Contractive and completely contractive homomorphisms over function algebras

Gadadhar Misra

Indian Institute of Science Bangalore (joint with Avijit Pal and Cherian Varughese)

> Functional Analysis Seminar University of Leipzig July 21, 2015

• Let $\|\cdot\|_{\mathbf{A}}$ be a norm on \mathbb{C}^m given by the formula

$$||(z_1,...,z_m)||_{\mathbf{A}} = ||z_1A_1 + \cdots + z_mA_m||_{\mathrm{op}}$$

for some choice of *m* matrices $\mathbf{A} = (A_1, \dots, A_m)$. Let $\Omega_{\mathbf{A}}$ be the corresponding unit ball. Let $\mathcal{O}(\Omega_{\mathbf{A}})$ denote the algebra of all functions holomorphic on any open set *U* containing the closed unit ball $\overline{\Omega}_{\mathbf{A}}$.

• Given $p \times q$ matrices V_1, \ldots, V_m and a function $f \in \mathscr{O}(\Omega_A)$, define, for a fixed $w \in \Omega_A$, the homomorphism

$$oldsymbol{
ho}_{\mathbf{V}}(f) := egin{pmatrix} f(0)I_p & \sum_{i=1}^m \partial_i f(0) & V_i \ 0 & f(0)I_q \end{pmatrix}$$

We study contractivity and complete contractivity of such homomorphisms.

• Let $\|\cdot\|_{\mathbf{A}}$ be a norm on \mathbb{C}^m given by the formula

$$||(z_1,...,z_m)||_{\mathbf{A}} = ||z_1A_1 + \cdots + z_mA_m||_{\mathrm{op}}$$

for some choice of *m* matrices $\mathbf{A} = (A_1, \dots, A_m)$. Let $\Omega_{\mathbf{A}}$ be the corresponding unit ball. Let $\mathcal{O}(\Omega_{\mathbf{A}})$ denote the algebra of all functions holomorphic on any open set *U* containing the closed unit ball $\overline{\Omega}_{\mathbf{A}}$.

• Given $p \times q$ matrices V_1, \ldots, V_m and a function $f \in \mathscr{O}(\Omega_A)$, define, for a fixed $w \in \Omega_A$, the homomorphism

$$oldsymbol{
ho}_{\mathbf{V}}(f) := egin{pmatrix} f(0)I_p & \sum_{i=1}^m \partial_i f(0) & V_i \\ 0 & f(0)I_q \end{pmatrix}$$

We study contractivity and complete contractivity of such homomorphisms.

• Consider the linear map $L_{\mathbf{V}}: (\mathbb{C}^m, \|\cdot\|_{\mathbf{A}}^*) \to \mathscr{M}_{p \times q}(\mathbb{C})$, given by the formula

$$L_{\mathbf{V}}(z) = z_1 V_1 + \dots + z_m V_m$$

induced by the homomorphism $\rho_{\rm V}$.

- The contractivity (resp. complete contractivity) of the homomorphism ρ_V determines the contractivity (resp. complete contractivity) of the linear map L_V and vice-versa.
- It is known that contractive homomorphisms of the disc and the bi-disc algebras are completely contractive, thanks to the dilation theorems of B. Sz.-Nagy and Ando respectively.

• Consider the linear map $L_{\mathbf{V}}: (\mathbb{C}^m, \|\cdot\|_{\mathbf{A}}^*) \to \mathscr{M}_{p \times q}(\mathbb{C})$, given by the formula

$$L_{\mathbf{V}}(z) = z_1 V_1 + \dots + z_m V_m$$

induced by the homomorphism $\rho_{\rm V}$.

- The contractivity (resp. complete contractivity) of the homomorphism ρ_V determines the contractivity (resp. complete contractivity) of the linear map L_V and vice-versa.
- It is known that contractive homomorphisms of the disc and the bi-disc algebras are completely contractive, thanks to the dilation theorems of B. Sz.-Nagy and Ando respectively.

• Consider the linear map $L_{\mathbf{V}}: (\mathbb{C}^m, \|\cdot\|_{\mathbf{A}}^*) \to \mathscr{M}_{p \times q}(\mathbb{C})$, given by the formula

$$L_{\mathbf{V}}(z) = z_1 V_1 + \dots + z_m V_m$$

induced by the homomorphism $\rho_{\rm V}$.

- The contractivity (resp. complete contractivity) of the homomorphism ρ_V determines the contractivity (resp. complete contractivity) of the linear map L_V and vice-versa.
- It is known that contractive homomorphisms of the disc and the bi-disc algebras are completely contractive, thanks to the dilation theorems of B. Sz.-Nagy and Ando respectively.

- However, examples of contractive homomorphisms ρ_V of the tri-disc algebra that are not completely contractive were soon found by Parrott. The homomorphisms ρ_V are modelled on the examples of Parrott. Homomorphisms of this form also provide examples of contractive homomorphisms of the (Euclidean) ball algebra which are not completely contractive.
- From the work of V. Paulsen and E. Ricard, it follows that if m ≥ 3 and B is any ball in C^m with respect to some norm, say ||·||_B, then there exists a contractive linear map L: (C^m, ||·||_B) → B(ℋ) which is not complete contractive. The characterization of those balls in C² for which contractive linear maps are always completely contractive remained open. We answer this question for balls of the form Ω_A in C².

