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the homomorphisms that we study

• Let ‖ · ‖A be a norm on Cm given by the formula

‖(z1, . . . ,zm)‖A = ‖z1A1 + · · ·+ zmAm‖op

for some choice of m matrices A = (A1, . . . ,Am). Let ΩA be the
corresponding unit ball. Let O(ΩA) denote the algebra of all
functions holomorphic on any open set U containing the closed unit
ball Ω̄A.

• Given p×q matrices V1, . . . ,Vm and a function f ∈ O(ΩA),
define, for a fixed w ∈ΩA, the homomorphism

ρV(f ) :=
(

f (0)Ip ∑
m
i=1 ∂if (0) Vi

0 f (0)Iq

)
We study contractivity and complete contractivity of such
homomorphisms.
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the Parrott examples

• Consider the linear map LV : (Cm,‖ · ‖∗A)→Mp×q(C), given by the
formula

LV(z) = z1V1 + · · ·+ zmVm

induced by the homomorphism ρV.

• The contractivity (resp. complete contractivity) of the
homomorphism ρV determines the contractivity (resp. complete
contractivity) of the linear map LV and vice-versa.

• It is known that contractive homomorphisms of the disc and the
bi-disc algebras are completely contractive, thanks to the dilation
theorems of B. Sz.-Nagy and Ando respectively.
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examples

• However, examples of contractive homomorphisms ρV of the
tri-disc algebra that are not completely contractive were soon found
by Parrott. The homomorphisms ρV are modelled on the examples
of Parrott. Homomorphsims of this form also provide examples of
contractive homomorphisms of the (Euclidean) ball algebra which are
not completely contractive.

• From the work of V. Paulsen and E. Ricard, it follows that if m≥ 3
and B is any ball in Cm with respect to some norm, say ‖ ·‖B, then
there exists a contractive linear map L : (Cm,‖ · ‖∗B)→B(H )
which is not complete contractive. The characterization of those balls
in C2 for which contractive linear maps are always completely
contractive remained open. We answer this question for balls of the
form ΩA in C2.
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linear maps on the dual unit ball

• A straightforward application of the vonNeumann inequality shows
that sup‖f‖∞=1{‖ρV(f )‖op : f ∈ O(ΩA)} ≤ 1 if and only if
sup‖g‖∞=1{‖ρV(g)‖op : g ∈ O(ΩA),g(0) = 0} ≤ 1. Thus ρV is
contractive on O(ΩA) if and only if it is contractive on the subset of
functions which vanish at 0.

• Let Ω∗A denote the unit ball of the normed linear space (Cm,‖ · ‖A)
∗.

An easy application of the Schwarz lemma then shows that

Ω
∗
A =

{(
∂1f (0),∂2f (0), · · · ,∂mf (0)

)
: f ∈ Hol(ΩA,D), f (0) = 0

}
.

• Hence ‖ρV‖ ≤ 1 iff sup‖f‖∞=1,f (0)=0 ‖∑
m
i=1 ∂if (0) Vi‖op ≤ 1. Thus

the induced linear map LV(w) = z1V1 + · · ·+ zmVm is contractive if
and only if the homomorphism ρV is contractive.
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complete contractivity

• For a holomorphic function F : ΩA→Mk, define

ρ
(k)
V (F) := (ρV(Fij))

m
i,j=1 =

(
F(0)⊗I ∑

m
i=1(∂iF(0))⊗Vi

0 F(0)⊗I

)
.

