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the Cowen-Douglas class

The class of operators which has come to be known as the
“Cowen-Douglas class” consists of those bounded linear
operators T on a complex separable Hilbert space H
which

possess an open set Ω ⊂ C of eigenvalues of constant
multiplicity, say n and
admit a holomorphic choice of eigenvectors:
s1(w), . . . , sn(w), w ∈ Ω.

In other words, there exists holomorphic functions
s1, . . . , sn : Ω→ H which span the eigenspace of T at w.
The holomorphic choice of eigenvectors s1, . . . , sn defines
a holomorphic Hermitian vector bundle ET via the map

s : Ω→ Gr(n,H), s(w) = ker(T −w) ⊆ H.
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the Cowen-Douglas theorem

One of the striking results from the late seventies due to
Cowen and Douglas says:
There is a one to one correspondence between the unitary
equivalence class of the operators T and the equivalence
classes of the holomorphic Hermitian vector bundles ET
determined by them.

Furthermore, they find a set of complete invariants, not
very tractable unless n = 1, for this equivalence. For
n = 1, as is well-known, the curvature

K(w) = − ∂2

∂w∂̄w
log ‖s(w)‖2dw ∧ dw̄

of the line bundle LT is a complete invariant of LT , or
equivalently, that of the operator T .



the Cowen-Douglas theorem

One of the striking results from the late seventies due to
Cowen and Douglas says:
There is a one to one correspondence between the unitary
equivalence class of the operators T and the equivalence
classes of the holomorphic Hermitian vector bundles ET
determined by them.

Furthermore, they find a set of complete invariants, not
very tractable unless n = 1, for this equivalence. For
n = 1, as is well-known, the curvature

K(w) = − ∂2

∂w∂̄w
log ‖s(w)‖2dw ∧ dw̄

of the line bundle LT is a complete invariant of LT , or
equivalently, that of the operator T .



proof that the curvature is a complete invariant

Pick a holomorphic frame si(w) for the line bundle Ei
and let Γi(w) = 〈si(w), si(w)〉 be the Hermitian metric,
i = 1,2. Suppose that the two curvatures KE and KF are
equal on some open (simply connected) subset Ω0 ⊆ Ω. It
then follows that u = log(Γ1/Γ2) is harmonic ensuring the
existence of a harmonic conjugate v of u on Ω0. Define
s̃2(w) = e(u(w)+iv(w))/2s2(w). Then clearly, s̃2(w) is a new
holomorphic frame for F . Consequently, we have

Γ̃2(w) = 〈s̃2(w), s̃2(w)〉
= 〈e(u(w)+iv(w))/2s2(w), e(u(w)+iv(w))/2s2(w)〉
= eu(w)〈s2(w), s2(w)〉
= Γ1(w).



it is not a complete invariant if rank is > 1

If the rank of the (holomorphic Hermitian) vector bundle
E is > 1, then the the holomorphic frame

s1, . . . , sn : Ω→ H

defines a Hermitian metric on E, namely,

Γs(w) =
((
〈si(w), sj(w)〉

))
and the curvature

KE(w) = ∂̄
(
G−1

s (∂Gs)
)
(w)

clearly depends on the choice of the frame s. It is easily
seen that while the eigenvalues of the curvature provide a
set of invariants for the vector bundle E, they are not
complete except in the case where the vector bundle E is
the direct sum of line bundles!



the problem

The splitting of a holomorphic Hermitian vector bundle
into a direct sum is determined by the vanishing of the
second fundamental form.
We isolate those irreducible holomorphic Hermitian vector
bundles, namely, the ones possessing a flag structure, for
which the curvature together with the second fundamental
form (relative to the flag) is a complete set of invariants.
Among these, we describe in detail the ones that
correspond to irreducible operators in the Cowen-Douglas
class B2(Ω). All irreducible homogeneous operators in
B2(D) are in this class. We obtain a description of all
these operators.
This classification was given earlier by D. Wilkins using a
sophisticated mix of Riemannian geometry and operator
theory.
We also describe the case of n > 2, where the answer is
much more complicated.
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the new class

Definition
We let FB2(Ω) denote the set of operators T ∈ B2(Ω) which

admit a decomposition of the form T =

(
T0 S
0 T1

)
for some

choice of operators T0,T1 ∈ B1(Ω) and an intertwiner S
between T0 and T1, that is, T0S = ST1.