- However, examples of contractive homomorphisms ρ_V of the tri-disc algebra that are not completely contractive were soon found by Parrott. The homomorphisms ρ_V are modelled on the examples of Parrott. Homomorphisms of this form also provide examples of contractive homomorphisms of the (Euclidean) ball algebra which are not completely contractive.
- From the work of V. Paulsen and E. Ricard, it follows that if m ≥ 3 and B is any ball in C^m with respect to some norm, say ||·||_B, then there exists a contractive linear map L: (C^m, ||·||_B) → B(H) which is not complete contractive. The characterization of those balls in C² for which contractive linear maps are always completely contractive remained open. We answer this question for balls of the form Ω_A in C².

linear maps on the dual unit ball

- A straightforward application of the vonNeumann inequality shows that $\sup_{\|f\|_{\infty}=1}\{\|\rho_{\mathbf{V}}(f)\|_{\mathrm{op}}: f \in \mathscr{O}(\Omega_{\mathbf{A}})\} \leq 1$ if and only if $\sup_{\|g\|_{\infty}=1}\{\|\rho_{\mathbf{V}}(g)\|_{\mathrm{op}}: g \in \mathscr{O}(\Omega_{\mathbf{A}}), g(0) = 0\} \leq 1$. Thus $\rho_{\mathbf{V}}$ is contractive on $\mathscr{O}(\Omega_{\mathbf{A}})$ if and only if it is contractive on the subset of functions which vanish at 0.
- Let Ω_A^* denote the unit ball of the normed linear space $(\mathbb{C}^m, \|\cdot\|_A)^*$. An easy application of the Schwarz lemma then shows that

 $\Omega_{\mathbf{A}}^* = \big\{ \big(\partial_{\mathbf{I}} f(0), \partial_{2} f(0), \cdots, \partial_{m} f(0) \big) : f \in \operatorname{Hol}(\Omega_{\mathbf{A}}, \mathbb{D}), f(0) = 0 \big\}.$

• Hence $\|\rho_{\mathbf{V}}\| \leq 1$ iff $\sup_{\|f\|_{\infty}=1, f(0)=0} \|\sum_{i=1}^{m} \partial_i f(0) V_i\|_{\text{op}} \leq 1$. Thus the induced linear map $L_{\mathbf{V}}(w) = z_1 V_1 + \cdots + z_m V_m$ is contractive if and only if the homomorphism $\rho_{\mathbf{V}}$ is contractive.

linear maps on the dual unit ball

- A straightforward application of the vonNeumann inequality shows that $\sup_{\|f\|_{\infty}=1}\{\|\rho_{\mathbf{V}}(f)\|_{\mathrm{op}}: f \in \mathscr{O}(\Omega_{\mathbf{A}})\} \leq 1$ if and only if $\sup_{\|g\|_{\infty}=1}\{\|\rho_{\mathbf{V}}(g)\|_{\mathrm{op}}: g \in \mathscr{O}(\Omega_{\mathbf{A}}), g(0) = 0\} \leq 1$. Thus $\rho_{\mathbf{V}}$ is contractive on $\mathscr{O}(\Omega_{\mathbf{A}})$ if and only if it is contractive on the subset of functions which vanish at 0.
- Let Ω_A^* denote the unit ball of the normed linear space $(\mathbb{C}^m, \|\cdot\|_A)^*$. An easy application of the Schwarz lemma then shows that

 $\Omega_{\mathbf{A}}^* = \left\{ \left(\partial_{\mathbf{L}} f(0), \partial_{2} f(0), \cdots, \partial_{m} f(0) \right) : f \in \operatorname{Hol}(\Omega_{\mathbf{A}}, \mathbb{D}), f(0) = 0 \right\}.$

• Hence $\|\rho_{\mathbf{V}}\| \leq 1$ iff $\sup_{\|f\|_{\infty}=1, f(0)=0} \|\sum_{i=1}^{m} \partial_i f(0) V_i\|_{\text{op}} \leq 1$. Thus the induced linear map $L_{\mathbf{V}}(w) = z_1 V_1 + \cdots + z_m V_m$ is contractive if and only if the homomorphism $\rho_{\mathbf{V}}$ is contractive.

linear maps on the dual unit ball

- A straightforward application of the vonNeumann inequality shows that $\sup_{\|f\|_{\infty}=1}\{\|\rho_{\mathbf{V}}(f)\|_{\mathrm{op}}: f \in \mathscr{O}(\Omega_{\mathbf{A}})\} \leq 1$ if and only if $\sup_{\|g\|_{\infty}=1}\{\|\rho_{\mathbf{V}}(g)\|_{\mathrm{op}}: g \in \mathscr{O}(\Omega_{\mathbf{A}}), g(0) = 0\} \leq 1$. Thus $\rho_{\mathbf{V}}$ is contractive on $\mathscr{O}(\Omega_{\mathbf{A}})$ if and only if it is contractive on the subset of functions which vanish at 0.
- Let Ω_A^* denote the unit ball of the normed linear space $(\mathbb{C}^m, \|\cdot\|_A)^*$. An easy application of the Schwarz lemma then shows that

