The Bergman kernel

Gadadhar Misra

Indian Institute of Science Bangalore

Research Scholars Meet Jammu University August 22, 2019

Let \mathscr{D} be a bounded open connected subset of \mathbb{C}^m and $\mathbb{A}^2(\mathscr{D})$ be the Hilbert space of square integrable (with respect to volume measure) holomorphic functions on \mathscr{D} . The Bergman kernel $B : \mathscr{D} \times \mathscr{D} \to \mathbb{C}$ is uniquely defined by the two requirements:

 $B_{w} \in \mathbb{A}^{2}(\mathscr{D}) \qquad \text{for all } w \in \mathscr{D}$ $\langle f, B_{w} \rangle = f(w) \qquad \text{for all } f \in A^{2}(\mathscr{D}).$

The existence of B_w is guaranteed as long as the evaluation functional $f \rightarrow f(w)$ is bounded.

We have $B_w(z) = \langle B_w, B_z \rangle$. Consequently, for any choice of $n \in \mathbb{N}$ and an arbitrary subset $\{w_1, \ldots, w_n\}$ of \mathcal{D} , the $n \times n$ matrix $((B_{w_i}(w_j)))_{i,j=1}^n$ must be positive definite.

Let \mathscr{D} be a bounded open connected subset of \mathbb{C}^m and $\mathbb{A}^2(\mathscr{D})$ be the Hilbert space of square integrable (with respect to volume measure) holomorphic functions on \mathscr{D} . The Bergman kernel $B : \mathscr{D} \times \mathscr{D} \to \mathbb{C}$ is uniquely defined by the two requirements:

 $B_w \in \mathbb{A}^2(\mathscr{D}) \qquad \text{for all } w \in \mathscr{D}$ $\langle f, B_w \rangle = f(w) \qquad \text{for all } f \in A^2(\mathscr{D}).$

The existence of B_w is guaranteed as long as the evaluation functional $f \rightarrow f(w)$ is bounded.

We have $B_w(z) = \langle B_w, B_z \rangle$. Consequently, for any choice of $n \in \mathbb{N}$ and an arbitrary subset $\{w_1, \ldots, w_n\}$ of \mathcal{D} , the $n \times n$ matrix $((B_{w_i}(w_j)))_{i,j=1}^n$ must be positive definite.

Let \mathscr{D} be a bounded open connected subset of \mathbb{C}^m and $\mathbb{A}^2(\mathscr{D})$ be the Hilbert space of square integrable (with respect to volume measure) holomorphic functions on \mathscr{D} . The Bergman kernel $B : \mathscr{D} \times \mathscr{D} \to \mathbb{C}$ is uniquely defined by the two requirements:

$$B_{w} \in \mathbb{A}^{2}(\mathscr{D}) \qquad \text{for all } w \in \mathscr{D}$$

$$\langle f, B_{w} \rangle = f(w) \qquad \text{for all } f \in A^{2}(\mathscr{D}).$$

The existence of B_w is guaranteed as long as the evaluation functional $f \rightarrow f(w)$ is bounded.

We have $B_w(z) = \langle B_w, B_z \rangle$. Consequently, for any choice of $n \in \mathbb{N}$ and an arbitrary subset $\{w_1, \ldots, w_n\}$ of \mathcal{D} , the $n \times n$ matrix $((B_{w_i}(w_j)))_{i,j=1}^n$ must be positive definite.