An operator T in B2(Ω) admits a decomposition of the

form
(

T0 S
0 T1

)
for some pair of operators T0 and T1 in

B1(Ω). In defining the new class FB2(Ω), we are merely
imposing one additional condition, namely that T0S = ST1.
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holomorphic and orthogonal frames

We show that T is in the class FB2(Ω) if and only if there
exist a frame {γ0, γ1} of the vector bundle ET such that
γ0(w) and

t1(w) := ∂
∂wγ0(w)− γ1(w)

are orthogonal for all w in Ω. This is also equivalent to
the existence of a frame {γ0, γ1} of the vector bundle ET
such that

∂
∂w‖γ0(w)‖2 = 〈γ1(w), γ0(w)〉, w ∈ Ω.

Our main point is that it is often easier to work with the
orthogonal frame {γ0, t1}. Of course, the operator action
on this frame is more complicated.
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main theorem

Theorem
Let T =

(
T0 S
0 T1

)
and T̃ =

(
T̃0 S̃
0 T̃1

)
be two operators in

FB2(Ω).

Also let t1 and t̃1 be non-zero sections of the holomorphic
Hermitian line bundles ET1 and ET̃1

respectively.

The operators T and T̃ are equivalent if and only if

KT0 = KT̃0
,
‖S(t1)‖2

‖t1‖2
=
‖S̃(t̃1)‖2

‖t̃1‖2
.
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second fundamental form, flag structure

In any decomposition
(

T0 S
0 T1

)
, of an operator T ∈ FB2(Ω),

let t1 be a non zero section of holomorphic Hermitian
vector bundle ET1 . The intertwining property ensures that
S(t1) is a non zero section of ET0 on some open subset of
Ω. Following the methods of Douglas-M, the second
fundamental form of ET0 in ET is easy to compute:

It is the (1,0) -form −KT0 (z)(
−KT0 (z)+

‖t1(z)‖2∥∥S

(
t1(z)

)∥∥2

)1/2 dz̄, where

−KT0(z) = ∂2

∂z∂z̄ log ‖γ0(z)‖2 is the co-efficient of the
curvature (1,1) -form. Thus the second fundamental
form of ET0 in ET together with the curvature of ET0 is a
complete invariant for the operator T . The inclusion of
the line bundle ET0 in the vector bundle ET of rank 2 is
the flag structure of ET .



second fundamental form, flag structure

In any decomposition
(

T0 S
0 T1

)
, of an operator T ∈ FB2(Ω),

let t1 be a non zero section of holomorphic Hermitian
vector bundle ET1 . The intertwining property ensures that
S(t1) is a non zero section of ET0 on some open subset of
Ω. Following the methods of Douglas-M, the second
fundamental form of ET0 in ET is easy to compute:

It is the (1,0) -form −KT0 (z)(
−KT0 (z)+

‖t1(z)‖2∥∥S

(
t1(z)

)∥∥2

)1/2 dz̄, where

−KT0(z) = ∂2

∂z∂z̄ log ‖γ0(z)‖2 is the co-efficient of the
curvature (1,1) -form. Thus the second fundamental
form of ET0 in ET together with the curvature of ET0 is a
complete invariant for the operator T . The inclusion of
the line bundle ET0 in the vector bundle ET of rank 2 is
the flag structure of ET .



irreducibility

Cowen and Douglas point out that an operator in B1(Ω)
must be irreducible. However, determining which
operators in Bn(Ω), n > 1, are irreducible is a formidable
task. It turns out that the operators in FB2(Ω) are always
irreducible. Indeed, if we assume S is invertible, then T
is strongly irreducible.



model

An operator in the Cowen-Douglas class Bn(Ω), up to
unitary equivalence, is the adjoint of the multiplication
operator on a Hilbert space consisting of holomorphic
functions on Ω∗ := {w̄ : w ∈ Ω} possessing a reproducing
kernel. What about operators in FBn(Ω)?

Let γ = (γ0, γ1) be a holomorphic frame for the vector
bundle ET , T ∈ FB2(Ω). Then the operator T is unitarily
equivalent to the adjoint of the multiplication operator M
on a reproducing kernel Hilbert space HΓ ⊆ Hol(Ω∗,C2)
possessing a reproducing kernel KΓ : Ω∗ × Ω∗ → C2×2, of
the form:



model

An operator in the Cowen-Douglas class Bn(Ω), up to
unitary equivalence, is the adjoint of the multiplication
operator on a Hilbert space consisting of holomorphic
functions on Ω∗ := {w̄ : w ∈ Ω} possessing a reproducing
kernel. What about operators in FBn(Ω)?

