Invariants for a class of Cowen-Douglas operators

Gadadhar Misra (joint with Kui Ji, C. Jiang and D. Keshari)

Indian Institute of Science Bangalore

February 12, 2014

possess an open set $\Omega \subset \mathbb{C}$ of eigenvalues of constant multiplicity, say n and admit a holomorphic choice of eigenvectors: $s_1(w), \ldots, s_n(w), w \in \Omega.$

In other words, there exists holomorphic functions $s_1, \ldots, s_n : \Omega \to \mathcal{H}$ which span the eigenspace of T at w. The holomorphic choice of eigenvectors s_1, \ldots, s_n defines a holomorphic Hermitian vector bundle E_T via the map

possess an open set $\ \Omega \subset \mathbb{C}$ of eigenvalues of constant multiplicity, say n and

admit a holomorphic choice of eigenvectors: $s_1(w), \ldots, s_n(w), w \in \Omega.$

In other words, there exists holomorphic functions $s_1, \ldots, s_n : \Omega \to \mathcal{H}$ which span the eigenspace of T at w. The holomorphic choice of eigenvectors s_1, \ldots, s_n defines a holomorphic Hermitian vector bundle E_T via the map

possess an open set $\Omega \subset \mathbb{C}$ of eigenvalues of constant multiplicity, say n and admit a holomorphic choice of eigenvectors: $s_1(w), \ldots, s_n(w), w \in \Omega$.

In other words, there exists holomorphic functions $s_1, \ldots, s_n : \Omega \to \mathcal{H}$ which span the eigenspace of T at w. The holomorphic choice of eigenvectors s_1, \ldots, s_n defines a holomorphic Hermitian vector bundle E_T via the map

possess an open set $\Omega \subset \mathbb{C}$ of eigenvalues of constant multiplicity, say n and admit a holomorphic choice of eigenvectors: $s_1(w), \ldots, s_n(w), w \in \Omega$.

In other words, there exists holomorphic functions $s_1, \ldots, s_n : \Omega \to \mathcal{H}$ which span the eigenspace of T at w. The holomorphic choice of eigenvectors s_1, \ldots, s_n defines a holomorphic Hermitian vector bundle E_T via the map

possess an open set $\Omega \subset \mathbb{C}$ of eigenvalues of constant multiplicity, say n and admit a holomorphic choice of eigenvectors: $s_1(w), \ldots, s_n(w), w \in \Omega$.

In other words, there exists holomorphic functions $s_1, \ldots, s_n : \Omega \to \mathcal{H}$ which span the eigenspace of T at w. The holomorphic choice of eigenvectors s_1, \ldots, s_n defines a holomorphic Hermitian vector bundle E_T via the map

One of the striking results from the late seventies due to Cowen and Douglas says:

There is a one to one correspondence between the unitary equivalence class of the operators T and the equivalence classes of the holomorphic Hermitian vector bundles E_T determined by them.

Furthermore, they find a set of complete invariants, not very tractable unless n = 1, for this equivalence. For n = 1, as is well-known, the curvature

$$\mathsf{K}(w) = -\frac{\partial^2}{\partial w \bar{\partial} w} \log \|s(w)\|^2 dw \wedge d\bar{w}$$

of the line bundle L_T is a complete invariant of L_T , or equivalently, that of the operator T.

One of the striking results from the late seventies due to Cowen and Douglas says:

There is a one to one correspondence between the unitary equivalence class of the operators T and the equivalence classes of the holomorphic Hermitian vector bundles E_T determined by them.

Furthermore, they find a set of complete invariants, not very tractable unless n = 1, for this equivalence. For n = 1, as is well-known, the curvature

$$\mathsf{K}(w) = -\frac{\partial^2}{\partial w \bar{\partial} w} \log \|s(w)\|^2 dw \wedge d\bar{w}$$

of the line bundle L_T is a complete invariant of L_T , or equivalently, that of the operator T.

Pick a holomorphic frame $s_i(w)$ for the line bundle E_i and let $\Gamma_i(w) = \langle s_i(w), s_i(w) \rangle$ be the Hermitian metric, i = 1, 2. Suppose that the two curvatures K_E and K_F are equal on some open (simply connected) subset $\Omega_0 \subseteq \Omega$. It then follows that $u = \log(\Gamma_1/\Gamma_2)$ is harmonic ensuring the existence of a harmonic conjugate v of u on Ω_0 . Define $\tilde{s}_2(w) = e^{(u(w)+iv(w))/2}s_2(w)$. Then clearly, $\tilde{s}_2(w)$ is a new holomorphic frame for F. Consequently, we have

$$egin{aligned} & ilde{\Gamma}_2(w) = \langle ilde{s}_2(w), ilde{s}_2(w)
angle \ &= \langle e^{(u(w)+iv(w))/2} s_2(w), e^{(u(w)+iv(w))/2} s_2(w)
angle \ &= e^{u(w)} \langle s_2(w), s_2(w)
angle \ &= \Gamma_1(w). \end{aligned}$$

If the rank of the (holomorphic Hermitian) vector bundle E is > 1, then the holomorphic frame

 $\mathbf{s}_1,\ldots,\mathbf{s}_n:\Omega\to\mathcal{H}$

defines a Hermitian metric on *E*, namely,

 $\Gamma_{s}(w) = \left(\!\!\left(\langle s_{i}(w), s_{j}(w) \rangle \right)\!\!\right)$

and the curvature

 $\mathsf{K}_{E}(w) = \bar{\partial} \big(G_{s}^{-1}(\partial G_{s}) \big)(w)$

clearly depends on the choice of the frame s. It is easily seen that while the eigenvalues of the curvature provide a set of invariants for the vector bundle E, they are not complete except in the case where the vector bundle E is the direct sum of line bundles!

the problem

The splitting of a holomorphic Hermitian vector bundle into a direct sum is determined by the vanishing of the second fundamental form.

We isolate those irreducible holomorphic Hermitian vector bundles, namely, the ones possessing a flag structure, for which the curvature together with the second fundamental form (relative to the flag) is a complete set of invariants. Among these, we describe in detail the ones that correspond to irreducible operators in the Cowen-Douglas class $B_2(\Omega)$. All irreducible homogeneous operators in $B_2(\mathbb{D})$ are in this class. We obtain a description of all these operators.

