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The group SU(1,1)

• Let 𝐺 ∶= SU(1,1) be the group of complex 2×2
matrices of the form 𝑔 ∶= (𝛼 𝛽

̄𝛽 �̄� ) with
|𝛼|2 – |𝛽|2 = 1. It acts on the unit disc by the
rule 𝑔(𝑧) = 𝛼+𝛽𝑧

̄𝛽+�̄�𝑧 .

• It is well known that all biholomorphic
automorphisms of the unit disc 𝔻 arise in
this way.

• Clearly, the element 𝑔 and –𝑔 give rise to
the same action. One may say that the
kernel of the SU(1,1) action on the unit disc
is the normal subgroup {𝐼,–𝐼}.
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Möb, the Möbius group
• If one already knows that (the Möbius group,
to be denoted Möb in what follows,
consisting of) the bi-holomorphic
automorphisms of 𝔻 of the form
𝜑𝜃,𝑎(𝑧) = 𝑒𝑖𝜃 𝑧–𝑎

1–�̄�𝑧 , 0 ≤ 𝜃 < 2𝜋, and 𝑎 in the unit
disc 𝔻, then it comes from the action of a
𝑔 ∈ SU(1,1), where 𝑔 is of the form

𝑔 = 1
√1–|𝑎|2 ( exp(𝑖 𝜃

2 ) 0
0 exp(–𝑖 𝜃

2 )
)( 1 –𝑎

–�̅� 1 ).

and also from replacing 𝑔 by changing 𝜃 to
𝜃 +2𝜋.

• Now, the map 𝑔 ↦ (𝑒2𝑖𝜃,𝑎) with 𝑎 = – 𝛽
𝛼 is a

two to one smooth homomorphism.
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homogeneous operators
• A bounded linear operator 𝑇 on a complex
separable Hilbert space ℋ with 𝜎(𝑇 ) ⊆ 𝔻 is
said to be homogeneous if

𝑔(𝑇 ) ∶= 𝑒𝑖𝜃(𝑇 –𝑎𝐼)(𝐼 – ̄𝑎𝑇 )–1

is unitarily equivalent to 𝑇 for all 𝑔 in
SU(1,1).

• Of course, for a 𝑔 ∈ SU(1,1), the operator 𝑔(𝑇 )
is the same as the operator 𝜑(𝑇 ), where 𝜑 is
the element in Möb determined by 𝑔.

• All irreducible homogeneous operators in
the Cowen-Douglas class of the unit disc 𝔻
modulo unitary equivalence have been
described recently.
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The Bergman space

• Let 𝔸2(𝔻) be the Hilbert space of square
integrable (with respect to the area measure)
holomorphic functions on 𝔻.

• By the change of variable formula, for any
𝑔 ∈ 𝑆𝑈(1,1) , we have

∫𝔻 |𝑓 ∘ 𝑔|2|𝑔′|2𝑑𝐴 = ∫𝔻 |𝑓|2𝑑𝐴, 𝑓 ∈ 𝔸2(𝔻).
• The operator 𝑈𝑔 ∶ 𝔸2(𝔻) → 𝔸2(𝔻) given by the
formula:

(𝑈𝑔–1 𝑓)(𝑧) = 𝑔′(𝑧)(𝑓 ∘ 𝑔)(𝑧), 𝑓 ∈ 𝔸2(𝔻), 𝑔 ∈ 𝑆𝑈(1,1),
is therefore isometric.
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unitary homomorphism
• The map 𝐽[⋅](⋅) ∶ 𝑆𝑈(1,1)×𝔻 → ℂ× given by the
formula 𝐽𝑔(𝑧) = 𝑔′(𝑧) is a cocycle, that is,

𝐽𝑔1𝑔2
(𝑧) = 𝑔′

1(𝑔2(𝑧))𝑔′
2(𝑧), 𝑔1,𝑔2 ∈ 𝑆𝑈(1,1), 𝑧 ∈ 𝔻.

This is just the chain rule for the derivative,
it ensures that 𝑔 ↦ 𝑈𝑔 is a homomorphism:

𝑈𝑔–1
2 𝑔–1

1
𝑓 = (𝑔1 ∘ 𝑔2)′𝑓 ∘ (𝑔1 ∘ 𝑔2)

= 𝑔′
2(𝑧𝑔′

1(𝑔2(𝑧))(𝑓 ∘ 𝑔1)(𝑔2(𝑧)
= 𝑈𝑔–1

2
𝑈𝑔–1

1

• Finally, we note that 𝑔–1(𝑀𝑧) = 𝑀𝑔–1(𝑧), which
implies 𝑀𝑧𝑈𝑔 = 𝑈𝑔 𝑔–1(𝑀𝑧) providing the first
example of a homogeneous operator!
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how to make more examples?
• First observe that taking a positive power 𝜆
of the cocycle 𝐽𝑔(𝑧) is legitimate since it is a
non-zero holomorphic function defined on
the simply connected set 𝔻. More
importantly, the function 𝐽𝑔(𝑧)𝜆 continues to
satisfy the properties required of a cocycle.

