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ac-Hng on C¢ by the rue: z—u-z, 2e€C% where u-z is the
usual matrix Produd.

Let ui(2),...,uq(z) be the coordinate functions of u-z. We
define u-T to be the operator (ui(T),...,uq(T)) and say
that T is it u-T is unitariy equivalent
Yo T for all ue#(d).

What are dll the % (d)-homogeneous tuples M of

muHiPhca-Hon on coordinate functions on a
Hilber+ space i (Bq,C") C Hol(By,C"), where n is the

dimension of the Jjoint kernel of the d-tuple M™.
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The case of n=1 is wel understood. The
K in this case is of the form:
IERTES Z ap(z,w)*, z,w e By, aj, > 0.
n>0

In this +ak, we focus on the case of n=d.

We descrive a large class of % (d)-homogeneous
operators for n=d and obtain explicit criterion for (i)
boundedness, (ii) reducipiity and (iii) mutual unitary
equivalence of these operators.

We classify the kernels K taking values in .#,(C), 1<(<d,

under an irreducible unitary representation

¢ of the group % (d). A crucial ingredient of this proot is

that the group SU(d) has exactly two irreducivle unitary
representations of dimension d that are
and none in dimensions 2,...,d—1, d > 3.
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Let @ be a bounded domain in C¢ and G be a +opological

group (continuous) on Q. This means that there is
amop y:GxQ—Q such that y,:w—g-w is continuous and
9—7% 15 a homomorphism

A commu-Hng d-tuple M of muttiplication Ia\/ the coordinate
Functions on a reproducing kernel Hibert space (7.K) is

said to be g M is uni+aril\/ equivalent to
M loy a Fixed unH-ary U depending ong.

We restrict to the situation where y, defines a
holomorhic function on the closure @ In this case,
Yo i= (Ve ,y_ff), where each v is a holomorphic function on
Q We set y,-M to be the operator (y;(M),...,v}(M)),
where ¥, (M) is defined by the usual holomorphic
functional calculus.
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What if we take the circle group instead of the group

mob?
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The group G acts on the bdl B,;, what about
Finding all a-tuples M ac+ing on a reproducing kernel
Hibert space (27, K) that are homogeneous under the
smaller group % (d) C G?

¥ we are looking at reproducing kernel
Hilber+ spaces con9i9+ing of scalar valued ho|omorphic
functions, that is, s# c Hol(By,C), then the answer is that
K must be of the form

K(Z7w) - Z an<z7w>n7 z,w € By,
n=0
ap,a1,a,... > 0.

This folows easily from the Pe+er—Wey| theorem but

breaks down, or perhaps much more complica+ed when
the Hilber+ space consists of functions +akin9 values in Cr
n>1. e
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—+u|9|e of opem+ors is homogeneous, we heed to have tools
+o determine when M and g-M are unH-arin equivalent.

This quesﬁon is not easy to answer in general unless the
opem+or M is normal, or very close o a hormal opem+or.

For+una+el\/, Cowen and Douglas provide an answer f£or
+his Prolalem for a class of operators introduced Ia\/
them in 97G. An opem-l-or T is in this class if

it possesses an open set of eigenvalues, say, Q,

there is a choice of ei@envedors, say, e1(w),...,en(w)

with eigenvalue weQ such that the mop w i ei(w), 1<i<n is
holomorphic and

the dimension n of the eigenspace is indepenolen+ of w.
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First, an opeeror T:-H—H in the Cowen—Douglas class
can be redlized as a mu|+i|9|ica+ion opem+or on a
reproducing kernel Hibert space s C Hol(Q*) as follows.

The map E: H — Hol(Q*,C")

E(z)(w) = ((z,e1()),...,(z,e1(w))), = € H,
is clearl\/ a C"- valued holomorphic function defined on
Q= {w:weQ}.

Transpmnﬁng the inner Produd- fromH on the image
under E in Hol(Q*), we make E a unitary. Moreover, E
intertwines the operators T ond M. The image of E isa
reproducing kernel Hilbert space and the kernel is given
lo\/ the formula

K(z,w) = (((ei(2),ej(w)))), 2,@ € Q.
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For 9imp|ici+y, first assume that the dimension of the
eigenspace is1. Set

VA ((

2

_ 0, logK(w,w)))i?jzl.

