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what we do



U (d)-homogeneous

Let Bd be the open Euclidean ball in Cd and T := (T1, . . . ,Td)
be a commuting tuple of bounded linear operators on a
complex separable Hilbert space H .
Let U (d) be the linear group of unitary transformations
acting on Cd by the rule: z 7→ u ·z, z ∈ Cd, where u ·z is the
usual matrix product.
Let u1(z), . . . ,ud(z) be the coordinate functions of u ·z. We
define u ·T to be the operator (u1(T ), . . . ,ud(T )) and say
that T is U (d)-homogeneous if u ·T is unitarily equivalent
to T for all u ∈ U (d).
What are all the U (d)- homogeneous tuples M of
multiplication by coordinate functions on a Reproducing
Kernel Hilbert space HK(Bd,Cn) ⊆ Hol(Bd,Cn), where n is the
dimension of the joint kernel of the d -tuple M∗.
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some results

The case of n = 1 is well understood. The kernel function
K in this case is of the form:

K(z,w) = ∑
n≥0

ak〈z,w〉k, z,w ∈ Bd, ak > 0.

In this talk, we focus on the case of n = d.
We describe a large class of U (d)- homogeneous
operators for n = d and obtain explicit criterion for (i)
boundedness, (ii) reducibility and (iii) mutual unitary
equivalence of these operators.
We classify the kernels K taking values in Mℓ(C), 1 ≤ ℓ≤ d,
quasi-invariant under an irreducible unitary representation
c of the group U (d). A crucial ingredient of this proof is
that the group SU(d) has exactly two irreducible unitary
representations (irrurep) of dimension d that are
inequivalent and none in dimensions 2, . . . ,d−1, d≥ 3.
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some generalities



homogeneity

Let Ω be a bounded domain in Cd and G be a topological
group (continuous) acting on Ω. This means that there is
a map γ : G×Ω → Ω such that γg : w→ g ·w is continuous and
g → γg is a homomorphism.
A commuting d -tuple M of multiplication by the coordinate
functions on a reproducing kernel Hilbert space (H ,K) is
said to be G-homogeneous if g ·M is unitarily equivalent to
M by a fixed unitary U depending on g.
We restrict to the situation where γg defines a
holomorhic function on the closure Ω In this case,
γg := (γ1

g , . . . ,γdg ), where each γig is a holomorphic function on
Ω. We set γg ·M to be the operator (γ1

g (M), . . . ,γdg (M)),
where γig(M) is defined by the usual holomorphic
functional calculus.
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examples

Thus homogeneity of M amounts to asking for the
existence of unitary operators Ug such that

(U∗
gM1Ug, . . . ,U∗

gMdUg) = (γ1
g (M), . . . ,γdg (M)), g ∈G.

Example: The simplest example occurs by setting
Ω = D := {z ∈ C : |z| < 1}, G to be the group
hlMöb of Möbius transformations: gθ ,a(z) = eιθ z−a

1−āz , a ∈ D
and finally M = Mz on the reproducing kernel Hilbert
spaces A(λ) determined by the reproducing kernel
K(λ)(z,w) = 1

(1−w̄z)λ .

In this example, the intertwining unitary Ug , g in Möb, is the
operator (

Ug−1 f
)
(z) = g′

λ/2(z)(f ◦g)(z), f ∈ A(λ),
moreover, it is easily verified that U∗

gMUg = g ·M , where M

is the multiplication by z on the Hilbert space A(λ) .
What if we take the circle group instead of the group
mob?
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1−āz , a ∈ D
and finally M = Mz on the reproducing kernel Hilbert
spaces A(λ) determined by the reproducing kernel
K(λ)(z,w) = 1

(1−w̄z)λ .

In this example, the intertwining unitary Ug , g in Möb, is the
operator (

Ug−1 f
)
(z) = g′

λ/2(z)(f ◦g)(z), f ∈ A(λ),
moreover, it is easily verified that U∗

gMUg = g ·M , where M

is the multiplication by z on the Hilbert space A(λ) .
What if we take the circle group instead of the group
mob?