• A closer examination of the change of
variable formula reveals a little more:

∫
𝔻

|𝑓 ∘ 𝑔(𝑤)|2|𝑔′(𝑤)|2𝜆𝜚(𝑤)𝑑𝐴(𝑤) = ∫
𝔻

|𝑓(𝑧)|2𝜚(𝑧)𝑑𝐴(𝑧)

= ∫
𝔻

|𝑓 ∘ 𝑔(𝑤)|2|𝑔′(𝑤)|2𝜚(𝑔(𝑤))𝑑𝐴(𝑤), 𝑓 ∈ 𝔸2(𝔻)
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this is our lucky day
• Set 𝔸(𝜆) to be the Hilbert space of holomorphic
functions defined on 𝔻, which are square
integrable with respect to the measure 𝜚𝑑𝐴.

• For a 𝜆 > 0, If we can find a 𝜚 with the
property 𝜚(𝑔(𝑤)) = |𝑔′(𝑤)|2(𝜆–1)𝜚(𝑤), then the map

𝑈 (𝜆)
𝑔 ∶ 𝔸(𝜆) → 𝔸(𝜆)

given by the formula (𝑈 (𝜆)
𝑔 𝑓)(𝑧) = (𝑔′)𝜆(𝑧)𝑓(𝑔(𝑧))

would be a unitary homomorphism as before.
• To find 𝜚 with the desired property, given
any 𝑎 ∈ 𝔻, pick a 𝑔 such that 𝑎 = 𝑔(0).
Normalizing 𝜚(0), such that ∫1𝜚𝑑𝐴 = 1, we
must have 𝜚(𝑎) = |𝑔′(0)|2(𝜆–1) = (1– |𝑎|2)2(𝜆–1), 𝑎 ∈ 𝔻.
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some more homogeneous operators
• It is not clear if 𝔸(𝜆) ≠ {0}. Determining the
values of 𝜆 for which it is not zero is an
important problem.

• As before the operator 𝑀 of multiplication
by coordinate function on the Hilbert space
𝔸(𝜆) is a homogeneous operator for each
𝜆 > 0 with the proviso that 𝔸(𝜆) ≠ {0}.

• Question: Are these all? More precisely, are
these the only homogeneous operators in the
Cowen-Douglas class of rank 1 over 𝔻?
Yet another formulation is to ask if these
are the only homogeneous holomorphic
Hermitian vector bundles.

• Well, there are others and we find them next.
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quasi invariant
• The Bergman kernel 𝐵 ∶ 𝔻×𝔻 → ℂ of the disc

𝔻 is the reproducing kernel of the Bergman
space 𝔸2(𝔻). It is uniquely determined by
two properties:

The vector 𝐵𝑤 is in 𝔸2(𝔻) for all 𝑤 ∈ 𝔻;
reproducing property, ⟨𝑓,𝐵𝑤⟩ = 𝑓(𝑤) for all 𝑓 ∈ 𝔸2(𝔻).

• From the reproducing property, it follows
that the Bergman kernel is quasi-invariant,
that is, it transforms according to the rule:

𝑔′(𝑧)𝐵(𝑔(𝑧),𝑔(𝑤))𝑔′(𝑤) = 𝐵(𝑧,𝑤), 𝑔 ∈ 𝑆𝑈(1,1).
• For any 𝑧 ∈ 𝔻, picking a 𝑔𝑧 ∈ 𝑆𝑈(1,1) such that

𝑔𝑧(𝑧) = 0, we see that 𝐵(𝑧,𝑧) = |𝑔′
𝑧(𝑧)|2𝐵(0,0).
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The Bergman kernel
• Normalizing the measure 𝑑𝐴 to ensure that

‖1‖ = 1 , we see that 𝐵(0,0) = 1. It follows
from the quasi-invariance that the Bergman
kernel must be of the form
𝐵(𝑧,𝑤) = (1–𝑧�̅�)–2, 𝑧,𝑤 ∈ 𝔻.

• The quasi-invariance of 𝐵 is equivalent to
saying that the map 𝑈𝜑 ∶ 𝔸2(𝔻) → 𝔸2(𝔻) defined
by the formula:

(𝑈𝑔–1𝑓)(𝑧) = 𝑔′(𝑧)(𝑓 ∘ 𝑔)(𝑧), 𝑓 ∈ 𝔸2(𝔻),𝑧 ∈ 𝔻,
is an isometry.
This is just another proof of what we have
seen before.
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the connection
• First, note that 𝐵(𝑧,𝑧) is a positive real
analytic function on the disc 𝔻×𝔻. It has a
power series expansion of the form

𝐵(𝑧,𝑧) = ∑∞
𝑛=0(–1)𝑛(–2

𝑛 )(𝑧 ̅𝑧)𝑛,
where (–1)𝑛(–2

𝑛 ) = 𝑛+1. By a polarization
technique, one obtains, the Bergman kernel
of two variables.