In this case, the Cowen and Douglas theorem says that
two opem+or's T oand T are uni+aril\/ cquiva|en+ i and onl\/

i£ their curvatures, namel\/, # ond ¥ are equal

The Cowen—Dougms theorem for n>1 is more
comp|ica+ed and involves the covariant derivatives of the
curvature.

On the other hand a variation due o Curto and Sdlinas
says that the two opem+ors are uni+ari|y equivalen+ i and
onl\/ i there exists a non-vanishing holomorphic function ¢
defined on @ with the Properer:

K(z,w) = 9(2)K (z,w)9(w) .
Here the dimension of the eigenspace need not be
assumed to be 1.
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We can determine when T is uni+aril\/ equivalen+ tog- T in
two s+eps using either the curvature invariont (assuming
n=1) or the kernel function.
First, using the curvature apd 9e++ing
0 m
Jr(w) = ((_ mbgK(ww)»iJ:p
the change of variable formula gives
Hgr(w) = (D(g~ ) (w) (g~ (w)(D(g~1)(w)).
Now, if ¢-T is uni+arily equivalenJr to T, lo\/ the
Cowen-Dougms theorem, we have
Hp(w) = (D(g~ ) (w) (g~ (w)(D(g~1) (w)).
Finally, it the group acts +mnsi+ive|y, then Picking
gw : gw(0) =w, we have
Hp(w) = (D(gy,") (w))" 7 (0)(D(gw" ) (w)).
Thus the curvature of a homogeneous opera+or' is

comp|e+e|y determined form its value at 0 if the action [&
of the group is transitive.
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function, we first note that i the opemi-or T is in the
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Cowen—Dougms class and is redlized as the d- tuple M on
the reproducing kernel Hibert space (7,K), theng-T is
uni+arily equiva|en+ to the d-+up|e M, but this time on the
Hibert space (7, K,), where K,(z,w) := K(g7*(2),9*(w)).
Now, we can appl\/ the Curto-Sdlinas theorem to show
that M is unitarily equivalent to g-M i and only iF

K(zw) = c(g, 2)K (g (2),97 (w)elgw).
where c:GxQ — GL, is holomorphic for each fixed g e G.

As before, it the group acts +mnsi+ive|y, Picking
9w : gw(0) =w, we have the of K:

K (w,w) = c(gw,w) K(0,0)c(gu,w) |
and the kernel K is comple+el\/ determined from its value“
at (0,0) and the function c.
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6(919272) = 6(9272)()(‘91792 : Z)7 91,92 S G: z € Q.
Clear|y, the cocycle is condition is lke the chain rule
applied to the composH-ion g1oga OF two maps g1, go.

From now, we assume all our homogeneous operator are
such that the intertwining unitary U, is a representation
of the group, or equivalenﬂy, K is quasi—invariarﬁ- and the ¢
isa cocycle.

Finally, in the example of the bal B;, we claimed that the
muttiplication opem-l-ors on (/,K) are homogeneous under
the unitary group % (d) ¥ K is of the form ¥;qax(z, w)
aond therefore these are invariont kernels.
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none i we consider on|y scalar valued kernels.




when the action is not transitive, contd.

Let K be a quasi—invarian+ kernel on @ and suppose that a
group G acts on @ but not transitively, ie, X/G is not a
single-fon. The quasi-invarionce of K under G now takes
the form ,

K (gw - w0, 9w - wo) = c(guw, w) K ([w], [w])e(guw,w)
where w e [w] and g, € G is picked such that g, (wo) =w For
some Fixed wy € [w]. Here, we have temporarily set
[w] =G w.
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To find al the operators homogeneous under such a
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£ the group G is compad-, then we may assume, without
loss of generality, that c(guw,w) 15 independent of w. Then
the cocycle property shows that g — c(g) 15 a unitary
represerﬂ-aﬁon of the group G.
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simple observations about the transformation rule

Let A >0 be chosen so as to ensure K* is non-negative
definite. i then Follows that K2t is a non—negaﬂve
kernel +akin9 values in .z, Set

T(w) = K(w) @K (-,w) — K (-,w) @ K (-, w).
Note that I'(w) € # @, we Q.




simple observations about the transformation rule

Let A >0 be chosen so as to ensure K* is non—negaﬁve
definite. H +hen Folows that K227 is a non—negaﬁve
kernel +akin9 values in .z, Set

Note that I'(w) € # @, we Q.