Let γ = (γ0, γ1) be a holomorphic frame for the vector
bundle ET , T ∈ FB2(Ω). Then the operator T is unitarily
equivalent to the adjoint of the multiplication operator M
on a reproducing kernel Hilbert space HΓ ⊆ Hol(Ω∗,C2)
possessing a reproducing kernel KΓ : Ω∗ × Ω∗ → C2×2, of
the form:



the kernel

KΓ(z,w) =

(
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)
,

z,w ∈ Ω , where t1 and γ0 := S(t1) are frames of the line
bundles ET1 and ET0 respectively.
It follows that γ1(w) := ∂

∂wγ0(w)− t1(w) and that t1(w) is
orthogonal to γ0(w), w ∈ Ω.

Set K0(z,w) = 〈γ0(w̄), γ0(z̄)〉 and K1(z,w) = 〈t1(w̄), t1(z̄)〉.
In this notation, we have

KΓ(z,w) =

(
K0(z,w) ∂

∂w̄ K0(z,w)
∂
∂z K0(z,w) ∂2

∂z∂w̄ K0(z,w) + K1(z,w)

)
.
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examples

We now give examples of natural classes of operators that
belong to FB2(Ω). Indeed, we were led to the definition of
this new class FB2(Ω) of operators by trying to
understand these examples better.

An operator T is called homogeneous if φ(T ) is unitarily
equivalent to T for all φ in Möb which are analytic on
the spectrum of T .
If an operator T is in B1(D), then T is homogeneous if
and only if KT (w) = −λ(1− |w|2)−2, for some λ > 0.
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homogeneous operators

A model for all homogeneous operators in Bn(D) has been
obtained in a recent paper (joint with Koranyi).
Specializing to n = 2 : For λ > 1 and µ > 0, set
K0(z,w) = (1− zw̄)−λ and K1(z,w) = µ(1− zw̄)−λ−2.

An irreducible operator T in B2(D) is homogeneous if
and only if it is unitarily equivalent to the adjoint of the
multiplication operator on the Hilbert space
H ⊆ Hol(D,C2) determined by the positive definite kernel
of the form KΓ.

The unitary classification of homogeneous operators in
Bn(D) were obtained using non-trivial results from
representation theory of semi-simple Lie group. For n = 2,
this classification is a consequence of the main Theorem.
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Hilbert modules, localization

An operator T in B1(Ω) acting on a Hilbert space H

makes it a module over the polynomial ring via the usual
point-wise multiplication. An important tool in the study
of these modules is the localization.
This is the Hilbert module JH(k)

loc corresponding to the
spectral sheaf JH ⊗P Ck

w, where P is the polynomial ring
and
• J : H→ Hol(Ω,Ck) is the jet map, namely,

Jf =
∑k−1

`=0 ∂`f ⊗ ε`+1, ε1, . . . , εk are the standard unit vectors
in Ck .

• Ck
w is a k - dimensional module over the polynomial ring,

• the module action on Ck
w is via the map J(w),
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in Ck .

• Ck
w is a k - dimensional module over the polynomial ring,

• the module action on Ck
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Hilbert modules, localization

(Jf )(w) =


f (w) 0 · · · 0(2

1

)
∂f (w) f (w) · · · 0
...

...
. . .

...(k
1

)
∂k−1f (w)

(k−1
1

)
∂k−2f (w) · · · f (w)

 ,

that is, (f , v) 7→ (Jf )(w)v, f ∈ P, v ∈ Ck .
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realization

We now consider the localization with k = 2. If we
assume that the operator T has been realized as the
adjoint of the multiplication operator on a Hilbert space of
holomorphc function possessing a kernel function, say K ,
then the kernel JK(2)

loc for the localization (of rank 2 )
given in in the work of Douglas-M-Varughese coincides
with KΓ. In this case, we have K1 = K = K0.

The operator T , in this case, has the form
(

T0
(2

1

)
I

0 T1

)
.

As is to be expected, using the complete set of unitary
invariants given in the main Theorem, we see that the
unitary equivalence class of the Hilbert module H is in
one to one correspondence with that of JH(2)

loc .
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conclusion

Thus the class FB2(Ω) contains two very interesting
classes of operators. For n > 2, we find that there are
competing definitions. One of these contains the
homogeneous operators and the other contains the Hilbert
modules obtained from the localization.



the class FBn(Ω), n ≥ 2

Let FBn(Ω) be the set of all operators T in the
Cowen-Douglas class Bn(Ω) for which we can find
operators T0,T1, . . . ,Tn−1 in B1(Ω) and a decomposition
of the form

T =


T0 S0 1 S0 2 . . . S0 n−1
0 T1 S1 2 . . . S1 n−1
...

. . .
. . .