Notice first that if $e_n(z)$, $n \ge 0$ is an orthonormal basis for the Bergman space $\mathbb{A}^2(\mathscr{D})$, then any $f \in \mathbb{A}^2(\mathscr{D})$ has the Fourier series expansion $f(z) = \sum_{n=0}^{\infty} a_n e_n(z)$. Assuming that the sum

$$B_w(z) := \sum_{n=0}^{\infty} e_n(z) \overline{e_n(w)},$$

is in $\mathbb{A}^2(\mathscr{D})$ for each $w \in \mathscr{D}$, we see that

 $\langle f(z), B_w(z) \rangle = f(w), w \in \mathscr{D}.$

For the Bergman space $\mathbb{A}^2(\mathbb{D}^m)$, of the polydisc \mathbb{D}^m , the orthonormal basis is $\{\sqrt{\prod_{i=1}^m (n_i+1)}z^I : I = (i_1, \dots, i_m)\}$. Clearly, we have

example

$$B_{\mathbb{D}^m}(z,w) = \sum_{|I|=0}^{\infty} \left(\prod_{i=1}^m (n_i+1)\right) z^I \bar{w}^I = \prod_{i=1}^m (1-z_i \bar{w}_i)^{-2}.$$

Similarly, for the Bergman space of the ball $\mathbb{A}^2(\mathbb{B}^m)$, the orthonormal basis is $\left\{\sqrt{\binom{-m-1}{|I|}\binom{|I|}{I}}z^I: I = (i_1, \dots, i_m)\right\}$. Again, it follows that

$$B_{\mathbb{B}^m}(z,w) = \sum_{|I|=0}^{\infty} \binom{-m-1}{\ell} \left(\sum_{|I|=\ell} \binom{|I|}{I} z^I \bar{w}^I \right) = (1-\langle z,w\rangle)^{-m-1}.$$

For the Bergman space $\mathbb{A}^2(\mathbb{D}^m)$, of the polydisc \mathbb{D}^m , the orthonormal basis is $\{\sqrt{\prod_{i=1}^m (n_i+1)}z^I : I = (i_1, \dots, i_m)\}$. Clearly, we have

example

$$B_{\mathbb{D}^m}(z,w) = \sum_{|I|=0}^{\infty} \left(\prod_{i=1}^m (n_i+1)\right) z^I \bar{w}^I = \prod_{i=1}^m (1-z_i \bar{w}_i)^{-2}.$$

Similarly, for the Bergman space of the ball $\mathbb{A}^2(\mathbb{B}^m)$, the orthonormal basis is $\left\{\sqrt{\binom{-m-1}{|I|}\binom{|I|}{l}}z^I: I = (i_1, \dots, i_m)\right\}$. Again, it follows that

$$B_{\mathbb{B}^m}(z,w) = \sum_{|I|=0}^{\infty} \binom{-m-1}{\ell} \left(\sum_{|I|=\ell} \binom{|I|}{I} z^I \bar{w}^I \right) = (1-\langle z,w\rangle)^{-m-1}.$$

Any bi-holomorphic map $\varphi: \mathscr{D} \to \tilde{\mathscr{D}}$ induces a unitary operator $U_{\varphi}: \mathbb{A}^2(\tilde{\mathscr{D}}) \to \mathbb{A}^2(\mathscr{D})$ defined by the formula

 $(U_{\varphi}f)(z) = J(\varphi, z) (f \circ \varphi)(z), f \in \mathbb{A}^2(\tilde{\mathscr{D}}), z \in \mathscr{D}.$

This is an immediate consequence of the change of variable formula for the volume measure on \mathbb{C}^n :

$$\int_{\widetilde{\mathscr{D}}} f \, dV = \int_{\mathscr{D}} (f \circ \varphi) \, |J_{\mathbb{C}} \varphi|^2 dV.$$

Consequently, if $\{\tilde{e}_n\}_{n\geq 0}$ is any orthonormal basis for $\mathbb{A}^2(\tilde{\mathscr{D}})$, then $\{e_n\}_{n\geq 0}$, where $\tilde{e}_n = J(\varphi, \cdot)(\tilde{e}_n \circ \varphi)$ is an orthonormal basis for the Bergman space $\mathbb{A}^2(\tilde{\mathscr{D}})$.