 $\Omega_{\mathbf{A}}^* = \left\{ \left(\partial_{\mathbf{L}} f(0), \partial_{2} f(0), \cdots, \partial_{m} f(0) \right) : f \in \operatorname{Hol}(\Omega_{\mathbf{A}}, \mathbb{D}), f(0) = 0 \right\}.$

• Hence $\|\rho_{\mathbf{V}}\| \leq 1$ iff $\sup_{\|f\|_{\infty}=1, f(0)=0} \|\sum_{i=1}^{m} \partial_i f(0) V_i\|_{\text{op}} \leq 1$. Thus the induced linear map $L_{\mathbf{V}}(w) = z_1 V_1 + \cdots + z_m V_m$ is contractive if and only if the homomorphism $\rho_{\mathbf{V}}$ is contractive.

• For a holomorphic function $F: \Omega_{\mathbf{A}} \to \mathscr{M}_k$, define

$$\boldsymbol{\rho}_{\mathbf{V}}^{(k)}(F) := (\boldsymbol{\rho}_{\mathbf{V}}(F_{ij}))_{i,j=1}^{m} = \begin{pmatrix} F(0) \otimes I & \sum_{i=1}^{m} (\partial_{i}F(0)) \otimes V_{i} \\ 0 & F(0) \otimes I \end{pmatrix}.$$

Using a method similar to that used for $\rho_{\mathbf{V}}$ it can be shown that $\|\rho_{\mathbf{V}}^{(k)}\| \leq 1$ if and only if $\sup_{F}\{\|\sum_{i=1}^{m}(\partial_{i}F(0)) \otimes V_{i}\|\} \leq 1$, where the supremum is taken over all holomorphic functions $F: \Omega_{A} \to (\mathcal{M}_{k})_{1}, F(0) = 0$. That is, by repeating the argument used for $\rho_{\mathbf{V}}$, we have

 $\|\boldsymbol{\rho}_{\mathbf{V}}^{(k)}\| \leq 1 \text{ if and only if } \|L_{\mathbf{V}}^{(k)}\| \leq 1,$ where $L_{\mathbf{V}}^{(k)} : (\mathbb{C}^m \otimes \mathscr{M}_k, \|\cdot\|_{\Omega_{\mathbf{A}},k}^*) \to (\mathscr{M}_k \otimes \mathscr{M}_{p,q}, \|\cdot\|_{\mathrm{op}})$ is the map $L_{\mathbf{V}}^{(k)}(\Theta_1, \Theta_2, \cdots, \Theta_m) = \Theta_1 \otimes V_1 + \Theta_2 \otimes V_2 + \cdots + \Theta_m \otimes V_m$ for $(\Theta_1, \Theta_2, \cdots, \Theta_m) \in \mathscr{M}_k$

 A very useful construct for our analysis is the matrix valued polynomial P_A: Ω_A → (M_n, || · ||_{op})₁ defined by

 $P_{\mathbf{A}}(z_1,z_2,\cdots,z_m)=z_1A_1+z_2A_2+\cdots+z_mA_m,$

that is, $\|P_{\mathbf{A}}\|_{\infty} := \sup_{(z_1, \cdots, z_m) \in \Omega_{\mathbf{A}}} \|P_{\mathbf{A}}(z)\|_{\text{op}} = 1$ by definition.

• The typical procedure used to show the existence of a homomorphism which is contractive but not completely contractive is to construct a contractive homomorphism $\rho_{\mathbf{V}}$ (by making a suitable choice of \mathbf{V}) and to then show that its evaluation on $P_{\mathbf{A}}$, that is, $\rho_{\mathbf{V}}^{(n)}(P_{\mathbf{A}})$, has norm greater than 1.

 A very useful construct for our analysis is the matrix valued polynomial P_A: Ω_A → (*M_n*, || · ||_{op})₁ defined by

$$P_{\mathbf{A}}(z_1, z_2, \cdots, z_m) = z_1 A_1 + z_2 A_2 + \cdots + z_m A_m,$$

that is, $\|P_{\mathbf{A}}\|_{\infty} := \sup_{(z_1, \cdots, z_m) \in \Omega_{\mathbf{A}}} \|P_{\mathbf{A}}(z)\|_{\text{op}} = 1$ by definition.

