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hyponormal operators

An operator T on a Hilbert space H is said to be hyponormal if the
commutator [T∗,T] := T∗T −TT∗ is positive.
The Berger-Shaw theorem says that if T is a m-cyclic hyponormal
operator, then the commutator [T∗,T] is trace class and

tr[T∗,T]≤ m
π A(σ(T))

There has been some attempt to show that if a commuting n-tuple of
bounded linear operators T is hyponormal and cyclic, then the cross
commutators must be trace class. The first of these is due to Athavale
and the other is due to Douglas and Yan.
Douglas and Yan using techniques from commutative algebra reduce
their proof to the case of a single operator.
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strong and weak hyponormal

A commuting n -tuple T of operators acting on a Hilbert space H is
said to be m-cyclic if there exists a set of vectors ζ{m} := {ζ1, . . . ,ζm}
such that closed linear span of the vectors

{p(T1, . . . ,Tn)ζ : ζ ∈ ζ{m},p ∈ C[z]}.
is all of H

A commuting n -tuple T of operators acting on a Hilbert space H is
said to be strongly hyponormal if[[

T∗,T
]]

:=
((
[T∗

j ,Ti]
))n

i,j=1 :
⊕

n H −→
⊕

n H

is positive, that is, for each x ∈
⊕

n H ,
⟨[[

T∗,T
]]

x,x
⟩
≥ 0, and

it is said to be weakly hyponormal if for each vector (α1, . . . ,αn) ∈ Cn,
the sum ∑n

i=1 αiTi is a hyponormal operator on H .
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question

Question: If the n -tuple T is strongly hyponormal and cyclic, then
does it follow that the commutators [T∗

j ,Ti] , 1 ≤ i, j ≤ n is necessarily
trace class?
It is easy to verify that the answer is “no”, in general. Take for instance,
the example of the Hardy space H2(D2) and the pair of operators to be
the multiplication by the coordinate functions (M1,M2) . Here the
operators M∗

j Mi −MiM∗
j = 0 , j ̸= i. However, the commutators

M∗
j Mj −MjM∗

j are of infinite multiplicity and they are not even
compact.
What might be a possible generalization of the Berger-Shaw theorem ot
the case of commuting tuples of operators?
Athavale finds the answer after making a strong assumption on the
nature of the multiplicity of the commuting tuple while Douglas and
Yan make very strong assumption on the joint spectrum.
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what we do

Instead of asking for the trace of the commutators to be finite, we only
ask that the trace of a “certain” determinant (or, in the language of
Helton and Howe, the generalized commutator) is finite.
One may argue that it is not asking for much. But then to arrive at this
conclusion, we don’t assume much either.
As in the Berger-Shaw theorem, we assume finite multiplicity but
instead of either strong or weak hyponormality, we only assume that the
determinant is positive. In many ways, it is a mild condition and this
gives us the finiteness of the trace, what is more, we can even get an
explicit bound.
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what is the determinant

Let B := ((Bij)) be an n×n block matrix with entries from L (H ).
The determinant of B is the operator

Det(B) := ∑σ ,τ sgn(σ)Bτ(1),σ(τ(1))Bτ(2),σ(τ(2)), . . . ,Bτ(n),σ(τ(n)).

The map Det : L (H )n × . . .×L (H )n 7→ L (H ) is clearly an
alternating multi-linear map.

Let T = (T1,T2, . . . ,Tn) be a n -tuple of commuting operators. Let us
say that the determinant of the n -tuple T is the operator Det(

[[
T∗,T

]]
).

For operators of the form [[T∗,T]] , Helton and Howe define the
generalized commutator of T = (T1,T2, . . . ,Tn) : Let
A1 = T∗

1 ,A2 = T1, . . . ,A2n−1 = T∗
n ,A2n = Tn. The generalized

commutator of the n -tuple T is the operator
GC(T) := ∑σ sgn(σ)Aσ(1)Aσ(2), . . . ,Aσ(2n).
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Det and GC are the same

Thanks to Cherian Varughese, we see that Det(T) and GC(T) are
equal, which is perhaps implicit in the paper of Helton and Howe.
Recall the example of the pair of multiplication operators on the Hardy
space, H2(D2). In this case,

[[
M∗,M

]]
=

(
[(Mz ⊗ I)∗,(Mz ⊗ I)] [(I ⊗Mz)

∗,(Mz ⊗ I)]
[(Mz ⊗ I)∗,(I ⊗Mz)] [(I ⊗Mz)

∗,(I ⊗Mz)]

)
=

(
P⊗ I 0

0 I ⊗P

)
≥ 0.

It now follows that Det
([[

M∗,M
]])

= 2(P⊗P).

Thus Det
([[

M∗,M
]])

is positive and trace class.

indeed, tr
(
Det

[[
M∗,M

]])
= 2.
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a new class operators

Let T = (T1,T2) be a pair of commuting operators on a Hilbert space
H such that T is m -cyclic. Let ζ{m} be the minimal set of
generating vectors for the pair (T1,T2) . Set

HN =
∨{

T i1
1 T i2

2 v|v ∈ ζ{m} and 0 ≤ i1 + i2 ≤ N
}

and let PN be the projection onto HN .

Clearly, PN ↑SOT I.

