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the Bergman kernel

Let D be a bounded open connected subset of Cm and A2(D) be the
Hilbert space of square integrable (with respect to volume measure)
holomorphic functions on D. The Bergman kernel B : D×D→ C
is uniquely defined by the two requirements:

Bw ∈ A2(D) for all w ∈ D

〈f ,Bw〉 = f (w) for all f ∈ A2(D).

The existence of Bw is guaranteed as long as the evaluation functional
f → f (w) is bounded.
We have Bw(z) = 〈Bw,Bz〉. Consequently, for any choice of n ∈ N
and an arbitrary subset {w1, . . . ,wn} of D, the n× n matrix
((Bwi(wj)))

n
i,j=1 must be positive definite.
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Fourier series

Notice first that if en(z), n ≥ 0 is an orthonormal basis for the Bergman
space A2(D), then any f ∈ A2(D) has the Fourier series expansion
f (z) =

∑∞
n=0 anen(z). Assuming that the sum

Bw(z) :=

∞∑
n=0

en(z)en(w),

is in A2(D) for each w ∈ D, we see that

〈f (z),Bw(z)〉 = f (w), w ∈ D.



an example

For the Bergman space A2(Dm), of the polydisc Dm , the orthonormal

basis is {
√∏m

i=1(ni + 1)zI : I = (i1, . . . , im)}. Clearly, we have

BDm(z,w) =

∞∑
|I|=0

( m∏
i=1

(ni + 1)
)
zIw̄I =

m∏
i=1

(1− ziw̄i)
−2.

Similarly, for the Bergman space of the ball A2(Bm), the orthonormal

basis is {
√(−m−1

|I|
)(|I|

I

)
zI : I = (i1, . . . , im)}. Again, it follows that

BBm(z,w) =

∞∑
|I|=0

(
−m− 1

`

)(∑
|I|=`

(
|I|
I

)
zIw̄I) = (1− 〈z,w〉)−m−1.
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Quasi-invariance of B

Any bi-holomorphic map ϕ : D→ D̃ induces a unitary operator
Uϕ : A2(D̃→ A2(D) defined by the formula

(Uϕf )(z) = (J(ϕ, z)
(
f ◦ ϕ

)
(z), f ∈ A2(D̃), z ∈ D.

This is an immediate consequence of the change of variable formula
for the volume measure on Cn.

Consequently, if {ẽn}n≥0 is any orthonormal basis for A2(D̃), then
{en}n≥0 , where ẽn = J(ϕ, ·)(ẽn ◦ ϕ) is an orthonormal basis for the
Bergman space A2(D̃).
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Quasi-invariance of B

Expressing the Bergman kernel BD of the domains D as the infinite
sum

∑∞
n=0 en(z)en(w) using the orthonormal basis in A2(D) , we see

that the Bergman Kernel B is quasi-invariant, that is, If ϕ : D→ D̃

is holomorphic then we have the transformation rule

J(ϕ, z)BD̃(ϕ(z), ϕ(w))J(ϕ,w) = BD(z,w),

where J(ϕ,w) is the Jacobian determinant of the map ϕ at w .
If D admits a transitive group of bi-holomorphic automorphisms, then
this transformation rule gives an effective way of computing the
Bergman kernel. Thus

BD(z, z) = |J(ϕz, z)|2BD(0, 0), z ∈ D,

where ϕz is the automorphism of D with the property ϕz(z) = 0 .
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Quasi-invariance of B

The quasi-invariance of B is equivalent to saying that the map
Uϕ : A2(D̃)→ A2(D) defined by the formula:

(Uϕf )(z) = Jϕ−1(z)(f ◦ ϕ−1)(z), f ∈ A2(D̃), z ∈ D

is an isometry.
The quasi-invariance of the Bergman kernel BD(z,w) also leads to a
bi-holomorphic invariant. Let KBD

(z) = ∂2

∂zi∂ z̄j
BD(z, z). Then

detKBD
(z)

BD(z, z)
, z ∈ D

is a bi-holomorphic invariant for the domain D.
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the multiplier

Consider the special case, where ϕ : D→ D is an automorphism.
Clearly, in this case, Uϕ is unitary on A2(D) for all ϕ ∈ Aut(D).

The map J : Aut(D)×D→ C satisfies the cocycle property, namely

J(ψϕ, z) = J(ϕ,ψ(z))J(ψ, z), ϕ, ψ ∈ Aut(D), z ∈ D.

This makes the map ϕ→ Uϕ a homomorphism.
Thus we have a unitary representation of the Lie group Aut(D) on
A2(D).
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examples of cocycles

The automorphism group Möb of the unit disc is the group

{ϕθ,a : 0 ≤ θ < 2π, a ∈ D},

where ϕθ,a(z) = eiθ(z− a)(1− āz)−1. As a topological group Möb is
T× D. More interesting is the two fold covering group G = SU(1, 1)

SU(1, 1) =

{(
a b
b̄ ā

)
: |a|2 − |b|2 = 1

}
,

which acts on the unit disc D according to the rule
g · z = (az + b)(b̄z + ā)−1. For λ > 0, the map

jg(z) =

(
∂g
∂z

(z)
)λ

= (b̄z + a)−2λ

defines a holomorphic multiplier on SU(1, 1)× D.



more representations

Exploit the quasi-invariance of the Bergman kernel to construct unitary
representations of the automorphism group Aut(D). Let Bλ(z,w) be
the polarization of the function B(w,w)λ, w ∈ D, λ > 0.
Now, as before,

Jϕ(z)λBλ(ϕ(z), ϕ(w))Jϕ(w)
λ

= Bλ(z,w), ϕ ∈ Aut(D), z,w ∈ D.