Using a method similar to that used for ρV it can be shown that
‖ρ(k)

V ‖ ≤ 1 if and only if supF{‖∑
m
i=1(∂iF(0))⊗Vi‖} ≤ 1,

where the supremum is taken over all holomorphic functions
F : ΩA→ (Mk)1, F(0) = 0. That is, by repeating the argument used
for ρV, we have

‖ρ(k)
V ‖ ≤ 1 if and only if ‖L(k)

V ‖ ≤ 1,
where L(k)

V : (Cm⊗Mk,‖ · ‖∗ΩA,k)→ (Mk⊗Mp,q,‖ · ‖op) is the map

L(k)
V (Θ1,Θ2, · · · ,Θm) = Θ1⊗V1 +Θ2⊗V2 + · · ·+Θm⊗Vm for

(Θ1,Θ2, · · · ,Θm) ∈Mk



the polynomial PA

• A very useful construct for our analysis is the matrix valued
polynomial PA : ΩA→ (Mn,‖ · ‖op)1 defined by

PA(z1,z2, · · · ,zm) = z1A1 + z2A2 + · · ·+ zmAm,

that is, ‖PA‖∞ := sup(z1,··· ,zm)∈ΩA
‖PA(z)‖op = 1 by definition.

• The typical procedure used to show the existence of a
homomorphism which is contractive but not completely contractive is
to construct a contractive homomorphism ρV (by making a suitable
choice of V ) and to then show that its evaluation on PA , that is,
ρ
(n)
V (PA), has norm greater than 1.
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defining function and test functions

• For (α,β ) ∈ B2×B2, define p(α,β )
A : ΩA→ C to be the map

p(α,β )
A (z1,z2) = 〈PA(z1,z2)α,β 〉= z1〈A1α,β 〉+ z2〈A2α,β 〉, which is

linear. The sup norm ‖p(α,β )
A ‖∞ ≤ 1 by definition.

• Let PA denote the collection of linear functions
{p(α,β )

A : (α,β ) ∈ B2×B2}.
• The map PA, which we call the defining function of the domain and

the collection of functions PA, which we call a family of test
functions encode a significant amount of information relevant to our
purpose about the homomorphism ρV. For instance, ρV is
contractive if its restriction to PA is contractive. By evaluating ρ

(2)
V

on PA, one may often detect the lack of complete contractivity –
sup‖α‖=‖β‖=1 ‖ρV(p

(α,β )
A )‖ ≤ ‖ρ(2)

V (PA)‖.
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the example of the (Euclidean) ball algebra

• Choosing A =
((

1 0
0 0

)
,
(

0 1
0 0

))
, we see that ΩA defines the

Euclidean ball B2 in C2.

Theorem
For any pair V1 =

(
v11 v12

)
,V2 =

(
v21 v22

)
and ΩA = B2, we have

(i) sup‖α‖=‖β‖=1 ‖ρV(p
(α,β )
A )‖2 = ‖( v11 v12

v21 v22 )‖2
op,

(ii) ‖ρ(2)
V (PA)‖2

op = ‖(
v11 v12
v21 v22 )‖2

2.

Consequently, sup‖α‖=‖β‖=1 ‖ρV(p
(α,β )
A )‖< ‖ρ(2)

V (PA)‖op if V1 and V2
are linearly independent.
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unitary equivalence and linear equivalence

• Set Ã = (UA1W,UA2W) for any pair of 2×2 unitary matrices U
and W. Then

‖(z1,z2)‖A = ‖z1(UA1W)+ z2(UA2W)‖op = ‖(z1,z2)‖Ã.

There are therefore various choices of the pairs (A1,A2), related as
above, which give rise to the same norm which may be used to ensure
A1 is diagonal.

• For z = (z1,z2) in (C2,‖ · ‖A), let T be the linear transformation

z̃1 = pz1 +qz2, z̃2 = rz1 + sz2,

where p,q,r,s ∈ C. Then ‖Tz‖A = ‖z‖Ã, Ã = T⊗ I
• In our study of the existence of contractive homomorphisms which

are not completely contractive, two sets of matrices A = (A1,A2)
and Ã = (Ã1, Ã2), which are related through linear combinations as
above, yield the same result.
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a reduction