A pair of commuting operators T is said to be in the class BSm(H ) if
T is m -cyclic and for every N ∈ N , we have∥∥PN(T∗

1 T1T∗
2 −T∗

2 T1T∗
1 )P

⊥
N
∥∥≤ 1

N +1

∥∥T1
∥∥2∥∥T2

∥∥ (1)

and ∥∥PN(T∗
2 T2T∗

1 −T∗
1 T2T∗

2 )P
⊥
N
∥∥≤ 1

N +1

∥∥T2
∥∥2∥∥T1

∥∥. (2)
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main theorem

Theorem
Let T = (T1,T2) be a pair of commuting operators on a Hilbert space H
in the class BSm(H ). If the determinant operator D

([[
T∗,T

]])
(= GC(T))

is non negative definite then it is in trace-class and

trace(D
([[

T∗,T
]])

)≤ 2m
π2 ν(σ(T)),

where ν is the Lebesgue measure and σ(T) is the Taylor-joint spectrum of
the n -tuple T.



the proof

Lemma
Let T = (T1,T2) be a pair of commuting operators on a Hilbert space H
such that T is m -cyclic. Furthermore assume that T is in the class
BSm(H ). If the determinant operator D

([[
T∗,T

]])
is positive then it is in

trace-class and
trace(D

([[
T∗,T

]])
)≤ 2m∥T1∥2∥T2∥2.

Outline of the proof:

Det
([[

T∗,T
]])

= [T∗
1 T1T∗

2 ,T2]− [T∗
1 T2T∗

2 ,T1]+ [T∗
2 T2T∗

1 ,T1]− [T∗
2 T1T∗

1 ,T2]

For j = 1,2, note that PNTjP⊥
N = 0 , rank(P⊥

N TjPN)≤ (N +1)m.
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proof contd.

For i ̸= j, therefore we have
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i TiT∗
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j −T∗
i TiT∗

j Tj)PN

=PNTj(PN +P⊥
N )T

∗
i TiT∗

j )PN −PNT∗
i TiT∗

j (PN +P⊥
N )TjPN

=[PNT∗
i TiT∗

j PN ,PNTjPN ]−PNT∗
i TiT∗

j P⊥
N TjPN .

If A,B are in trace-class, then trace(AB) = trace(BA) and it follows
that trace([PNT∗

i TiT∗
j PN ,PNTjPN ]) = 0. Hence

trace(PND
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(
PN(T∗
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1 −T∗
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2 )P

⊥
N T2PN

)
+
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N T1PN
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Vitali covering

For the second half of the theorem, we need two preparatory lemmas.

The first one says that if Ti is mi -multicyclic, i = 1,2, and
σ(T1)∩σ(T2) is empty, then T1 ⊕T2 is m -multi-cyclic, where
m = max{m1,m2}.

The other one is essentially the the Vitali covering lemma.

A Vitali covering of a finite measure space (E,m) is a collection of
closed balls B such that for each x ∈ E and any ε > 0, there is a
B ∈ B with the property: x ∈ B and ν(B)< ε .

The Vitali covering Lemma says that if (E,m) is a finite measure space
and B is a “Vitali covering” of E, then given any δ > 0, we can find
finitely many disjoint balls B1, . . . ,BN in B such that

N

∑
i=1

m(Bi)≥ m(E)−δ .
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completing the proof – following that of Voiculescu

Let Ri = ||Ti|| , i = 1,2, and put D12 = D∥T1∥×D||T2||.
Let ε > 0, by Vitali covering lemma, there exist B1, . . . ,Bn pairwise
disjoint balls in D12 \σ(T) such that ν(D12)< ν(σ(T))+∑j ν(Bj)+ ε

If Bj = B̄(aj;rj), where aj ∈ C2 the above inequality gives

π2||T1||2||T2||2 −
π2

2 ∑
j

r4
j < ν(σ(T))+ ε.



completing the proof

Let S be the pair of shift operators on the Hardy space over ball
H2(B2).

Define Lj(Z) = (aj + rjZ).
Let Sj be the m -fold direct-sum copy of the operator Lj(S) on the
Hilbert space Hj =

⊕m
j=1 H2(Bj).

The pair A = T⊕
⊕n

i=1 Sj is m-cyclic on the Hilbert space
H̃ = H ⊕

⊕n
j=1 Hj since the spectrum of the summands are pairwise

disjoint and each Sj is m -cyclic.
Clearly, D

([[
A∗,A

]])
= D

([[
T∗,T

]])
⊕

⊕
D
([[

S∗
j ,Sj

]])
is non

negative definite and ∥Ai∥= ∥Ti∥, i = 1,2. For i ̸= j, we have∥∥P̃N(A∗
i AiA∗

j −A∗
j AiA∗

i )P̃
⊥
N

∥∥≤ 1
N+1

∥∥Ai
∥∥2∥∥Aj

∥∥.
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completing the proof

Thus all the hypothesis made for the pair T also holds good for the pair
A. Hence

trace(D
([[

A∗,A
]])

)≤ 2m∥A1∥2∥A2∥2.

Now, it follows that

trace(D
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More examples

Let {ek,l} be an orthonormal basis ℓ2(N×N) and T = (T1,T2) be a
pair of joint weighted shifts:

T1(ek,l) = w1
k,lek+1,l, where w1

k,l = δk

√
k−l+1

k+2

T2(ek,l) = w2
k,lek+1,l+1, where w2

k,l = δk

√
l+1
k+2 .

A simple computation gives: D(
[[

T∗,T
]]
)ek,l =

( δ 4
k

k+2 −
kδ 4

k−1
(k+1)2

)
ek,l.

It is then easy to verify that

trace
(
D(

[[
T∗,T

]])
≤ r(Tδ )

4,

where r(Tδ ) denotes the spectral radius of the operator Tδ . This is in
conformity with our inequality.
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Thank You!


