Role of the curvature in Operator theory

Gadadhar Misra

Indian Institute of Science Bangalore (with D. Keshari, S. Ghara, Kui Ji and S. Kumar)

> IIT Kanpur Dec 14, 2016

- possess an open set $\Omega \subset \mathbb{C}^d$ of joint eigenvalues of constant multiplicity, say n, and
- admit a holomorphic choice of eigenvectors: $s_1(w), \ldots, s_n(w), w \in \Omega$, that is,

 $T_i s_j(w) = w_i s_j(w), w \in \Omega, \ 1 \le i \le d, \ 1 \le j \le n.$

- possess an open set $\Omega \subset \mathbb{C}^d$ of joint eigenvalues of constant multiplicity, say n, and
- admit a holomorphic choice of eigenvectors: $s_1(w), \ldots, s_n(w), w \in \Omega$, that is,

 $T_i s_j(w) = w_i s_j(w), w \in \Omega, 1 \le i \le d, 1 \le j \le n.$

- possess an open set $\Omega \subset \mathbb{C}^d$ of joint eigenvalues of constant multiplicity, say n, and
- admit a holomorphic choice of eigenvectors: $s_1(w), \ldots, s_n(w), w \in \Omega$, that is,

 $T_i s_j(w) = w_i s_j(w), \ w \in \Omega, \ 1 \le i \le d, \ 1 \le j \le n.$

- possess an open set $\Omega \subset \mathbb{C}^d$ of joint eigenvalues of constant multiplicity, say n, and
- admit a holomorphic choice of eigenvectors: $s_1(w), \ldots, s_n(w), w \in \Omega$, that is,

 $T_i s_j(w) = w_i s_j(w), w \in \Omega, \ 1 \le i \le d, \ 1 \le j \le n.$

the Cowen-Douglas theorem

One of the striking results from the late seventies due to Cowen and Douglas says:

- There is a one to one correspondence between the unitary equivalence class of the operators T and the equivalence classes of the holomorphic Hermitian vector bundles E_T determined by them.
- Furthermore, they find a set of complete invariants, not very tractable unless n = 1, for this equivalence. For n = 1, as is well-known, the curvature

$$\mathsf{K}(w) = -\frac{\partial^2}{\partial w \bar{\partial} w} \log \|s(w)\|^2 dw \wedge d\bar{w}$$

of the line bundle L_T is a complete invariant of L_T , or equivalently, that of the operator T.

One of the striking results from the late seventies due to Cowen and Douglas says:

- There is a one to one correspondence between the unitary equivalence class of the operators T and the equivalence classes of the holomorphic Hermitian vector bundles E_T determined by them.
- Furthermore, they find a set of complete invariants, not very tractable unless n = 1, for this equivalence. For n = 1, as is well-known, the curvature

$$\mathsf{K}(w) = -\frac{\partial^2}{\partial w \bar{\partial} w} \log \|s(w)\|^2 dw \wedge d\bar{w}$$

of the line bundle L_T is a complete invariant of L_T , or equivalently, that of the operator T.

One of the striking results from the late seventies due to Cowen and Douglas says:

- There is a one to one correspondence between the unitary equivalence class of the operators T and the equivalence classes of the holomorphic Hermitian vector bundles E_T determined by them.
- Furthermore, they find a set of complete invariants, not very tractable unless n = 1, for this equivalence. For n = 1, as is well-known, the curvature

$$\mathsf{K}(w) = -\frac{\partial^2}{\partial w \bar{\partial} w} \log \|s(w)\|^2 dw \wedge d\bar{w}$$

of the line bundle L_T is a complete invariant of L_T , or equivalently, that of the operator T.

