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the Cowen-Douglas class

A class of operators which was introduced by Cowen and Douglas in
the late seventies consists of those bounded commuting d-tuples of
operators T = (T1, . . . ,Td) on a complex separable Hilbert space H
which

• possess an open set Ω⊂ Cd of joint eigenvalues of constant multiplicity,
say n, and

• admit a holomorphic choice of eigenvectors: s1(w), . . . ,sn(w), w ∈Ω,
that is,

Tisj(w) = wisj(w), w ∈Ω, 1≤ i≤ d, 1≤ j≤ n.

Adjoint of the multiplication by the co-ordinate functions on a Hilbert
space of holomorphic functions possessing a reproducing kernel are
typical examples of operators in the Cowen-Douglas class.
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the Cowen-Douglas theorem

One of the striking results from the late seventies due to Cowen and
Douglas says:

• There is a one to one correspondence between the unitary equivalence
class of the operators T and the equivalence classes of the
holomorphic Hermitian vector bundles ET determined by them.

• Furthermore, they find a set of complete invariants, not very tractable
unless n = 1, for this equivalence. For n = 1, as is well-known, the
curvature

K(w) =− ∂ 2

∂w∂̄w
log‖s(w)‖2dw∧dw̄

of the line bundle LT is a complete invariant of LT , or equivalently,
that of the operator T.
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proof that the curvature is a complete invariant

Pick a holomorphic frame si(w) for the line bundle Ei and let
Γi(w) = 〈si(w),si(w)〉 be the Hermitian metric, i = 1,2. Suppose that
the two curvatures KE and KF are equal on some open (simply
connected) subset Ω0 ⊆Ω. It then follows that u = log(Γ1/Γ2) is
harmonic ensuring the existence of a harmonic conjugate v of u on
Ω0. Define s̃2(w) = e(u(w)+iv(w))/2s2(w). Then clearly, s̃2(w) is a new
holomorphic frame for F. Consequently, we have

Γ̃2(w) = 〈s̃2(w), s̃2(w)〉

= 〈e(u(w)+iv(w))/2s2(w),e(u(w)+iv(w))/2s2(w)〉

= eu(w)〈s2(w),s2(w)〉
= Γ1(w).



kernel function

• The kernel function K is a complex valued function defined on
Ω∗×Ω∗ which is holomorphic in the first variable and anti -
holomorphic in the second. Therefore, the map w→ K(·,w),w ∈Ω∗,
is holomorphic on Ω∗ := {w̄ : w ∈Ω}.

• It is Hermitian, K(z,w) = K(w,z) , and positive definite, that is,((
K(wi,wj)

))n
i,j=1 is positive definite for every subset {w1, . . . ,wn} of

Ω∗, n ∈ N.
• The kernel K reproduces the value of functions in H , that is, for any

fixed w ∈Ω∗, the holomorphic function K(·,w) belongs to H and

f (w) = 〈f ,K(·,w)〉, f ∈H , w ∈Ω
∗.

• The reproducing property of K ensures that M∗i K(·,w) = w̄iK(·,w).
Therefore, we have a natural holomorphic frame γ(w) := K(·,w) on
Ω∗ for the commuting tuple M∗1 , . . . ,M

∗
d .
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An alternative description of the Cowen-Douglas class

A Hilbert module over the polynomial ring C[z] := C[z1, . . . ,zm]
is a Hilbert space H which is a C[z] -module if for some Cp > 0,

‖p · f‖ ≤ Cp‖f‖, f ∈H , p ∈ C[z].

The multiplication Mj by the coordinate functions zj,
Mjf := zj · f , 1≤ j≤ m, then defines a commutative tuple
M = (M1, ...,Mm) of linear bounded operatorms acting on H and
vice-versa.
A Hilbert module H over the polynomial ring C[z] is said to be in
the Cowen-Douglas class Bn(Ω) , n ∈ N , if

• dimH /mwH = n < ∞ for all w ∈Ω, where mw is the maximal
ideal in C[z] at w and

• there exists a holomorphic choice of linearly independent vectors
{s1(w), . . . ,sn(w)} in H /mwH .
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tensor product

Let M1 and M2 be Hilbert spaces of holomorphic functions on Ω

so that they possess reproducing kernels K1 and K2, respectively.
Assume that the natural action of C[z] on the Hilbert space M1 is
continuous, that is, the map (p,h)→ ph defines a bounded operator on
Mp for p ∈ C[z]. (We make no such assumption about the Hilbert
space M2. ) Now, C[z] acts naturally on the Hilbert space tensor
product M1⊗M2 via the map

(p,(h⊗ k))→ ph⊗ k,p ∈ C[z], h ∈M1, k ∈M2.

The map h⊗ k→ hk identifies the Hilbert space M1⊗M2 as a
reproducing kernel Hilbert space of holomorphic functions on Ω×Ω.
The module action is then the point-wise multiplication
(p,hk)→ (ph)k, where ((ph)k)(z1,z2) = p(z1)h(z1)k(z2), z1,z2 ∈Ω.



a new kernel

Let H be the Hilbert module M1⊗M2 over C[z]. Let 4⊆Ω×Ω

be the diagonal subset {(z,z) : z ∈Ω} of Ω×Ω. Let S be the
maximal submodule of functions in M1⊗M2 which vanish on 4.
Thus

0→S
X→M1⊗M2

Y→Q→ 0

is a short exact sequence, where Q = (M1⊗M2)/S , X is the
inclusion map and Y is the natural quotient map. One can appeal to an
extension of an earlier result of Aronszajn to analyze the quotient
module Q when the given modules are reproducing kernel Hilbert
spaces. The reproducing kernel of H is then the pointwise product
K1(z,w)K2(u,v) for z,w;u,v in Ω. Set Hres = {f|4 : f ∈H } and
‖f‖|4 = inf{‖g‖ : g ∈H ,g|4 ≡ f|4}.

