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bounded symmetric domain

Let D be a bounded symmetric domain. The typical examples
are the matrix unit ball (Cn×m)1 of size n×m, which includes
the case of the Euclidean ball, i.e., m = 1.
Let G := Aut(D) be the bi-holomorphic automorphism group of
D .
For the matrix unit ball, G := SU(n,m), which consists of all
linear automorphisms leaving the form

(
In 0
0 −In

)
on Cn+m

invariant.
Thus g ∈ SU(n,m) is of the form

(a b
c d.

)
The group SU(n,m)

acts on (Cn×m)1 via the map

g =

(
a b
c d

)
: z 7→ (az+bz)(cz+dz)−1, z ∈ (Cn×n)1.

This action is transitive. Indeed (Cn×n)1 ∼= SU(n,n)/K, where
K is the stabilizer of 0 in (Cn×n)1.
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imprimitivity

Let G be a locally compact second countable (lcsc) topological
group and D be a lcsc G -space. Suppose that

U : G → U (H ) is a unitary representation of the group G on
the on the Hilbert space H and that ρ : C(D)→ L (H ) is a ∗
- homomorphism of the C∗ - algebra of continuous functions
C(D) on the algebra L (H ) of all bounded operators acting on
the Hilbert space H .

Then the pair (U,ρ) is said to be a representation of the G
-space D if

ρ(g · f) = U(g)∗ρ(f)U(g), f ∈ C(D), g ∈ G,

where (g · f)(w) = f(g−1 ·w), w ∈ D , which is a generalization of
the imprimitivity relation due to Frobenius by Mackey.
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induction

As before, let K be the stabilizer group of 0 in G, thus
G/K ∼= D , where the identification is obtained via the map:
gK → g0. The action of G on D is evidently transitive.
Given any unitary representation σ of K, one may associate a
representation (Uσ ,ρσ ) of the G -space D . The
correspondence

σ → (Uσ ,ρσ )

is an equivalence of categories.
The representation Uσ is the representation of G induced by
the representation σ of the group K.
For a semi-simple group G, induction from the parabolic
subgroups is the key to producing irreducible representations.
Along with holomorphic induction, this method gives almost all
the irreducible unitary representations of the semi-simple group
G.
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analytic Hilbert modules

Let M ⊆ Hol(D) be a Hilbert space possessing a reproducing
kernel, say, K.
Assume that M is a Hilbert module over the polynomial ring
C[z]. This means the map (p,h)→ p ·h, p ∈ C[z], h ∈ M
defines a bounded operator for each fixed p.
In other words, ρ(p) : h 7→ p ·h defines a homomorphism
ρ : C[z]→ L (M ).
One often assumes that the module map is continuous in both
variables but we don’t assume this. We make the standing
assumption that M is an analytic Hilbert module over C[z].
Let U : G → U (M ) be a unitary representation.
What are the pairs (U,ρ) that satisfy the imprimitivity
relation, namely,

U∗
gρ(p)Ug = ρ(p◦g−1), g ∈ G, p ∈ C[z].
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kernel function

Suppose that the kernel function K transforms according to the
rule

Jg(z)K(g(z),g(w))Jg(w)∗ = K(z,w), g ∈ G, z,w ∈ D ,

for some holomorphic function Jg : D → C.
Then the kernel K is said to be quasi-invariant, which is
equivalent to saying that the map Ug : f → Jg (f◦g−1), g ∈ G, is
unitary.
If we further assume that the Jg : D → C is a cocycle, then U is
a homomorphism.
The pair (U,ρ) is a representation of the G -space D and
conversely.
Therefore, our question becomes that of

a characterization of all the quasi-invariant kernels defined on D ,
or equivalently, finding all the holomorphic cocycles,
which is also equivalent to finding all the holomorphic Hermitian
homogeneous vector bundles over D .
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example

Let B be the Bergman kernel of the domain D and pick λ > 0
such that Bλ is positive definite and the module map
h ρ(p)−→ p ·h, p ∈ C[z], is bounded.
The Jacobian jg(z) : G×D → C, jg(z) := det(Dg−1(z)) defines a
cocycle and it is to verify that the Bergman kernel is
quasi-invariant relative to this co-cycle. Clearly, Bλ , λ > 0, is
quasi-invariant relative to jλ

g .
Unless λ is a natural number, jλ

g is not a cocycle. Never the
less, it is a projective cocycle for all λ > 0. Consequently, the
map f → jλ

g f◦g−1 on the Hilbert space A(λ )(D) determined by
the kernel Bλ is a projective unitary representation.
However, these projective representations can be realized as
ordinary representations of the universal covering group G̃.
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complexification

Let g be a simple non-compact real Lie algebra and g= k+p
be the Cartan decomposition of g. We have ẑ ∈ k with
z= Rẑ = center(k), and such that ad(ẑ) defines a complex
structure on p.

The complexification gC is then the direct sum p++ kC+p−,
where the components in the decomposition are the i, 0,−i
eigenspaces of ad(ẑ), respectively.
We let GC denote the simply connected Lie group with Lie
algebra gC and we let G,KC,K,P± be the analytic subgroups
corresponding to gC,kC,k,p±. Then K̃, the universal cover of
K, is also contained in K̃C, the universal cover of KC.

