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The Bergman space on the
symmetrized polydisc



The symmetrization map

The elementary symmetric function φi of degree i(≥ 0) is the sum
of all products of i distinct variables zi so that φ0 = 1 and

φi(z1, . . . , zn) =
∑

1≤k1<k2<...<ki≤n

zk1 · · · zki .

For n ≥ 1, let s : Cn −→ Cn be the function of symmetrization
given by the formula

s(z1, . . . , zn) =
(
φ1(z1, . . . , zn), . . . , φn(z1, . . . , zn)

)
.

The image Gn := s(Dn) under the map s of the polydisc
Dn := {z ∈ Cn : ∥z∥∞ < 1} is the symmetrized polydisc. The
restriction map s|resDn : Dn → Gn is known to be a proper
holomorphic map.
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Bergman kernel

The Bergman space A2(Ω) on any bounded domain Ω ⊆ Cn is the
Hilbert space of square integrable holomorphic functions on Ω. The
Bergman kernel of the domain Ω is the reproducing kernel function
of the Bergman space A2(Ω).

For the symmetrized polydisc Gn, the Bergman kernel function can
be computed explicitly using the formula available for the polydisc
along with the transformation rule for the Bergman kernel under a
proper holomorphic mapping. Here is an alternative approach:

Realize the Bergman space A2(Gn) of the symmetrized polydisc as a
subspace of the Bergman space A2(Dn) on the polydisc using the
symmetrization map s.

Find a natural orthonormal basis for this subspace.

Compute the kernel function for the subspace (in closed form) as an
infinite sum.
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the embedding

The map Γ : A2(Gn) → A2(Dn) defined by the formula

(Γf)(z) = (f ◦ s)(z)Js(z), z ∈ Dn,

where Js is the complex Jacobian of the map s, is an isometry. Let
A2

anti(Dn) ⊆ A2(Dn) be the image ranΓ ⊆ A2(Dn). It consists of
anti-symmetric functions:

ranΓ := {f : f(zσ) = sgn(σ)f(z), σ ∈ Σn , f ∈ A2(Dn)},

where Σn is the symmetric group on n symbols. An orthonormal
basis of A2

anti(Dn) may then be transformed in to an orthonormal
basis of the A2(Gn) via the unitary map Γ∗. Evaluating the sum∑

k≥0

ek(z)ek(w), z,w ∈ Gn,

for some choice of an orthonormal basis in A2(Gn), we obtain the
Bergman kernel for Gn.
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weighted Bergman spaces

This scheme works equally well for a class of weighted Bergman
spaces A(λ)(Dn), λ > 1, determined by the kernel function

B
(λ)
Dn (z,w) =

n∏
i=1

(1−ziw̄i)
−λ, z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ Dn,

defined on the polydisc and the corresponding weighted Bergman
spaces A(λ)(Gn) on the symmetrized polydisc.

The limiting case of λ = 1, as is well-known, is the Hardy space on
the polydisc. We show that the Szeegö kernel for the symmetrized
polydisc is of the form

S(1)Gn
(s(z), s(w)) =

n∏
i,j=1

(1− ziw̄j)
−1, z,w ∈ Dn.

This shows that the Hardy kernel is not a power of the Bergman
kernel unlike the case of bounded symmetric domains.
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the weighted volume measure

For λ > 1, let dV (λ) :=
(
λ−1
π

)n(∏n
i=1(1− r2i )

λ−2ridridθi

)
be a

measure on the polydisc. Let dV
(λ)
s be the measure on the

symmetrized polydisc Gn obtained by the change of variable
formula: ∫

Gn

f dV (λ)
s =

∫
Dn

(f ◦ s) |Js|2dV (λ), λ > 1

where Js(z) =
∏

1≤i<j≤n(zi − zj) is the complex jacobian
determinant of the symmetrization map s.

The weighted Bergman space A(λ)(Gn), λ > 1, on the symmetrized
polydisc Gn is the subspace of the Hilbert space L2(Gn, dV

(λ)
s )

consisting of holomorphic functions.

Here dV
(λ)
s is the measure ∥Js∥−2

λ dV
(λ)
s and ∥Js∥λ denotes the

norm of the function Js in the Hilbert space L2(Dn, dV (λ)). The
norm of f ∈ A(λ)(Gn) is given by ∥f∥2 =

∫
Gn

|f |2dV (λ)
s .
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natural unitary map

Let Γ : A(λ)(Gn) −→ A(λ)(Dn) be the operator defined by the rule:

(Γf)(z) = ∥Js∥−1
λ Js(z)(f ◦ s)(z), f ∈ A(λ)(Gn), z ∈ Dn.