This classification was given earlier by D. Wilkins using a sophisticated mix of Riemannian geometry and operator theory.

the problem

The splitting of a holomorphic Hermitian vector bundle into a direct sum is determined by the vanishing of the second fundamental form.

We isolate those irreducible holomorphic Hermitian vector bundles, namely, the ones possessing a flag structure, for which the curvature together with the second fundamental form (relative to the flag) is a complete set of invariants.

Among these, we describe in detail the ones that correspond to irreducible operators in the Cowen-Douglas class $B_2(\Omega)$. All irreducible homogeneous operators in $B_2(\mathbb{D})$ are in this class. We obtain a description of all these operators.

This classification was given earlier by D. Wilkins using a sophisticated mix of Riemannian geometry and operator theory.

The splitting of a holomorphic Hermitian vector bundle into a direct sum is determined by the vanishing of the second fundamental form.

We isolate those irreducible holomorphic Hermitian vector bundles, namely, the ones possessing a flag structure, for which the curvature together with the second fundamental form (relative to the flag) is a complete set of invariants. Among these, we describe in detail the ones that correspond to irreducible operators in the Cowen-Douglas class $B_2(\Omega)$. All irreducible homogeneous operators in $B_2(\mathbb{D})$ are in this class. We obtain a description of all these operators.

This classification was given earlier by D. Wilkins using a sophisticated mix of Riemannian geometry and operator theory.

The splitting of a holomorphic Hermitian vector bundle into a direct sum is determined by the vanishing of the second fundamental form.

We isolate those irreducible holomorphic Hermitian vector bundles, namely, the ones possessing a flag structure, for which the curvature together with the second fundamental form (relative to the flag) is a complete set of invariants. Among these, we describe in detail the ones that correspond to irreducible operators in the Cowen-Douglas class $B_2(\Omega)$. All irreducible homogeneous operators in $B_2(\mathbb{D})$ are in this class. We obtain a description of all these operators.

This classification was given earlier by D. Wilkins using a sophisticated mix of Riemannian geometry and operator theory.

The splitting of a holomorphic Hermitian vector bundle into a direct sum is determined by the vanishing of the second fundamental form.

We isolate those irreducible holomorphic Hermitian vector bundles, namely, the ones possessing a flag structure, for which the curvature together with the second fundamental form (relative to the flag) is a complete set of invariants. Among these, we describe in detail the ones that correspond to irreducible operators in the Cowen-Douglas class $B_2(\Omega)$. All irreducible homogeneous operators in $B_2(\mathbb{D})$ are in this class. We obtain a description of all these operators.

This classification was given earlier by D. Wilkins using a sophisticated mix of Riemannian geometry and operator theory.

Definition

We let $\mathcal{F}B_2(\Omega)$ denote the set of operators $T \in B_2(\Omega)$ which admit a decomposition of the form $T = \begin{pmatrix} T_0 & S \\ 0 & T_1 \end{pmatrix}$ for some choice of operators $T_0, T_1 \in \mathcal{B}_1(\Omega)$ and an intertwiner Sbetween T_0 and T_1 , that is, $T_0S = ST_1$.

An operator T in $B_2(\Omega)$ admits a decomposition of the form $\begin{pmatrix} T_0 & S \\ 0 & T_1 \end{pmatrix}$ for some pair of operators T_0 and T_1 in $B_1(\Omega)$. In defining the new class $\mathcal{F}B_2(\Omega)$, we are merely imposing one additional condition, namely that $T_0S = ST_1$

Definition

We let $\mathcal{F}B_2(\Omega)$ denote the set of operators $T \in B_2(\Omega)$ which admit a decomposition of the form $T = \begin{pmatrix} T_0 & S \\ 0 & T_1 \end{pmatrix}$ for some choice of operators $T_0, T_1 \in \mathcal{B}_1(\Omega)$ and an intertwiner Sbetween T_0 and T_1 , that is, $T_0S = ST_1$.

An operator T in $B_2(\Omega)$ admits a decomposition of the form $\begin{pmatrix} T_0 & S \\ 0 & T_1 \end{pmatrix}$ for some pair of operators T_0 and T_1 in $B_1(\Omega)$. In defining the new class $\mathcal{F}B_2(\Omega)$, we are merely imposing one additional condition, namely that $T_0S = ST_1$

Definition

We let $\mathcal{F}B_2(\Omega)$ denote the set of operators $T \in B_2(\Omega)$ which admit a decomposition of the form $T = \begin{pmatrix} T_0 & S \\ 0 & T_1 \end{pmatrix}$ for some choice of operators $T_0, T_1 \in \mathcal{B}_1(\Omega)$ and an intertwiner Sbetween T_0 and T_1 , that is, $T_0S = ST_1$.

An operator *T* in $B_2(\Omega)$ admits a decomposition of the form $\begin{pmatrix} T_0 & S \\ 0 & T_1 \end{pmatrix}$ for some pair of operators T_0 and T_1 in $B_1(\Omega)$. In defining the new class $\mathcal{F}B_2(\Omega)$, we are merely imposing one additional condition, namely that $T_0S = ST_1$.

We show that *T* is in the class $\mathcal{F}B_2(\Omega)$ if and only if there exist a frame $\{\gamma_0, \gamma_1\}$ of the vector bundle E_T such that $\gamma_0(w)$ and

$$t_1(w) := \frac{\partial}{\partial w} \gamma_0(w) - \gamma_1(w)$$

are orthogonal for all w in Ω . This is also equivalent to the existence of a frame $\{\gamma_0, \gamma_1\}$ of the vector bundle E_T such that

$$\frac{\partial}{\partial w} \|\gamma_0(w)\|^2 = \langle \gamma_1(w), \gamma_0(w) \rangle, \ w \in \Omega.$$

Our main point is that it is often easier to work with the orthogonal frame $\{\gamma_0, t_1\}$. Of course, the operator action on this frame is more complicated.

