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The group el Iy

o Let G:=SU(1,1) be the group of complex 2x2
matrices of the form g:= (57 ) with
a?~|5* =1. It acks on the unit disc by the

rule g(z) = gi—gi.

o Ik is well known that all bLhoLomorPhic
automorphisms of the unit disc D arise in
this way.

o Clearly, the element ¢ and ¢ give rise bo
the same action. One may say that the

kernel of the SU(1,1) action on the unit disc
is the normal subgroup {I,-1}.



Mob, the mMobius group

e If one already knows that (the MSbius group,
to be dencted Mdb in what follows,
consisting of) the bi-holomorphic
automorphisms of D of the form
Ppa(z)=€?FL, 0<0<2m, and a in the unit
disc D, then it comes from the action of a
g€SU(1,1), where g is of the form
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and also from replacing g by changing 0 to
0+ 2m.



Mob, the Mobius group

* If one already knows that (the Mobius group,
to be dencted Mdb in what follows,
consisting of) the bi-holomorphic
automorphisms of D of the form
Ppa(z) =L, 0<0<2m, and a in the unit
disc D, then it comes from the action of a
g€SU(1,1), where g is of the form

& 1 exp(iz) 0 ( 1 7@)
STV o eped) R

and also from replacing g by changing 0 to
0+ 27,

o Now, the map g (€*,a) with a=-2 isa
two to one smooth komomorpki.sm.
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homogeneous opera&ors

o A bounded linear operator T on a complex
separable Hilbert space # with o(T)CD is
said to be homogeneous if

g(T) := e?®(T—al)(I-aT)™
is unitarily equivalent to T for all g n
SU(1,1).

* Of course, for a gcSU(L,1), the operator ¢(T)
is the same as the opera&or o(T), where ¢ is
the element in Mob determined bj ge

o ALl irreducible homogeneous operators in

the Cowen-Douglas class of the unit disc D
modulo uhi.f:omy ectuivai.e\r\ce have been

described recently,
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The Bergman space

o Let #°(D) be the Hilbert space of square
integrable (with respect to the area measure)
holomorphic functions on D.

* By the change of variable formula, for any
geSU(1,1) , we have

L1foglPlg’ PdA= [[|f[?dA, f € A*(D).
o The operator U, : A%(D) - A*(D) given by the
formula:
(U1 [)(2) = ¢'(2)(f29)(2), f € £%(D), g € SU(1,1),

is therefore isometric,



umi&arj homomorphism

e The map Jy():SU(1,1)xD—C* given by the
formula J (2)=g/(z) is a cocycle, that is,
Jg.9,(2) = 91(92(2))95(2), 91,9, € SU(1,1), z € D

This is just the chain rule for the derivative,
ik ensures that g— U, is a homomorphism:

Ugrganf=1(91°92) fo(91°95)
= 95(291(92(2))(f 2 91)(92(2)
=UyaUya



umi&c\rv homomorphism

o The map J,():SU(1,1)xD—C* given by the
formula J(z)=g'(z) is a cocycle, that is,
Jg.9,(2) = 91(92(2))95(2), 91,9, € SU(1,1), z € D,

This is just the chain rule for the derivative,
it ensures that g— U, is a homomorphism:

Ugrgaf=1(91°92) fo(91°95)
= 95(291(92(2))(f 2 91)(92(2)
Zrga

o Finally, we note that g '(M,) =M, ., which
implies M.U,=U,g'(M,) providing the first

z

example of a homogeneous opero&orf



how to malkke more examptes?

o First observe that taking a positive power A
of the cocycle Jy(z) is legitimate since it is a
non-zero holomorphic function defined on
the simply comnected set D. More
importantly, the function J (z)* continues to
satisfy the properties required of a cocycle.



how to malkke more examptes?

o First observe that taking a positive power A
of the cocycle Jy(2) is legitimate since it is a
non-zero holomorphic function defined on
the simply comnected set D, More
importantly, the function J (z)* continues to
satisfy the properties required of a cocycle.

o A closer examination of the change of
variable formula reveals a Little more:

/D |Fog(w)Plg’ ()| o) dA(w) = / |F(2)2o(2)dA(2)
- / |F o 9(w) 21’ (w)|Pe(g(w))dA(w), f € A2(D)
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this is our Luck‘v daj

o Set AV to be the Hilbert space of holomorphic
functions defined on D, which are square
integrable with respect to the measure odA,

e For a V>0, If we can find a o with the
PrOPerE‘J o(g(w)) = g’ (w)[** Vo(w), then the map

P : A0 S5 a0
given by the formula (U;Vf)(2) = (9)*(2) f(9(2))
would be a unitary homomorphism as before.

o« To find o with the desired property, given
ahy a€D, pick a g such that a=g(0).
Normalizing 0(0), such that [ 1gdA_ 1 we
nmust have o(a) = |¢’(0)?*Y = (1-1a|?)?* Y, a € D.
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values of A for which it is not zero is an
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some more homogeneous o—peral‘:ors

o It is not clear f AN £ {0}, Determining the
values of A for which it is not zero is an
important problem.

o As before the operator M of mulkiplication
by coordinate function on the Hilbert space
AM is a homogeneous operator for each
A>0 with the proviso that AN £ {0},

e Question: Are these all? More Precisety, are
these the only homogeneous operators in the
Cowen-Douglas class of rank 1 over D?