• Now, we see a direct connection between the
kernel 𝐵 and the Hilbert space 𝔸2(𝔻),
namely, the set of vectors {√𝑛+1𝑧𝑛}∞

𝑛=0
serves as an orthonormal basis of the Hilbert
space 𝔸2(𝔻).
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power of the Bergman kernel
• What about the power of the Bergman
kernel? For any 𝜈 > 0, the function 𝐵(𝑧,𝑧)𝜈

admits a convergent power series expansion
of the form:

𝐵(𝑧,𝑧)𝜈 = ∑∞
𝑛=0(–1)𝑛(–𝜈

𝑛 )(𝑧 ̅𝑧)𝑛,
where (–𝜈

𝑛 ) ∶= (–1)𝑛 𝜈(𝜈+1)⋯(𝜈+𝑛–1)
𝑛! .

• Consider the Hilbert space ℍ(𝜈)(𝔻) determined
by requiring the set of vectors {(–𝜈

𝑛 )1/2𝑧𝑛}∞
𝑛=0

to be a complete orthonormal set in it.
• Then by construction, 𝐵𝜈

𝑤 is in ℍ(𝜈)(𝔻) and it
has the reproducing property: ⟨𝑓,𝐵𝜈

𝑤⟩ = 𝑓(𝑤),
𝑓 ∈ ℍ(𝜈)(𝔻).
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repeat

• Now that we have the Hilbert space ℍ(𝜈)(𝔻)
and know that its reproducing kernel is
𝐵(𝑧,𝑤)𝜈 , it follows that 𝐵(𝑧,𝑤)𝜈, 𝜈 > 0, is
quasi-invariant as well since the
transformation rule clearly carries over to
the power. Also, the cocycle in this
transformation rule is (𝑔′)𝜈(𝑧).

• We conclude that the operator
̂𝑈 (𝜈)
𝑔 ∶ ℍ(𝜈)(𝔻) → ℍ(𝜈)(𝔻) given by the formula

( ̂𝑈 (𝜈)
𝑔 𝑓)(𝑧) = (𝑔′)𝜈(𝑧)(𝑓 ∘ 𝑔)(𝑧) is a unitary

homomorphism. Moreover, we have
𝑀 ̂𝑈 (𝜈)

𝑔 = 𝑔(𝑀) ̂𝑈 (𝜈)
𝑔 as before.
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subnormal operators
• An operator 𝑇 on a Hilbert space ℋ is said
to be subnormal if there exists a normal
operator 𝑁 on a Hilbert space 𝒦 such that ℋ
is an invariant subspace for 𝑁 and 𝑁|ℋ = 𝑇 .

• Two such normal extensions are unitarily
equivalent if they are assumed to be
minimal, that is, 𝒦 is the smallest reducing
subspace of 𝑁 containing ℋ. It follows
that if 𝑆 is homogeneous, then its minimal
normal extension 𝑁 is also homogeneous.

• What does it mean to say that a normal
operator 𝑁 is homogeneous?
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imprimitivity

- Let 𝐺 be a locally compact second
countable (lcsc) topological group and 𝒟 be
a 𝐺 -space.

Suppose that

- 𝑈 ∶ 𝐺 → 𝒰(𝒦) is a unitary representation of the
group 𝐺 on the on the Hilbert space 𝒦 and
that 𝜚 ∶C(𝒟) → ℒ(𝒦) is a ∗ - homomorphism
of the 𝐶∗ - algebra of continuous functions
C(𝒟) on the algebra ℒ(𝒦) of all bounded
operators acting on the Hilbert space 𝒦.
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imprimitivity

- Then the pair (𝑈,𝜚) is a representation of
the 𝐺 -space 𝒟 if

𝜚(𝑔 ⋅ 𝑓) = 𝑈(𝑔)∗𝜚(𝑓)𝑈(𝑔), 𝑓 ∈C(𝒟), 𝑔 ∈ 𝐺,
where

(𝑔 ⋅ 𝑓)(𝑤) = 𝑓(𝑔–1 ⋅𝑤), 𝑤 ∈ 𝒟,
which is a generalization of the imprimitivity
relation due to Frobenius by Mackey.



quasi-invariant weight

• A normal operator 𝑁 is homogeneous if
and only if it is unitarily equivalent to the
multiplication by the coordinate function on
the Hilbert space 𝐿2(𝑋,𝑄𝑑𝑚) ⊆ ℱ(𝑋,ℂ𝑛) , where
𝑋 is either 𝕋 or 𝔻 and 𝑑𝑚 is the Lebesgue
measure. The weight function 𝑄 must be
quasi-invariant:

