ2|2+|c|2)|c|2 . Thus we have g(v, λv)(β
′) > g(v, λv)((1, 0)) for all

λ,

λ2 <
(1− |d2|2)|µ2|2

|v|2(|µ2|2 + |c|2)|c|2 − |µ2|2 − 2|c|2<µ̄2

and for all v, v > 0.

We therefore conclude that neither g(v, λv)(β
′) nor g(v, λv)(β

′′) is equal to infβ g(v, λv)(β)

for any v with |v| in (0, 1
‖A∗1‖

] and for any λ with

λ2 < min
{ (1− |d2|2)|µ2|2

|v|2(|µ2|2 + |c|2)|c|2 − |µ2|2 − 2|c|2<µ̄2

,
(1− |d2|2)δ1

−(2r + δ1)

}
.
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• |d2| < 1, |µ2|2 + 2|c|2<µ̄2 < 0, r < 0, 2r + δ1 < 0:

From Equation (6.13), we have g(v, λv)(β
′′) > g(v, λv)(β

′) if λ2 < (1−|d2|2)δ1
−(δ1+2r)

. Hence

infβ g(v, λv)(β) 6= g(v, λv)(β
′′) for all λ, λ2 < (1−|d2|2)δ1

−(δ1+2r)
.

From Equation (6.15), we have g(v, λv)(β
′) > g(v, λv)((1, 0)) for all λ,

λ2 <
(1− |d2|2)|µ2|2

(|µ2|2 + |c|2)|c|2 − |µ2|2 − 2|c|2<µ̄2

for all v, |v| in (0, 1
‖A∗1‖

].

We therefore conclude that neither g(v, λv)(β
′) nor g(v, λv)(β

′′) is equal to infβ g(v, λv)(β)

for any v, with |v| in (0, 1
‖A∗1‖

] and for any λ with

λ2 < min
{ (1− |d2|2)|µ2|2

(|µ2|2 + |c|2)|c|2 − |µ2|2 − 2|c|2<µ̄2

,
(1− |d2|2)δ1

−(2r + δ1)

}
.

• |d2| < 1, |µ2|2 + 2|c|2<µ̄2 > 0, r < 0, 2r + δ1 > 0:

From Equation (6.13) it is easy to see that g(v, λv)(β
′′) > g(v, λv)(β

′) for all λ.

Hence infβ g(v, λv)(β) 6= g(v, λv)(β
′′) for all λ.

From Equation (6.15) we have g(v, λv)(β
′) > g(v, λv)((1, 0)) for all λ and for all v,

|v|2 ≤ (|µ2|2+2|c|2<µ̄2)
|c|2(|µ2|2+|c|2)

.

From Equation (6.15) we obtain g(v, λv)(β
′) > g(v, λv)((1, 0)) for all λ,

λ2 <
(1− |d2|2)|µ2|2

|v|2|c|2(|µ2|2 + |c|2)− |µ2|2 − 2|c|2<µ̄2

and for all v, |v|2 > (|µ2|2+2|c|2<µ̄2)
|c|2(|µ2|2+|c|2)

. Thus we have g(v, λv)(β
′) > g(v, λv)((1, 0)) for

all λ,

λ2 <
(1− |d2|2)|µ2|2

|v|2|c|2(|µ2|2 + |c|2)− |µ2|2 − 2|c|2<µ̄2

and for all v, v > 0.

We therefore conclude that neither g(v, λv)(β
′) nor g(v, λv)(β

′′) is equal to infβ g(v, λv)(β)

for any v with |v| in (0, 1
‖A∗1‖

] and for any λ with

λ2 <
(1− |d2|2)|µ2|2

|v|2|c|2(|µ2|2 + |c|2)− |µ2|2 − 2|c|2<µ̄2

.

• |d2| < 1, |µ2|2 + 2|c|2<µ̄2 < 0, r < 0, 2r + δ1 > 0:

From Equation (6.13) it is easy to see that g(v, λv)(β
′′) > g(v, λv)(β

′) for all λ.