• The typical procedure used to show the existence of a homomorphism which is contractive but not completely contractive is to construct a contractive homomorphism $\rho_{\rm V}$ (by making a suitable choice of V) and to then show that its evaluation on $P_{\rm A}$, that is, $\rho_{\rm V}^{(n)}(P_{\rm A})$, has norm greater than 1.

defining function and test functions

- For $(\alpha, \beta) \in \mathbb{B}^2 \times \mathbb{B}^2$, define $p_{\mathbf{A}}^{(\alpha, \beta)} : \Omega_{\mathbf{A}} \to \mathbb{C}$ to be the map $p_{\mathbf{A}}^{(\alpha, \beta)}(z_1, z_2) = \langle P_{\mathbf{A}}(z_1, z_2) \alpha, \beta \rangle = z_1 \langle A_1 \alpha, \beta \rangle + z_2 \langle A_2 \alpha, \beta \rangle$, which is linear. The sup norm $\|p_{\mathbf{A}}^{(\alpha, \beta)}\|_{\infty} \leq 1$ by definition.
- Let $\mathscr{P}_{\mathbf{A}}$ denote the collection of linear functions $\{p_{\mathbf{A}}^{(\alpha,\beta)}: (\alpha,\beta) \in \mathbb{B}^2 \times \mathbb{B}^2\}.$
- The map $P_{\mathbf{A}}$, which we call the defining function of the domain and the collection of functions $\mathscr{P}_{\mathbf{A}}$, which we call a family of test functions encode a significant amount of information relevant to our purpose about the homomorphism $\rho_{\mathbf{V}}$. For instance, $\rho_{\mathbf{V}}$ is contractive if its restriction to $\mathscr{P}_{\mathbf{A}}$ is contractive. By evaluating $\rho_{\mathbf{V}}^{(2)}$ on $P_{\mathbf{A}}$, one may often detect the lack of complete contractivity – $\sup_{\|\alpha\|=\|\beta\|=1} \|\rho_{\mathbf{V}}(p_{\mathbf{A}}^{(\alpha,\beta)})\| \leq \|\rho_{\mathbf{V}}^{(2)}(P_{\mathbf{A}})\|.$

defining function and test functions

- For $(\alpha, \beta) \in \mathbb{B}^2 \times \mathbb{B}^2$, define $p_A^{(\alpha, \beta)} : \Omega_A \to \mathbb{C}$ to be the map $p_A^{(\alpha, \beta)}(z_1, z_2) = \langle P_A(z_1, z_2) \alpha, \beta \rangle = z_1 \langle A_1 \alpha, \beta \rangle + z_2 \langle A_2 \alpha, \beta \rangle$, which is linear. The sup norm $\|p_A^{(\alpha, \beta)}\|_{\infty} \leq 1$ by definition.
- Let $\mathscr{P}_{\mathbf{A}}$ denote the collection of linear functions $\{p_{\mathbf{A}}^{(\alpha,\beta)}: (\alpha,\beta) \in \mathbb{B}^2 \times \mathbb{B}^2\}.$
- The map $P_{\mathbf{A}}$, which we call the defining function of the domain and the collection of functions $\mathscr{P}_{\mathbf{A}}$, which we call a family of test functions encode a significant amount of information relevant to our purpose about the homomorphism $\rho_{\mathbf{V}}$. For instance, $\rho_{\mathbf{V}}$ is contractive if its restriction to $\mathscr{P}_{\mathbf{A}}$ is contractive. By evaluating $\rho_{\mathbf{V}}^{(2)}$ on $P_{\mathbf{A}}$, one may often detect the lack of complete contractivity – $\sup_{\|\boldsymbol{\alpha}\|=\|\boldsymbol{\beta}\|=1} \|\rho_{\mathbf{V}}(p_{\mathbf{A}}^{(\boldsymbol{\alpha},\boldsymbol{\beta})})\| \leq \|\rho_{\mathbf{V}}^{(2)}(P_{\mathbf{A}})\|.$

- For $(\alpha, \beta) \in \mathbb{B}^2 \times \mathbb{B}^2$, define $p_A^{(\alpha, \beta)} : \Omega_A \to \mathbb{C}$ to be the map $p_A^{(\alpha, \beta)}(z_1, z_2) = \langle P_A(z_1, z_2) \alpha, \beta \rangle = z_1 \langle A_1 \alpha, \beta \rangle + z_2 \langle A_2 \alpha, \beta \rangle$, which is linear. The sup norm $\|p_A^{(\alpha, \beta)}\|_{\infty} \leq 1$ by definition.
- Let $\mathscr{P}_{\mathbf{A}}$ denote the collection of linear functions $\{p_{\mathbf{A}}^{(\alpha,\beta)}: (\alpha,\beta) \in \mathbb{B}^2 \times \mathbb{B}^2\}.$
- The map $P_{\mathbf{A}}$, which we call the defining function of the domain and the collection of functions $\mathscr{P}_{\mathbf{A}}$, which we call a family of test functions encode a significant amount of information relevant to our purpose about the homomorphism $\rho_{\mathbf{V}}$. For instance, $\rho_{\mathbf{V}}$ is contractive if its restriction to $\mathscr{P}_{\mathbf{A}}$ is contractive. By evaluating $\rho_{\mathbf{V}}^{(2)}$ on $P_{\mathbf{A}}$, one may often detect the lack of complete contractivity – $\sup_{\|\boldsymbol{\alpha}\|=\|\boldsymbol{\beta}\|=1} \|\rho_{\mathbf{V}}(p_{\mathbf{A}}^{(\alpha,\beta)})\| \leq \|\rho_{\mathbf{V}}^{(2)}(P_{\mathbf{A}})\|.$