Pick a holomorphic frame $s_i(w)$ for the line bundle E_i and let $\Gamma_i(w) = \langle s_i(w), s_i(w) \rangle$ be the Hermitian metric, i = 1, 2. Suppose that the two curvatures K_E and K_F are equal on some open (simply connected) subset $\Omega_0 \subseteq \Omega$. It then follows that $u = \log(\Gamma_1/\Gamma_2)$ is harmonic ensuring the existence of a harmonic conjugate v of u on Ω_0 . Define $\tilde{s}_2(w) = e^{(u(w)+iv(w))/2}s_2(w)$. Then clearly, $\tilde{s}_2(w)$ is a new holomorphic frame for F. Consequently, we have

$$\begin{split} \tilde{s}_{2}(w) &= \langle \tilde{s}_{2}(w), \tilde{s}_{2}(w) \rangle \\ &= \langle e^{(u(w)+iv(w))/2} s_{2}(w), e^{(u(w)+iv(w))/2} s_{2}(w) \rangle \\ &= e^{u(w)} \langle s_{2}(w), s_{2}(w) \rangle \\ &= \Gamma_{1}(w). \end{split}$$

- The kernel function *K* is a complex valued function defined on $\Omega^* \times \Omega^*$ which is holomorphic in the first variable and anti holomorphic in the second. Therefore, the map $w \to K(\cdot, w), w \in \Omega^*$, is holomorphic on $\Omega^* := \{\overline{w} : w \in \Omega\}$.
- It is Hermitian, $K(z,w) = \overline{K(w,z)}$, and positive definite, that is, $((K(w^i,w^j)))_{i,j=1}^n$ is positive definite for every subset $\{w^1,\ldots,w^n\}$ of Ω^* , $n \in \mathbb{N}$.
- The kernel *K* reproduces the value of functions in \mathscr{H} , that is, for any fixed $w \in \Omega^*$, the holomorphic function $K(\cdot, w)$ belongs to \mathscr{H} and

$$f(w) = \langle f, K(\cdot, w) \rangle, f \in \mathscr{H}, w \in \Omega^*.$$

• The reproducing property of *K* ensures that $M_i^*K(\cdot, w) = \bar{w}_iK(\cdot, w)$. Therefore, we have a natural holomorphic frame $\gamma(w) := K(\cdot, w)$ on Ω^* for the commuting tuple M_1^*, \ldots, M_n^* .

- The kernel function *K* is a complex valued function defined on $\Omega^* \times \Omega^*$ which is holomorphic in the first variable and anti holomorphic in the second. Therefore, the map $w \to K(\cdot, w), w \in \Omega^*$, is holomorphic on $\Omega^* := \{\overline{w} : w \in \Omega\}$.
- It is Hermitian, $K(z,w) = \overline{K(w,z)}$, and positive definite, that is, $((K(w^i,w^j)))_{i,j=1}^n$ is positive definite for every subset $\{w^1,\ldots,w^n\}$ of Ω^* , $n \in \mathbb{N}$.
- The kernel K reproduces the value of functions in ℋ, that is, for any fixed w ∈ Ω*, the holomorphic function K(·,w) belongs to ℋ and

$$f(w) = \langle f, K(\cdot, w) \rangle, f \in \mathscr{H}, w \in \Omega^*.$$

• The reproducing property of *K* ensures that $M_i^*K(\cdot, w) = \bar{w}_iK(\cdot, w)$. Therefore, we have a natural holomorphic frame $\gamma(w) := K(\cdot, w)$ on Ω^* for the commuting tuple M_1^*, \ldots, M_d^* .

- The kernel function *K* is a complex valued function defined on $\Omega^* \times \Omega^*$ which is holomorphic in the first variable and anti holomorphic in the second. Therefore, the map $w \to K(\cdot, w), w \in \Omega^*$, is holomorphic on $\Omega^* := \{\overline{w} : w \in \Omega\}$.
- It is Hermitian, $K(z,w) = \overline{K(w,z)}$, and positive definite, that is, $((K(w^i,w^j)))_{i,j=1}^n$ is positive definite for every subset $\{w^1,\ldots,w^n\}$ of Ω^* , $n \in \mathbb{N}$.
- The kernel K reproduces the value of functions in ℋ, that is, for any fixed w ∈ Ω*, the holomorphic function K(·,w) belongs to ℋ and

$$f(w) = \langle f, K(\cdot, w) \rangle, f \in \mathscr{H}, w \in \Omega^*.$$

• The reproducing property of *K* ensures that $M_i^*K(\cdot, w) = \bar{w}_iK(\cdot, w)$. Therefore, we have a natural holomorphic frame $\gamma(w) := K(\cdot, w)$ on Ω^* for the commuting tuple M_1^*, \ldots, M_d^* .