Hence infβ g(v, λv)(β) 6= g(v, λv)(β
′′) for all λ.
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If λ is chosen with

λ2 <
(1− |d2|2)|µ2|2

|c|2(|µ2|2 + |c|2)− |µ2|2 − 2|c|2<µ̄2

,

then from Equation (6.15), we have g(v, λv)(β
′) > g(v, λv)((1, 0)) for any v with

|v| in (0, 1].

Thus we conclude that neither g(v, λv)(β
′) nor g(v, λv)(β

′′) is equal to infβ g(v, λv)(β)

for any v with |v| in (0, 1] and for any λ with

λ2 <
(1− |d2|2)|µ2|2

|c|2(|µ2|2 + |c|2)− |µ2|2 − 2|c|2<µ̄2

.

(b) If |β′1|2 = |β′′1 |2, then |µ1|2 = |µ2|2. Thus r = 0. Therefore, from Equation (6.13) we

have g(v, λv)(β
′′) = g(v, λv)(β

′). Here we have two possibilities, namely, |d2| > 1 and

|d2| < 1.

• |d2| > 1, r = 0:

Since r = 0, we have 1−<µ̄1 = 0. From Equation (6.14) we can easily see that

g(v, λv)(β
′′) > g(v, λv)((0, 1)) for any λ with λ2 < (|d2|2−1)

(|µ1|2+|c|2)
and for any v with |v|

in (0, 1
‖A∗1‖

].

Hence we conclude that neither g(v, λv)(β
′) nor g(v, λv)(β

′′) is equal to infβ g(v, λv)(β)

for any v with |v| in (0, 1
‖A∗1‖

] and for any λ with λ2 < (|d2|2−1)
(|µ1|2+|c|2)

.

• |d2| < 1, r = 0, |µ2|2 + 2|c|2<µ̄2 > 0:

From Equation (6.15)we also see that neither g(v, λv)(β
′) nor g(v, λv)(β

′′) is equal

to infβ g(v, λv)(β) for any v with |v| in (0, 1
‖A∗1‖

] and for any λ with

λ2 <
(1− |d2|2)|µ2|2

|v|2|c|2(|µ2|2 + |c|2)− |µ2|2 − 2|c|2<µ̄2

.

• |d2| < 1, r = 0, |µ2|2 + 2|c|2<µ̄2 < 0:

From Equation (6.15)we also see that neither g(v, λv)(β
′) nor g(v, λv)(β

′′) is equal

to infβ g(v, λv)(β) for any v with |v| in (0, 1
‖A∗1‖

] and for any λ with

λ2 <
(1− |d2|2)|µ2|2

|c|2(|µ2|2 + |c|2)− |µ2|2 − 2|c|2<µ̄2

.

We note that ν1 = 1
µ1

and ν2 = 1
µ2

are the roots of det(νA∗2 − A∗1) = 0. The vectors β′, β′′

satisfying (A∗2 − µ1A
∗
1)β′ = 0 and (A∗2 − µ2A

∗
1)β′′ = 0 are

β′ =
( |c| exp(iθ1)√
|µ2|2 + |c|2

,
−µ2 exp i(θ1 − φ1)√

|µ2|2 + |c|2
)
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and

β′′ =
( |c| exp(iθ2)√
|µ1|2 + |c|2

,
−µ1 exp i(θ2 − φ1)√

|µ1|2 + |c|2
)

respectively, where c̄ = |c| exp(iφ1). Proceeding as above, we prove that neither g(v, λ0v)(β
′)

nor g(v, λ0v)(β
′′) is equal to infβ g(v, λ0v)(β) for any v with |v| ∈ (0, 1

‖A∗1‖
].

Case (iii): Here we assume that b = |c| and |d2| = 1. The proof is similar to Case (i)

and we skip the details.

Let A1 ∈ {A11, A12} and A2 ∈ {A21, A22}, where A11 =
(

1 0
0 d2

)
, A12 =

(
d1 0
0 1

)
;A21 =

( 1 b
c 0 ) , A22 = ( 0 b

c 1 ) . We have proved the theorem for A1 = A11 and A2 = A21. The proof

in the remaining cases, namely, A1 = A11 and A2 = A22; A1 = A12 and A2 = A21 and

A1 = A12 and A2 = A22 follow similarly.