We show that *T* is in the class $\mathcal{F}B_2(\Omega)$ if and only if there exist a frame $\{\gamma_0, \gamma_1\}$ of the vector bundle E_T such that $\gamma_0(w)$ and

$$t_1(w) := \frac{\partial}{\partial w} \gamma_0(w) - \gamma_1(w)$$

are orthogonal for all w in Ω . This is also equivalent to the existence of a frame $\{\gamma_0, \gamma_1\}$ of the vector bundle E_T such that

$$rac{\partial}{\partial w} \|\gamma_0(w)\|^2 = \langle \gamma_1(w), \gamma_0(w)
angle, \ w \in \Omega.$$

Our main point is that it is often easier to work with the orthogonal frame $\{\gamma_0, t_1\}$. Of course, the operator action on this frame is more complicated.

 $\begin{array}{ll} Theorem\\ Let \ T = \begin{pmatrix} T_0 & S\\ 0 & T_1 \end{pmatrix} \ \text{and} \ \ \tilde{T} = \begin{pmatrix} \tilde{T}_0 & \tilde{S}\\ 0 & \tilde{T}_1 \end{pmatrix} \ \text{be two operators in}\\ \mathfrak{FB}_2(\Omega). \end{array}$

Also let t_1 and \tilde{t}_1 be non-zero sections of the holomorphic Hermitian line bundles E_{T_1} and $E_{\tilde{T}_1}$ respectively.

The operators T and \tilde{T} are equivalent if and only if

$$\mathfrak{K}_{T_0} = \mathfrak{K}_{\tilde{T}_0}, \ \ \frac{\|S(t_1)\|^2}{\|t_1\|^2} = \frac{\|\tilde{S}(\tilde{t}_1)\|^2}{\|\tilde{t}_1\|^2}.$$

Theorem Let $T = \begin{pmatrix} T_0 & S \\ 0 & T_1 \end{pmatrix}$ and $\tilde{T} = \begin{pmatrix} \tilde{T}_0 & \tilde{S} \\ 0 & \tilde{T}_1 \end{pmatrix}$ be two operators in $\mathcal{F}B_2(\Omega)$.

Also let t_1 and \tilde{t}_1 be non-zero sections of the holomorphic Hermitian line bundles E_{T_1} and $E_{\tilde{T}_1}$ respectively.

The operators T and \tilde{T} are equivalent if and only if

$$\mathcal{K}_{T_0} = \mathcal{K}_{\tilde{T}_0}, \ \ \frac{\|S(t_1)\|^2}{\|t_1\|^2} = \frac{\|\tilde{S}(\tilde{t}_1)\|^2}{\|\tilde{t}_1\|^2}.$$

In any decomposition $\begin{pmatrix} T_0 & S \\ 0 & T_1 \end{pmatrix}$, of an operator $T \in \mathcal{F}B_2(\Omega)$, let t_1 be a non zero section of holomorphic Hermitian vector bundle E_{T_1} . The intertwining property ensures that $S(t_1)$ is a non zero section of E_{T_0} on some open subset of Ω . Following the methods of Douglas-M, the second fundamental form of E_{T_0} in E_T is easy to compute:

It is the (1,0) -form $\frac{-\Re_{T_0}(z)}{\left(-\Re_{T_0}(z) + \frac{\|t_1(z)\|^2}{\left\|s(t_1(z))\|^2}\right)^{1/2}} d\bar{z}$, where

 $-\mathcal{K}_{T_0}(z) = \frac{\partial^2}{\partial z \partial \bar{z}} \log \|\gamma_0(z)\|^2$ is the co-efficient of the curvature (1, 1) -form. Thus the second fundamental form of E_{T_0} in E_T together with the curvature of E_{T_0} is a complete invariant for the operator T. The inclusion of the line bundle E_{T_0} in the vector bundle E_T of rank 2 is the flag structure of E_T .

In any decomposition $\begin{pmatrix} T_0 & S \\ 0 & T_1 \end{pmatrix}$, of an operator $T \in \mathcal{F}B_2(\Omega)$, let t_1 be a non zero section of holomorphic Hermitian vector bundle E_{T_1} . The intertwining property ensures that $S(t_1)$ is a non zero section of E_{T_0} on some open subset of Ω . Following the methods of Douglas-M, the second fundamental form of E_{T_0} in E_T is easy to compute: It is the (1,0) -form $\frac{-\mathcal{K}_{T_0}(z)}{\left(-\mathcal{K}_{T_0}(z) + \frac{\|t_1(z)\|^2}{\||s_1(t_1(z))\|^2}\right)^{1/2}} d\bar{z}$, where

 $-\mathcal{K}_{T_0}(\mathbf{z}) = \frac{\partial^2}{\partial \mathbf{z} \partial \overline{\mathbf{z}}} \log \|\gamma_0(\mathbf{z})\|^2$ is the co-efficient of the curvature (1, 1)-form. Thus the second fundamental form of E_{T_0} in E_T together with the curvature of E_{T_0} is a complete invariant for the operator T. The inclusion of the line bundle E_{T_0} in the vector bundle E_T of rank 2 is the flag structure of E_T .

Cowen and Douglas point out that an operator in $B_1(\Omega)$ must be irreducible. However, determining which operators in $B_n(\Omega)$, n > 1, are irreducible is a formidable task. It turns out that the operators in $\mathcal{F}B_2(\Omega)$ are always irreducible. Indeed, if we assume *S* is invertible, then *T* is strongly irreducible.

An operator in the Cowen-Douglas class $B_n(\Omega)$, up to unitary equivalence, is the adjoint of the multiplication operator on a Hilbert space consisting of holomorphic functions on $\Omega^* := \{ \overline{w} : w \in \Omega \}$ possessing a reproducing kernel. What about operators in $\mathcal{F}B_n(\Omega)$?

Let $\gamma = (\gamma_0, \gamma_1)$ be a holomorphic frame for the vector bundle E_T , $T \in \mathcal{FB}_2(\Omega)$. Then the operator T is unitarily equivalent to the adjoint of the multiplication operator Mon a reproducing kernel Hilbert space $\mathcal{H}_{\Gamma} \subseteq \operatorname{Hol}(\Omega^*, \mathbb{C}^2)$ possessing a reproducing kernel $K_{\Gamma} : \Omega^* \times \Omega^* \to \mathbb{C}^{2 \times 2}$, of the form:

An operator in the Cowen-Douglas class $B_n(\Omega)$, up to unitary equivalence, is the adjoint of the multiplication operator on a Hilbert space consisting of holomorphic functions on $\Omega^* := \{ \overline{w} : w \in \Omega \}$ possessing a reproducing kernel. What about operators in $\mathcal{F}B_n(\Omega)$?