Theorem

For any pair $V_1 = (v_{11} - v_{12})$, $V_2 = (v_{21} - v_{22})$ and $\Omega_{\Lambda} = \mathbb{B}^3$, we have $(i) = (v_1 - v_{12}) + (v_2 - v_{12}) + (v_2 - v_{22}) + (v_$

Theorem

For any pair $V_1 = (v_{11} - v_{12})$, $V_2 = (v_{21} - v_{22})$ and $\Omega_{\Lambda} = \mathbb{B}^3$, we have $(i) = (v_1 - v_{12}) + (v_2 - v_{12}) + (v_2 - v_{22}) + (v_$

Theorem

For any pair $V_1 = \begin{pmatrix} v_{11} & v_{12} \end{pmatrix}, V_2 = \begin{pmatrix} v_{21} & v_{22} \end{pmatrix}$ and $\Omega_A = \mathbb{B}^2$, we have (i) $\sup_{\|\alpha\|=\|\beta\|=1} \|\rho_V(\rho_A^{(\alpha,\beta)})\|^2 = \|\begin{pmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{pmatrix}\|_{op}^2$, (ii) $\|\rho_V^{(2)}(P_A)\|_{op}^2 = \|\begin{pmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{pmatrix}\|_2^2$.

Consequently, $\sup_{\|\alpha\|=\|\beta\|=1} \|\rho_{\mathbf{V}}(p_{\mathbf{A}}^{(\alpha,\beta)})\| < \|\rho_{\mathbf{V}}^{(2)}(P_{\mathbf{A}})\|_{\text{op}}$ if V_1 and V_2 are linearly independent.

Theorem

For any pair $V_1 = (v_{11} \quad v_{12}), V_2 = (v_{21} \quad v_{22})$ and $\Omega_A = \mathbb{B}^2$, we have (i) $\sup_{\|\alpha\|=\|\beta\|=1} \|\rho_V(p_A^{(\alpha,\beta)})\|^2 = \|\binom{v_{11}}{v_{21}} \frac{v_{12}}{v_{22}}\|_{op}^2$, (ii) $\|\rho_V^{(2)}(P_A)\|_{op}^2 = \|\binom{v_{11}}{v_{21}} \frac{v_{12}}{v_{22}}\|_2^2$.

Consequently, $\sup_{\|\alpha\|=\|\beta\|=1} \|\rho_{\mathbf{V}}(p_{\mathbf{A}}^{(\alpha,\beta)})\| < \|\rho_{\mathbf{V}}^{(2)}(P_{\mathbf{A}})\|_{\text{op}}$ if V_1 and V_2 are linearly independent.

Theorem

For any pair $V_1 = (v_{11} \quad v_{12}), V_2 = (v_{21} \quad v_{22})$ and $\Omega_{\mathbf{A}} = \mathbb{B}^2$, we have (i) $\sup_{\|\alpha\|=\|\beta\|=1} \|\rho_{\mathbf{V}}(p_{\mathbf{A}}^{(\alpha,\beta)})\|^2 = \|\binom{v_{11}}{v_{21}} \frac{v_{12}}{v_{22}}\|_{op}^2$, (ii) $\|\rho_{\mathbf{V}}^{(2)}(P_{\mathbf{A}})\|_{op}^2 = \|\binom{v_{11}}{v_{21}} \frac{v_{12}}{v_{22}}\|_2^2$.

Consequently, $\sup_{\|\alpha\|=\|\beta\|=1} \|\rho_{\mathbf{V}}(p_{\mathbf{A}}^{(\alpha,\beta)})\| < \|\rho_{\mathbf{V}}^{(2)}(P_{\mathbf{A}})\|_{\text{op}}$ if V_1 and V_2 are linearly independent.

unitary equivalence and linear equivalence

• Set $\widetilde{\mathbf{A}} = (UA_1W, UA_2W)$ for any pair of 2×2 unitary matrices U and W. Then

 $||(z_1, z_2)||_{\mathbf{A}} = ||z_1(UA_1W) + z_2(UA_2W)||_{\text{op}} = ||(z_1, z_2)||_{\widetilde{\mathbf{A}}}.$

There are therefore various choices of the pairs (A_1, A_2) , related as above, which give rise to the same norm which may be used to ensure A_1 is diagonal.

• For $\mathbf{z} = (z_1, z_2)$ in $(\mathbb{C}^2, \|\cdot\|_{\mathbf{A}})$, let *T* be the linear transformation $\tilde{z}_1 = pz_1 + qz_2, \tilde{z}_2 = rz_1 + sz_2,$

where $p,q,r,s \in \mathbb{C}$. Then $||T\mathbf{z}||_{\mathbf{A}} = ||\mathbf{z}||_{\tilde{\mathbf{A}}}, \tilde{\mathbf{A}} = T \otimes I$

• In our study of the existence of contractive homomorphisms which are not completely contractive, two sets of matrices $\mathbf{A} = (A_1, A_2)$ and $\widetilde{\mathbf{A}} = (\widetilde{A}_1, \widetilde{A}_2)$, which are related through linear combinations as above, yield the same result.