Theorem 6.6. Let A1 be of the form
(

1 0
0 d2

)
or
(
d1 0
0 1

)
and A2 be of the form ( 0 b

c 0 ) and

assume that they are not simultaneously diagonalizable. Then there exists (v0, λ0v0) in E
such that neither g(v0, λ0v0)(β

′) nor g(v0, λ0v0)(β
′′) is equal to infβ g(v0, λ0v0)(β).

Proof. Suppose A1 =
(

1 0
0 d2

)
and A2 = ( 0 b

c 0 ) . As above we have seen that the homomor-

phism ρV is contractive if and only if |v|2 ≤ 1
‖A∗1‖2

and infβ,‖β‖2=1 g(v, λv)(β) ≥ 0. Observe

that

inf
β
g(v, λv)(β) = inf

β
{1− |v|2 − λ2|v|2b2}|β1|2 + {1− |v|2|d2|2 − λ2|v|2|c|2}|β2|2

+|v|4λ2
(
b|β̄1|2 − |cd2||β̄2|2

)2
. (6.16)

To complete the proof, we follow exactly the same steps as in Theorem 6.5 except the

Case (iii). This is because when |d2| = 1 and |b| = |c|, as before without loss of generality,

we can take A1 = I2 and A2 = ( 0 b
c 0 ) with b, c ∈ C, |b| = |c|. Since |b| = |c|, we can see that

A2 is normal. Therefore, conjugating A2 by a unitary U we can assume A2 is a diagonal

matrix. This contradicts the fact that A1 and A2 are not simultaneously diagonalizable.

Hence the proof of the theorem involves two cases.

Case (i): Here b 6= |c| and |d2| = 1, that is, A1 =
(

1 0
0 exp(iθ)

)
and A2 = ( 0 b

c 0 ) with

b 6= |c|. Let U =
(

1 0
0 exp(−iθ)

)
. Then U is a unitary and the pair (A1U,A2U) determines the

same set ΩA. So, we may assume without loss of generality that A is of the form (I2, ( 0 b
c 0 ))

with b, c ∈ C, |b| 6= |c|.

(a) Suppose c = 0. The roots of det(A∗2 − µA∗1) = 0 are µ1 = µ2 = 0. The vectors β′, β′′

satisfying (A∗2 − µ1A
∗
1)β′ = 0 and (A∗2 − µ2A

∗
1)β′′ = 0 are β′ = β′′ = (0, exp(iψ)).

Note that

g(v, λv)((0, exp(iψ)))− gv, λv)(β) = λ2|v|2|b|2|β1|2(1− |v|2|β̄1|2). (6.17)
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From Equation (6.17) we have for all v, |v| ≤ 1, for all λ, there exists a β with

|β| < 1 such that g(v, λv)((0, exp(iψ))) > gv, λv)(β). We therefore conclude that neither

g(v, λv)(β
′) nor g(v, λv)(β

′′) is equal to infβ g(v, λv)(β) for any λ and for any v with |v| ≤ 1.

Also, we observe that det(νA∗2 − A∗1) 6= 0. Thus there is no vector γ with ‖γ‖ = 1

satisfying (νA∗2−A∗1)γ = 0. We therefore conclude that there exists no vector γ such

that g(v, λv)(γ) is equal to infβ g(v, λv)(β) for any λ and for any v with |v| ≤ 1. We

arrive at the same conclusion whenever b = 0.

(b) Suppose b, c are not simultaneously zero. If we consider det(A∗2 − µA∗1) = 0, then we

see that µ1 =
√
b̄c̄, µ2 = −

√
b̄c̄ are the roots of det(A∗2−µA∗1) = 0. The vectors β′, β′′

satisfying (A∗2 − µ1A
∗
1)β′ = 0 and (A∗2 − µ2A

∗
1)β′′ = 0 are

β′ =
(√|c| exp(iθ3)√

|c|+ |b|
,

√
b̄ exp i(θ3 − φ2)√
|c|+ |b|

)
and

β′′ =
(−√|c| exp(iθ3)√

|c|+ |b|
,

√
b̄ exp i(θ3 − φ2)√
|c|+ |b|

)
respectively, where b̄ = |b| exp i(φ2). Substituting β = β′ and β = β′′ in Equation