Let $\gamma = (\gamma_0, \gamma_1)$ be a holomorphic frame for the vector bundle E_T , $T \in \mathcal{FB}_2(\Omega)$. Then the operator T is unitarily equivalent to the adjoint of the multiplication operator Mon a reproducing kernel Hilbert space $\mathcal{H}_{\Gamma} \subseteq \operatorname{Hol}(\Omega^*, \mathbb{C}^2)$ possessing a reproducing kernel $K_{\Gamma} : \Omega^* \times \Omega^* \to \mathbb{C}^{2 \times 2}$, of the form:

the kernel

$$\begin{split} K_{\Gamma}(\boldsymbol{z},\boldsymbol{w}) &= \begin{pmatrix} \langle \gamma_{0}(\bar{\boldsymbol{w}}),\gamma_{0}(\bar{\boldsymbol{z}})\rangle & \langle \gamma_{1}(\bar{\boldsymbol{w}}),\gamma_{0}(\bar{\boldsymbol{z}})\rangle \\ \langle \gamma_{0}(\bar{\boldsymbol{w}}),\gamma_{1}(\bar{\boldsymbol{z}})\rangle & \langle \gamma_{1}(\bar{\boldsymbol{w}}),\gamma_{1}(\bar{\boldsymbol{z}})\rangle \end{pmatrix} \\ &= \begin{pmatrix} \langle \gamma_{0}(\bar{\boldsymbol{w}}),\gamma_{0}(\bar{\boldsymbol{z}})\rangle & \frac{\partial}{\partial \bar{\boldsymbol{w}}} \langle \gamma_{0}(\bar{\boldsymbol{w}}),\gamma_{0}(\bar{\boldsymbol{z}})\rangle \\ \frac{\partial}{\partial \boldsymbol{z}} \langle \gamma_{0}(\bar{\boldsymbol{w}}),\gamma_{0}(\bar{\boldsymbol{z}})\rangle & \frac{\partial^{2}}{\partial \boldsymbol{z}\partial \bar{\boldsymbol{w}}} \langle \gamma_{0}(\bar{\boldsymbol{w}}),\gamma_{0}(\bar{\boldsymbol{z}})\rangle + \langle t_{1}(\bar{\boldsymbol{w}}),t_{1}(\bar{\boldsymbol{z}})\rangle \end{pmatrix}, \end{split}$$

 $z, w \in \Omega$, where t_1 and $\gamma_0 := \mathbf{S}(t_1)$ are frames of the line bundles E_{T_1} and E_{T_0} respectively.

It follows that $\gamma_1(w) := \frac{\partial}{\partial w} \gamma_0(w) - t_1(w)$ and that $t_1(w)$ is orthogonal to $\gamma_0(w), w \in \Omega$. Set $K_0(z, w) = \langle \gamma_0(\bar{w}), \gamma_0(\bar{z}) \rangle$ and $K_1(z, w) = \langle t_1(\bar{w}), t_1(\bar{z}) \rangle$. In this notation, we have

$$K_{\Gamma}(oldsymbol{z},oldsymbol{w}) = egin{pmatrix} K_0(oldsymbol{z},oldsymbol{w}) \ rac{\partial}{\partialoldsymbol{z}} K_0(oldsymbol{z},oldsymbol{w}) & rac{\partial}{\partialoldsymbol{z}} \end{pmatrix}$$

$$\begin{split} K_{\Gamma}(\boldsymbol{z},\boldsymbol{w}) &= \begin{pmatrix} \langle \gamma_{0}(\bar{\boldsymbol{w}}),\gamma_{0}(\bar{\boldsymbol{z}})\rangle & \langle \gamma_{1}(\bar{\boldsymbol{w}}),\gamma_{0}(\bar{\boldsymbol{z}})\rangle \\ \langle \gamma_{0}(\bar{\boldsymbol{w}}),\gamma_{1}(\bar{\boldsymbol{z}})\rangle & \langle \gamma_{1}(\bar{\boldsymbol{w}}),\gamma_{1}(\bar{\boldsymbol{z}})\rangle \end{pmatrix} \\ &= \begin{pmatrix} \langle \gamma_{0}(\bar{\boldsymbol{w}}),\gamma_{0}(\bar{\boldsymbol{z}})\rangle & \frac{\partial}{\partial \bar{\boldsymbol{w}}} \langle \gamma_{0}(\bar{\boldsymbol{w}}),\gamma_{0}(\bar{\boldsymbol{z}})\rangle \\ \frac{\partial}{\partial \boldsymbol{z}} \langle \gamma_{0}(\bar{\boldsymbol{w}}),\gamma_{0}(\bar{\boldsymbol{z}})\rangle & \frac{\partial^{2}}{\partial \boldsymbol{z}\partial \bar{\boldsymbol{w}}} \langle \gamma_{0}(\bar{\boldsymbol{w}}),\gamma_{0}(\bar{\boldsymbol{z}})\rangle + \langle t_{1}(\bar{\boldsymbol{w}}),t_{1}(\bar{\boldsymbol{z}})\rangle \end{pmatrix}, \end{split}$$

 $z, w \in \Omega$, where t_1 and $\gamma_0 := \mathbf{S}(t_1)$ are frames of the line bundles E_{T_1} and E_{T_0} respectively. It follows that $\gamma_1(w) := \frac{\partial}{\partial w} \gamma_0(w) - t_1(w)$ and that $t_1(w)$ is orthogonal to $\gamma_0(w), w \in \Omega$.