. . .
...

0 . . . 0 Tn−2 Sn−2 n−1
0 . . . . . . 0 Tn−1


such that none of the operators Si i+1 are zero and

TiSi i+1 = Si i+1Ti+1, i = 0, . . . ,n − 1.



unitary intertwining operators

If there exists a invertible bounded linear operator X
intertwining any two operators, say T , T̃ in FBn(Ω)
( XT = T̃X ), then we prove that X must be upper
triangular with respect to the decomposition mandated in
the definition of the class FBn(Ω). It then follows that any
unitary operator intertwining these two operators must be
diagonal.

Thus we see that they are unitarily equivalent if and only
there exists unitary operators Ui : Hi → H̃i such that
U∗

i T̃iUi = Ti , i = 0,1, · · ·n − 1, and UiSi,j = S̃i,jUj, i < j.
The first of these conditions immediately translates into a
condition on the curvature of the line bundles ETi . The
second condition is somewhat more mysterious and is
related to a finite number of second fundamental forms
inherent in our description of the operator T .



unitary intertwining operators

If there exists a invertible bounded linear operator X
intertwining any two operators, say T , T̃ in FBn(Ω)
( XT = T̃X ), then we prove that X must be upper
triangular with respect to the decomposition mandated in
the definition of the class FBn(Ω). It then follows that any
unitary operator intertwining these two operators must be
diagonal.

Thus we see that they are unitarily equivalent if and only
there exists unitary operators Ui : Hi → H̃i such that
U∗

i T̃iUi = Ti , i = 0,1, · · ·n − 1, and UiSi,j = S̃i,jUj, i < j.
The first of these conditions immediately translates into a
condition on the curvature of the line bundles ETi . The
second condition is somewhat more mysterious and is
related to a finite number of second fundamental forms
inherent in our description of the operator T .



unitary intertwining operators

If there exists a invertible bounded linear operator X
intertwining any two operators, say T , T̃ in FBn(Ω)
( XT = T̃X ), then we prove that X must be upper
triangular with respect to the decomposition mandated in
the definition of the class FBn(Ω). It then follows that any
unitary operator intertwining these two operators must be
diagonal.

Thus we see that they are unitarily equivalent if and only
there exists unitary operators Ui : Hi → H̃i such that
U∗

i T̃iUi = Ti , i = 0,1, · · ·n − 1, and UiSi,j = S̃i,jUj, i < j.
The first of these conditions immediately translates into a
condition on the curvature of the line bundles ETi . The
second condition is somewhat more mysterious and is
related to a finite number of second fundamental forms
inherent in our description of the operator T .



Jordan form

Let T be an operator acting on a Hilbert space H.
Assume that there exists a representation of the form

T =


T0 S0 1 0 . . . 0
0 T1 S1 2 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 Tn−2 Sn−2 n−1
0 . . . 0 0 Tn−1


for the operator T with respect to some orthogonal
decomposition H := H0 ⊕H1 ⊕ · · · ⊕Hn−1.

Suppose also that the operator Ti is in B1(Ω),
0 ≤ i ≤ n − 1, the operator Si−1,i is non zero and
Ti−1Si−1,i = Si−1,iTi , 1 ≤ i ≤ n − 1. Then we show that the
operator T must be in the Cowen-Douglas class Bn(Ω).
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orthogonal vs. holomorphic frames

We can also relate the frame of the vector bundle ET to
those of the line bundles ETi , i = 0,1, . . . ,n − 1. Indeed, we
show that there is a frame {γ0, γ1, · · · , γn−1} of ET such
that

ti(w) := γi(w) + · · ·+
(

i
j

)
γ

(j)
i−j(w) + · · ·+ γ

(i)
0 (w)

is a non-vanishing section of the line bundle ETi and it is
orthogonal to γi(w), i = 0,1,2, . . . , i − 1.

We also have ti−1 := Si−1 i(ti), 1 ≤ i ≤ n − 1.
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complete invariants

Theorem
Pick two operators T and T̃ which admit a Jordan form. Find
an orthogonal frame {γ0, t1, · · · , tn−1} (resp. {γ̃0, t̃1, · · · , t̃n−1} )

for the vector bundle
n⊕

i=0
ETi (resp.

n⊕
i=0

ET̃i
) as above. Then the

operators T and T̃ are unitarily equivalent if and only if

KT0 = KT̃0
and

‖Si−1 i(ti)‖2

‖ti‖2
=
‖S̃i−1 i(t̃i)‖2

‖t̃i‖2
, 1 ≤ i ≤ n − 1.
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Thank you!