• Set $\widetilde{\mathbf{A}} = (UA_1W, UA_2W)$ for any pair of 2×2 unitary matrices U and W. Then

 $||(z_1, z_2)||_{\mathbf{A}} = ||z_1(UA_1W) + z_2(UA_2W)||_{\text{op}} = ||(z_1, z_2)||_{\widetilde{\mathbf{A}}}.$

There are therefore various choices of the pairs (A_1, A_2) , related as above, which give rise to the same norm which may be used to ensure A_1 is diagonal.

• For $\mathbf{z} = (z_1, z_2)$ in $(\mathbb{C}^2, \|\cdot\|_{\mathbf{A}})$, let *T* be the linear transformation $\tilde{z}_1 = pz_1 + qz_2, \tilde{z}_2 = rz_1 + sz_2,$

where $p,q,r,s \in \mathbb{C}$. Then $||T\mathbf{z}||_{\mathbf{A}} = ||\mathbf{z}||_{\tilde{\mathbf{A}}}, \tilde{\mathbf{A}} = T \otimes I$

• In our study of the existence of contractive homomorphisms which are not completely contractive, two sets of matrices $\mathbf{A} = (A_1, A_2)$ and $\widetilde{\mathbf{A}} = (\widetilde{A}_1, \widetilde{A}_2)$, which are related through linear combinations as above, yield the same result.

• Set $\widetilde{\mathbf{A}} = (UA_1W, UA_2W)$ for any pair of 2×2 unitary matrices U and W. Then

 $||(z_1, z_2)||_{\mathbf{A}} = ||z_1(UA_1W) + z_2(UA_2W)||_{\text{op}} = ||(z_1, z_2)||_{\widetilde{\mathbf{A}}}.$

There are therefore various choices of the pairs (A_1, A_2) , related as above, which give rise to the same norm which may be used to ensure A_1 is diagonal.

• For $\mathbf{z} = (z_1, z_2)$ in $(\mathbb{C}^2, \|\cdot\|_{\mathbf{A}})$, let *T* be the linear transformation $\tilde{z}_1 = pz_1 + qz_2, \tilde{z}_2 = rz_1 + sz_2,$

where $p,q,r,s \in \mathbb{C}$. Then $||T\mathbf{z}||_{\mathbf{A}} = ||\mathbf{z}||_{\tilde{\mathbf{A}}}, \tilde{\mathbf{A}} = T \otimes I$

• In our study of the existence of contractive homomorphisms which are not completely contractive, two sets of matrices $\mathbf{A} = (A_1, A_2)$ and $\widetilde{\mathbf{A}} = (\widetilde{A}_1, \widetilde{A}_2)$, which are related through linear combinations as above, yield the same result.

a reduction

• Since A_1 has already been chosen to be diagonal, we consider transformations as above with q = 0 to preserve the diagonal structure of A_1 . By further conjugating with a diagonal unitary and a permutation matrix it follows that we need to consider only the following three families of matrices:

$$\|(\boldsymbol{\omega}_1,\boldsymbol{\omega}_2)\|_{\boldsymbol{\Omega}_{\mathbf{A}}}^* = \begin{cases} \frac{|\boldsymbol{\omega}_1|^2 + 4|\boldsymbol{\omega}_2|^2}{4|\boldsymbol{\omega}_2|} & \text{if } |\boldsymbol{\omega}_2| \ge \frac{|\boldsymbol{\omega}_1|}{2};\\ |\boldsymbol{\omega}_1| & \text{if } |\boldsymbol{\omega}_2| \le \frac{|\boldsymbol{\omega}_1|}{2}. \end{cases}$$

Equipped with the information about the dual norm we can directly construct a pair $\mathbf{V} = (V_1, V_2)$ such that $||L_{\mathbf{V}}|| \le 1$ and $||L_{\mathbf{V}}^{(2)}(P_{\mathbf{A}})|| > 1$.

Theorem

icking $V_1 = \begin{pmatrix} 1 & 0 \\ \sqrt{2} & 0 \end{pmatrix}, V_2 = \begin{pmatrix} 0 & 1 \end{pmatrix}$, we have

Consequently ρ_V , for this choice of $\mathbf{V} = (V_1, V_2)$, is contractive of $\mathscr{O}(\Omega_A)$ but not completely contractive.

$$\|(\boldsymbol{\omega}_1,\boldsymbol{\omega}_2)\|_{\boldsymbol{\Omega}_{\mathbf{A}}}^* = \begin{cases} \frac{|\boldsymbol{\omega}_1|^2 + 4|\boldsymbol{\omega}_2|^2}{4|\boldsymbol{\omega}_2|} & \text{if } |\boldsymbol{\omega}_2| \ge \frac{|\boldsymbol{\omega}_1|}{2};\\ |\boldsymbol{\omega}_1| & \text{if } |\boldsymbol{\omega}_2| \le \frac{|\boldsymbol{\omega}_1|}{2}. \end{cases}$$

Equipped with the information about the dual norm we can directly construct a pair $\mathbf{V} = (V_1, V_2)$ such that $||L_{\mathbf{V}}|| \le 1$ and $||L_{\mathbf{V}}^{(2)}(P_{\mathbf{A}})|| > 1$.