Set $K_0(z, w) = \langle \gamma_0(\bar{w}), \gamma_0(\bar{z}) \rangle$ and $K_1(z, w) = \langle t_1(\bar{w}), t_1(\bar{z}) \rangle$. In this notation, we have

$$K_{\Gamma}(oldsymbol{z},oldsymbol{w}) = egin{pmatrix} K_0(oldsymbol{z},oldsymbol{w}) \ rac{\partial}{\partialoldsymbol{z}}K_0(oldsymbol{z},oldsymbol{w}) \end{pmatrix}$$

 $rac{\partial}{\partial ar w} K_0(z,w) \ \sum_{ar z \partial ar w} K_0(z,w) + K_1(z,w)
angle$

$$\begin{split} K_{\Gamma}(\boldsymbol{z},\boldsymbol{w}) &= \begin{pmatrix} \langle \gamma_{0}(\bar{\boldsymbol{w}}), \gamma_{0}(\bar{\boldsymbol{z}}) \rangle & \langle \gamma_{1}(\bar{\boldsymbol{w}}), \gamma_{0}(\bar{\boldsymbol{z}}) \rangle \\ \langle \gamma_{0}(\bar{\boldsymbol{w}}), \gamma_{1}(\bar{\boldsymbol{z}}) \rangle & \langle \gamma_{1}(\bar{\boldsymbol{w}}), \gamma_{1}(\bar{\boldsymbol{z}}) \rangle \end{pmatrix} \\ &= \begin{pmatrix} \langle \gamma_{0}(\bar{\boldsymbol{w}}), \gamma_{0}(\bar{\boldsymbol{z}}) \rangle & \frac{\partial}{\partial \bar{\boldsymbol{w}}} \langle \gamma_{0}(\bar{\boldsymbol{w}}), \gamma_{0}(\bar{\boldsymbol{z}}) \rangle \\ \frac{\partial}{\partial \boldsymbol{z}} \langle \gamma_{0}(\bar{\boldsymbol{w}}), \gamma_{0}(\bar{\boldsymbol{z}}) \rangle & \frac{\partial^{2}}{\partial \boldsymbol{z} \partial \bar{\boldsymbol{w}}} \langle \gamma_{0}(\bar{\boldsymbol{w}}), \gamma_{0}(\bar{\boldsymbol{z}}) \rangle + \langle t_{1}(\bar{\boldsymbol{w}}), t_{1}(\bar{\boldsymbol{z}}) \rangle \end{pmatrix}, \end{split}$$

 $z, w \in \Omega$, where t_1 and $\gamma_0 := S(t_1)$ are frames of the line bundles E_{T_1} and E_{T_0} respectively.

It follows that $\gamma_1(w) := \frac{\partial}{\partial w} \gamma_0(w) - t_1(w)$ and that $t_1(w)$ is orthogonal to $\gamma_0(w), w \in \Omega$.

Set $K_0(z, w) = \langle \gamma_0(\bar{w}), \gamma_0(\bar{z}) \rangle$ and $K_1(z, w) = \langle t_1(\bar{w}), t_1(\bar{z}) \rangle$. In this notation, we have

$$K_{\Gamma}(\boldsymbol{z}, \boldsymbol{w}) = \begin{pmatrix} K_0(\boldsymbol{z}, \boldsymbol{w}) & \frac{\partial}{\partial \overline{\boldsymbol{w}}} K_0(\boldsymbol{z}, \boldsymbol{w}) \\ \frac{\partial}{\partial \boldsymbol{z}} K_0(\boldsymbol{z}, \boldsymbol{w}) & \frac{\partial^2}{\partial \boldsymbol{z} \partial \overline{\boldsymbol{w}}} K_0(\boldsymbol{z}, \boldsymbol{w}) + K_1(\boldsymbol{z}, \boldsymbol{w}) \end{pmatrix}$$

We now give examples of natural classes of operators that belong to $\mathcal{F}B_2(\Omega)$. Indeed, we were led to the definition of this new class $\mathcal{F}B_2(\Omega)$ of operators by trying to understand these examples better.

An operator T is called homogeneous if $\phi(T)$ is unitarily equivalent to T for all ϕ in Möb which are analytic on the spectrum of T.

If an operator *T* is in $\mathcal{B}_1(\mathbb{D})$, then *T* is homogeneous if and only if $\mathcal{K}_T(w) = -\lambda(1-|w|^2)^{-2}$, for some $\lambda > 0$.

We now give examples of natural classes of operators that belong to $\mathcal{F}B_2(\Omega)$. Indeed, we were led to the definition of this new class $\mathcal{F}B_2(\Omega)$ of operators by trying to understand these examples better.

An operator *T* is called homogeneous if $\phi(T)$ is unitarily equivalent to *T* for all ϕ in Möb which are analytic on the spectrum of *T*.

If an operator T is in $\mathcal{B}_1(\mathbb{D})$, then T is homogeneous if and only if $\mathcal{K}_T(w) = -\lambda(1 - |w|^2)^{-2}$, for some $\lambda > 0$.

We now give examples of natural classes of operators that belong to $\mathcal{F}B_2(\Omega)$. Indeed, we were led to the definition of this new class $\mathcal{F}B_2(\Omega)$ of operators by trying to understand these examples better.

An operator *T* is called homogeneous if $\phi(T)$ is unitarily equivalent to *T* for all ϕ in Möb which are analytic on the spectrum of *T*.

If an operator *T* is in $\mathcal{B}_1(\mathbb{D})$, then *T* is homogeneous if and only if $\mathcal{K}_T(w) = -\lambda(1 - |w|^2)^{-2}$, for some $\lambda > 0$.

A model for all homogeneous operators in $B_n(\mathbb{D})$ has been obtained in a recent paper (joint with Koranyi). Specializing to n = 2: For $\lambda > 1$ and $\mu > 0$, set $K_0(z, w) = (1 - z\bar{w})^{-\lambda}$ and $K_1(z, w) = \mu(1 - z\bar{w})^{-\lambda-2}$.

An irreducible operator T in $B_2(\mathbb{D})$ is homogeneous if and only if it is unitarily equivalent to the adjoint of the multiplication operator on the Hilbert space $\mathcal{H} \subseteq \operatorname{Hol}(\mathbb{D}, \mathbb{C}^2)$ determined by the positive definite kernel of the form K_{Γ} .

The unitary classification of homogeneous operators in $B_n(\mathbb{D})$ were obtained using non-trivial results from representation theory of semi-simple Lie group. For n = 2 this classification is a consequence of the main Theorem.