Let O(D) be the ring of holomorphic functions on D. Define

U(λ) : Aut(D)→ End(O(D))

by the formula

(U(λ)
ϕ f )(z) =

(
Jϕ−1(z)

)λ
(f ◦ ϕ−1)(z)

and note that ϕ 7→ Uϕ is a homomorphism.
When is it unitarizable?
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quasi-invariant measures

An affirmative answer will ensure the existence of a unitary
representation U(λ). Fortunately, there are two different ways in
which we can obtain an answer to this question.

For the map U(λ)
ϕ to be isometric on a Hilbert space of the form

A2(D,Q dV), we must have∫
D

f (ϕ(z)) Jλϕ(z)Q(z)Jλϕ(z)f (ϕ(z))dV(z)

=

∫
D

f (w)Q(w)f (w)dV(w)

=

∫
D

f (ϕ(z))Q(ϕ(z))f (ϕ(z))|Jϕ(z)|2dV(z).
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quasi-invariant measures

This amounts the transformation rule

Q(ϕ(z)) = Jλϕ(z)Q(z)(Jϕ(z))λ|Jϕ(z)|−2

for the weight function Q.

Example: In the case of the unit disc D = D, the automorphism group
is transitive, picking a ϕ := ϕz such that ϕz(0) = z, we see that
Q(z) = (1− |z|2)2λ−2.

However, the Hilbert space

A2(D, (1− |z|2)2λ−2dV(z))

is non-zero if and only if 2λ− 2 > −1. Thus we must have λ > 1
2 .

But if λ = 1
2 , the Hardy space appears!

No such luck if λ < 1
2 .
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Berizin-Wallach set

If for some, λ > 0, the Hilbert space A2(D,QdV) 6= {0}, then the
corresponding reproducing kernel must be Bλ. But what about λ for
which this space is trivial? Even for such a λ, it is possible that Bλ is
positive definite. In this case, there is a recipe to construct a Hilbert
space H whose reproducing kernel is Bλ.

Define the Berizin-Wallach set

WD := {λ > 0 : Bλ is positive definite }.

In the case of the unit disc D, the Wallach set WD = R+. Thus there
are representation spaces in this case for which the inner product is not
given by an integral.
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??

What about O(D,Cn), the space of holomorphic functions on D

taking values in Cn?

QUESTION
Does there exist a positive definite kernel

B : D×D→ Cn×n

satisfying the quasi-inavariance:

B(ϕ(z), ϕ(w)) = Jϕ(z)−1B(z,w)(Jϕ(w)∗)−1,

for some cocycle J : Aut(D)×D→ Cn×n?
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the unit disc, again!

A co-cycle J : Möb× D→ C(m+1)×(m+1) is given by the formula:

Jm(ϕ, z) = (ϕ′)2λ− m
2 (z)D(ϕ)

1
2 exp(cϕSm)D(ϕ)

1
2 ,

where Sm is the forward shift with weights {1, 2, . . . ,m} and D(ϕ)
is a diagonal matrix whose diagonal sequence is
{(ϕ′)m

(z), (ϕ′)m−1
(z), . . . , 1}.

We now have the Hilbert space H(λ,m) of square integrable
holomorphic functions on the unit disc with respect to the measure
Q(z)dV(z), where

Q(z) := Jϕz(0)∗Q(0)Jϕz(0)|ϕ′z(z)|−2,

where ϕz(0) = z. For this Hilbert space H(λ,%) to be non-zero, it is
necessary and sufficient that λ > m+1

2 .
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the reproducing kernel

The reproducing kernel B(λ,m) for the Hilbert space H(λ,m) is
obtained by polarizing the identity

B(λ,m)(z, z) = Jϕz(0)−1B(λ,m)(0, 0)(Jϕz(0)∗)−1.

The possible values for the positive diagonal matrix B(λ,%)(0, 0) are
completely determined by Q(0). Also, B(λ,%) is a positive definite
kernel for each choice of Q(0).
Are there any other quasi-invariant kernels??
One sees that

B(λ,m) = B(2λ−m) + µ1(Q(0))B(2λ−m+2) + · · · , µm(Q(0))B(2λ+m),

where µ1(Q(0)), . . . , µm(Q(0)) are some positive real numbers and
B(2λ−m+2j) is a positive definite matrix which can be computed
explicitly: 0 0

0
((
∂`∂̄kB2λ−m+2j(z,w)

))m−j
`,k=0

 .
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Now, for any λ : λ > m
2 and an arbitrary m -tuple µ1, . . . , µm of

positive numbers, the Hilbert space B(λ,%) is non-trivial.
Thus we have unitarized a much larger class of representations than
what would be possible if we insist on integral inner products. But this
is an interesting issue on its own right.

Are the multiplication operators on these spaces bounded?
Answer: yes!
What is more, they are homogeneous.
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Thank you!