Any bi-holomorphic map $\varphi: \mathscr{D} \to \tilde{\mathscr{D}}$ induces a unitary operator $U_{\varphi}: \mathbb{A}^2(\tilde{\mathscr{D}}) \to \mathbb{A}^2(\mathscr{D})$ defined by the formula

 $(U_{\varphi}f)(z) = J(\varphi, z) (f \circ \varphi)(z), f \in \mathbb{A}^2(\tilde{\mathscr{D}}), z \in \mathscr{D}.$

This is an immediate consequence of the change of variable formula for the volume measure on \mathbb{C}^n :

$$\int_{\widetilde{\mathscr{D}}} f \, dV = \int_{\mathscr{D}} (f \circ \varphi) \, |J_{\mathbb{C}} \varphi|^2 dV.$$

Consequently, if $\{\tilde{e}_n\}_{n\geq 0}$ is any orthonormal basis for $\mathbb{A}^2(\tilde{\mathscr{D}})$, then $\{e_n\}_{n\geq 0}$, where $\tilde{e}_n = J(\varphi, \cdot)(\tilde{e}_n \circ \varphi)$ is an orthonormal basis for the Bergman space $\mathbb{A}^2(\tilde{\mathscr{D}})$.

Expressing the Bergman kernel $B_{\mathscr{D}}$ of the domains \mathscr{D} as the infinite sum $\sum_{n=0}^{\infty} e_n(z)\overline{e_n(w)}$ using the orthonormal basis in $\mathbb{A}^2(\mathscr{D})$, we see that the Bergman Kernel *B* is *quasi-invariant*, that is, If $\varphi : \mathscr{D} \to \widetilde{\mathscr{D}}$ is holomorphic then we have the transformation rule

 $J(\boldsymbol{\varphi}, z) \boldsymbol{B}_{\tilde{\mathscr{D}}}(\boldsymbol{\varphi}(z), \boldsymbol{\varphi}(w)) \overline{J(\boldsymbol{\varphi}, w)} = \boldsymbol{B}_{\mathscr{D}}(z, w),$

where $J(\varphi, w)$ is the Jacobian determinant of the map φ at w.

If \mathscr{D} admits a transitive group of bi-holomorphic automorphisms, then this transformation rule gives an effective way of computing the Bergman kernel. Thus

 $B_{\mathscr{D}}(z,z) = |J(\varphi_z,z)|^2 B_{\mathscr{D}}(0,0), z \in \mathscr{D},$

where φ_z is the automorphism of \mathscr{D} with the property $\varphi_z(z) = 0$.

Expressing the Bergman kernel $B_{\mathscr{D}}$ of the domains \mathscr{D} as the infinite sum $\sum_{n=0}^{\infty} e_n(z)\overline{e_n(w)}$ using the orthonormal basis in $\mathbb{A}^2(\mathscr{D})$, we see that the Bergman Kernel *B* is *quasi-invariant*, that is, If $\varphi : \mathscr{D} \to \widetilde{\mathscr{D}}$ is holomorphic then we have the transformation rule

 $J(\boldsymbol{\varphi}, z) \boldsymbol{B}_{\tilde{\mathscr{D}}}(\boldsymbol{\varphi}(z), \boldsymbol{\varphi}(w)) \overline{J(\boldsymbol{\varphi}, w)} = \boldsymbol{B}_{\mathscr{D}}(z, w),$

where $J(\varphi, w)$ is the Jacobian determinant of the map φ at w. If \mathscr{D} admits a transitive group of bi-holomorphic automorphisms, then this transformation rule gives an effective way of computing the Bergman kernel. Thus

 $B_{\mathscr{D}}(z,z) = |J(\varphi_z,z)|^2 B_{\mathscr{D}}(0,0), \, z \in \mathscr{D},$

where φ_z is the automorphism of \mathscr{D} with the property $\varphi_z(z) = 0$.

The quasi-invariance of the Bergman kernel $B_{\mathscr{D}}(z;w)$ also leads to a bi-holomorphic invariant for the domain \mathscr{D} . Setting

$$\mathscr{K}_{B_{\mathscr{D}}}(z) = \left(\frac{\partial^2}{\partial z_i \partial \bar{z}_j} \log B_{\mathscr{D}}\right)(z)$$

to be the curvature of the metric $B_{\mathcal{D}}(z,z)$, the function

$$\mathbb{I}_{\mathscr{D}}(z) := \frac{\det \mathscr{K}_{B_{\mathscr{D}}}(z)}{B_{\mathscr{D}}(z)}, \, z \in \mathscr{D}$$

is a bi-holomorphic invariant for the domain \mathcal{D} .