- The kernel function *K* is a complex valued function defined on $\Omega^* \times \Omega^*$ which is holomorphic in the first variable and anti holomorphic in the second. Therefore, the map $w \to K(\cdot, w), w \in \Omega^*$, is holomorphic on $\Omega^* := \{\overline{w} : w \in \Omega\}$.
- It is Hermitian, $K(z,w) = \overline{K(w,z)}$, and positive definite, that is, $((K(w^i,w^j)))_{i,j=1}^n$ is positive definite for every subset $\{w^1,\ldots,w^n\}$ of Ω^* , $n \in \mathbb{N}$.
- The kernel *K* reproduces the value of functions in \mathscr{H} , that is, for any fixed $w \in \Omega^*$, the holomorphic function $K(\cdot, w)$ belongs to \mathscr{H} and

$$f(w) = \langle f, K(\cdot, w) \rangle, f \in \mathscr{H}, w \in \Omega^*.$$

• The reproducing property of *K* ensures that $M_i^*K(\cdot, w) = \bar{w}_iK(\cdot, w)$. Therefore, we have a natural holomorphic frame $\gamma(w) := K(\cdot, w)$ on Ω^* for the commuting tuple M_1^*, \ldots, M_d^* .

 $\|p \cdot f\| \leq C_p \|f\|, f \in \mathcal{H}, p \in \mathbb{C}[\underline{z}].$

The multiplication M_j by the coordinate functions z_j , $M_j f := z_j \cdot f$, $1 \le j \le m$, then defines a commutative tuple $\mathbf{M} = (M_1, ..., M_m)$ of linear bounded operatorms acting on \mathscr{H} and vice-versa.

- dim ℋ/m_wℋ = n < ∞ for all w ∈ Ω, where m_w is the maximal ideal in C[z] at w and
- there exists a holomorphic choice of linearly independent vectors $\{s_1(w), \ldots, s_n(w)\}$ in $\mathcal{H}/\mathfrak{m}_w \mathcal{H}$.

 $\|p \cdot f\| \leq C_p \|f\|, f \in \mathscr{H}, p \in \mathbb{C}[\underline{z}].$

The multiplication M_j by the coordinate functions z_j , $M_j f := z_j \cdot f, 1 \le j \le m$, then defines a commutative tuple $\mathbf{M} = (M_1, ..., M_m)$ of linear bounded operatorms acting on \mathscr{H} and vice-versa.

- dim ℋ/m_wℋ = n < ∞ for all w ∈ Ω, where m_w is the maximal ideal in C[z] at w and
- there exists a holomorphic choice of linearly independent vectors $\{s_1(w), \ldots, s_n(w)\}$ in $\mathcal{H}/\mathfrak{m}_w \mathcal{H}$.

 $\|p \cdot f\| \leq C_p \|f\|, f \in \mathscr{H}, p \in \mathbb{C}[\underline{z}].$

The multiplication M_j by the coordinate functions z_j , $M_j f := z_j \cdot f, 1 \le j \le m$, then defines a commutative tuple $\mathbf{M} = (M_1, ..., M_m)$ of linear bounded operatorms acting on \mathscr{H} and vice-versa.

- dim $\mathcal{H}/\mathfrak{m}_w \mathcal{H} = n < \infty$ for all $w \in \Omega$, where \mathfrak{m}_w is the maximal ideal in $\mathbb{C}[\underline{z}]$ at w and
- there exists a holomorphic choice of linearly independent vectors $\{s_1(w), \ldots, s_n(w)\}$ in $\mathcal{H}/\mathfrak{m}_w \mathcal{H}$.

 $\|p \cdot f\| \leq C_p \|f\|, f \in \mathscr{H}, p \in \mathbb{C}[\underline{z}].$

The multiplication M_j by the coordinate functions z_j , $M_j f := z_j \cdot f, 1 \le j \le m$, then defines a commutative tuple $\mathbf{M} = (M_1, ..., M_m)$ of linear bounded operatorms acting on \mathscr{H} and vice-versa.

