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the Bergman kernel

e a bounded open connected subset of C” and A%(Z) be the
Hilbert space of square integrable (with respect to volume measure)
holomorphic functions on Z. The Bergman kernel B: ¥ x 2 — C is
uniquely defined by the two requirements:

B, € A’(2) forallwe 9
(f,By) =f(w)  forallf € A*(2).
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the Bergman kernel

e a bounded open connected subset of C” and A%(Z) be the
Hilbert space of square integrable (with respect to volume measure)
holomorphic functions on Z. The Bergman kernel B: ¥ x 2 — C is
uniquely defined by the two requirements:

B, € A’(2) forallwe 9
(f,By) =f(w)  forallf € A*(2).

The existence of B,, is guaranteed as long as the evaluation functional
f—f(w) is bounded.

We have B, (z) = (B,,B;). Consequently, for any choice of n € N
and an arbitrary subset {wy,...,w,} of &, the nxn matrix
(Bw,;(wj))7;—; mustbe positive definite.



Fourier series

if e,(z), n >0 is an orthonormal basis for the Bergman
space A%(Z), thenany f € A>(2) has the Fourier series expansion
f(z) =Y yanen(z). Assuming that the sum

By(2) := i‘ben (2)en(w),

isin A?(2) foreach w € 7, we see that

<f(z)an(Z» :f(W)7 weD.



example

gman space A”(ID™), of the polydisc D", the orthonormal
M2, (ni+ 1)z : 1= (i,...,im)}. Clearly, we have

(

0 7

basis is

(1—zwi) ™.

Il
s

(ni+1)) 7w

gk
=

BDm(z,w) =

Il
.
Il
_

Il



example

gman space A”(ID™), of the polydisc D", the orthonormal

basis is " (ni+ 1)z 1= (iy,...,im)}. Clearly, we have
oo m m

B]DJ’” Z, W Z H n,+1 :H(lfz,-v"v,')_z.
=0 i=1 i=1

Similarly, for the Bergman space of the ball A”(B"), the orthonormal

basisis {1/ (") (1) 1= (ir,....in)}. Again, it follows that

Byn(z,w) = Iio (_m[ 1) (Y <|§I>gw1) = (1= (z,w)) ™",

1=¢



quasi-invariance of B

omorphic map ¢ : % — & induces a unitary operator
) — A%(Z) defined by the formula

(Ugf)(2) =J(9,2) (fo9)(2), f € A*(D), z€ 2.

This is an immediate consequence of the change of variable formula
for the volume measure on C”" :

/_@fd":/@(foso) col?dV.



quasi-invariance of B

omorphic map ¢ : % — & induces a unitary operator
) — A%(Z) defined by the formula

(Ugf)(2) =J(9,2) (fo9)(2), f € A*(D), z€ 2.

This is an immediate consequence of the change of variable formula
for the volume measure on C”" :

|sav=[ (rop)icoPav.
9 9

Consequently, if {2,},~0 is any orthonormal basis for A’(%), then
{en}n>0 , where &, =J(¢,-)(é,0 @) is an orthonormal basis for the
Bergman space A”(2).



quasi-invariance of B

g the Bergman kernel By of the domains & as the infinite
e,(z)e,(w) using the orthonormal basis in A”(2) , we see
that the Bergman Kernel B is quasi-invariant, thatis, If ¢ : 2 — P is
holomorphic then we have the transformation rule
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J((P’Z)Bﬁ((P(Z)v (P(W))J((P’W) = B@(Z,W)7

where J(¢,w) is the Jacobian determinant of the map ¢ at w .



quasi-invariance of B

g the Bergman kernel By of the domains & as the infinite
e,(z)e,(w) using the orthonormal basis in A”(2) , we see
that the Bergman Kernel B is quasi-invariant, thatis, If ¢ : 2 — P is
holomorphic then we have the transformation rule

sum

J((p’Z)B?)((P(Z)v (P(W))J((P’W) = B@(va)a

where J(¢,w) is the Jacobian determinant of the map ¢ at w .

If 2 admits a transitive group of bi-holomorphic automorphisms, then
this transformation rule gives an effective way of computing the
Bergman kernel. Thus

B_@(Z,Z) = |J(¢Z7Z)|2B9(an)a z€ @7

where @, is the automorphism of 2 with the property ¢.(z) =0.



the invariant

The quasi-invariance of the Bergman kernel By (z;w) also leads to a
bi-holomorphic invariant for the domain Z. Setting

2
A, (2) = (#&zj logBy)(z)

to be the curvature of the metric By (z,z), the function

det 73, (2)
2@~ "5

is a bi-holomorphic invariant for the domain 2.

€9
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the multiplier

Consider the special case, where ¢ :  — & is an automorphism.
Clearly, in this case, Uy, is unitary on A%(2) forall ¢ € Aut(2).