• Since A1 has already been chosen to be diagonal, we consider
transformations as above with q = 0 to preserve the diagonal
structure of A1. By further conjugating with a diagonal unitary and a
permutation matrix it follows that we need to consider only the
following three families of matrices:

A1 A2(
1 0
0 d

)
d ∈ C

(
1 b
c 0

)
c ∈ C,b ∈ R+

(
d 0
0 1

)
d ∈ C

(
1 b
c 0

)
c ∈ C,b ∈ R+

(
1 0
0 d

)
d ∈ C

(
0 b
c 0

)
c ∈ C,b ∈ R+



the dual space

• Fix A1 =
(

1 0
0 1

)
,A2 =

(
0 1
0 0

)
. In this case, the dual norm ‖ · ‖∗

ΩA
is

given by the formula:

‖(ω1,ω2)‖∗ΩA
=

{
|ω1|2+4|ω2|2

4|ω2| if |ω2| ≥ |ω1|
2 ;

|ω1| if |ω2| ≤ |ω1|
2 .

Equipped with the information about the dual norm we can directly
construct a pair V = (V1,V2) such that ‖LV‖ ≤ 1 and
‖L(2)

V (PA)‖> 1.

Theorem
Picking V1 =

(
1√
2

0
)
,V2 =

(
0 1

)
, we have

(i) ‖LV‖(C2,‖·‖∗
ΩA

)→(C2,‖·‖2) = 1,

(ii) ‖L(2)
V (PA)‖=

√
3
2 .

Consequently ρV, for this choice of V = (V1,V2), is contractive on
O(ΩA) but not completely contractive.
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given by the formula:

‖(ω1,ω2)‖∗ΩA
=

{
|ω1|2+4|ω2|2

4|ω2| if |ω2| ≥ |ω1|
2 ;

|ω1| if |ω2| ≤ |ω1|
2 .

Equipped with the information about the dual norm we can directly
construct a pair V = (V1,V2) such that ‖LV‖ ≤ 1 and
‖L(2)

V (PA)‖> 1.

Theorem
Picking V1 =

(
1√
2

0
)
,V2 =

(
0 1

)
, we have

(i) ‖LV‖(C2,‖·‖∗
ΩA

)→(C2,‖·‖2) = 1,

(ii) ‖L(2)
V (PA)‖=

√
3
2 .

Consequently ρV, for this choice of V = (V1,V2), is contractive on
O(ΩA) but not completely contractive.



operator space structure

• The existence of contractive homomorphisms which are not
completely contractive, in many cases, may by established by
comparing different isometric embeddings of the space (C2,‖ · ‖A)
into (M2,‖ · ‖op) which lead to distinct operator space structures.
For instance, the two embeddings (z1,z2) 7→ z1A1 + z2A2 and
(z1,z2) 7→ z1At

1 + z2At
2 give rise to distinct operator space structures

on (C2,‖ · ‖2) and for many others.
• The opposite phenomenon also occurs, namely, many distinct

isometric embeddings of (C2,‖ · ‖A) into (Mn,‖ · ‖op) yield
(completely isometric) operator space structures. This is seen easily
by means of the lemma that follows.
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operator space structure, contd.

Lemma
For B ∈Mm,n and α1,α2 ∈ C, we have

∥∥∥(α1Im B
0 α2In

)∥∥∥= ∥∥∥(α1 ‖B‖
0 α2

)∥∥∥.
• Now consider the pair A = (A1,A2) with

A1 =
(

α1 0
0 α2

)
,A2 =

(
0 β

0 0

)
. Given any m×n matrix B with

‖B‖= |β | we have the following isometric embedding of
(C2,‖ · ‖A) into (Mm+n,‖ · ‖op)

(z1,z2) 7→
(

z1α1Im z2B
0 z1α2In

)
.

For various choices of m,n and the matrix B this represents a large
collection of isometric embeddings, all of which give the same
operator space structure on (C2,‖ · ‖A)!
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Thank you!