- dim $\mathscr{H}/\mathfrak{m}_w \mathscr{H} = n < \infty$ for all $w \in \Omega$, where \mathfrak{m}_w is the maximal ideal in $\mathbb{C}[z]$ at w and
- there exists a holomorphic choice of linearly independent vectors $\{s_1(w), \ldots, s_n(w)\}$ in $\mathcal{H}/\mathfrak{m}_w \mathcal{H}$.

 $\|p \cdot f\| \leq C_p \|f\|, f \in \mathscr{H}, p \in \mathbb{C}[\underline{z}].$

The multiplication M_j by the coordinate functions z_j , $M_j f := z_j \cdot f$, $1 \le j \le m$, then defines a commutative tuple $\mathbf{M} = (M_1, ..., M_m)$ of linear bounded operatorms acting on \mathscr{H} and vice-versa.

- dim $\mathscr{H}/\mathfrak{m}_w \mathscr{H} = n < \infty$ for all $w \in \Omega$, where \mathfrak{m}_w is the maximal ideal in $\mathbb{C}[z]$ at w and
- there exists a holomorphic choice of linearly independent vectors $\{s_1(w), \ldots, s_n(w)\}$ in $\mathcal{H}/\mathfrak{m}_w \mathcal{H}$.

Let \mathcal{M}_1 and \mathcal{M}_2 be Hilbert spaces of holomorphic functions on Ω so that they possess reproducing kernels K_1 and K_2 , respectively. Assume that the natural action of $\mathbb{C}[\underline{z}]$ on the Hilbert space \mathcal{M}_1 is continuous, that is, the map $(p,h) \to ph$ defines a bounded operator on M_p for $p \in \mathbb{C}[\underline{z}]$. (We make no such assumption about the Hilbert space \mathcal{M}_2 .) Now, $\mathbb{C}[\underline{z}]$ acts naturally on the Hilbert space tensor product $\mathcal{M}_1 \otimes \mathcal{M}_2$ via the map

$(p,(h\otimes k)) \to ph\otimes k, p \in \mathbb{C}[\underline{z}], h \in \mathcal{M}_1, k \in \mathcal{M}_2.$

The map $h \otimes k \to hk$ identifies the Hilbert space $\mathcal{M}_1 \otimes \mathcal{M}_2$ as a reproducing kernel Hilbert space of holomorphic functions on $\Omega \times \Omega$. The module action is then the point-wise multiplication $(p,hk) \to (ph)k$, where $((ph)k)(z_1,z_2) = p(z_1)h(z_1)k(z_2), z_1,z_2 \in \Omega$.

Let \mathscr{H} be the Hilbert module $\mathscr{M}_1 \otimes \mathscr{M}_2$ over $\mathbb{C}[\underline{z}]$. Let $\bigtriangleup \subseteq \Omega \times \Omega$ be the diagonal subset $\{(z,z) : z \in \Omega\}$ of $\Omega \times \Omega$. Let \mathscr{S} be the maximal submodule of functions in $\mathscr{M}_1 \otimes \mathscr{M}_2$ which vanish on \bigtriangleup . Thus

$0 \to \mathscr{S} \xrightarrow{X} \mathscr{M}_1 \otimes \mathscr{M}_2 \xrightarrow{Y} \mathscr{Q} \to 0$

is a short exact sequence, where $\mathscr{Q} = (\mathscr{M}_1 \otimes \mathscr{M}_2)/\mathscr{S}$, *X* is the inclusion map and *Y* is the natural quotient map. One can appeal to an extension of an earlier result of Aronszajn to analyze the quotient module \mathscr{Q} when the given modules are reproducing kernel Hilbert spaces. The reproducing kernel of \mathscr{H} is then the pointwise product $K_1(z,w)K_2(u,v)$ for z,w;u,v in Ω . Set $\mathscr{H}_{res} = \{f_{|\Delta} : f \in \mathscr{H}\}$ and $\|f\|_{|\Delta} = \inf\{\|g\| : g \in \mathscr{H}, g_{|\Delta} \equiv f_{|\Delta}\}.$

• The quotient module is isomorphic to the module \mathscr{H}_{res} whose reproducing kernel is the pointwise product $K_1(z,w)K_2(z,w), z, w \in \Omega$.