The operator Γ is an isometry.

Since Js(zσ) = sgn(σ)Js(z), σ ∈ Σn , the image of A(λ)(Gn) under
the isometry Γ in A(λ)(Dn) is a subspace of A(λ)

anti(Dn) which is
the space of anti-symmetric functions.

Pick g in A(λ)
anti(Dn). Take h = J−1

s g on the open set
{(z1, . . . , zn) ∈ Dn : zi ̸= zj , i ̸= j}. It follows that g = Js(f ◦ s) for
some function f defined on Gn.

Therefore, the range of the isometry Γ coincides with the subspace
A(λ)

anti(Dn). Now, Γ∗g = ∥Js∥λ f , where f is chosen satisfying
g(z) = Js(z)(f ◦ s)(z). The operator Γ : A(λ)(Gn) −→ A(λ)

anti(Dn) is
evidently unitary.
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module isomorphism

The subspace A(λ)
anti(Dn) is invariant under the multiplication by the

elementary symmetric functions. It therefore admits a module action
via the map

(p, f) 7→ p(φ1, . . . , φn)f, f ∈ A(λ)
anti(D

n), p ∈ C[z]

over the polynomial ring C[z].

The polynomial ring also acts naturally via point-wise multiplication
on the Hilbert space A(λ)(Gn) .

The unitary operator Γ intertwines the multiplication by the
elementary symmetric functions on the Hilbert space A(λ)

anti(Dn) with
the multiplication by the co-ordinate functions on A(λ)(Gn).

Thus the two modules A(λ)(Gn) and A(λ)
anti(Dn) are isomorphic via

the unitary map Γ. Moreover, A(λ)(Gn) is contractive.
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Partitions

A partition p is any finite sequence p := (p1, . . . , pn) of
non-negative integers in decreasing order, that is,

p1 ≥ p2 ≥ · · · ≥ pn.

Let [n] denote the set of all partitions of size n. If a partition p

also has the the property p1 > · · · > pn ≥ 0, then we may write
p = m+ δ, where m is some partition in [n] and
δ = (n− 1, n− 2, . . . , 1, 0). Let [[n]] be the set of all partitions of the
form m+ δ for m ∈ [n].
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monomials

Let zm := zm1
1 · · · zmn

n , m ∈ [n], be a monomial. Consider the
polynomial am obtained by anti-symmetrizing the monomial zm:

am(z) :=
∑

σ∈
∑

n

sgn(σ) zmσ ,

where zmσ = z
mσ(1)

1 · · · zmσ(n)
n . Thus for any p ∈ [[n]], we have

ap(z) = am+δ(z) =
∑

σ∈
∑

n

sgn(σ) z(m+δ)σ ,

m ∈ [n] and it follows that

ap(z) = am+δ(z) = det
(
((z

pj

i ))ni,j=1

)
, p ∈ [[n]].
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orthogonality

Lemma. The set S {mσ(k) −m′
ν(k) : σ, ν ∈ Σn,mi > mj ,m

′
i > m′

j

for i < j,m1 ̸= m′
1, 1 ≤ k ≤ n} is not {0}.

It follows that the functions ap, p ∈ [[n]] are orthogonal in the Hilbert
space A(λ)(Dn). The norm of the vector ap is easily calculated:

c−1
p := ∥ap∥A(λ)(Dn) =

∥∥∥det(((zpj

i ))ni,j=1

)∥∥∥
Aλ(Dn)

=
∥∥∥ ∑

σ∈Σn

sgn(σ)

n∏
k=1

z
pσ(k)

k

∥∥∥
A(λ)(Dn)

=

√
n!p!

(λ)p
.

The vectors ap span the subspace A(λ)
anti(Dn) and therefore

{ep = cp ap : p ∈ [[n]]} is an orthonormal basis for A(λ)
anti(Dn)
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the reproducing kernel

So the reproducing kernel K
(λ)
anti for A(λ)

anti(Dn) is given by

K
(λ)
anti(z,w) =

∑
p∈[[n]]

ep(z)ep(w), for z,w ∈ Dn.

For all σ ∈ Σn, we have eσ(p)(z)eσ(p)(w) = ep(z)ep(w), z,w ∈ Dn.
Therefore, it follows that

K
(λ)
anti(z,w) =

∑
p∈[[n]]

ep(z)ep(w) =
1

n!

∑
p≥0

ep(z)ep(w), (1)

where p ≥ 0 stands for all multi-indices p = (p1, . . . , pn) with the
property that each pi ≥ 0 for 1 ≤ i ≤ n.

