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Motivation



The Cowen - Douglsa class

A Hilbert module over the polynomial ring
C[z] := C[z1, . . . , zm] is a Hilbert space H which is a C[z]
-module with the assumption

∥p · f∥ ≤ Cp∥f∥, f ∈, p ∈ C[z],

for some Cp > 0.

The multiplication Mj by the complex variable
zj, Mjf = zj · f, 1 ≤ j ≤ m , then defines a commutative tuple
M = (M1, ...,Mm) of linear bounded operators acting on ̋ and
vice-versa.

A Hilbert module H over the polynomial ring C[z] is said to
be in the Cowen-Douglas class Bn(Ω) , n ∈ N , if

dimH/mwH = n < ∞ for all w ∈ Ω

∩w∈ΩmwH = {0}, where mw denotes the maximal ideal in
C[z] at w.
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Examples

A Hilbert module M in Bn(Ω) determines a holomorphic
Hermitian vector bundle on Ω.

Cowen and Douglas prove that isomorphic Hilbert modules
correspond to equivalent vector bundles and vice-versa.

Also, they provide a model for the Hilbert modules in Bn(Ω).

Cowen and Douglas (Curto and Salinas, in general) show that
these modules can be realized as a Hilbert space consisting of
holomorphic functions on Ω possessing a reproducing kernel.
The module action is then simply the pointwise multiplication.

Examples are Hardy and the Bergman modules over the ball
and the poly-disc in Cm.
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Not an example!

However, many natural examples of Hilbert modules fail to be
in the class Bn(Ω).

For instance, H2
0(D2) := {f ∈ H2(D2) : f(0) = 0} is not in

Bn(D2).

The problem is that the dimension of the joint kernel

H/mwH ∼= ∩m
j=0Ker(Mj − wj)

∗

is no longer a constant.

Indeed, we have (an easy calculation)

dim
(
H/mwH

)
=

1 if w ̸= (0, 0)
2 if w = (0, 0).

We outline an attempt to systematically study examples like the
one given above using methods of complex analytic geometry. 4
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What about the kernel?

The computation of the dimension of the joint kernel for the
module H2

0(D2) serves another purpose as well.

It shows that the module H2
0(D2) is not equivalent to the usual

Hardy module. The dimension of the joint kernel for the Hardy
module is 1 everywhere on the bi-disc.

This is a gennuine multi-variate phenomenon – for the unit disc,
the Hardy module is equivalent to all its sub-modules.

Clearly, the dimension of the joint kernel is an important
unitary invaraint for a module. However, in many instances,
calculating this dimension, or other numerical invariants is
possible only after determining the kernel itself.
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Definitions

A Hilbert module M ⊂ O(Ω) is said to be in the class B1(Ω)

if

it possesses a reproducing kernel K ( we don’t rule out the
possibility: K(w,w) = 0 for w in some closed subset X of
Ω ) and

The dimension of M/mwM is finite for all w ∈ Ω.

Most of the examples in B1(Ω) arises in the form of a
submodule of some Hilbert module H(⊆ O(Ω)) in the
Cowen-Douglas class B1(Ω).

Are there others?
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A couple of questions

Let M ∈ B1(Ω) be a Hilbert module and I ⊆ M be a
polynomial ideal. Assume without loss of generality that
0 ∈ V(I). Now, we ask

if there exists a set of polynomials p1, . . . , pt such that

pi(
∂

∂w̄1
, . . . , ∂

∂w̄m
)K[I](z,w)|w=0, i = 1, . . . , t,

spans the joint kernel of [I] ;

what conditions, if any, will ensure that the polynomials
p1, . . . , pt , as above, is a generating set for I ?
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Relation between B1(Ω) and B1(Ω)

The following Lemma isolates a very large class of elements
from B1(Ω) which belong to B1(Ω0) for some open subset
Ω0 ⊆ Ω.

Lemma. Suppose M ∈ B1(Ω) is the closure of a polynomial
ideal I. Then M is in B1(Ω) if the ideal I is singly
generated while if it is generated by the polynomials
p1,p2, . . . , pt , then M is in B1(Ω \ X) for
X = {z : p1(z) = . . . = pt(z) = 0}.
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The sheaf model



Construction of the sheaf model

Following the correspondence of a vector bundle with a locally
free sheaf, we construct a sheaf SM(Ω) for the Hilbert module
M.

The sheaf SM is the subsheaf of the sheaf of holomorphic
functions O(Ω) whose stalk SMw at w ∈ Ω is{

(f1)wOw + · · ·+ (fn)wOw : f1, . . . , fn ∈ M
}

For any Hilbert module M in B1(Ω) , the sheaf SM is
coherent.