The map J: Aut(Z) x 2 — C satisfies the cocycle property, namely

J(ve,2) =J(0,y¥(2)J(¥.2), ¢,y € Aut(Z),z€ 9.

This makes the map ¢ — U, a homomorphism.

Thus we have a unitary representation of the Lie group Aut(Z) on
A%(9).



the proof that 19 is an invariant

— 2 be a bi-holomorphic map. Applying the change of
mula twice to the function logB,(¢(z),(w)), we have

2 2
( —ajawj 1028302, 900)),; = (52 (G 0B (02, 9() ) (52

2

J P J [ ))
kj*

Now, the Bergman kernel By transforms according to the rule:

detcDQ(w)By (9(w), p(w))detcDo(w) = By (w,w),

Thus 73 _o(p.p)(w,w) equals 75, (w,w). Hence we conclude that

3, is quasi-invariant under a bi-holomorphic map ¢ , namely,

Do(w)* A5 (9(w), (W) D(w) = Ho(w,w), w € .



the proof cntd.

determinants on both sides we get
det A (w,w) = Je@f (z) det 25 (@(w), p(w)).
Thus we get the invariance of 1 :

det A (w, w) e () det 75 (9 (w), o(w))

B@(W7W) B@(W,W)
e (z)|* det 5 (@(w), @(w))

Me@w)[*Bs(@(w), @(w)
det 75 (@(w), 9(w))
By (o(w),0(w))




the proof cntd.

determinants on both sides we get
det 7o (w,w) = Jc@f (z) det 5 (@(w), p(w))-
Thus we get the invariance of 1 :
det A (w,w) Me@(2)|* det 25 (@(w), o(w))
Bg(w,w) Bg(w,w)
e (z)|* det 5 (@(w), @(w))
Meew)PBg(@(w), o(w))

det 75 (@(w), p(w))
B (o(w), p(w))

Theorem
For any homogeneous domain 9 in C", the function 14 (z) is constant. m



proof of the theorem

C C" is homogeneous, it follows that there exists a

the transformation rule for I, we have

det #%(0,0)
B4(0,0)
det%fg(%( ) #(0))
B7(9.(0), 9.(0))
SCEH@ED) 5o
By u,1) =lyu),ue?

I(0)

hic map ¢, of & foreach u € % suchthat ¢,(0)=u.



proof of the theorem

C C" is homogeneous, it follows that there exists a
hic map ¢, of & foreach u € % suchthat ¢,(0)=u.
Applying the transformation rule for I, we have

det #%(0,0)

20 = =5 0,0
deh%/@((Pu( ) #(0))
B7(9.(0), 9.(0))
_ det Ay (u,u) D
N By (u,u) =lg(u),uc2

It is easy to compute [5(0) when & is the bi-disc and the Euclidean
ball in C2. For these two domains, it has the value 4 and 9
respectively. We conclude that these domains therefore can’t be
bi-holomorphically equivalent!



new kernels?

be a complex valued positive definite kernel on &. For w in

intheset {1,....d}, let e,: Q — J be the

antiho rphic function:

- 0
oWy,

Setting G(z,w)p,q = (€p(W),e4(z)), we have

I u 2 2 2
=G(z,W)pq" = K(z,w)ml( T%K(ZaW)TZqK(LW))-

2
The curvature K of the metric K is given by the (1,1) - form
92 B
L gl log K (w,w)dwg Adiw,. Set

9 Ko() @ Ku().

eﬂ(w) = Kw() Kw(')*ai‘/_vp

(Z,W) -

2

Hi(z,w) = (( logK(z,w))),

dz40W) P
We note that K (z,w)2.% (z,w) = $G(z,w)*. Hence K(z,w)>.% (z,w) o

defines a positive definite kernel on & taking values in Hom(V,V).



rewrite the transformation rule

(9(2).9w) = Do)} ' # (c.w)DY()
= Do@)" ' H(z,w) (D(P(W)ﬁ_l)
= my(@,2) A (z,w)mo(Q,w)",

where mg(@,z) = D(p(z)f] and multiplying both sides by K?, we
have
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rewrite the transformation rule

= my(@,2)- % (z,w)mo(Q,w)",

where mg(@,z) = D(p(z)f] and multiplying both sides by K?, we
have

K(9(2), 9(w))>H# (9(2), 0(w)) = ma(@,2)K (2,w)> H (z,w)ma (@, w)*,

where my(@,z) = (detc D(,o(w)zD(p(z)ﬁ)_1 is a multiplier. Of course,
we now have that

(i) K***(z,w).# (z,w), A >0, is a positive definite kernel and
(ii) it transforms with the co-cycle m; (¢,z) = (detc D@(z)>**Do(z)") ! )
in place of my(Q,z). @



Thank you!