A model for all homogeneous operators in $B_n(\mathbb{D})$ has been obtained in a recent paper (joint with Koranyi).

Specializing to n = 2: For $\lambda > 1$ and $\mu > 0$, set $K_0(z, w) = (1 - z\overline{w})^{-\lambda}$ and $K_1(z, w) = \mu(1 - z\overline{w})^{-\lambda-2}$.

An irreducible operator T in $B_2(\mathbb{D})$ is homogeneous if and only if it is unitarily equivalent to the adjoint of the multiplication operator on the Hilbert space $\mathcal{H} \subseteq \operatorname{Hol}(\mathbb{D}, \mathbb{C}^2)$ determined by the positive definite kernel of the form K_{Γ} .

The unitary classification of homogeneous operators in $B_n(\mathbb{D})$ were obtained using non-trivial results from representation theory of semi-simple Lie group. For n = 2 this classification is a consequence of the main Theorem.

A model for all homogeneous operators in $B_n(\mathbb{D})$ has been obtained in a recent paper (joint with Koranyi).

Specializing to n = 2: For $\lambda > 1$ and $\mu > 0$, set $K_0(z, w) = (1 - z\overline{w})^{-\lambda}$ and $K_1(z, w) = \mu(1 - z\overline{w})^{-\lambda-2}$.

An irreducible operator T in $B_2(\mathbb{D})$ is homogeneous if and only if it is unitarily equivalent to the adjoint of the multiplication operator on the Hilbert space $\mathcal{H} \subseteq \operatorname{Hol}(\mathbb{D}, \mathbb{C}^2)$ determined by the positive definite kernel

of the form K_{Γ} .

The unitary classification of homogeneous operators in $B_n(\mathbb{D})$ were obtained using non-trivial results from representation theory of semi-simple Lie group. For n = 2, this classification is a consequence of the main Theorem.

An operator *T* in $B_1(\Omega)$ acting on a Hilbert space \mathcal{H} makes it a module over the polynomial ring via the usual point-wise multiplication. An important tool in the study of these modules is the localization.

This is the Hilbert module $J\mathcal{H}_{loc}^{(k)}$ corresponding to the spectral sheaf $J\mathcal{H}\otimes_{\mathcal{P}} \mathbb{C}_w^k$, where \mathcal{P} is the polynomial ring and

- $J : \mathfrak{I} \to \operatorname{Hol}(\Omega, \mathbb{C}^k)$ is the jet map, namely,
- $Jf = \sum_{\ell=0}^{k-1} \partial^{\ell} f \otimes \varepsilon_{\ell+1}, \varepsilon_{1}, \dots, \varepsilon_{k}$ are the standard unit vectors in \mathbb{C}^{k} .
- \mathbb{C}_w^k is a k dimensional module over the polynomial ring,
- the module action on \mathbb{C}^k_w is via the map $\mathcal{J}(w)$

An operator *T* in $B_1(\Omega)$ acting on a Hilbert space \mathcal{H} makes it a module over the polynomial ring via the usual point-wise multiplication. An important tool in the study of these modules is the localization.

This is the Hilbert module $J\mathcal{H}_{loc}^{(k)}$ corresponding to the spectral sheaf $J\mathcal{H}\otimes_{\mathcal{P}} \mathbb{C}_w^k$, where \mathcal{P} is the polynomial ring and

- $J: \mathcal{H} \to \operatorname{Hol}(\Omega, \mathbb{C}^k)$ is the jet map, namely,
 - $Jf = \sum_{\ell=0}^{\kappa-1} \partial^{\ell} f \otimes \varepsilon_{\ell+1}, \varepsilon_1, \dots, \varepsilon_k$ are the standard unit vectors in \mathbb{C}^k .
- \mathbb{C}^k_w is a k dimensional module over the polynomial ring,
- the module action on \mathbb{C}_w^k is via the map $\mathcal{J}(w)$

An operator T in $B_1(\Omega)$ acting on a Hilbert space \mathcal{H} makes it a module over the polynomial ring via the usual point-wise multiplication. An important tool in the study of these modules is the localization.

This is the Hilbert module $J\mathcal{H}_{loc}^{(k)}$ corresponding to the spectral sheaf $J\mathcal{H} \otimes_{\mathcal{P}} \mathbb{C}^k_{uv}$, where \mathcal{P} is the polynomial ring and

- *J* : *H* → Hol(Ω, ℂ^k) is the jet map, namely,
 Jf = ∑^{k-1}_{ℓ=0} ∂^ℓ f ⊗ ε_{ℓ+1}, ε₁,...,ε_k are the standard unit vectors in ℂ^k.
- the module action on \mathbb{C}_w^k is via the map $\mathcal{J}(w)$,

An operator T in $B_1(\Omega)$ acting on a Hilbert space \mathcal{H} makes it a module over the polynomial ring via the usual point-wise multiplication. An important tool in the study of these modules is the localization.

This is the Hilbert module $J\mathcal{H}_{loc}^{(k)}$ corresponding to the spectral sheaf $J\mathcal{H} \otimes_{\mathcal{P}} \mathbb{C}^k_{uv}$, where \mathcal{P} is the polynomial ring and

- *J* : *H* → Hol(Ω, ℂ^k) is the jet map, namely,
 Jf = ∑^{k-1}_{ℓ=0} ∂^ℓ f ⊗ ε_{ℓ+1}, ε₁,...,ε_k are the standard unit vectors in ℂ^k.
- \mathbb{C}_{w}^{k} is a k dimensional module over the polynomial ring,
- the module action on \mathbb{C}_w^k is via the map $\mathcal{J}(w)$,

An operator *T* in $B_1(\Omega)$ acting on a Hilbert space \mathcal{H} makes it a module over the polynomial ring via the usual point-wise multiplication. An important tool in the study of these modules is the localization.