Moreover, a s+raigh+$orward compu+a+ion using the
reproducing Proper+\/ of K shows that

(). D) = | 20 B () 2K (1) — | (o K (0, 0), K (0, )

{50

= K (w,w)? log K (w,w).

02
dwow
This verifies our clam that K2t*.¢ is a non—negaﬁve
definite kernel. We have thus Produced (with a similar
compu+a+ion involving d- variables) a non—negaﬁve definite
kernel +ak|ng values in ., 9+ar‘+|n9 £rom a scalar valued pm
kernel. -




Example

Suppose that K is a quasi—invarian+ kernel under a group
G, again not necessarily tronsitive. Now that we know, the
curvature K* 2.7 is a non—ncga-l-ive definite, it follows
from the quasi-invariance of K and the transformation
rule for the curvature ¢ that K* 2.7 is a quasi-invariont
dxd matrix valued kernel.
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cocycle in this case is c:u—uf,ue % (d).
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A+2 —
K" *(rey,re1) X (re1,re1) = (122 | g (1_r2)]d1>.,0<r<1.




Example

Suppose that K is a quasi—invarian+ kernel under a group
G, again not necessarily tronsitive. Now that we know, the
curvature K* 2.7 is a non—ncga-l-ive definite, it follows
from the quasi-invariance of K and the transformation
rule for the curvature ¢ that K* 2.7 is a quasi-invariont
dxd matrix valued kernel.

From the tronsformation rule for .7, we infer that the
cocycle in this case is c:u—uf,ue % (d).

Now, a direct compu+a+ion gives the Fo"owing

Kl+2(q~e1,7"el)l/(r61,r61) = m% <é i —r2)1d1> ,0<r<1.
This £unction on [0,1) x [0,1) extends (uniquely) to a
non—negaﬁve definite quasi-invariont kernel on B, x B,.

These kernels are invariant but merely quasi-invarian-h




Example

Suppose that K is a quasi—invarian+ kernel under a group
G, again not necessarily tronsitive. Now that we know, the
curvature K* 2.7 is a non—ncga-l-ive definite, it follows
from the quasi-invariance of K and the transformation
rule for the curvature ¢ that K* 2.7 is a quasi-invariont
dxd matrix valued kernel.

From the tronsformation rule for .7, we infer that the
cocycle in this case is c:u—uf,ue % (d).
Now, a direct compu+a+ion gives the Fo"owing

K 2(rey,rer)  (re1,rer) = m% <(1J i —Tg)]d1> ,0<r<1.
This £unction on [0,1) x [0,1) extends (uniquely) to a
non—negaﬁve definite quasi-invariont kernel on B, x B,.

These kernels are invariant but merely quasi-invarian-h

There are P|en+\/, we con describe dl of them. |



what we have Proved




main theorem

Let K : By xBy — .#,(C) be a non-negative definite kernel
quasi-invariont under % (d) with respect to a multiplier c,
where c:%(d) — GL,(C) is an irreducible unitary
representation. (a) I n=d, then up fo unitary equivalence
K(z,w) is either of the form

(ap,1 —agp) (z,w) "tz + Y apalz,w)'ly, zweBy
=0

agq >0and apy < (0+1)aga, (€74
or of the form

s

o~
Il
-

(a’é\,l _65,2) <z7w>(/—1zvjﬂ =+ Z dg’2<z7w>[ld, Z,w e Bd7
1 (=0

dpo>0and (d—1)ago < (L +d—1)ap,, (€Zy.

s

0

¥ 1<n<d, then there is no n-dimensional irreducible uni+ary
representation ¢ such that K is quasi-invariont under % (d)
with cocycle c.
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