Let \mathscr{H} be the Hilbert module $\mathscr{M}_1 \otimes \mathscr{M}_2$ over $\mathbb{C}[\underline{z}]$. Let $\bigtriangleup \subseteq \Omega \times \Omega$ be the diagonal subset $\{(z,z) : z \in \Omega\}$ of $\Omega \times \Omega$. Let \mathscr{S} be the maximal submodule of functions in $\mathscr{M}_1 \otimes \mathscr{M}_2$ which vanish on \bigtriangleup . Thus

$0 \to \mathscr{S} \xrightarrow{X} \mathscr{M}_1 \otimes \mathscr{M}_2 \xrightarrow{Y} \mathscr{Q} \to 0$

is a short exact sequence, where $\mathscr{Q} = (\mathscr{M}_1 \otimes \mathscr{M}_2)/\mathscr{S}$, X is the inclusion map and Y is the natural quotient map. One can appeal to an extension of an earlier result of Aronszajn to analyze the quotient module \mathscr{Q} when the given modules are reproducing kernel Hilbert spaces. The reproducing kernel of \mathscr{H} is then the pointwise product $K_1(z,w)K_2(u,v)$ for z,w;u,v in Ω . Set $\mathscr{H}_{res} = \{f_{|\Delta} : f \in \mathscr{H}\}$ and $\|f\|_{|\Delta} = \inf\{\|g\| : g \in \mathscr{H}, g_{|\Delta} \equiv f_{|\Delta}\}.$

• The quotient module is isomorphic to the module \mathscr{H}_{res} whose reproducing kernel is the pointwise product $K_1(z,w)K_2(z,w), z, w \in \Omega$.

Suppose $\Omega \subseteq \mathbb{C}^d$ is open connected and bounded. Let $K : \Omega \times \Omega$ be a non-negative definite kernel. Then \widetilde{K} defined by

 $\widetilde{K}(z,w) = \left(\left(K^2 \partial_i \bar{\partial}_j \log K(z,w) \right) \right)_{1 \le i,j \le d}$

is a $\mathbb{C}^{d \times d}$ valued non-negative definite kernel.

We point out that ∑_{i,j} ∂_i∂_j log K(w,w)dw_i ∧ dw̄_j is the curvature of the metric K(w,w).

To see that \overline{K} defines a positive definite kernel on Ω , set

$$\phi_i(w) := K_w \otimes \bar{\partial}_i K_w - \bar{\partial}_i K_w \otimes K_w, 1 \le i \le m$$

and note that each $\phi: \Omega \to \mathscr{H}$ is holomorphic. A simple calculation then shows that

 $\langle \phi_j(w), \phi_i(z) \rangle_{\mathscr{H} \otimes \mathscr{H}} = \widetilde{K}(z, w).$

Suppose $\Omega \subseteq \mathbb{C}^d$ is open connected and bounded. Let $K : \Omega \times \Omega$ be a non-negative definite kernel. Then \widetilde{K} defined by

 $\widetilde{K}(z,w) = \left(\left(K^2 \partial_i \bar{\partial}_j \log K(z,w) \right) \right)_{1 \le i,j \le d}$

is a $\mathbb{C}^{d \times d}$ valued non-negative definite kernel.

We point out that Σ_{i,j} ∂_i d̄_j log K(w, w)dw_i ∧ dw̄_j is the curvature of the metric K(w, w).

To see that \tilde{K} defines a positive definite kernel on Ω , set

 $\phi_i(w) := K_w \otimes \bar{\partial}_i K_w - \bar{\partial}_i K_w \otimes K_w, 1 \le i \le m$

and note that each $\phi: \Omega \to \mathcal{H}$ is holomorphic. A simple calculation then shows that

 $\langle \phi_j(w), \phi_i(z) \rangle_{\mathscr{H} \otimes \mathscr{H}} = \widetilde{K}(z, w).$

Suppose $\Omega \subseteq \mathbb{C}^d$ is open connected and bounded. Let $K : \Omega \times \Omega$ be a non-negative definite kernel. Then \widetilde{K} defined by

 $\widetilde{K}(z,w) = \left(\left(K^2 \partial_i \bar{\partial}_j \log K(z,w) \right) \right)_{1 \le i,j \le d}$

is a $\mathbb{C}^{d \times d}$ valued non-negative definite kernel.