This is the Hilbert module $J\mathcal{H}_{loc}^{(k)}$ corresponding to the spectral sheaf $J\mathcal{H}\otimes_{\mathcal{P}} \mathbb{C}_w^k$, where \mathcal{P} is the polynomial ring and

- *J* : *H* → Hol(Ω, ℂ^k) is the jet map, namely,
 Jf = ∑^{k-1}_{ℓ=0} ∂^ℓ f ⊗ ε_{ℓ+1}, ε₁,...,ε_k are the standard unit vectors in ℂ^k.
- \mathbb{C}_{w}^{k} is a k dimensional module over the polynomial ring,
- the module action on \mathbb{C}_w^k is via the map $\mathcal{J}(w)$,

$$(\Im f)(w) = \begin{pmatrix} f(w) & 0 & \cdots & 0\\ \binom{2}{1}\partial f(w) & f(w) & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ \binom{k}{1}\partial^{k-1}f(w) & \binom{k-1}{1}\partial^{k-2}f(w) & \cdots & f(w) \end{pmatrix},$$

that is, $(f, v) \mapsto (\Im f)(w)v$, $f \in \mathcal{P}, v \in \mathbb{C}^k$.

$$(\partial f)(w) = \begin{pmatrix} f(w) & 0 & \cdots & 0\\ \binom{2}{1} \partial f(w) & f(w) & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ \binom{k}{1} \partial^{k-1} f(w) & \binom{k-1}{1} \partial^{k-2} f(w) & \cdots & f(w) \end{pmatrix},$$

that is, $(f, v) \mapsto (\partial f)(w)v$, $f \in \mathcal{P}, v \in \mathbb{C}^k$.

We now consider the localization with k = 2. If we assume that the operator T has been realized as the adjoint of the multiplication operator on a Hilbert space of holomorphc function possessing a kernel function, say K, then the kernel $JK_{loc}^{(2)}$ for the localization (of rank 2) given in in the work of Douglas-M-Varughese coincides with K_{Γ} . In this case, we have $K_1 = K = K_0$.

The operator T, in this case, has the form $\begin{pmatrix} 10 \\ 0 \end{pmatrix}$

As is to be expected, using the complete set of unitary invariants given in the main Theorem, we see that the unitary equivalence class of the Hilbert module \mathcal{H} is in one to one correspondence with that of $J\mathcal{H}_{loc}^{(2)}$.

We now consider the localization with k = 2. If we assume that the operator T has been realized as the adjoint of the multiplication operator on a Hilbert space of holomorphc function possessing a kernel function, say K, then the kernel $JK_{\rm loc}^{(2)}$ for the localization (of rank 2) given in in the work of Douglas-M-Varughese coincides with K_{Γ} . In this case, we have $K_1 = K = K_0$.

The operator T, in this case, has the form $\begin{pmatrix} T_0 & \binom{2}{1}I \\ 0 & T_1 \end{pmatrix}$.

As is to be expected, using the complete set of unitary invariants given in the main Theorem, we see that the unitary equivalence class of the Hilbert module \mathcal{H} is in one to one correspondence with that of $J\mathcal{H}_{loc}^{(2)}$.

We now consider the localization with k = 2. If we assume that the operator T has been realized as the adjoint of the multiplication operator on a Hilbert space of holomorphc function possessing a kernel function, say K, then the kernel $JK_{\rm loc}^{(2)}$ for the localization (of rank 2) given in in the work of Douglas-M-Varughese coincides with K_{Γ} . In this case, we have $K_1 = K = K_0$.

The operator T, in this case, has the form $\begin{pmatrix} T_0 & \binom{2}{1}I\\ 0 & T_1 \end{pmatrix}$.

As is to be expected, using the complete set of unitary invariants given in the main Theorem, we see that the unitary equivalence class of the Hilbert module \mathcal{H} is in one to one correspondence with that of $J\mathcal{H}_{loc}^{(2)}$.

Thus the class $\mathcal{FB}_2(\Omega)$ contains two very interesting classes of operators. For n > 2, we find that there are competing definitions. One of these contains the homogeneous operators and the other contains the Hilbert modules obtained from the localization.

Let $\mathcal{F}B_n(\Omega)$ be the set of all operators T in the Cowen-Douglas class $B_n(\Omega)$ for which we can find operators $T_0, T_1, \ldots, T_{n-1}$ in $B_1(\Omega)$ and a decomposition of the form

$$T = \begin{pmatrix} T_0 & S_{01} & S_{02} & \dots & S_{0n-1} \\ 0 & T_1 & S_{12} & \dots & S_{1n-1} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & T_{n-2} & S_{n-2n-1} \\ 0 & \dots & \dots & 0 & T_{n-1} \end{pmatrix}$$

such that none of the operators $S_{i\,i+1}$ are zero and $T_i S_{i\,i+1} = S_{i\,i+1} T_{i+1}, i = 0, ..., n-1.$

If there exists a invertible bounded linear operator X intertwining any two operators, say T, \tilde{T} in $\mathcal{F}B_n(\Omega)$ ($XT = \tilde{T}X$), then we prove that X must be upper triangular with respect to the decomposition mandated in the definition of the class $\mathcal{F}B_n(\Omega)$. It then follows that any unitary operator intertwining these two operators must be diagonal.

Thus we see that they are unitarily equivalent if and only there exists unitary operators $U_i : \mathcal{H}_i \to \tilde{\mathcal{H}}_i$ such that $U_i^* \tilde{T}_i U_i = T_i, \quad i = 0, 1, \dots n - 1, \text{ and } U_i S_{i,j} = \tilde{S}_{i,j} U_j, i < j.$

The first of these conditions immediately translates into a condition on the curvature of the line bundles E_{T_l} . The second condition is somewhat more mysterious and is related to a finite number of second fundamental forms inherent in our description of the operator T.

If there exists a invertible bounded linear operator X intertwining any two operators, say T, \tilde{T} in $\mathcal{F}B_n(\Omega)$ ($XT = \tilde{T}X$), then we prove that X must be upper triangular with respect to the decomposition mandated in the definition of the class $\mathcal{F}B_n(\Omega)$. It then follows that any unitary operator intertwining these two operators must be diagonal.

Thus we see that they are unitarily equivalent if and only there exists unitary operators $U_i : \mathcal{H}_i \to \tilde{\mathcal{H}}_i$ such that $U_i^* \tilde{T}_i U_i = T_i$, $i = 0, 1, \dots n - 1$, and $U_i S_{i,j} = \tilde{S}_{i,j} U_j$, i < j.