(6.16) we have

g(v, λv)(β
′′) = g(v, λv)(β

′)

= {1− |v|2 − λ2|v|2|b|2}|β′1|2 + {1− |v|2 − λ2|v|2|c|2}|β′2|2,

where β′ = (β′1, β
′
2), β′′ = (β′′1 , β

′′
2 ). Now,

g(v, λv)(β
′′)− g(v, λv)(β)

= {1− |v|2 − λ2|v|2|b|2}(|β′′1 |2 − |β1|2) + {1− |v|2 − λ2|v|2|c|2}(|β′′2 |2 − |β2|2)

−|v|4λ2
(
|b||β̄1|2 − |c||β̄2|2

)2
. (6.18)

• Assume that |b|2 > |c|2. Since b, c are not simultaneously zero, it follows that

β′′1 6= 0, or equivalently |β′′1 | 6= 1. Since |β ′′1 | 6= 1, we can choose β1 such that

(|β ′′1 |2 − |β1|2) = −δ2, where δ2 > 0. Then (|β ′′2 |2 − |β2|2) = δ2. Hence from

Equation (6.18) we have

g(v, λv)(β
′′)− g(v, λv)(β) = {λ2|v|2(|b|2 − |c|2)}δ2 − |v|4λ2(|b|+ |c|)2δ2

2 . (6.19)

If we choose δ2 <
(|b|2−|c|2)
(|b|+|c|)2 , then we have g(v, λv)(β

′′) > g(v, λv)(β) for all λ and

for all v, |v|2 ≤ 1. We therefore conclude that neither g(v, λv)(β
′) nor g(v, λv)(β

′′)

is equal to infβ g(v, λv)(β) for any λ and for any v with |v| ≤ 1.
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• Suppose |b|2 < |c|2. We can also choose β1 such that (|β ′′1 |2− |β1|2) = δ3, δ3 > 0.

Therefore from Equation ( 6.18) we have

g(v, λv)(β
′′)− g(v, λv)(β) = {λ2|v|2(|c|2 − |b|2)}δ3 − |v|4λ2(|b|+ |c|)2δ2

3 . (6.20)

From Equation (6.20) we have g(v, λv)(β
′′) > g(v, λv)(β) for all λ, for all v, |v|2 ≤ 1

and for all δ3, δ3 <
(|c|2−|b|2)
(|b|+|c|)2 . Therefore we conclude that neither g(v, λv)(β

′) nor

g(v, λv)(β
′′) is equal to infβ g(v, λv)(β) for any λ and for any v with |v| ≤ 1.

The roots of det(νA∗2 −A∗1) = 0 are ν1 = 1
µ1
, ν2 = 1

µ2
. The vectors β′, β′′ satisfying (ν1A

∗
2 −

A∗1)β′ = 0 and (ν2A
∗
2 − A∗1)β′′ = 0 are

β′ =
(√|c| exp(iθ3)√

|c|+ |b|
,

√
b̄ exp i(θ3 − φ2)√
|c|+ |b|

)
and

β′′ =
(−√|c| exp(iθ3)√

|c|+ |b|
,

√
b̄ exp i(θ3 − φ2)√
|c|+ |b|

)
respectively, where b̄ = |b| exp i(φ2). Proceeding as above, we also find that neither g(v, λ0v)(β

′)

nor g(v, λ0v)(β
′′) is equal to infβ g(v, λ0v)(β) for any v with |v| < 1.

Case (ii): In this case, A1 =
(

1 0
0 d2

)
, A2 =

(
0 |c|
c 0

)
with |d2| 6= 1. The roots of

det(A∗2−µA∗1) = 0, are µ1 =
√
|c|c̄
d̄2
, µ2 =

√
|c|c̄
d̄2
. The vectors β′, β′′ satisfying (A∗2−µ1A

∗
1)β′ =

0 and (A∗2 − µ2A
∗
1)β′′ = 0 are

β′ =
(√|c| exp(iθ4)√

|c|+ | |c|
d2
|
,

√
|c|
d̄2

exp i(θ4 − φ3)√
|c|+ | |c|

d2
|

)

and

β′′ =
(−√|c| exp(iθ4)√

|c|+ | |c|
d2
|
,

√
|c|
d̄2

exp i(θ4 − φ3)√
|c|+ | |c|

d2
|

)
respectively, where |c|

d̄2
= |c|
|d2| exp i(φ3).