• The quotient module is isomorphic to the module Hres whose
reproducing kernel is the pointwise product K1(z,w)K2(z,w), z,w ∈Ω.
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another kernel!

Suppose Ω⊆ Cd is open connected and bounded. Let K : Ω×Ω be a
non-negative definite kernel. Then K̃ defined by

K̃(z,w) =
((

K2
∂i∂̄j logK(z,w)

))
1≤i,j≤d

is a Cd×d valued non-negative definite kernel.
• We point out that ∑i,j ∂i∂̄j logK(w,w)dwi∧dw̄j is the curvature of the

metric K(w,w).

To see that K̃ defines a positive definite kernel on Ω, set

φi(w) := Kw⊗ ∂̄iKw− ∂̄iKw⊗Kw,1≤ i≤ m

and note that each φ : Ω→H is holomorphic. A simple calculation
then shows that

〈φj(w),φi(z)〉H ⊗H = K̃(z,w).
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what is the Hilbert module?

How to describe the Hilbert space, or more importantly, the Hilbert
module H (K̃) ? May be, it is a quotient of the Hilbert module
H ⊗H ? If so, How do we identify the corresponding submodule?
Let H0 be the subspace of H (K)⊗H (K) given by∨
{φi(w) : w ∈Ω,1≤ i≤ m}.

From this definition, it is not clear which functions belong to the
subspace. We give an explicit description.
Let H1 and H2 be the submodules defined by

H1 = {f ∈H (K)⊗H (K) : f |∆ = 0}

and

H2 = {f ∈H (K)⊗H (K) : f |∆ = ∂1f |∆ = ∂2f |∆ = ...= ∂mf |∆ = 0}.

We have
• H11 = H ⊥

2 	H ⊥
1



what is the Hilbert module?

How to describe the Hilbert space, or more importantly, the Hilbert
module H (K̃) ? May be, it is a quotient of the Hilbert module
H ⊗H ? If so, How do we identify the corresponding submodule?
Let H0 be the subspace of H (K)⊗H (K) given by∨
{φi(w) : w ∈Ω,1≤ i≤ m}.

From this definition, it is not clear which functions belong to the
subspace. We give an explicit description.
Let H1 and H2 be the submodules defined by

H1 = {f ∈H (K)⊗H (K) : f |∆ = 0}

and

H2 = {f ∈H (K)⊗H (K) : f |∆ = ∂1f |∆ = ∂2f |∆ = ...= ∂mf |∆ = 0}.

We have
• H11 = H ⊥

2 	H ⊥
1



what is the Hilbert module?

How to describe the Hilbert space, or more importantly, the Hilbert
module H (K̃) ? May be, it is a quotient of the Hilbert module
H ⊗H ? If so, How do we identify the corresponding submodule?
Let H0 be the subspace of H (K)⊗H (K) given by∨
{φi(w) : w ∈Ω,1≤ i≤ m}.

From this definition, it is not clear which functions belong to the
subspace. We give an explicit description.
Let H1 and H2 be the submodules defined by

H1 = {f ∈H (K)⊗H (K) : f |∆ = 0}

and

H2 = {f ∈H (K)⊗H (K) : f |∆ = ∂1f |∆ = ∂2f |∆ = ...= ∂mf |∆ = 0}.

We have
• H11 = H ⊥

2 	H ⊥
1



what is the Hilbert module?

How to describe the Hilbert space, or more importantly, the Hilbert
module H (K̃) ? May be, it is a quotient of the Hilbert module
H ⊗H ? If so, How do we identify the corresponding submodule?
Let H0 be the subspace of H (K)⊗H (K) given by∨
{φi(w) : w ∈Ω,1≤ i≤ m}.

From this definition, it is not clear which functions belong to the
subspace. We give an explicit description.
Let H1 and H2 be the submodules defined by

H1 = {f ∈H (K)⊗H (K) : f |∆ = 0}

and

H2 = {f ∈H (K)⊗H (K) : f |∆ = ∂1f |∆ = ∂2f |∆ = ...= ∂mf |∆ = 0}.

We have
• H11 = H ⊥

2 	H ⊥
1



what is the Hilbert module?

How to describe the Hilbert space, or more importantly, the Hilbert
module H (K̃) ? May be, it is a quotient of the Hilbert module
H ⊗H ? If so, How do we identify the corresponding submodule?
Let H0 be the subspace of H (K)⊗H (K) given by∨
{φi(w) : w ∈Ω,1≤ i≤ m}.

From this definition, it is not clear which functions belong to the
subspace. We give an explicit description.
Let H1 and H2 be the submodules defined by

H1 = {f ∈H (K)⊗H (K) : f |∆ = 0}

and

H2 = {f ∈H (K)⊗H (K) : f |∆ = ∂1f |∆ = ∂2f |∆ = ...= ∂mf |∆ = 0}.

We have
• H11 = H ⊥

2 	H ⊥
1



a limit computation

The point of what we have said so far is that we can explicitly describe
the Hilbert modules H ⊥

2 and H ⊥
1 , upto an isomorphism of modules.

Using the jet construction followed by the restriction map, one may
also describe the direct sum H ⊥

2 ⊕H ⊥
1 , again upto an isomorphism.

But what is the module H11 as a submodule of H ? To answer this
question, one must find the kernel function for H11 . Set K1 to be the
kernel function of the module H1. Assuming d = 1, we have(

K1(z,u,v,w)
(z−u)(w̄− v̄)

)∣∣∣∣ z=u,z6=u
w=v,w6=v

= 1
2 K(z,w)2

∂ ∂̄ logK(z,w).
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Thank You!