Yet another formulation is to ask if these
are the only homogeneous holomorphic

Hermitian vector bundles,
e Well, there are others and we find them next,
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quasi tavariank

o The Bergman kernel B:DxD—C of the disc
D is the reproducing kernel of the Bergman
space A%(D). It is uniquely determined by
two properties:

The vector B,, is in A%(D) for all w € D;

w

reproducing property, (f,B,)= f(w) for all fe A?(D).

o From the reproducing property, it follows
that the Bergman kernel is quasi-thvariant,
that is, it transforms according to the rule:

9'(2)B(9(2),9(w))g’ (w) = B(z,w), g € SU(L,1).
o For any z€D, picking a g, €SU(1,1) such that
g.(2) =0, we see that B(z,2)=|g.(2)|?B(0,0).



The Bergman kernel

o Normalizing the measure dA to ensure that
[1]=1 , we see that B(0,0)=1. It follows
from the quasi-invariance that the Bergman

keriel must be of the form
B(z,w) = (1-zw) 2, z,w € D.



The Bergman kernel

e Normalizing the wmeasure dA to ensure that
[1]=1 , we see that B(0,0)=1. It follows
from the quasi-invariance that the Bergman

keriel must be of the form
B(z,w) = (1-2w)2, z,w € D.

o The gquasi-invariance of B is equivalent to
saying that the map U, : 4%(D) — A*(D) defined
by the formula:

(Ug1 £)(2) =g (2)(fo9)(2), f € A*(D),z € D,
is an isomelry,

This is just another proof of what we have
seen before.



the conneckion

e First, note that B(z,2) is a Posi&i,ve real
analytic function on the disc DxD. It has a
power series expansion of the form

B(z;7) = A QERES 7
where ((1)"(7)=n+1. By a polarization
technique, one obtains, the Bergman kernel
of two variables.



the connection

e First, note that B(z,2) is a Posi&i,ve real
analytic function on the disc DxD. It has a
power series expansion of the form

B(z,2) =3 o))",
where ((1)"(7)=n+1. By a polarization
technique, one obtains, the Bergman kernel
of kwo variables,

e Now, we see a direct connection between the
kernel B and the Hilbert space 4%(D),

namely, the set of vectors {Vn+12"}22,

serves as an orthonormal basis of the Hilbert
space A%(D).



power of the Bergman kernel

o What about the power of the Bergman
kernel? For ay v >0, the function B(z,2)”
admits a convergent power series expansion
of the form:
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power of the Bergman kernel

o What about the power of the Bergman
kernel? For any v >0, the function B(z,2)”
admits a convergent power series expansion
of the form:
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by requiring the set of vectors {(’n”)l/ gy
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power of the Bergman kernel

o What about the power of the Bergman
kernel? For ahny v >0, the function B(z,z)”
admits a convergent power series expansion
of the form:

B(z,2)" =3, L, (1" () (=2)",
(71)71 v(v+1)-(v+n-1)

n!

where ():=
o Consider the Hilbert space H"(D) determined
b3 requiring the set of vectors {(;fb’)l/ on o
to be a comptefze orthonormal set in ik,
o Then by construction, B, is in HY(D) and it
has the reproducihg property: (f,B:,) = f(w),
f e HV(D),

.



rapeo&

o Now that we have the Hilbert space H"/(D)
and know that its reproducing kernel is
B(z,w)” , it follows that B(z,w)’, v>0, is
quasi-thvariant as well since the
transformation rule clearly carries over to
the power. Also, the cocvcl.e in this
transformation rule is (¢)"(2).



repea&

o Now that we have the Hilbert space H"/(D)
and know that its reproducing kernel is
B(z,w)” , it follows that B(z,w)’, v>0, is
quasi-thvariant as well since the
Eransformation rule clearly carries over to
the power. Also, the cocycle i this
transformation rule is (¢)¥(2).

e We conclude that the operator
U : H¥(D) —» H¥) (D) given bj the formula
(03" F)(2) = (0)"(2)(fo9)(2) is a unitary
homomorphism. Moreover, we have
MUY = g(M)TY  as before.
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subnormal operators

* An operator T on a Hilbert space J is said

to be subnormal if there exists a normal
operator N on a Hilbert space X such that 7

is an tavariant subspace for N and Ny =T.

o Two such normal extensions are unitarily
equivalent if they are assumed to be
minimal, that is, X is the smallest reducing
subspace of N containing 7. It follows

that f S is homogeneous, then its minimal
normal extension N is also homogeneous.

o What does it mean to say that a normal
operator N is homogeneous?
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i primi&ivi&v

- Let G be a Locally compact second
countable (Lese) topological group and 2 be
fr s -space. Suppose that