We point out that ∑_{i,j}∂_i∂_j log K(w,w)dw_i ∧ dw̄_j is the curvature of the metric K(w,w).

To see that \widetilde{K} defines a positive definite kernel on Ω , set

$$\phi_i(w) := K_w \otimes \bar{\partial}_i K_w - \bar{\partial}_i K_w \otimes K_w, 1 \le i \le m$$

and note that each $\phi: \Omega \to \mathscr{H}$ is holomorphic. A simple calculation then shows that

$$\langle \phi_j(w), \phi_i(z) \rangle_{\mathscr{H} \otimes \mathscr{H}} = \widetilde{K}(z, w).$$

How to describe the Hilbert space, or more importantly, the Hilbert module $\mathscr{H}(\widetilde{K})$? May be, it is a quotient of the Hilbert module $\mathscr{H} \otimes \mathscr{H}$? If so, How do we identify the corresponding submodule?

Let \mathscr{H}_0 be the subspace of $\mathscr{H}(K) \otimes \mathscr{H}(K)$ given by $\overline{\bigvee} \{ \phi_i(w) : w \in \Omega, 1 \le i \le m \}.$

From this definition, it is not clear which functions belong to the subspace. We give an explicit description.

Let \mathscr{H}_1 and \mathscr{H}_2 be the submodules defined by

 $\mathscr{H}_1 = \{ f \in \mathscr{H}(K) \otimes \mathscr{H}(K) : f|_{\Delta} = 0 \}$

and

 $\mathscr{H}_2 = \{ f \in \mathscr{H}(K) \otimes \mathscr{H}(K) : f|_{\Delta} = \partial_1 f|_{\Delta} = \partial_2 f|_{\Delta} = ... = \partial_m f|_{\Delta} = 0 \}.$

How to describe the Hilbert space, or more importantly, the Hilbert module $\mathscr{H}(\widetilde{K})$? May be, it is a quotient of the Hilbert module $\mathscr{H} \otimes \mathscr{H}$? If so, How do we identify the corresponding submodule? Let \mathscr{H}_0 be the subspace of $\mathscr{H}(K) \otimes \mathscr{H}(K)$ given by $\overline{\bigvee} \{\phi_i(w) : w \in \Omega, 1 \le i \le m\}$.

From this definition, it is not clear which functions belong to th subspace. We give an explicit description.

Let \mathscr{H}_1 and \mathscr{H}_2 be the submodules defined by

$$\mathscr{H}_1 = \{f \in \mathscr{H}(K) \otimes \mathscr{H}(K) : f|_\Delta = 0\}$$

and

 $\mathscr{H}_{2} = \{ f \in \mathscr{H}(K) \otimes \mathscr{H}(K) : f|_{\Delta} = \partial_{1}f|_{\Delta} = \partial_{2}f|_{\Delta} = \ldots = \partial_{m}f|_{\Delta} = 0 \}.$

How to describe the Hilbert space, or more importantly, the Hilbert module $\mathscr{H}(\widetilde{K})$? May be, it is a quotient of the Hilbert module $\mathscr{H} \otimes \mathscr{H}$? If so, How do we identify the corresponding submodule? Let \mathscr{H}_0 be the subspace of $\mathscr{H}(K) \otimes \mathscr{H}(K)$ given by $\overline{\bigvee} \{ \phi_i(w) : w \in \Omega, 1 \le i \le m \}.$

From this definition, it is not clear which functions belong to the subspace. We give an explicit description.

Let \mathscr{H}_1 and \mathscr{H}_2 be the submodules defined by

 $\mathscr{H}_1 = \{f \in \mathscr{H}(K) \otimes \mathscr{H}(K) : f|_\Delta = 0\}$

and

 $\mathscr{H}_{2} = \{ f \in \mathscr{H}(K) \otimes \mathscr{H}(K) : f|_{\Delta} = \partial_{1}f|_{\Delta} = \partial_{2}f|_{\Delta} = \ldots = \partial_{m}f|_{\Delta} = 0 \}.$

How to describe the Hilbert space, or more importantly, the Hilbert module $\mathscr{H}(\widetilde{K})$? May be, it is a quotient of the Hilbert module $\mathscr{H} \otimes \mathscr{H}$? If so, How do we identify the corresponding submodule? Let \mathscr{H}_0 be the subspace of $\mathscr{H}(K) \otimes \mathscr{H}(K)$ given by $\overline{\bigvee} \{ \phi_i(w) : w \in \Omega, 1 \le i \le m \}.$

From this definition, it is not clear which functions belong to the subspace. We give an explicit description.