Consider the special case, where $\varphi : \mathscr{D} \to \mathscr{D}$ is an automorphism. Clearly, in this case, U_{φ} is unitary on $\mathbb{A}^2(\mathscr{D})$ for all $\varphi \in \operatorname{Aut}(\mathscr{D})$. The map $J : \operatorname{Aut}(\mathscr{D}) \times \mathscr{D} \to \mathbb{C}$ satisfies the cocycle property, namely

 $J(\boldsymbol{\psi}\boldsymbol{\varphi}, z) = J(\boldsymbol{\varphi}, \boldsymbol{\psi}(z))J(\boldsymbol{\psi}, z), \, \boldsymbol{\varphi}, \boldsymbol{\psi} \in \operatorname{Aut}(\mathcal{D}), z \in \mathcal{D}.$

This makes the map $\varphi \to U_{\varphi}$ a homomorphism. Thus we have a unitary representation of the Lie group Aut(\mathscr{D}) on $\mathbb{A}^{2}(\mathscr{D})$.

Consider the special case, where $\varphi : \mathscr{D} \to \mathscr{D}$ is an automorphism. Clearly, in this case, U_{φ} is unitary on $\mathbb{A}^2(\mathscr{D})$ for all $\varphi \in \operatorname{Aut}(\mathscr{D})$. The map $J : \operatorname{Aut}(\mathscr{D}) \times \mathscr{D} \to \mathbb{C}$ satisfies the cocycle property, namely

 $J(\boldsymbol{\psi}\boldsymbol{\varphi}, \boldsymbol{z}) = J(\boldsymbol{\varphi}, \boldsymbol{\psi}(\boldsymbol{z}))J(\boldsymbol{\psi}, \boldsymbol{z}), \, \boldsymbol{\varphi}, \boldsymbol{\psi} \in \operatorname{Aut}(\mathcal{D}), \, \boldsymbol{z} \in \mathcal{D}.$

This makes the map $\ \phi o U_{\phi}$ a homomorphism.

Thus we have a unitary representation of the Lie group $\operatorname{Aut}(\mathscr{D})$ on $\mathbb{A}^2(\mathscr{D})$.

Consider the special case, where $\varphi : \mathscr{D} \to \mathscr{D}$ is an automorphism. Clearly, in this case, U_{φ} is unitary on $\mathbb{A}^2(\mathscr{D})$ for all $\varphi \in \operatorname{Aut}(\mathscr{D})$. The map $J : \operatorname{Aut}(\mathscr{D}) \times \mathscr{D} \to \mathbb{C}$ satisfies the cocycle property, namely

 $J(\psi \varphi, z) = J(\varphi, \psi(z)) J(\psi, z), \, \varphi, \psi \in \operatorname{Aut}(\mathcal{D}), z \in \mathcal{D}.$

This makes the map $\varphi \to U_{\varphi}$ a homomorphism.

Thus we have a unitary representation of the Lie group $\operatorname{Aut}(\mathscr{D})$ on $\mathbb{A}^2(\mathscr{D})$.