• Suppose 1 < |d2|. From Equation (6.18) we have

g(v, λv)(β
′′)− g(v, λv)((0, 1)) = (|d2|2 − 1)|β′′1 |2 − |v|2λ2|cd2|2

= |d2|{(|d2| − 1)− |v|2λ2|c|2|d2|}. (6.21)
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From Equation (6.21) it follows the g(v, λv)(β
′′) > g(v, λv)((0, 1)) for all v, |v| in (0, 1

‖A∗1‖
]

and for all λ, λ2 < (|d2|−1)|d2|
|c|2 .

We therefore conclude that neither g(v, λv)(β
′) nor g(v, λv)(β

′′) is equal to infβ g(v, λv)(β)

for any λ with λ2 < (|d2|−1)|d2|
|c|2 and for any v with |v| in (0, 1

‖A∗1‖
].

• Let 1 > |d2|. From Equation (6.18) we have

g(v, λv)(β
′′)− g(v, λv)((1, 0)) = (1− |d2|2)|β′′2 |2 − |v|2λ2|c|2

= (1− |d2|)− |v|2λ2|c|2. (6.22)

From Equation (6.22) it is also easy to see that g(v, λv)(β
′′) > g(v, λv)((0, 1)) for all λ,

λ2 < (|d2|−1)
|c|2 and for all v, |v| in (0, 1

‖A∗1‖
].

We therefore conclude that neither g(v, λv)(β
′) nor g(v, λv)(β

′′) is equal to infβ g(v, λv)(β)

for any λ with λ2 < (|d2|−1)
|c|2 and for any v with |v| in (0, 1

‖A∗1‖
].

The roots of det(νA∗2 − A∗1) = 0, are ν1 = 1
µ1
, ν2 = 1

µ2
. The vectors β′, β′′ satisfying

(ν1A
∗
2 − A∗1)β′ = 0 and (ν2A

∗
2 − A∗1)β′′ = 0 are

β′ =
(√|c| exp(iθ4)√

|c|+ | |c|
d2
|
,

√
|c|
d̄2

exp i(θ4 − φ3)√
|c|+ | |c|

d2
|

)

and

β′′ =
(−√|c| exp(iθ4)√

|c|+ | |c|
d2
|
,

√
|c|
d̄2

exp i(θ4 − φ3)√
|c|+ | |c|

d2
|

)
respectively, where |c|

d̄2
= |c|
|d2| exp i(φ3). Proceeding as above, we also find that neither

g(v, λv)(β
′) nor g(v, λv)(β

′′) is equal to infβ g(v, λv)(β) for any v with |v| in (0, 1
‖A∗1‖

].

Let A1 ∈ {A11, A12} and A2 = ( 0 b
c 0 ) , where A11 =

(
1 0
0 d2

)
, A12 =

(
d1 0
0 1

)
. We have

proved the theorem for A1 = A11 and A2 = ( 0 b
c 0 ) . The proof in the remaining case, namely,

A1 = A12 and A2 = ( 0 b
c 0 ) follows similarly.

The following theorem gives the existence of a v say v0, such that (v0, λ0v0) is in E0.

Theorem 6.7. If A1 is either
(

1 0
0 d2

)
or
(
d1 0
0 1

)
and A2 is one of ( 1 b

c 0 ) , ( 0 b
c 1 ) or ( 0 b

c 0 )

( A1 and A2 are not simultaneously diagonalizable), then there exist a v0 such that LV :

(C2, ‖ · ‖∗ΩA
)→ (C2, ‖ · ‖2) defines a contractive linear map which is not completely con-

tractive, where V =
(
v0 0
0 λ0v0

)
.
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Proof. As we have seen in Theorems 6.5 and Theorem 6.6, for all v, |v| in (0, 1
‖A∗1‖