𝑄(𝑧) ∶= 𝐽𝑔𝑧
(0)∗𝑄(0)𝐽𝑔𝑧

(0)|𝑔′
𝑧(𝑧)|–2, 𝑔𝑧(0) = 𝑧,

where 𝐽𝑔 ∶ 𝑆𝑈(1,1)×𝐷 → ℂ𝑛×𝑛 is a cocycle. Here,
for 𝑓 ∈ 𝐿2, the norm is given by the formula

‖𝑓‖2 ∶= ∫𝑋⟨𝑄(𝑧)𝑓(𝑧),𝑓(𝑧)⟩𝑑𝑚(𝑧).



examples

• We have 𝔸(𝜆) = ℍ(𝜆), as long as 𝜆 > 1/2. For
𝜆 < 1/2, the space 𝔸(𝜆) = {0}, while ℍ(𝜆) is a
non-zero Hilbert space for all 𝜆 > 0.

• Why do we make the fuss?
These simple examples show that among all
the homogeneous operators in the CD class
of rank 1, some are subnormal and some
are not. The previous discussion provides a
complete answer.
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what about vector valued functions?
• Suppose the Hilbert space consists of
holomorphic functions defined on 𝔻, taking
values in ℂ𝑛. Then we must first find all the
cocycles 𝐽[⋅](⋅) ∶ 𝑆𝑈(1,1)×𝔻 → ℂ𝑛×𝑛 and then
determine if the function B ∶ 𝔻×𝔻 → ℂ𝑛×𝑛

defined by polarizing the expression
B(𝑧,𝑧) = 𝐽𝑔(𝑧)–1B(0,0)(𝐽𝑔(𝑧)∗)–1,

is positive definite for certain choices of the
non-negative 𝑛×𝑛 matrix B(0,0).

• Simultaneously, one may also consider the
weight function

𝑄(𝑧) ∶= 𝐽𝑔𝑧
(0)∗𝑄(0)𝐽𝑔𝑧

(0)|𝑔′
𝑧(𝑧)|–2, 𝑔𝑧(0) = 𝑧.
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cocycles, in general
• The ingredient in describing our Hilbert
space, or the homogeneous operators are the
cocycles. We describe all of them.

• A co-cycle 𝐽 ∶ 𝑆𝑈(1,1)×𝔻 → ℂ(𝑛+1)×(𝑛+1) is given
by the formula:

𝐽𝑔(𝑧) = (𝑔′)2𝜆– 𝑚
2 (𝑧)𝐷(𝑔) 1

2 ���(𝑐𝜑𝑆𝑛)𝐷(𝑔) 1
2 ,

where 𝑆𝑛 is the forward shift with weights
{1,2,…,𝑚} and 𝐷(𝑔) is a diagonal matrix
whose diagonal sequence is
{(𝑔′)𝑚(𝑧), (𝑔′)𝑚–1(𝑧),…,1}.

• This cocycle determines a kernel function B
on the disc 𝔻 by the quasi-invariance except
that we have to choose 𝐵(0,0) .
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the two Hilbert spaces

• We now have the Hilbert space 𝔸(𝜆,𝑛) of
square integrable holomorphic functions on
the unit disc with respect to the measure
𝑄(𝑧)𝑑𝑉 (𝑧) described completely in terms of 𝐽
except for the value of 𝑄 at 𝑜. For this
Hilbert space ℋ(𝜆,𝑛) to be non-zero, it is
necessary and sufficient that 𝜆 > 𝑚+1

2 .

• The Hilbert spaces ℍ(𝜆,𝑛) determined by the
kernel function B and 𝔸(𝜆,𝑛) are again
related. This relationship is a question of
finding 𝐵(0,0) in terms of 𝑄(0) and
vice-versa.
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𝑛 = 2
• Let us work out the special case of 𝑛 = 2. In
this case,

𝐾(𝜆,𝜇)(𝑧,𝑤) = (
1

(1–�̄�𝑧)2𝜆–1
𝑧

(1–�̄�𝑧)2𝜆
�̄�

(1–�̄�𝑧)2𝜆
1

2𝜆–1
1+(2𝜆–1)�̄�𝑧
(1–�̄�𝑧)2𝜆+1

)+

+𝜇2 (0 0
0 1

(1–�̄�𝑧)2𝜆+1
).

• The existence of an integral inner product
implies that the operator 𝑀 (𝜆,𝜇) is subnormal
and isolating these is often very important.
The homogeneous operator 𝑀 (𝜆,𝜇) is
subnormal if and only if 𝜆 ≥ 1 and
𝜇2 ≥ 𝜆

(2𝜆–1)(𝜆–1) .
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Thank You!