Let $\varphi : \mathscr{D} \to \widetilde{\mathscr{D}}$ be a bi-holomorphic map. Applying the change of variable formula twice to the function $\log B_{\widetilde{\mathscr{D}}}(\varphi(z), \varphi(w))$, we have

$$\left(\!\left(\frac{\partial^2}{\partial z_l \partial \bar{w}_j} \log B_{\hat{\mathscr{D}}}(\varphi(z), \varphi(w))\right)\!\right)_{ij} = \left(\!\left(\frac{\partial \varphi_l}{\partial z_i}\right)\!\right)_{i\ell} \left(\!\left(\frac{\partial^2}{\partial z_\ell \partial \bar{w}_k} \log B_{\hat{\mathscr{D}}}\right)\!(\varphi(z), \varphi(w))\right)\!\right)_{\ell k} \left(\!\left(\frac{\partial \bar{\varphi}_k}{\partial \bar{z}_j}\right)\!\right)_{kj} \cdot \left(\!\left(\frac{\partial \varphi_l}{\partial z_l \partial \bar{w}_k}\right)\!\right)_{i\ell k} \left(\left(\frac{\partial \varphi_l}{\partial \bar{z}_j}\right)\!\right)_{kj} \cdot \left(\left(\frac{\partial \varphi_l}{\partial z_l \partial \bar{w}_k}\right)\!\right)_{i\ell k} \left(\frac{\partial \varphi_l}{\partial \bar{z}_j}\right)_{kj} \cdot \left(\left(\frac{\partial \varphi_l}{\partial \bar{z}_j}\right)\!\right)_{i\ell k} \left(\frac{\partial \varphi_l}{\partial \bar{z}_j}\right)_{kj} \cdot \left(\left(\frac{\partial \varphi_l}{\partial \bar{z}_j}\right)\!\right)_{kj} \cdot \left(\left(\frac{\partial \varphi_l}{\partial \bar{z}_j}\right)\right)_{kj} \cdot \left(\left(\frac{\partial \varphi_l}{\partial \bar{z}_j}\right)\!\right)_{kj} \cdot \left(\left(\frac{\partial \varphi_l}{\partial \bar{z}_j}\right)\right)_{kj} \cdot \left(\left(\frac{\partial \varphi_l}{\partial \bar{z}$$

Now, the Bergman kernel $B_{\mathcal{D}}$ transforms according to the rule:

 $\det_{\mathbb{C}} D\varphi(w) B_{\widehat{\mathscr{D}}}(\varphi(w), \varphi(w)) \overline{\det_{\mathbb{C}} D\varphi(w)} = B_{\mathscr{D}}(w, w),$

Thus $\mathscr{K}_{B_{\tilde{\mathscr{Q}}}\circ(\varphi,\varphi)}(w,w)$ equals $\mathscr{K}_{B_{\mathscr{Q}}}(w,w)$. Hence we conclude that $\mathscr{K}_{B_{\mathscr{Q}}}$ is quasi-invariant under a bi-holomorphic map φ , namely,

 $D\phi(w)^{\sharp}\mathscr{K}_{\widetilde{\mathscr{D}}}(\phi(w),\phi(w))\overline{D\phi(w)}=\mathscr{K}_{\mathscr{D}}(w,w),\,w\in\mathscr{D}.$

the proof cntd.

Taking determinants on both sides we get

 $\det \mathscr{K}_{\mathscr{D}}(w,w) = J_C \varphi f(z) \det \mathscr{K}_{\widetilde{\mathscr{D}}}(\varphi(w),\varphi(w)).$

Thus we get the invariance of $\mathbb{I}_{\mathscr{D}}$:

$$\frac{\det \mathscr{K}_{\mathscr{D}}(w,w)}{B_{\mathscr{D}}(w,w)} = \frac{|J_{\mathbb{C}}\varphi(z)|^{2}\det \mathscr{K}_{\widehat{\mathscr{D}}}(\varphi(w),\varphi(w))}{B_{\mathscr{D}}(w,w)}$$
$$= \frac{|J_{\mathbb{C}}\varphi(z)|^{2}\det \mathscr{K}_{\widehat{\mathscr{D}}}(\varphi(w),\varphi(w))}{|J_{\mathbb{C}}\varphi(w)|^{2}B_{\widehat{\mathscr{D}}}(\varphi(w),\varphi(w))}$$
$$= \frac{\det \mathscr{K}_{\widehat{\mathscr{D}}}(\varphi(w),\varphi(w))}{B_{\widehat{\mathscr{D}}}(\varphi(w),\varphi(w))}$$

Theorem

For any homogeneous domain \mathscr{D} in \mathbb{C}^n , the function $\mathbb{I}_{\mathscr{D}}(z)$ is constant.

the proof cntd.