Proposition. The reproducing kernel K
(λ)
anti is given explicitly by

the formula:

K
(λ)
anti(z,w) =

1

n!
det

((
(1− zjw̄k)

−λ
))n

j,k=1
, z,w ∈ Dn.
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Schur functions

The determinant function am+δ is divisible by each of the difference
zi − zj , 1 ≤ i < j ≤ n and hence by the product∏

1≤i<j≤n(zi − zj) = det
(
((zn−j

i ))ni,j=1

)
= aδ(z). The quotient

Sp := am+δ/aδ, p = m+ δ is therefore well-defined and is called the
Schur function. The Schur function Sp is symmetric and defines a
function on the symmetrized polydisc Gn. Since the Jacobian of the
map s : Dn → Gn coincides with aδ, it follows that the Schur
functions {Sp := am+δ/aδ : p ∈ [[n]]} is a set of mutually orthogonal
vectors in A(λ)(Gn). The linear span of these vectors is dense in
A(λ)(Gn).

Also, the norms of these vectors coincide with those of ap in
A(λ)(Gn), modulo the normalizing constant ∥Js∥λ, via the unitary
map Γ. Hence the set {êp = cp Sp : p ∈ [[n]]} is an orthonormal
basis for A(λ)(Gn), where cp =

√
∥Js∥λ(λ)p

n!p! .
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the kernel function for Gn

Theorem. The reproducing kernel B
(λ)
Gn

for the weighted Bergman
space A(λ)(Gn) on the symmetrized poly-disc is given by the
formula:

B
(λ)
Gn

(s(z), s(w)) = p ∈ [[n]]c2p Sp(z)Sp(w)

=
∥Js∥2λ
n!

det(((1− zjw̄k)
−λ))nj,k=1

aδ(z)aδ(w)

for z,w in Dn.
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The Hardy space

Let dΘ be the normalized Lebesgue measure on the torus Tn. The
Hardy space H2(Gn) on the symmetrized polydisc Gn consists of
holomorphic functions on Gn with the property:

∥f∥ = ∥Js∥−1
{

sup 0<r<1

∫
Tn

|f ◦ s(r eiΘ)|2|Js(r eiΘ)|2dΘ
}
< ∞,

where ∥Js∥2 =
∫
Tn |Js|2dΘ ensuring ∥1∥ = 1.

As before, the operator Γ : H2(Gn) −→ H2(Dn) given by
Γ(f) = ∥Js∥−1Js (f ◦ s) for f ∈ H2(Gn) is an isometry.

The subspace of anti-symmetric functions H2
anti(Dn) in the Hardy

space H2(Dn) coincides with the image of H2(Gn) under the
isometry Γ. Thus the operator Γ : H2(Gn) −→ H2

anti(Dn) is onto
and therefore unitary.
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orthonormal basis

The functions ap, p ∈ [[n]] continue to be an orthogonal spanning set
for the subspace H2

anti(Dn). Now, all of the vectors ap have the
same norm, namely,

√
n!.

Consequently, the set of vectors {ep(z) := 1√
n!
ap(z) : p ∈ [[n]]} is an

orthonormal basis for the subspace H2
anti(Dn) of the Hardy space on

the polydisc, while the set {êp := ∥Js∥√
n!
Sp : p ∈ [[n]]} forms an

orthonormal basis for the Hardy space H2(Gn) of the symmetrized
polydisc Gn via the unitary map Γ.

However, ∥Js∥ =
√
n! and therefore, ]hlêp = Sp. Thus computations

similar to the case λ > 1 yields an explicit formula for the
reproducing kernel K

(1)
anti(z,w) of the subspace H2

anti(Dn). Indeed,

K
(1)
anti(z,w) =

1

n!
det(((1− zjw̄k)

−1))nj,k=1.

This is the limiting case, as λ → 1.
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the Szegö Kernel

Let SGn
be the Szegö kernel for the symmetrized polydisc Gn.

Clearly,

SGn
(s(z), s(w)) =

det(((1− zjw̄k)
−1))nj,k=1

Js(z)Js(w)
, z,w ∈ Dn.

Now, using the well-known identity due to Cauchy, we have

SGn
(s(z), s(w)) =

∑
p∈[[n]]

Sp(z)Sp(w)

=

n∏
j,k=1

(1− zjw̄k)
−1, z,w ∈ Dn.

Therefore, we have a formula for the Szegö kernel of the symmetrized
polydisc Gn.

Theorem. The Szegö kernel SGn
of the symmetrized polydisc Gn

is given by the formula

SGn
(s(z), s(w)) =

n∏
j,k=1

(1− zjw̄k)
−1, z,w ∈ Dn. 17



Thank you!
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