6



more examples

In the previous example, the action of the group Möb on
the disc D is transitive and we raised the question of
examining homogeneity under the much smaller subgroup
of rotations. Let us discuss this in the slightly more
general situation of the Euclidean ball.
So, we have the following data: Ω = Bd, the bi-holomorphic
automorphism group G of the ball Bd (believe it or not, it
is really like the group M ob!), the reproducing kernel
Hilbert space A(λ) determined by the kernel function
K(λ)(z,w) = 1

(1−〈z,w〉)λ , z,w ∈ Bd .

Now the commuting tuple of operators (M1, . . . ,Md) is
homogeneous under the automorphism group G of Bd and
the intertwining unitary operator is(

Ug−1f
)
(z) = det

(
Dg
)
(z)λ/2(f ◦g)(z), f ∈ A(λ).
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question

The group G acts transitively on the ball Bd, what about
finding all d -tuples M acting on a reproducing kernel
Hilbert space (H ,K) that are homogeneous under the
smaller group U (d) ⊂G?
The answer: If we are looking at reproducing kernel
Hilbert spaces consisting of scalar valued holomorphic
functions, that is, H ⊂ Hol(Bd,C), then the answer is that
K must be of the form

K(z,w) =
∞

∑
n=0

an〈z,w〉n, z,w ∈ Bd,

a0,a1,a2, . . . > 0.
This follows easily from the Peter-Weyl theorem but
breaks down, or perhaps much more complicated when
the Hilbert space consists of functions taking values in Cn,
n > 1.
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handy tools



the Cowen-Douglas class

To determine if an operator, or for that matter, a d

-tuple of operators is homogeneous, we need to have tools
to determine when M and g ·M are unitarily equivalent.
This question is not easy to answer in general unless the
operator M is normal, or very close to a normal operator.
Fortunately, Cowen and Douglas provide an answer for
this problem for a class of operators introduced by
them in 1976. An operator T is in this class if

it possesses an open set of eigenvalues, say, Ω,
there is a choice of eigenvectors, say, e1(w), . . . ,en(w)

with eigenvalue w ∈ Ω such that the map w 7→ ei(w), 1 ≤ i≤ n is
holomorphic and

the dimension n of the eigenspace is independent of w.
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a model theorem for Cowen-Douglas operators

First, an operator T : H→H in the Cowen-Douglas class
can be realized as a multiplication operator on a
reproducing kernel Hilbert space H ⊂ Hol(Ω∗) as follows.
The map E : H→ Hol(Ω∗,Cn)

E(x)(w) = (〈x,e1(w̄)〉, . . . ,〈x,e1(w̄)〉), x ∈H,

is clearly a Cn- valued holomorphic function defined on
Ω∗ := {w : w̄ ∈ Ω}.
Transplanting the inner product from H on the image
under E in Hol(Ω∗), we make E a unitary. Moreover, E
intertwines the operators T and M . The image of E is a
reproducing kernel Hilbert space and the kernel is given
by the formula

K(z,w) =
((
〈ei(z̄),ej(w̄)〉

))
, z̄, w̄ ∈ Ω.
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the Cowen-Douglas theorem and the Curto-Salinas variation

For simplicity, first assume that the dimension of the
eigenspace is 1. Set

K (w) =
((
− ∂2

∂wi∂ w̄j
logK(w,w)

))m
i,j=1.

In this case, the Cowen and Douglas theorem says that
two operators T and T̃ are unitarily equivalent if and only
if their curvatures, namely, K and K̃ are equal.
The Cowen-Douglas theorem for n > 1 is more
complicated and involves the covariant derivatives of the
curvature.
On the other hand a variation due to Curto and Salinas
says that the two operators are unitarily equivalent if and
only if there exists a non-vanishing holomorphic function ϕ
defined on Ω with the property:

K(z,w) = ϕ(z)K̃(z,w)ϕ(w)
†
.