Taking determinants on both sides we get

 $\det \mathscr{K}_{\mathscr{D}}(w,w) = J_C \varphi f(z) \det \mathscr{K}_{\widetilde{\mathscr{D}}}(\varphi(w),\varphi(w)).$

Thus we get the invariance of $\mathbb{I}_{\mathscr{D}}$:

$$\frac{\det \mathscr{K}_{\mathscr{D}}(w,w)}{B_{\mathscr{D}}(w,w)} = \frac{|J_{\mathbb{C}}\varphi(z)|^{2}\det \mathscr{K}_{\widehat{\mathscr{D}}}(\varphi(w),\varphi(w))}{B_{\mathscr{D}}(w,w)}$$
$$= \frac{|J_{\mathbb{C}}\varphi(z)|^{2}\det \mathscr{K}_{\widehat{\mathscr{D}}}(\varphi(w),\varphi(w))}{|J_{\mathbb{C}}\varphi(w)|^{2}B_{\widehat{\mathscr{D}}}(\varphi(w),\varphi(w))}$$
$$= \frac{\det \mathscr{K}_{\widehat{\mathscr{D}}}(\varphi(w),\varphi(w))}{B_{\widehat{\mathscr{D}}}(\varphi(w),\varphi(w))}$$

Theorem

For any homogeneous domain \mathscr{D} in \mathbb{C}^n , the function $\mathbb{I}_{\mathscr{D}}(z)$ is constant.

Since $\mathscr{D} \subseteq \mathbb{C}^n$ is homogeneous, it follows that there exists a bi-holomorphic map φ_u of \mathscr{D} for each $u \in \mathscr{D}$ such that $\varphi_u(0) = u$. Applying the transformation rule for \mathbb{I} , we have

$$\begin{split} \mathbb{I}_{\mathscr{D}}(0) &= \quad \frac{\det \mathscr{K}_{\mathscr{D}}(0,0)}{B_{\mathscr{D}}(0,0)} \\ &= \quad \frac{\det \mathscr{K}_{\mathscr{D}}(\varphi_u(0),\varphi_u(0))}{B_{\mathscr{D}}(\varphi_u(0),\varphi_u(0))} \\ &= \quad \frac{\det \mathscr{K}_{\mathscr{D}}(u,u)}{B_{\mathscr{D}}(u,u)} = \mathbb{I}_{\mathscr{D}}(u), \, u \in \mathscr{D} \end{split}$$

It is easy to compute $\mathbb{I}_{\mathscr{D}}(0)$ when \mathscr{D} is the bi-disc and the Euclidean ball in \mathbb{C}^2 . For these two domains, it has the value 4 and 9 respectively. We conclude that these domains therefore can't be bi-holomorphically equivalent!

Since $\mathscr{D} \subseteq \mathbb{C}^n$ is homogeneous, it follows that there exists a bi-holomorphic map φ_u of \mathscr{D} for each $u \in \mathscr{D}$ such that $\varphi_u(0) = u$. Applying the transformation rule for \mathbb{I} , we have

$$\begin{split} \mathbb{I}_{\mathscr{D}}(0) &= \quad \frac{\det \mathscr{K}_{\mathscr{D}}(0,0)}{B_{\mathscr{D}}(0,0)} \\ &= \quad \frac{\det \mathscr{K}_{\mathscr{D}}(\varphi_u(0),\varphi_u(0))}{B_{\mathscr{D}}(\varphi_u(0),\varphi_u(0))} \\ &= \quad \frac{\det \mathscr{K}_{\mathscr{D}}(u,u)}{B_{\mathscr{D}}(u,u)} = \mathbb{I}_{\mathscr{D}}(u), \, u \in \mathscr{D} \end{split}$$

It is easy to compute $\mathbb{I}_{\mathscr{D}}(0)$ when \mathscr{D} is the bi-disc and the Euclidean ball in \mathbb{C}^2 . For these two domains, it has the value 4 and 9 respectively. We conclude that these domains therefore can't be bi-holomorphically equivalent!

