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G- space

• LetG be a locally compact second countable group. A locally
compact Hausdorff topological spaceS is said to be aG- space if
there is a mapα : G× S → S, such that for a fixedg ∈ G, the map
s→ α(g, s) is a bijective continuous map ofS andg→ αg ,
αg(s) := α(g, s),g ∈ G, is a homomorphism.

• The action ofG on S is said to be transitive if for every pair s1, s2
inS, there is ag ∈ G such thatg · s1 = s2 .

• LetH ⊆ G be a closed subgroup and letS := G/H be the space of
cosets: {gH | g ∈ G}. Equipped with the action ofG by left
multiplication: g′(gH) := (g′g)H,g′,g ∈ G, the coset spaceS is a
transitiveG- space.

• On the other hand, any transitiveG- space must be of this form.
In this case, we identifyS withG/H and define
(g · f)(s) = f(g−1 · s) for any function defined onS.
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imprimitivity

• LetC0(S) be the algebra of continuous functions vanishing at∞
onS andL(H) be the algebra of bounded linear operators on a
complex separable Hilbert spaceH.

• Suppose thatρ is a∗- homomorphism fromC0(S) intoL(H) andU
is a unitary representation of the groupG on the same Hilbert
spaceH. Then the imprimitivity is the relationship

U(g)ρ(f)U(g)∗ = ρ(g · f), g ∈ G, f ∈ C0(S),

whereg · f is the function: (g · f)(s) = f(g−1 · s), s ∈ S.
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homogeneous normal

• A commutingd- tupleN = (N1, . . . ,Nd) of normal operators
acting on a complex separable Hilbert spaceH is said to be
homogeneous with respect to a groupG if the joint spectrum
σN ⊂ Cd is aG- space and there is a unitary representationU ofG
onH such that

U(g)∗NU(g) := (U(g)∗N1U(g), . . . ,U(g)∗NdU(g))
= (g1(N), . . . , gd(N)) := g(N),

wheregi, 1 ⩽ i ⩽ d, are the coordinate functions of the action of
G onσN , namely,

g · s := (g1(s), . . . , gd(s)).

• Thed- tuple (λ1, · · · , λd) of complex numbers is said to be inσN if
there exists a sequence xn of unit vectors inH such that(
Nj − λj

)
xn → 0, 1 ⩽ j ⩽ d.
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imprimitivity theorem of Mackey

• The imprimitivity theorem of Mackey has two parts. First, any
transitive imprimitivity (S,U, ρ) is equivalent to a canonical
imprimitivity, whereρ(f) for f ∈ C0(S) is defined to be the
operatorMf of multiplication by f on L2(S, µ,Hn) andU is a
multiplier representation on L2(S, µ,Hn), that is,(

U(g)h
)
(s) = c(g, s)(g · h)(s), h ∈ L2(S, µ,Hn), g ∈ G,

where c : G× S → U(Hn) is a Borel map taking values in the
group of unitary operatorsU(Hn) of the Hilbert spaceHn of
dimensionn.

• ForU to be a homomorphism, the function c must be a cocycle.
• The second part of the imprimitivity theorem asserts that such a
multiplier representation is induced from a unitary
representation of the subgroupH acting on the Hilbert spaceHn .

• It is evident that thed- tuple of multiplication by coordinate
functions (M1, . . . ,Md) acting on L2(S, µ,Hn) is homogeneous.
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imprimitivity and homogeneous subnormal

We prove that anyd- tupleN of commuting homogeneous normal
operators such thatσ(N) is aG- space is determined by a direct sum
of several transitive imprimitivities that may be taken to be of the
canonical form without loss of generality and conversely.
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example

• As an example, letG be the bi-holomorphic automorphism group
of the unit disc. Thusg ∈ G is a holomorphic map of the unit
discD of the form

g(z) = eiθ z− a
1− āz , 0 ≤ θ < 2π, a ∈ D.

• In this example, the action of the group on the closed unit disc D̄
is not transitive. However, it acts transitively on the open unit
discD and the boundary, the unit circleT separately. Thus we
set out to study some class of imprimitivities that do not come
from a transitive action. In this case, we expect an imprimitivity
based on D̄ to be the direct sum of irreducible imprimitivities
based onD andT, namely, the direct sum of the multiplication
by the coordinate function on

⊕mL2(D,dA)⊕⊕m′L2(T,dθ).
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imprimitivities, in general

• This turns out to be true in much greater generality and this is
what we discuss. With mild hypothesis, an imprimitivity is the
direct sum of transitive imprimitivities. I will finish by discussing
several examples and list all the homogeneousd- tuples of
normal operators modulo unitary equivalence.