) there

exists a λ > 0, say λ0, such that (v, λ0v) is in E with the property:

g(v,λ0v)(β
′′) > g(v,λ0v)(β

′) > g(v,λ0v)(β) or g(v,λ0v)(β
′) > g(v,λ0v)(β

′′) > g(v,λ0v)(β) when-

ever β′, β′′ ∈ B.
Let B denote the set {|v|2 : infβ g(v, λ0v)(β) ≤ 0}. This set is bounded below by
1

‖A∗1‖2+λ2
0‖A∗2‖2

. Therefore the infimum of B is positive. Let

α = inf
|v|
{|v|2 : inf

β
g(v, λ0v)(β) ≤ 0}.

Hence there exists a v0 such that |v0|2 = α.

We claim that g(v0, λ0v0)(β) ≥ 0 for all β with ‖β‖2 = 1.

Assume there exists a β̂ such that g(v0, λ0v0)(β̂) < 0. Then there exists a neighborhood

U of v0 such that g(v, λ0v)(β̂) < 0 for all v ∈ U. For any v ∈ U, infβ g(v, λ0v)(β) < 0, since

the function g(v, λ0v) is negative at β̂ for all v ∈ U. Hence |v|2 is in B for every v ∈ U. Since

U is a neighborhood of v0 there exists a v ∈ U such that |v|2 < |v0|2. By the previous

assertion, this smaller value of |v|2 also lies in B, which is a contradiction. Also, we have

infβ g(v0, λ0v0)(β) ≤ 0. Hence infβ g(v0, λ0v0)(β) = 0.

From all possible choice for λ0, in accordance with Theorem 6.5 and Theorem 6.6, we

further restrict it to satisfy λ0 ≤ 1
|v0|‖A∗2‖

. This will make LV contractive. The choice of λ0, v0

ensure that the infimum of g(v0,λ0v0)(β) is equal to neither g(v0,λ0v0)(β
′) nor g(v0,λ0v0)(β

′′).

Thus LV is not completely contractive.

Remark 6.8. In chapter 3, we have shown the existence of two distinct operator space on

VA, where A is of the form (( 1 0
0 0 ) , ( 1 0

c 0 )) , (( 0 0
0 1 ) , ( 0 b

0 1 )) , (( 1 0
0 0 ) , ( 0 0

c 0 )) or (( 0 0
0 1 ) , ( 0 b

0 0 )) . In

this case, det(A∗2−µA∗1) ≡ 0 and det(νA∗2−A∗1) ≡ 0, therefore ‖A∗1β‖2‖A∗2β‖2 = | 〈A1A
∗
2β, β〉 |2

for all β in C2. Consequently, we have ‖ρV ‖ = ‖ρ(2)
V (PA)‖. To obtain a counter example in

this case, following methods of this chapter, one simply use PAt instead of PA.

Example 6.9. If A1 = I2 and A2 = ( 0 1
0 0 ) , then the homomorphism ρV is contractive if and

only if |v|2 ≤ 1 and

inf
β
{1− |v|2 − λ2|v|2|β1|2 + λ2|v|4|β1|4} ≥ 0.

Also, ‖PA(T1, T2)‖ ≤ 1 implies that

inf
β
{1− |v|2 − λ2|v|2|β1|2} ≥ 0.

The roots of det(A∗2 − µA∗1) = 0 are µ1 = µ2 = 0. The vectors β′, β′′ satisfying (A∗2 −
µ1A

∗
1)β′ = 0 and (A∗2 − µ2A

∗
1)β′′ = 0 are β′ = β′′ = (0, exp(iψ)) respectively. Note that

g(v, λv)(β
′′)− g(v, λv)(β) = λ2|v|2|β|2(1− |v|2|β|2). (6.23)
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From Equation (6.23) we have for all v, |v| ≤ 1, for all λ, there exists a β with |β| < 1

such that g(v, λv)((0, exp(iψ))) > gv, λv)(β). Hence there exists (v, λ0v) in E such that neither

g(v, λ0v)(β
′) nor g(v, λ0v)(β

′′) is equal to infβ g(v, λ0v)(β).