Let *K* be a complex valued positive definite kernel on \mathscr{D} . For *w* in \mathscr{D} , and *p* in the set $\{1, \ldots, d\}$, let $e_p : \Omega \to \mathscr{H}$ be the antiholomorphic function:

$$e_p(w) := K_w(\cdot) \otimes \frac{\partial}{\partial \bar{w}_p} K_w(\cdot) - \frac{\partial}{\partial \bar{w}_p} K_w(\cdot) \otimes K_w(\cdot).$$

Setting $G(z,w)_{p,q} = \langle e_p(w), e_q(z) \rangle$, we have

$$\frac{1}{2}G(z,w)_{p,q}{}^{\sharp} = K(z,w)\frac{\partial^2}{\partial z_q\partial \bar{w}_p}K(z,w) - \frac{\partial}{\partial \bar{w}_p}K(z,w)\frac{\partial}{\partial z_q}K(z,w)).$$

The curvature K of the metric K is given by the (1,1) - form $\sum \frac{\partial^2}{\partial w_q \partial \bar{w}_p} \log K(w,w) dw_q \wedge d\bar{w}_p$. Set

$$\mathscr{K}_{K}(z,w) := \left(\left(\frac{\partial^{2}}{\partial z_{q} \partial \bar{w}_{p}} \log K(z,w) \right) \right)_{qp}.$$

We note that $K(z,w)^2 \mathscr{K}(z,w) = \frac{1}{2}G(z,w)^{\sharp}$. Hence $K(z,w)^2 \mathscr{K}(z,w)$ defines a positive definite kernel on \mathscr{D} taking values in Hom(V,V).

rewrite the transformation rule

Or equivalently,

$$\begin{aligned} \mathscr{K}(\boldsymbol{\varphi}(z),\boldsymbol{\varphi}(w)) &= \boldsymbol{D}\boldsymbol{\varphi}(z)^{\sharp^{-1}}\mathscr{K}(z,w)\overline{\boldsymbol{D}\boldsymbol{\varphi}(z)}^{-1} \\ &= \boldsymbol{D}\boldsymbol{\varphi}(z)^{\sharp^{-1}}\mathscr{K}(z,w) \left(\boldsymbol{D}\boldsymbol{\varphi}(w)^{\sharp^{-1}}\right)^{*} \\ &= \boldsymbol{m}_{0}(\boldsymbol{\varphi},z)\mathscr{K}(z,w)\boldsymbol{m}_{0}(\boldsymbol{\varphi},w)^{*}, \end{aligned}$$

where $m_0(\varphi, z) = D\varphi(z)^{\sharp^{-1}}$ and multiplying both sides by K^2 , we have

 $K(\boldsymbol{\varphi}(z),\boldsymbol{\varphi}(w))^{2}\mathcal{K}(\boldsymbol{\varphi}(z),\boldsymbol{\varphi}(w)) = m_{2}(\boldsymbol{\varphi},z)K(z,w)^{2}\mathcal{K}(z,w)m_{2}(\boldsymbol{\varphi},w)^{*},$

where $m_2(\varphi, z) = (\det_{\mathbb{C}} D\varphi(w)^2 D\varphi(z)^{\sharp})^{-1}$ is a multiplier. Of course, we now have that

- (i) $K^{2+\lambda}(z,w)\mathcal{K}(z,w)$, $\lambda > 0$, is a positive definite kernel and
- (*ii*) it transforms with the co-cycle $m_{\lambda}(\varphi, z) = (\det_{\mathbb{C}} D\varphi(z)^{2+\lambda} D\varphi(z)^{\dagger})^{-1}$ in place of $m_2(\varphi, z)$.