• Thus imprimitivities, in general, are direct sums of transitive
imprimtivities!
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spectral theorem

A spectral measure defined onS is a projection valued map
P : B → P(H) such that

P(S) = I and P(∪Ek) =
∞∑
k=1

P(Ek)

for all disjoint collection of setsEk, k = 1, 2, . . . , inB, where the
convergence is in the strong operator topology.

IfP is a spectral measure for (S,B) and x, y ∈ H, then
Px,y(E) ≡ ⟨P(S)x, y⟩, x, y ∈ H; S ∈ B,

defines a countably additive measure on S.

Theorem
Suppose thatS is a locally compact Hausdorff space, andρ is a
nondegenerate∗- representation ofC0(S) onH. Then there is a
unique regular projection-valued measureP onS such that
ρ(f) =

∫
fdP for all f ∈ C0(S).
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quasi-invariant measures

• Let (S,B) be the Borel measurable space, and note that each
g ∈ G defines a continuous map onS by our assumption. Given a
σ- finite measureµ onS, define the push-forwardg∗µ of the
measureµ by the requirement

(g∗µ)(A) := µ
(
g · A

)
, g · A := {g−1 · s | s ∈ A},A ∈ B.

• The measureµ onG is said to be invariant ifg∗µ = µ and
quasi-invariant ifg∗µ is equivalent (mutually absolutely
continuous) toµ for allg ∈ G.
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Borel cross-section

• IfG is second countable, then we have the following two very
useful tools at our disposal.

• There is a Borel cross-sectionp : G/H→ G, that is, a Borel subset
B ⊂ G that meets each coset ofH in exactly one point. Thus, each
g ∈ G can be written uniquely asg = g1g0 withg0 ∈ H andg1 ∈ B.

• There is a quasi-invariant measure uniquely determined modulo
mutual absolute equivalence onS.
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multiplier representations

• Letm : G× S → U(V) be a Borel function, whereU(V) is the space
of unitary operators on a complex separable Hilbert spaceV.
Define

Tgf(x) =
(
d(g∗µ)
dµ (x)

) 1
2

m(g, x)f(g−1 · x),

where f comes from L2(S, µ, V). We assume that Tg defines a
unitary representation ofG.

• It is easily verified thatg→ Tg is a homomorphism if and only if
the multiplierm satisfies the cocycle identity:

m(g1g2, x) = m(g1, x)m(g2,g−11 · x), g1,g2 ∈ G, x ∈ S.
Fix x0 ∈ S and letH be the stabilizer group of x0 . Next, set
σ(g) = m(g, x0), Notice that,

σ(hg) = σ(h)σ(g), h ∈ H,g ∈ G.
• In particular,σ restricted toH is a homomorphism ofH intoU(V)
the group of unitary operators onV and hence a unitary
representation ofH asm is Borel.
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induced representation, Mackey’s theorem

LetS = G/H be a homogeneousG- space andµ be a
quasi-invariant measure onS (there is always one such uniquely
determined modulo mutual absolute equivalence). Assume that
(S,U, ρ) is an imprimitivity acting on some separable complex
Hilbert spaceH. Then there is a Hilbert spaceV such that the
Hilbert spaceH is isometric toH = L2(S, µ, V), where

(i) µ is a quasi-invariant measure onS determined uniquely modulo
equivalence,

(ii) the representationρ is of the formρ(f) = Mf , f ∈ C0(S), and
(iii) the representationU is of the form

(U(g)f)(s) =

√
dµ(g · s)
dµ(s) σ(h)f(g · s).

Hereh ∈ H is determined from the relationg p(g−1 · s) = p(s)h,
s ∈ S, wherep : G/H→ G is a Borel cross-section.
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the correspondence – imprimitivity and homogeneous normal

If (S,U, ρ) is an imprimitivity for some compact setS, then thed-
tuple (ρ(z1), . . . , ρ(zd)) of commuting normal operators is
homogeneous by definition withσ(ρ(z1), . . . , ρ(zd)) = S. The
other way round, the theorem below shows that ifN is ad- tuple
of homogeneous normal operators with associated
representationU, then (σ(N),U, ρN) is an imprimitivity.

Theorem

LetN := (N1, . . . ,Nd) be ad- tuple of commuting normal operators
defined on a complex separable Hilbert spaceH. Assume thatN is
homogeneous under the action of a groupG with associated
representationU. Then (σ(N),U, ρN) is an imprimitivity.
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locally compact and transitive

Theorem

Suppose thatS is a locally compact transitiveG- space and the
action ofG extends to S̄, the closure ofS withg · ∂S ⊆ ∂S.