Theorem

icking $V_1 = \begin{pmatrix} 1 & 0 \\ \sqrt{2} & 0 \end{pmatrix}, V_2 = \begin{pmatrix} 0 & 1 \end{pmatrix}$, we have

Consequently ρ_V , for this choice of $\mathbf{V} = (V_1, V_2)$, is contractive of $\mathscr{O}(\Omega_A)$ but not completely contractive.

$$\|(\boldsymbol{\omega}_1,\boldsymbol{\omega}_2)\|_{\boldsymbol{\Omega}_{\mathbf{A}}}^* = \begin{cases} \frac{|\boldsymbol{\omega}_1|^2 + 4|\boldsymbol{\omega}_2|^2}{4|\boldsymbol{\omega}_2|} & \text{if } |\boldsymbol{\omega}_2| \ge \frac{|\boldsymbol{\omega}_1|}{2};\\ |\boldsymbol{\omega}_1| & \text{if } |\boldsymbol{\omega}_2| \le \frac{|\boldsymbol{\omega}_1|}{2}. \end{cases}$$

Equipped with the information about the dual norm we can directly construct a pair $\mathbf{V} = (V_1, V_2)$ such that $||L_{\mathbf{V}}|| \le 1$ and $||L_{\mathbf{V}}^{(2)}(P_{\mathbf{A}})|| > 1$.

Theorem

Picking
$$V_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 \end{pmatrix}, V_2 = \begin{pmatrix} 0 & 1 \end{pmatrix},$$
 we have
(i) $\|L_V\|_{(\mathbb{C}^2, \|\cdot\|_{\Omega_A}^*) \to (\mathbb{C}^2, \|\cdot\|_2)} = 1,$
(ii) $\|L_V^{(2)}(P_A)\| = \sqrt{\frac{3}{2}}.$

Consequently $\rho_{\mathbf{V}}$, for this choice of $\mathbf{V} = (V_1, V_2)$, is contractive on $\mathscr{O}(\Omega_{\mathbf{A}})$ but not completely contractive.

$$\|(\boldsymbol{\omega}_1,\boldsymbol{\omega}_2)\|_{\boldsymbol{\Omega}_{\mathbf{A}}}^* = \begin{cases} \frac{|\boldsymbol{\omega}_1|^2 + 4|\boldsymbol{\omega}_2|^2}{4|\boldsymbol{\omega}_2|} & \text{if } |\boldsymbol{\omega}_2| \ge \frac{|\boldsymbol{\omega}_1|}{2};\\ |\boldsymbol{\omega}_1| & \text{if } |\boldsymbol{\omega}_2| \le \frac{|\boldsymbol{\omega}_1|}{2}. \end{cases}$$

Equipped with the information about the dual norm we can directly construct a pair $\mathbf{V} = (V_1, V_2)$ such that $||L_{\mathbf{V}}|| \le 1$ and $||L_{\mathbf{V}}^{(2)}(P_{\mathbf{A}})|| > 1$.

Theorem

Picking
$$V_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 \end{pmatrix}, V_2 = \begin{pmatrix} 0 & 1 \end{pmatrix},$$
 we have
(i) $\|L_{\mathbf{V}}\|_{(\mathbb{C}^2, \|\cdot\|_{\Omega_{\mathbf{A}}}^*) \to (\mathbb{C}^2, \|\cdot\|_2)} = 1,$
(ii) $\|L_{\mathbf{V}}^{(2)}(P_{\mathbf{A}})\| = \sqrt{\frac{3}{2}}.$

Consequently $\rho_{\mathbf{V}}$, for this choice of $\mathbf{V} = (V_1, V_2)$, is contractive on $\mathscr{O}(\Omega_{\mathbf{A}})$ but not completely contractive.

$$\|(\boldsymbol{\omega}_1,\boldsymbol{\omega}_2)\|_{\boldsymbol{\Omega}_{\mathbf{A}}}^* = \begin{cases} \frac{|\boldsymbol{\omega}_1|^2 + 4|\boldsymbol{\omega}_2|^2}{4|\boldsymbol{\omega}_2|} & \text{if } |\boldsymbol{\omega}_2| \ge \frac{|\boldsymbol{\omega}_1|}{2};\\ |\boldsymbol{\omega}_1| & \text{if } |\boldsymbol{\omega}_2| \le \frac{|\boldsymbol{\omega}_1|}{2}. \end{cases}$$

Equipped with the information about the dual norm we can directly construct a pair $\mathbf{V} = (V_1, V_2)$ such that $||L_{\mathbf{V}}|| \le 1$ and $||L_{\mathbf{V}}^{(2)}(P_{\mathbf{A}})|| > 1$.