rewrite the transformation rule

Or equivalently,

$$\begin{aligned} \mathscr{K}(\boldsymbol{\varphi}(z),\boldsymbol{\varphi}(w)) &= \boldsymbol{D}\boldsymbol{\varphi}(z)^{\sharp^{-1}}\mathscr{K}(z,w)\overline{\boldsymbol{D}\boldsymbol{\varphi}(z)}^{-1} \\ &= \boldsymbol{D}\boldsymbol{\varphi}(z)^{\sharp^{-1}}\mathscr{K}(z,w) \left(\boldsymbol{D}\boldsymbol{\varphi}(w)^{\sharp^{-1}}\right)^* \\ &= \boldsymbol{m}_0(\boldsymbol{\varphi},z)\mathscr{K}(z,w)\boldsymbol{m}_0(\boldsymbol{\varphi},w)^*, \end{aligned}$$

where $m_0(\varphi, z) = D\varphi(z)^{\sharp^{-1}}$ and multiplying both sides by K^2 , we have

 $K(\boldsymbol{\varphi}(z),\boldsymbol{\varphi}(w))^{2}\mathcal{K}(\boldsymbol{\varphi}(z),\boldsymbol{\varphi}(w)) = m_{2}(\boldsymbol{\varphi},z)K(z,w)^{2}\mathcal{K}(z,w)m_{2}(\boldsymbol{\varphi},w)^{*},$

where $m_2(\varphi, z) = (\det_{\mathbb{C}} D\varphi(w)^2 D\varphi(z)^{\sharp})^{-1}$ is a multiplier. Of course, we now have that

(i) $K^{2+\lambda}(z,w)\mathcal{K}(z,w)$, $\lambda > 0$, is a positive definite kernel and

(*ii*) it transforms with the co-cycle $m_{\lambda}(\varphi, z) = \left(\det_{\mathbb{C}} D\varphi(z)^{2+\lambda} D\varphi(z)^{\dagger}\right)^{-1}$ in place of $m_2(\varphi, z)$.

rewrite the transformation rule

Or equivalently,

$$\begin{aligned} \mathscr{K}(\boldsymbol{\varphi}(z),\boldsymbol{\varphi}(w)) &= \boldsymbol{D}\boldsymbol{\varphi}(z)^{\sharp^{-1}}\mathscr{K}(z,w)\overline{\boldsymbol{D}\boldsymbol{\varphi}(z)}^{-1} \\ &= \boldsymbol{D}\boldsymbol{\varphi}(z)^{\sharp^{-1}}\mathscr{K}(z,w) \left(\boldsymbol{D}\boldsymbol{\varphi}(w)^{\sharp^{-1}}\right)^* \\ &= \boldsymbol{m}_0(\boldsymbol{\varphi},z)\mathscr{K}(z,w)\boldsymbol{m}_0(\boldsymbol{\varphi},w)^*, \end{aligned}$$

where $m_0(\varphi, z) = D\varphi(z)^{\sharp^{-1}}$ and multiplying both sides by K^2 , we have

 $K(\boldsymbol{\varphi}(z),\boldsymbol{\varphi}(w))^{2}\mathcal{K}(\boldsymbol{\varphi}(z),\boldsymbol{\varphi}(w)) = m_{2}(\boldsymbol{\varphi},z)K(z,w)^{2}\mathcal{K}(z,w)m_{2}(\boldsymbol{\varphi},w)^{*},$

where $m_2(\varphi, z) = \left(\det_{\mathbb{C}} D\varphi(w)^2 D\varphi(z)^{\sharp}\right)^{-1}$ is a multiplier. Of course, we now have that

(i) $K^{2+\lambda}(z,w)\mathcal{K}(z,w)$, $\lambda > 0$, is a positive definite kernel and

(*ii*) it transforms with the co-cycle $m_{\lambda}(\varphi, z) = \left(\det_{\mathbb{C}} D\varphi(z)^{2+\lambda} D\varphi(z)^{\dagger}\right)^{-1}$ in place of $m_2(\varphi, z)$.

Thank you!