Here the dimension of the eigenspace need not be
assumed to be 1.
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the curvature invariant

We can determine when T is unitarily equivalent to g ·T in
two steps using either the curvature invariant (assuming
n = 1 ) or the kernel function.
First, using the curvature and setting

KT (w) =
((
− ∂2

∂wi∂ w̄j
logK(w,w)

))m
i,j=1,

the change of variable formula gives
Kg·T (w) = (D(g−1)(w))†K (g−1(w))(D(g−1)(w)).

Now, if g ·T is unitarily equivalent to T , by the
Cowen-Douglas theorem, we have

KT (w) = (D(g−1)(w))†KT (g−1(w))(D(g−1)(w)).
Finally, if the group acts transitively, then picking
gw : gw(0) = w, we have

KT (w) = (D(g−1
w )(w))†KT (0)(D(g−1

w )(w)).
Thus the curvature of a homogeneous operator is
completely determined form its value at 0 if the action
of the group is transitive.
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quasi-invariance of the kernel

Now, to characterize homogeneity using the kernel
function, we first note that if the operator T is in the
Cowen-Douglas class and is realized as the d - tuple M on
the reproducing kernel Hilbert space (H ,K), then g ·T is
unitarily equivalent to the d -tuple M , but this time on the
Hilbert space (H ,Kg), where Kg(z,w) := K(g−1(z),g−1(w)).
Now, we can apply the Curto-Salinas theorem to show
that M is unitarily equivalent to g ·M if and only if

K(z,w) = c(g,z)K(g−1(z),g−1(w))c(g,w)
†
,

where c : G×Ω → GLn is holomorphic for each fixed g ∈G.
As before, if the group acts transitively, picking
gw : gw(0) = w, we have the quasi-invariance of K :

K(w,w) = c(gw,w)K(0,0)c(gw,w)
†
,

and the kernel K is completely determined from its value
at (0,0) and the function c.
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what else do we get from quasi-invariance

The quasi-invariance of the kernel K says that the linear
map Ug , g ∈G, defined by the rule Ugf(z) = c(g,z)f ◦g is a
unitary map that intertwines M and g ·M . Moreover,
g 7→ Ug is a homomorphism if and only if the function
c : G×Ω is a cocyle:

c(g1g2,z) = c(g2,z)c(g1,g2 ·z), g1,g2 ∈G, z ∈ Ω.
Clearly, the cocycle is condition is like the chain rule
applied to the composition g1 ◦g2 of two maps g1,g2 .
From now, we assume all our homogeneous operator are
such that the intertwining unitary Ug is a representation
of the group, or equivalently, K is quasi-invariant and the c

is a cocycle.
Finally, in the example of the ball Bd, we claimed that the
multiplication operators on (H ,K) are homogeneous under
the unitary group U (d) if K is of the form ∑k≥0 ak〈z,w〉k

and therefore these are invariant kernels.
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not transitive



when the action is not transitive

Let G ·w := {g ·w : g ∈G} be the orbit of w ∈ Ω under the
group G. The group action partitions the set Ω into
orbits, so that each element of Ω determines an orbit
which is the unique orbit for the action of G on Ω to
which it belongs. We denote by Ω/G the set of orbits
for the action of G on Ω.
Example: For the action of the unitary group U (d) on the
Euclidean ball Bd, the orbit space is [0,1).
In this case, if the values of the invariant kernel
K(z,w) := ∑k≥0 ak〈z,w〉k is known only on the set [0,1)× [0,1),
then it is uniquely determined on Bd×Bd since the function
K is real analytic.
So, one may ask if there are genuinely quasi-invariant
kernels in the simple case of the ball. Clearly, there are
none if we consider only scalar valued kernels.
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when the action is not transitive, contd.