- U:G=U(X) is a unitary representation of the
group G on the on the Hilbert space & and
that 0:C(D) - L(K) s a x = homomorphi.sm
of the C* - algebra of continuous functions
C(D) own the algebra £(X) of all bounded
operators acting on the Hilbert space X.



i primi&ivi&v

- Then the pair (U,0) is a representation of
the G -space D if
o(g-f)=U(g)*e(f)U(9), f €C(D), g €G,
where
(g-fw)=flg' w),we D,
which is a generalization of the imprimitivity
relation due to Frobenius by Mackey,



quasi-ihv&rmn& wetgh&

A normal operator N is homogeneous if
and only ik is unhitarily equivalent to the
mulkiplication by the coordinate function on
the Hilbert space L*(X,Qdm)C F(X,C") , where
X iseither T or D and dm is the Lebesque

measure. The weight function @ wust be
quasi-thvariant:

Q(z) = J,_(0)*Q(0)J,_(0)|g2(2)[ %, 9.(0) =z,
where J,:SU(1,1) x D = C"" is a cocycle, Here,
for feL?, the norm is given by the formula

117 := [ (Q(2)£(2), f(2)) dm(z).
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o We have AV =HY, as long as A>1/2. For
A<1/2, the space AN =1{0}, while HM is a
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examptes

o We have AV =HY, as long as A>1/2. For
A<1/2, the space AN =1{0}, while HM is a
non-zero Hilbert space for all A >0.

o Why do we make the fuss?
These simple examples show that among all
the homogeneous operators in the CD class

of rank 1, some are subnormal and some
are not, The previous discussion Frovides a

com'ai.e&e answer,



what about vector valued functions?

o Suppose the Hilbert space consists of
holomorphic functions defined on D, taking

values in C*. Then we must first find all the
cocycles Jy(-): SU(1,1) x D — C™" and then

determine if the function B:Dx D — C™"
defined by polarizing the expression
B(2,2) = Jy(2)B(0,0)(J,(2)") ",

is positive definite for certain choices of the
non-hegative nxn wmakrix B(0,0).



what about vector valued functions?

o Suppose the Hilbert space consists of
holomorphic functions defined on D, taking

values in C". Then we must first find all the
cocycles Jy(-): SU(1,1) xD — C™"  and then

determine if the function B:Dx D — C™"
defined by polarizing the expression

B(2,2) = J,(2)'B(0,0)(J4(2)*) 7,

is positive definite for certain choices of the
non-hegative nxn wmakrix B(0,0).

o Simultaneously, one may also consider the
weight function

Q(2) := J, (0"Q(0)J,_(0)|g4(2) %, g.(0) = =.
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o The ingredient in describing our Hilbert
space, or the homogeneous operators are the

cocycles. We describe all of them,
o A co-cycle J:SU(1,1)xD — CtDx(ntl) i given
by the formula:
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where S, is the forward shift with weights
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whose diagonal sequence is

(g (=), ("



z‘:ocvctes , WA general

o The ingredient in describing our Hilbert
space, or the homogeneous operators are the

cocycles. We describe all of them,
o A co-cycle J: SU(1,1) x D — CnHUx(nHl) i given
by the formula:

Jy(2) = (g % (2)D(9)? (c,S,)D(g)%,

where S, is the forward shift with weights
{1,2,...,m} and D(g) is a diagonal matrix
whose diagonal sequence is
{(g)"(2),(¢)™ " (2),, 1}

o This cocycle determines a kernel function B
on the disc D bv the quasi-invariance except
that we have to choose B(0,0) .



the two Hilbert spaces

o We now have the Hitbert space A*"  of
square integrable holomorphic functions on
the unit disc with respect to the measure
Q(2)dV(z) described completely in terms of J
except for the value of Q at o. For this
Hilbert space 7" to be non-zero, it is
necessary and sufficient that A > 7L,



the kwo Hilbert spaces

o We now have the Hilbert space 4A*"  of
square integrable holomorphic functions on
the unit disc with respect to the measure
Q(2)dV(z) described completely in terms of J
except for the value of Q at o. For this
Hilbert space 7" to be non-zero, it is
necessary and sufficient that A > 7L,

o The Hilbert spaces H*" determined by the
kernel function B and A"  are again
related. This relationship is a question of
finding B(0,0) u terms of Q(0) and
vice-versa.



=

o Let us work out the special case of n=2. In
this case,

1
A, _ [ @wz)2x1 (1—wz)2*
KO (z,w) = @ 1+2/\1wz +
(1—wz)2> 2/\ 1 (1-w2) 2>‘+1

3 0
”OW'
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o Let us work out the special case of n=2. In
this case,

%
KO8 (2,u) = (““’fﬁ“ X wz> +

(1—wz)2> 2/\ 1 (1-wz) 2>‘+1

- 0

o The existence of an integral tnner product
implies that the operator M) is subnormal
and isolating these is often very important,
The homogeneous operator M ) s
sabv\ormat if and only f A>1 and
>

@ 1)(>\ 0"



Thank You!