This is essentially Noether’s stationary lemma!
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The decomposition theorem

Theorem. Suppose g0
i , 1 ≤ i ≤ d, be a minimal set of

generators for the stalk SMw0 . Then there exists a open
neighborhood Ω0 of w0 such that

K(·,w) := Kw = g0
1(w)K(1)

w + · · ·+ g0
n(w)K(d)

w , w ∈ Ω0

for some choice of anti-holomorphic functions
K(1), . . . ,K(d) : Ω0 → M ,

the vectors K(i)
w , 1 ≤ i ≤ d , are linearly independent in M for

w in Ω0

the vectors {K(i)
w0 | 1 ≤ i ≤ d} are uniquely determined by

these generators g0
1, . . . , g0

d ,
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Outline of the proof of the Theorem

We point out that the linear span of the set of vectors
{K(i)

w0 | 1 ≤ i ≤ d} in M is independent of the generators
g0

1, . . . , g0
d ,

and that the vectors K(i)
w0 , 1 ≤ i ≤ d , are eigenvectors for the

adjoint of the action of C[z] on the Hilbert module M at w0.

Key ingredients in the proof are the following observations.

There is a decomposition for a function in any submodule of
Ow0 in terms of its generators valid over a small neighbourhood
of w0.

The coefficients in this decomposition satisfy uniform norm
bounds in a even smaller compact neighbourhood of w0.

Ow0 is a local ring to which Nakayama’s lemma applies.
11
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An Inequality

One easy consequence of the decomposition theorem is the
inequality

dim kerD(M−w0)∗ ≥ ♯{minimal generators for SM
w0}

≥ dim SMw0/m(Ow0)S
M
w0 .

One of the basic question is to ask if we have equality under
additional hypothesis on the Hilbert module M.

Thus assuming M to be an analytic Hilbert module then Chen
and Guo have shown that equality is forced.

We show that this property continues to hold for submodules of
analytic Hilbert modules.
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The H2
0(D2) example, again!

In the example of the module H2
0(D2) , we have

S
H2

0(D
2)

w =

Ow if w ̸= (0, 0)
m(0,0)O(0,0) if w = (0, 0).

While the germs of holomorphic function Ow at w ∈ D2 is
singly genarated (even if w = (0, 0) ), the ideal
m(0,0)O(0,0) ⊆ O(0,0) is 2 - generated.

Thus the number of generators match the dimension of the joint
eigenspace, in this case.
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A Corollary

Corollary. If M = [I] be a submodule of an analytic Hilbert
module over C[z] , where I is an ideal in the polynomial ring
C[z] and w ∈ V(I) is a smooth point, then

dim kerD(M−w)∗

=

{
1 for w /∈ V(I) ∩ Ω;
codimension of V(I) for w ∈ V(I) ∩ Ω.
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The joint kernel of a Hilbert module



The characteristic space

Let I be an ideal in the polynomial ring C[z].

The characteristic space of an ideal I in C[z] at the point w
is the vector space

Vw(I) := {q ∈ C[z] : q(D)p|w = 0, p ∈ I}.

The envolope Ie
w of the ideal I is

{p ∈ C[z] : q(D)p|w = 0, q ∈ Vw(I)}.

If the zero set of the ideal I is {w} then Ie
w = Vw(I).

This describes an ideal by prescribing conditions on derivatives.
We stretch this a little more.
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An auxiliary space

Let Ṽw(I) be the auxiliary space Vw(mwI). Then we have

dim∩Ker(Mj − wj)
∗ = dim Ṽw(I)/Vw(I).

Actually, we have something much more substantial.

Lemma. Fix w0 ∈ Ω and polynomials q1, . . . , qt. Let I be
a polynomial ideal and K be the reproducing kernel
corresponding the Hilbert module [I] , which is assumed to be
in B1(Ω). Then the vectors

q1(D̄)K(·,w)|w=w0 , . . . , qt(D̄)K(·,w)|w=w0

form a basis of the joint kernel ∩m
j=1 ker(Mj − w0j)∗ if and only

if the classes [q∗
1], . . . , [q∗

t ] form a basis of Ṽw0(I)/Vw0(I).

However, it is not clear if we can choose the polynomials
{q1, . . . , qt} to be a generating set for the ideal I
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∗ = dim Ṽw(I)/Vw(I).

Actually, we have something much more substantial.

Lemma. Fix w0 ∈ Ω and polynomials q1, . . . , qt. Let I be
a polynomial ideal and K be the reproducing kernel
corresponding the Hilbert module [I] , which is assumed to be
in B1(Ω). Then the vectors

q1(D̄)K(·,w)|w=w0 , . . . , qt(D̄)K(·,w)|w=w0

form a basis of the joint kernel ∩m
j=1 ker(Mj − w0j)∗ if and only

if the classes [q∗
1], . . . , [q∗

t ] form a basis of Ṽw0(I)/Vw0(I).
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A canonical set of generators

Theorem. Let I ⊂ C[z] be a homogeneous ideal and
{p1, . . . , pv} be a minimal set of generators for I consisting of
homogeneous polynomials. Let K be the reproducing kernel
corresponding to the Hilbert module [I] , which is assumed to
be in B1(Ω). Then there exists a set of generators q1, ..., qv
for the ideal I such that the set

{qi(D̄)K(·,w)|w=0 : 1 ≤ i ≤ v}

is a basis for ∩m
j=1 kerM∗

j .