Theorem

Picking
$$V_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 \end{pmatrix}, V_2 = \begin{pmatrix} 0 & 1 \end{pmatrix},$$
 we have
(i) $\|L_{\mathbf{V}}\|_{(\mathbb{C}^2, \|\cdot\|_{\Omega_{\mathbf{A}}}^*) \to (\mathbb{C}^2, \|\cdot\|_2)} = 1,$
(ii) $\|L_{\mathbf{V}}^{(2)}(P_{\mathbf{A}})\| = \sqrt{\frac{3}{2}}.$

Consequently $\rho_{\mathbf{V}}$, for this choice of $\mathbf{V} = (V_1, V_2)$, is contractive on $\mathscr{O}(\Omega_{\mathbf{A}})$ but not completely contractive.

- The existence of contractive homomorphisms which are not completely contractive, in many cases, may by established by comparing different isometric embeddings of the space (C², || · ||_A) into (*M*₂, || · ||_{op}) which lead to distinct operator space structures. For instance, the two embeddings (*z*₁, *z*₂) → *z*₁*A*₁ + *z*₂*A*₂ and (*z*₁, *z*₂) → *z*₁*A*₁^t + *z*₂*A*₂^t give rise to distinct operator space structures on (C², || · ||₂) and for many others.
- The opposite phenomenon also occurs, namely, many distinct isometric embeddings of $(\mathbb{C}^2, \|\cdot\|_A)$ into $(\mathcal{M}_n, \|\cdot\|_{op})$ yield (completely isometric) operator space structures. This is seen easily by means of the lemma that follows.

- The existence of contractive homomorphisms which are not completely contractive, in many cases, may by established by comparing different isometric embeddings of the space (C², || · ||_A) into (*M*₂, || · ||_{op}) which lead to distinct operator space structures. For instance, the two embeddings (*z*₁, *z*₂) → *z*₁*A*₁ + *z*₂*A*₂ and (*z*₁, *z*₂) → *z*₁*A*^t₁ + *z*₂*A*^t₂ give rise to distinct operator space structures on (C², || · ||₂) and for many others.
- The opposite phenomenon also occurs, namely, many distinct isometric embeddings of $(\mathbb{C}^2, \|\cdot\|_A)$ into $(\mathcal{M}_n, \|\cdot\|_{op})$ yield (completely isometric) operator space structures. This is seen easily by means of the lemma that follows.

Lemma

For $B \in \mathcal{M}_{m,n}$ and $\alpha_1, \alpha_2 \in \mathbb{C}$, we have $\left\| \begin{pmatrix} \alpha_1 I_m & B \\ 0 & \alpha_2 I_n \end{pmatrix} \right\| = \left\| \begin{pmatrix} \alpha_1 & \|B\| \\ 0 & \alpha_2 \end{pmatrix} \right\|$.

• Now consider the pair $\mathbf{A} = (A_1, A_2)$ with $A_1 = \begin{pmatrix} \alpha_1 & 0 \\ 0 & \alpha_2 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & \beta \\ 0 & 0 \end{pmatrix}$. Given any $m \times n$ matrix B with $\|B\| = |\beta|$ we have the following isometric embedding of $(\mathbb{C}^2, \|\cdot\|_{\mathbf{A}})$ into $(\mathscr{M}_{m+n}, \|\cdot\|_{\text{op}})$

$$(z_1,z_2)\mapsto \begin{pmatrix} z_1lpha_1I_m & z_2B\\ 0 & z_1lpha_2I_n \end{pmatrix}.$$

For various choices of m, n and the matrix B this represents a large collection of isometric embeddings, all of which give the same operator space structure on $(\mathbb{C}^2, \|\cdot\|_{\mathbf{A}})!$

Lemma

For $B \in \mathscr{M}_{m,n}$ and $\alpha_1, \alpha_2 \in \mathbb{C}$, we have $\left\| \begin{pmatrix} \alpha_1 I_m & B \\ 0 & \alpha_2 I_n \end{pmatrix} \right\| = \left\| \begin{pmatrix} \alpha_1 & \|B\| \\ 0 & \alpha_2 \end{pmatrix} \right\|$.

• Now consider the pair $\mathbf{A} = (A_1, A_2)$ with $A_1 = \begin{pmatrix} \alpha_1 & 0 \\ 0 & \alpha_2 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & \beta \\ 0 & 0 \end{pmatrix}$. Given any $m \times n$ matrix B with $\|B\| = |\beta|$ we have the following isometric embedding of $(\mathbb{C}^2, \|\cdot\|_{\mathbf{A}})$ into $(\mathscr{M}_{m+n}, \|\cdot\|_{\text{op}})$

$$(z_1, z_2) \mapsto \begin{pmatrix} z_1 \alpha_1 I_m & z_2 B \\ 0 & z_1 \alpha_2 I_n \end{pmatrix}$$

For various choices of m, n and the matrix B this represents a large collection of isometric embeddings, all of which give the same operator space structure on $(\mathbb{C}^2, \|\cdot\|_A)!$

Thank you!