Let K be a quasi-invariant kernel on Ω and suppose that a
group G acts on Ω but not transitively, i.e., X/G is not a
singleton. The quasi-invariance of K under G now takes
the form

K(gw ·w0,gw ·w0) = c(gw,w)K([w], [w])c(gw,w)
†
,

where w ∈ [w] and gw ∈G is picked such that gw(w0) = w for
some fixed w0 ∈ [w]. Here, we have temporarily set
[w] = G ·w.
To find all the operators homogeneous under such a
group G, pick an arbitrary non-negative definite real
analytic function on [0,1)× [0,1), find a cocycle c and use
the quasi-invariance to obtain K on Bd×Bd .
If the group G is compact, then we may assume, without
loss of generality, that c(gw,w) is independent of w. Then
the cocycle property shows that g → c(g) is a unitary
representation of the group G.
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simple observations about the transformation rule

Let λ > 0 be chosen so as to ensure Kλ is non-negative
definite. It then follows that K2+λ K is a non-negative
kernel taking values in Md . Set

Γ(w) := K(·,w)⊗ ∂̄K(·,w)− ∂̄K(·,w)⊗K(·,w).

Note that Γ(w) ∈ H ⊗H , w ∈ Ω.
Moreover, a straightforward computation using the
reproducing property of K shows that

〈Γ(w),Γ(w)〉 = ‖ ∂
∂w

K(w,w)‖2K(w,w)− |〈 ∂
∂w

K(w,w),K(w,w)〉|2

= K(w,w)2
∂2

∂ w̄∂w
logK(w,w).

This verifies our claim that K2+λ K is a non-negative
definite kernel. We have thus produced (with a similar
computation involving d - variables) a non-negative definite
kernel taking values in Md starting from a scalar valued
kernel.
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Example

Suppose that K is a quasi-invariant kernel under a group
G, again not necessarily transitive. Now that we know, the
curvature Kλ+2K is a non-negative definite, it follows
from the quasi-invariance of K and the transformation
rule for the curvature K that Kλ+2K is a quasi-invariant
d×d matrix valued kernel.
From the transformation rule for K , we infer that the
cocycle in this case is c : u→ u†, u ∈ U (d).
Now, a direct computation gives the following
Kλ+2(re1,re1)K (re1,re1) =

d+1
(1−r2)t(d+1)+2

(
1 0
0 (1−r2)Id−1

)
,0 ≤ r < 1.

This function on [0,1)× [0,1) extends (uniquely) to a
non-negative definite quasi-invariant kernel on Bd×Bd .
These kernels are not invariant but merely quasi-invariant.
Are there others?
Answer: There are plenty, we can describe all of them.
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what we have proved



main theorem

Let K : Bd×Bd → Mn(C) be a non-negative definite kernel
quasi-invariant under U (d) with respect to a multiplier c,
where c : U (d) → GLn(C) is an irreducible unitary
representation. (a) If n = d, then up to unitary equivalence
K(z,w) is either of the form

∞

∑
ℓ=1

(
aℓ,1−aℓ,2

)
〈z,w〉ℓ−1w̄z† +

∞

∑
ℓ=0

aℓ,2〈z,w〉ℓId, z,w ∈ Bd

aℓ,1 ≥ 0 and aℓ,1 ≤ (ℓ+1)aℓ,2, ℓ ∈ Z+

or of the form
∞

∑
ℓ=1

(
ãℓ,1− ãℓ,2

)
〈z,w〉ℓ−1zw̄† +

∞

∑
ℓ=0

ãℓ,2〈z,w〉ℓld, z,w ∈ Bd,

ãℓ,2 ≥ 0 and (d−1)ãℓ,2 ≤ (ℓ+d−1)ãℓ,1, ℓ ∈ Z+.

If 1 < n < d, then there is no n -dimensional irreducible unitary
representation c such that K is quasi-invariant under U (d)
with cocycle c.
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Thank You!
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