We note that the new set {q1, . . . , qv} of generators for I is
more or less “canonical”. It is uniquely determined modulo a
linear transformation as shown below.
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An Example

Let I ⊂ C[z1, z2] be the ideal generated by z1 + z2 and z2
2.

We have V(I) = {0}. The reproducing kernel K for
[I] ⊆ H2(D2) is

K[I](z,w) =
1

(1 − z1w̄1)(1 − z2w̄2)
−

(z1 − z2)(w̄1 − w̄2)

2
− 1

=
(z1 + z2)(w̄1 + w̄2)

2
+ i + j ≥ 2∞zi

1zj
2w̄i

1w̄j
2.

The vector ∂̄2
2K[I](z,w)|0 = 2z2

2 is not in the joint kernel of
P[I](M∗

1,M∗
2)|[I] since M∗

2(z2
2) = z2 and

P[I]z2 = (z1 + z2)/2 ̸= 0.
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However, we have q1 = z1 + z2 and q2 = (z1 − z2)2 and they
generate the ideal I as well. Moreover,
{(∂̄1 + ∂̄2)K(·,w)|0, (∂̄1 − ∂̄2)2K(·,w)|0} forms a basis of the
joint kernel.

Let I be the ideal generated by z1 + z2 and z2
2 and Ĩ be

the ideal generated by z1 and z2
2. Since z1 is not a linear

combination of z1 + z2 and z2
2 , it follows that I ̸= Ĩ.

Indeed, our Theorem provides an effective tool for deciding
when an ideal is a monomial ideal.

Let {q1, . . . , qv} be a canonical set of generators for I. Let Λ

be the collection of monomials in the expressions of {q1, . . . , qv}
that are in I. If the number of algebraically independent
monomials in Λ is v , then I is a monomial ideal.
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New Invariants



Local construction of vector bundles

Let P0 be the orthogonal projection onto the joint kernel
M/mw0M

Lemma. The dimension of kerP0
(
M/mwM

)
is constant in a

suitably small neighbourhood Ω0 of w0 ∈ Ω.

Thus

PM
w0 := {(w, f) ∈ Ω×M : f ∈ kerP0D(M−w)∗} and π(w, f) = w

may possibly define a holomorphic Hermitian vector bundle on
the open set Ω0.
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Existence of holomorphic structure

Existence of the operator RM(w) satisfying

RM(w)D(M−w)∗ = I − PkerD(M−w)∗

D(M−w)∗RM(w) = Pran D(M−w)∗

on Ω0 is established.

(Here, D(M−w)∗ : M → M⊕ · · · ⊕M is the operator
f 7→

(
(M1 − w1)∗f, . . . , (Mm − wm)∗f

)
)

Then the operator

P(w̄, w̄0) = I − {I − RM(w0)Dw̄−w̄0}−1RM(w0)D(M−w)∗ ,

is clearly seen to be well-defined and holomorphic for
w ∈ B(w0; ∥ R(w0) ∥−1)
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Main Theorem

Theorem. If any two Hilbert modules M and M̃ from
B1(Ω) are equivalent, then the corresponding holomorphic
Hermitian vector bundles PM

w0 and PM̃
w0 , they determine on

Ω0 are equivalent.
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Examples, calculation of the invariant

For λ, µ > 0 , let K(λ,µ) denote the positive definite kernel
1

(1−z1w̄1)λ(1−z2w̄2)µ
, z,w ∈ D2 on the bi-disc. Let

H(λ,µ)
0 (D2) := {f ∈ H(λ,µ)(D2) : f(0, 0) = 0} be the corresponding

Hilbert module in B1(D2). The normalized metric h0(w,w) ,
which is real analytic, is of the form

h0(w,w) = I +

 λ+1
2 |w1|2 + λ2µ

(λ+µ)2
|w2|2 1√

λµ

( λµ
λ+µ

)2w1w̄2
1√
λµ

( λµ
λ+µ

)2w2w̄1
λµ2

(λ+µ)2
|w1|2 + µ+1

2 |w2|2



+O(|w|3),

where O(|w|3)i,j is of degree ≥ 3.
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The final outcome of these calculations

The curvature for P at (0, 0) is given by the 2 × 2 matrices(
λ+1

2 0
0 λµ2

(λ+µ)2

)
,

(
0 1√

λµ

( λµ
λ+µ

)2

0 0

)
,

(
0 0

1√
λµ

( λµ
λ+µ

)2 0

)
,

(
λ2µ

(λ+µ)2 0
0 µ+1

2

)
.

H(λ,µ)
0 (D2) and H(λ′,µ′)

0 (D2) are equivalent if and only if
λ = λ′ and µ = µ′.
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Thank you!
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