Let \mathscr{H}_1 and \mathscr{H}_2 be the submodules defined by

$$\mathscr{H}_1 = \{ f \in \mathscr{H}(K) \otimes \mathscr{H}(K) : f|_{\Delta} = 0 \}$$

and

 $\mathscr{H}_{2} = \{ f \in \mathscr{H}(K) \otimes \mathscr{H}(K) : f|_{\Delta} = \partial_{1}f|_{\Delta} = \partial_{2}f|_{\Delta} = \ldots = \partial_{m}f|_{\Delta} = 0 \}.$

How to describe the Hilbert space, or more importantly, the Hilbert module $\mathscr{H}(\widetilde{K})$? May be, it is a quotient of the Hilbert module $\mathscr{H} \otimes \mathscr{H}$? If so, How do we identify the corresponding submodule? Let \mathscr{H}_0 be the subspace of $\mathscr{H}(K) \otimes \mathscr{H}(K)$ given by $\overline{\bigvee} \{ \phi_i(w) : w \in \Omega, 1 \le i \le m \}.$

From this definition, it is not clear which functions belong to the subspace. We give an explicit description.

Let \mathscr{H}_1 and \mathscr{H}_2 be the submodules defined by

$$\mathscr{H}_1 = \{ f \in \mathscr{H}(K) \otimes \mathscr{H}(K) : f|_{\Delta} = 0 \}$$

and

 $\mathscr{H}_{2} = \{ f \in \mathscr{H}(K) \otimes \mathscr{H}(K) : f|_{\Delta} = \partial_{1}f|_{\Delta} = \partial_{2}f|_{\Delta} = \ldots = \partial_{m}f|_{\Delta} = 0 \}.$

We have

• $\mathscr{H}_{11} = \mathscr{H}_2^{\perp} \ominus \mathscr{H}_1^{\perp}$

The point of what we have said so far is that we can explicitly describe the Hilbert modules \mathscr{H}_2^{\perp} and \mathscr{H}_1^{\perp} , upto an isomorphism of modules. Using the jet construction followed by the restriction map, one may also describe the direct sum $\mathscr{H}_2^{\perp} \oplus \mathscr{H}_1^{\perp}$, again upto an isomorphism.

But what is the module \mathcal{H}_{11} as a submodule of \mathcal{H} ? To answer this question, one must find the kernel function for \mathcal{H}_{11} . Set K_1 to be the kernel function of the module \mathcal{H}_1 . Assuming d = 1, we have

 $\left(\frac{K_1(z,u,v,w)}{(z-u)(\bar{w}-\bar{v})}\right)\Big|_{\substack{z=u,z\neq u\\w=v,w\neq v}} = \frac{1}{2}K(z,w)^2\partial\bar{\partial}\log K(z,w)$

The point of what we have said so far is that we can explicitly describe the Hilbert modules \mathscr{H}_2^{\perp} and \mathscr{H}_1^{\perp} , upto an isomorphism of modules. Using the jet construction followed by the restriction map, one may also describe the direct sum $\mathscr{H}_2^{\perp} \oplus \mathscr{H}_1^{\perp}$, again upto an isomorphism. But what is the module \mathscr{H}_{11} as a submodule of \mathscr{H} ? To answer this question, one must find the kernel function for \mathscr{H}_{11} . Set K_1 to be the kernel function of the module \mathscr{H}_1 . Assuming d = 1, we have

$$\left(\frac{K_1(z,u,v,w)}{(z-u)(\bar{w}-\bar{v})}\right)\Big|_{\substack{z=u,z\neq u\\w=v,w\neq v}} = \frac{1}{2}K(z,w)^2\partial\bar{\partial}\log K(z,w)$$

Thank You!