Also, we observe that det(νA∗2−A∗1) 6= 0. Thus there is no vector γ satisfying (νA∗2−
A∗1)γ = 0. We therefore conclude that there exists no vector γ such that g(v, λv)(γ) is equal

to infβ g(v, λv)(β) for any choice of λ and v with |v| ≤ 1.

Now, infβ g(v, λ0v)(β) ≤ 0 is equivalent to 4|v|2 − 4 + λ2 ≥ 0 with 2|v|2 ≥ 1. If

λ2 = 1, |v|2 = 3
4
, then infβ g(v, λ0v)(β) = 0. Also, we have ‖PA(T1, T2)‖ > 1. Hence this

contractive homomorphism ρV is not completely contractive.

In chapter 1, we have seen that if A1 and A2 are simultaneously diagonalizable, then

every contractive linear map from (C2, ‖ · ‖ΩA
) to Mn(C) is completely contractive. We

have also seen that the particular matrix valued polynomial PA plays an important role

for constructing a contractive homomorphisms which is not complete contractive. The

following theorem says that if A1 and A2 are simultaneously diagonalizable, then ‖ρV ‖ ≤ 1

if and only if ‖ρ(2)
V (PA)‖ ≤ 1.

Theorem 6.10. If A1 =
(
d1 0
0 d2

)
and A2 = ( a 0

0 d ) , then there exists a (v, λv) in E such that

the infimum is attained at either β′ or β′′.

Proof. As above we have seen that the homomorphism ρV is contractive if and only if

|v|2 ≤ 1
‖A∗1‖2

and infβ,‖β‖2=1 g(v, λv)(β) ≥ 0. Observe that

inf
β
g(v, λv)(β) = inf

β
(1− |d1|2|v|2 − |a|2λ2|v|2)|β1|2 + (1− |d2v|2 − |d|2λ2|v|2)|β2|2

+ |v|4λ2| ¯ad1 − ¯dd2|2|β1β2|2 (6.24)

where |β1|2 + |β2|2 = 1.

The roots of det(A∗2 − µA∗1) = 0 are µ1 = c̄
d̄1
, µ2 = d̄

d̄2
. The vectors β′, β′′ satisfying

(ν1A
∗
2 − A∗1)β′ = 0, (ν2A

∗
2 − A∗1)β′′ = 0 are β′ = (1, 0), β′′ = (0, 1) respectively. In this

case, β′ = β′′⊥, β
′′ = β′⊥, where β′′⊥, β

′
⊥ are orthogonal to β′′, β′ respectively. Substituting

β′ = (1, 0) and β′′ = (0, 1) in Equation (6.24) we have

g(v, λv)(β
′) = (1− |d1|2|v|2 − |a|2λ2|v|2)

and

g(v, λv)(β
′′) = (1− |d2v|2 − |d|2λ2|v|2).

Without loss generality we can assume that g(v, λv)(β
′) ≤ g(v, λv)(β

′′). Note that

g(v, λv)(β
′)− g(v, λv)(β) = (g(v, λv)(β

′)− g(v, λv)(β
′′))|β2|2 − |v|4λ2| ¯ad1 − ¯dd2|2|β1β2|2. (6.25)
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Since g(v, λv)(β
′) ≤ g(v, λv)(β

′′), from Equation (6.25) we observe that g(v, λv)(β
′) ≤

g(v, λv)(β) for all β. Hence we conclude that the infimum is attained at β′. Similarly we also

prove that the infimum is attained at β′′.

The roots of det(νA∗2−A∗1) = 0 are 1
µ1
, 1
µ2
. The vectors β′, β′′ satisfying (ν1A

∗
2−A∗1)β′ =

0 and (ν2A
∗
2 − A∗1)β′′ = 0 are β′ = (1, 0) and β′′ = (0, 1) respectively. We also therefore

conclude that infimum is attained at either β′ or β′′. This completes the proof.

The following Corollary is an immediate consequence of Theorem 6.10 and Corollary

1.3.

Corollary 6.11. Suppose A1 and A2 are simultaneously diagonalizable. Then ‖ρV ‖ ≤ 1 if

and only if ‖ρ(2)
V (PA)‖ ≤ 1.
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