The two subalgebras p± are abelian and we let P± denote the
corresponding analytic subgroups. The product P+KCP− is
open and dense in GC.
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Harish-Chandra realization

Each g ∈ P+KCP− admits a unique decomposition of the form
g = g+g0g−, where g+,g0 and g− depend on g
holomorphically. The map

p+
exp→ P+ → GC/KCP− : z 7→ expz 7→ (expz)KCP−

imbeds the vector space p+ holomorphically into GC/KCP−.
Also, the natural map

G/K → GC/KCP− : gK 7→ g(KCP−)

is a holomorphic imbedding.
The image of this imbedding is contained in P+, and applying
exp−1 to it we obtain a bounded domain D in p+. Writing
g · z or gz for the action of g ∈ G̃ and z ∈ D by holomorphic
automorphisms, we have (gexpz)+ = exp(g · z).
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notation

We will use the notations
k(g,z) = g(expz)0,

exp Y(g,z) = g(expz)−.
So the P+KCP− decomposition of gexpz appears as

gexpz = exp(g · z)k(g,z)exp Y(g,z).

We also use the notation b(g,z) = k(g,z)exp Y(g,z). It is easy
to see that

b(gh,z) = b(g,h · z)b(h,z), g,h ∈ G, z ∈ D .

The G̃ - homogeneous holomorphic vector bundles over D are
obtained by holomorphic induction from representations (ρ,V)
of kC+p− on finite dimensional vector spaces V. We write, as
a standing notation, ρ0, ρ− for the restrictions of ρ to kC and
p−, respectively.
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vector bundle

The representation space V is the orthogonal direct sum of its
subspaces Vλ , λ ∈ R, on which ρ0(ẑ) = iλ . It is easy to see
that ρ−(Y)Vλ ⊂ Vλ−1 for Y ∈ p−.

We assume each subspace Vλ is irreducible under kC. We call
(ρ,V) and the induced bundle, indecomposable if it is not the
orthogonal sum of sub-representations, respectively, sub-bundles.
We restrict ourselves to describing these.

Proposition
Every indecomposable holomorphic homogeneous Hermitian vector
bundle E can be written as a tensor product Lλ0 ⊗E′, where Lλ0 is
the line bundle induced by a character χλ0 and E′ is the lift to G̃
of a G - homogeneous holomorphic Hermitian vector bundle.
This comes from the restriction to G and D of a GC -
homogeneous vector bundle induced in the holomorphic category by a
representation of KCP−.
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This comes from the restriction to G and D of a GC -
homogeneous vector bundle induced in the holomorphic category by a
representation of KCP−.
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that ρ−(Y)Vλ ⊂ Vλ−1 for Y ∈ p−.

We assume each subspace Vλ is irreducible under kC. We call
(ρ,V) and the induced bundle, indecomposable if it is not the
orthogonal sum of sub-representations, respectively, sub-bundles.
We restrict ourselves to describing these.

Proposition
Every indecomposable holomorphic homogeneous Hermitian vector
bundle E can be written as a tensor product Lλ0 ⊗E′, where Lλ0 is
the line bundle induced by a character χλ0 and E′ is the lift to G̃
of a G - homogeneous holomorphic Hermitian vector bundle.
This comes from the restriction to G and D of a GC -
homogeneous vector bundle induced in the holomorphic category by a
representation of KCP−.

11 / 17



trivialization

Given a representation (ρ,V) of kC+p−, the holomorphically
induced bundle has a canonical trivialization such that the
sections are the elements of Hol(D ,V), and G̃ acts via the
multiplier

ρ(b̃(g,z)) = ρ0(k̃(g,z))ρ−(expY(g,z)).

The representation (ρ,V) is a direct sum of subspaces
VJ := Vλ−j, carrying an irreducible representation ρ0

j of
kC (0 ≤ j ≤ m), also, we have non-zero kC- equivariant maps
ρ−

j : p− → Hom(Vj−1,Vj).

The space of such maps is 1 -dimensional: This is an equivalent
restatement of the known fact that p−⊗Vj−1 as a
representation of kC is multiplicity free.
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the non-trivial data

Let Pj be the orthogonal projection from p−⊗Vj−1 to Vj.
We define for Y ∈ p−, v ∈ Vj−1,

ρ̃j(Y)v = Pj(Y⊗v).

Then ρ̃j has the kC -equivariant property, and it follows that
ρ−

j = yjρ̃j with some yj ̸= 0.

We write y = (y1, . . . ,ym) and denote by Ey the induced vector
bundle. We observe here that the vector bundle Ey is uniquely
determined by ρ0

0 ,P1, . . . ,Pm and y.

This data cannot be arbitrarily chosen: The ρ̃j (1 ≤ j ≤ m)
together must give a representation of the abelian Lie algebra p−.
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the intertwining operator

Theorem
There exists positive constants cjk, the operator
Γ : Hol(D ,V)→ Hol(D ,V) given by

(Γfj)ℓ =


cℓj yℓ · · ·yj+1(PℓιD) · · ·(Pj+1ιD)fj if ℓ > j,
fj if ℓ= j,
0 if ℓ < j

intertwines the actions of G̃ on the trivialized sections of E0 and
Ey.
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quasi-invariant reproducing kernels

Theorem
The sections of Ey have a G̃ -invariant regular inner-product if and
only if the same is true for E0. In this case, the map Γ is a unitary
isomorphism of H 0 onto the Hilbert space H y of sections of Ey.
The space H y (as well as H 0 ) has a reproducing kernel.
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Cowen-Douglas operators

For a bounded symmetric D , we call a n -tuple T in B′
k(D)

and its corresponding bundle E basic if E is induced by an
irreducible ρ.
When D is the unit ball in Cn, E is basic if and only if it is
induced by some χλ ⊗σ with λ < σλ .

Theorem
If D is the unit ball in Cn, all homogenous n - tuples in B′

k(D)
are similar to direct sums of basic homogeneous n - tuples.
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Thank You!
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