The first of these conditions immediately translates into a condition on the curvature of the line bundles E_{T_i} . The second condition is somewhat more mysterious and is related to a finite number of second fundamental forms inherent in our description of the operator T.

If there exists a invertible bounded linear operator X intertwining any two operators, say T, \tilde{T} in $\mathcal{F}B_n(\Omega)$ ($XT = \tilde{T}X$), then we prove that X must be upper triangular with respect to the decomposition mandated in the definition of the class $\mathcal{F}B_n(\Omega)$. It then follows that any unitary operator intertwining these two operators must be diagonal.

Thus we see that they are unitarily equivalent if and only there exists unitary operators $U_i : \mathcal{H}_i \to \tilde{\mathcal{H}}_i$ such that $U_i^* \tilde{T}_i U_i = T_i$, $i = 0, 1, \dots n - 1$, and $U_i S_{i,j} = \tilde{S}_{i,j} U_j$, i < j.

The first of these conditions immediately translates into a condition on the curvature of the line bundles E_{T_l} . The second condition is somewhat more mysterious and is related to a finite number of second fundamental forms inherent in our description of the operator T.

Let *T* be an operator acting on a Hilbert space \mathcal{H} . Assume that there exists a representation of the form

$$T = \begin{pmatrix} T_0 & S_{01} & 0 & \dots & 0 \\ 0 & T_1 & S_{12} & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & T_{n-2} & S_{n-2n-1} \\ 0 & \dots & 0 & 0 & T_{n-1} \end{pmatrix}$$

for the operator *T* with respect to some orthogonal decomposition $\mathcal{H} := \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_{n-1}$.

Suppose also that the operator T_i is in $B_1(\Omega)$, $0 \le i \le n - 1$, the operator $S_{i-1,i}$ is non zero and $T_{i-1}S_{i-1,i} = S_{i-1,i}T_i$, $1 \le i \le n - 1$. Then we show that the operator T must be in the Cowen-Douglas class $B_n(\Omega)$.

Let *T* be an operator acting on a Hilbert space \mathcal{H} . Assume that there exists a representation of the form

$$T = \begin{pmatrix} T_0 & S_{01} & 0 & \dots & 0 \\ 0 & T_1 & S_{12} & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & T_{n-2} & S_{n-2n-1} \\ 0 & \dots & 0 & 0 & T_{n-1} \end{pmatrix}$$

for the operator *T* with respect to some orthogonal decomposition $\mathcal{H} := \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_{n-1}$.

Suppose also that the operator T_i is in $B_1(\Omega)$, $0 \le i \le n-1$, the operator $S_{i-1,i}$ is non zero and $T_{i-1}S_{i-1,i} = S_{i-1,i}T_i$, $1 \le i \le n-1$. Then we show that the operator *T* must be in the Cowen-Douglas class $B_n(\Omega)$.

We can also relate the frame of the vector bundle E_T to those of the line bundles E_{T_i} , i = 0, 1, ..., n - 1. Indeed, we show that there is a frame $\{\gamma_0, \gamma_1, \cdots, \gamma_{n-1}\}$ of E_T such that

$$t_i(w) := \gamma_i(w) + \dots + {i \choose j} \gamma_{i-j}^{(j)}(w) + \dots + \gamma_0^{(i)}(w)$$

is a non-vanishing section of the line bundle E_{T_i} and it is orthogonal to $\gamma_i(w)$, i = 0, 1, 2, ..., i - 1.

We also have $t_{i-1} := S_{i-1\,i}(t_i), \ 1 \le i \le n-1.$

We can also relate the frame of the vector bundle E_T to those of the line bundles E_{T_i} , i = 0, 1, ..., n - 1. Indeed, we show that there is a frame $\{\gamma_0, \gamma_1, \cdots, \gamma_{n-1}\}$ of E_T such that

$$t_i(w) := \gamma_i(w) + \dots + \binom{i}{j} \gamma_{i-j}^{(j)}(w) + \dots + \gamma_0^{(i)}(w)$$

is a non-vanishing section of the line bundle E_{T_i} and it is orthogonal to $\gamma_i(w)$, i = 0, 1, 2, ..., i - 1. We also have $t_{i-1} := S_{i-1,i}(t_i)$, $1 \le i \le n - 1$.

complete invariants

Theorem

Pick two operators T and \tilde{T} which admit a Jordan form. Find an orthogonal frame $\{\gamma_0, t_1, \dots, t_{n-1}\}$ (resp. $\{\tilde{\gamma}_0, \tilde{t}_1, \dots, \tilde{t}_{n-1}\}$) for the vector bundle $\bigoplus_{i=0}^{n} E_{T_i}$ (resp. $\bigoplus_{i=0}^{n} E_{\tilde{T}_i}$) as above. Then the operators T and \tilde{T} are unitarily equivalent if and only if

$$\mathfrak{K}_{T_0} = \mathfrak{K}_{ ilde{T}_0} ext{ and } rac{\|S_{i-1\,i}(t_i)\|^2}{\|t_i\|^2} = rac{\| ilde{S}_{i-1\,i}(ilde{t}_i)\|^2}{\| ilde{t}_i\|^2}, \ 1 \leq i \leq n-1.$$

Theorem

Pick two operators T and \tilde{T} which admit a Jordan form. Find an orthogonal frame $\{\gamma_0, t_1, \dots, t_{n-1}\}$ (resp. $\{\tilde{\gamma}_0, \tilde{t}_1, \dots, \tilde{t}_{n-1}\}$) for the vector bundle $\bigoplus_{i=0}^{n} E_{T_i}$ (resp. $\bigoplus_{i=0}^{n} E_{\tilde{T}_i}$) as above. Then the operators T and \tilde{T} are unitarily equivalent if and only if

$$\mathfrak{K}_{T_0} = \mathfrak{K}_{ ilde{T}_0} \text{ and } rac{\|S_{i-1\,i}(t_i)\|^2}{\|t_i\|^2} = rac{\| ilde{S}_{i-1\,i}(ilde{t}_i)\|^2}{\| ilde{t}_i\|^2}, \ 1 \leq i \leq n-1.$$

Thank you!