1. If (S,U,P) is an imprimitivity, then there exists a unique spectral
measure P̂ defined on the Borelσ- algebraB of S̄ satisfying the
imprimitivity condition with P̂(E) = P(E) for every Borel subset E
ofS. Moreover, supp(P) = S̄.

2. If (S,U,P) is an imprimitivity, then it defines uniquely a
homogeneous commuting tuple of normal operatorsN such that
σ(N) = supp(P̂) = S̄, where P̂ is the spectral measure ofN.
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main theorem on decomposition of imprimitivity

Theorem

LetN be a homogeneousd- tuple of commuting normal operators
acting on some Hilbert spaceH and let S := σ(N) be the spectrum
ofN. Assume thatS is aG- space and thatS = ∪rj=0Sj , where eachSj
is aG- orbit, therefore pairwise disjoint. Then the imprimitivity
(S,U, ρN) induced byN is equivalent to the imprimitivity (S, πµ, Û),
i.e., there is a unitary

Γ : H → ⊕L2(En, µ : Hn)

such thatΓρ(f)Γ∗ = πµ(f), f ∈ C(S) andΓUΓ∗ = Û is a multiplier
representation.
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a corollary

Corollary
LetN be a homogeneousd- tuple of commuting normal operators
acting on some Hilbert spaceH and letS := σ(N) be the spectrum
ofN. Assume thatS = ∪rj=0Sj , where eachSj is aG- orbit and is not
necessarily compact. Then there exist quasi-invariant measuresµj
living onSj such thatN is unitarily equivalent to the direct sum of
M(j) of the multiplication by the coordinate functions acting on the
Hilbert space L2(Sj, µj,Hnj),dim(Hnj) = nj , 0 ⩽ j ⩽ r.

We point out thatHnj may be isomorphic toHnk even if j ̸= k.
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more examples, the product domains

• Suppose thatσ(N) = D̄× D̄. The subsetD2 := D× D ofC2 is aG-
space, whereG consists of pairsϕ := (ϕ1, ϕ2), whereϕ1, ϕ2 are
Möbius maps of the unit disc. The automorphismϕ extends to
an automorphism of D̄× D̄ withϕ(∂D2) ⊆ ∂D2 .

• To identify homogeneous (under theG- action) pairs of
commuting normal operators, we first note that the spectrum of
such a pair must be aG- invariant compact subset ofC2 . To find
these, note that the orbit through a point (z1, z2) ∈ T×D isT× D,
similarly,D× T is also aG- orbit. If (z1, z2) ∈ T× T, theG- orbit is
T× T. These are all theG- orbits in the boundary ofD× D.

• Closure of these obits gives us compact sets that areG-invariant.
Moreover, if (z1, z2) is inD2 , then theG- orbit through this point is
D2 . Thus, all the compactG- invariant subset ofC2 are

D̄× D̄, T× D̄, D̄× T, T× T.
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explicit description

• Among these, the groupG acts transitively only onT× T.
Consequently, pairsN of homogeneous normal operators with
σ(N) are described by Mackey’s theorem. We now explicitly
describe the remaining three cases.

• If we consider a commuting pair of homogeneous normal
operatorsN withσN = D̄× D̄, then it must be unitarily equivalent
to the pair of multiplication operatorsM = (M1,M2) acting on
L2(D̄× D̄, µ,Hn), whereµ is quasi-invariant with respect to the
groupG anddimH = n. The restriction of the measureµ to the
transitiveG- spaceD× D,D× T,T× D andT× T is uniquely
determined since the group acts on these transitively.

• These are the measures: µ1 := dA× dA,µ2 := dA× dθ,
µ3 = dθ × dA andµ4 := dθ × dθ, respectively. (Here,dA anddθ
denote the area and the arc length measure, respectively.)
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putting them all together

Evidently,µ = µ1 + µ2 + µ3 + µ4 . Moreover,µi, 1 ⩽ i ⩽ 4, are mutually
singular. Consequently, L2(D̄× D̄, µ,Hn) must be a direct sum of the
form

L2(D× D, µ1,Hn1)⊕ L2(D× T, µ2,Hn2)

⊕ L2(T× D, µ3,Hn3)⊕ L2(T× T, µ4,Hn4),

wheren = n1 + n2 + n3 + n4 .
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Thank You!
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