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the Bergman kernel

Let D be a bounded open connected subset of Cm and A2(D) be the
Hilbert space of square integrable (with respect to volume measure)
holomorphic functions on D . The Bergman kernel B : D×D → C is
uniquely defined by the two requirements:

Bw ∈ A2(D) for all w ∈D

〈f ,Bw〉= f (w) for all f ∈ A2(D).

The existence of Bw is guaranteed as long as the evaluation functional
f → f (w) is bounded.
We have Bw(z) = 〈Bw,Bz〉. Consequently, for any choice of n ∈ N
and an arbitrary subset {w1, . . . ,wn} of D , the n×n matrix
((Bwi(wj)))

n
i,j=1 must be positive definite.
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Fourier series

Notice first that if en(z), n≥ 0 is an orthonormal basis for the Bergman
space A2(D), then any f ∈ A2(D) has the Fourier series expansion
f (z) = ∑

∞
n=0 anen(z). Assuming that the sum

Bw(z) :=
∞

∑
n=0

en(z)en(w),

is in A2(D) for each w ∈D , we see that

〈f (z),Bw(z)〉= f (w), w ∈D .



example

For the Bergman space A2(Dm), of the polydisc Dm , the orthonormal
basis is {

√
∏

m
i=1(ni +1)zI : I = (i1, . . . , im)}. Clearly, we have

BDm(z,w) =
∞

∑
|I|=0

( m

∏
i=1

(ni +1)
)
zIw̄I =

m

∏
i=1

(1− ziw̄i)
−2.

Similarly, for the Bergman space of the ball A2(Bm), the orthonormal

basis is {
√(−m−1

|I|
)(|I|

I

)
zI : I = (i1, . . . , im)}. Again, it follows that

BBm(z,w) =
∞

∑
|I|=0

(
−m−1

`

)(
∑
|I|=`

(
|I|
I

)
zIw̄I)= (1−〈z,w〉)−m−1.
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quasi-invariance of B

Any bi-holomorphic map ϕ : D → D̃ induces a unitary operator
Uϕ : A2(D̃)→ A2(D) defined by the formula

(Uϕ f )(z) = J(ϕ,z)
(
f ◦ϕ

)
(z), f ∈ A2(D̃), z ∈D .

This is an immediate consequence of the change of variable formula
for the volume measure on Cn :∫

D̃
f dV =

∫
D
(f ◦ϕ) |JCϕ|2dV.

Consequently, if {ẽn}n≥0 is any orthonormal basis for A2(D̃), then
{en}n≥0 , where ẽn = J(ϕ, ·)(ẽn ◦ϕ) is an orthonormal basis for the
Bergman space A2(D̃).
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quasi-invariance of B

Expressing the Bergman kernel BD of the domains D as the infinite
sum ∑

∞
n=0 en(z)en(w) using the orthonormal basis in A2(D) , we see

that the Bergman Kernel B is quasi-invariant, that is, If ϕ : D → D̃ is
holomorphic then we have the transformation rule

J(ϕ,z)BD̃ (ϕ(z),ϕ(w))J(ϕ,w) = BD (z,w),

where J(ϕ,w) is the Jacobian determinant of the map ϕ at w .
If D admits a transitive group of bi-holomorphic automorphisms, then
this transformation rule gives an effective way of computing the
Bergman kernel. Thus

BD (z,z) = |J(ϕz,z)|2BD (0,0), z ∈D ,

where ϕz is the automorphism of D with the property ϕz(z) = 0 .
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the invariant

The quasi-invariance of the Bergman kernel BD (z;w) also leads to a
bi-holomorphic invariant for the domain D . Setting

KBD
(z) =

(
∂ 2

∂ zi∂ z̄j
logBD

)
(z)

to be the curvature of the metric BD (z,z), the function

ID (z) :=
detKBD

(z)
BD (z)

, z ∈D

is a bi-holomorphic invariant for the domain D .



the multiplier

Consider the special case, where ϕ : D →D is an automorphism.
Clearly, in this case, Uϕ is unitary on A2(D) for all ϕ ∈ Aut(D).

The map J : Aut(D)×D → C satisfies the cocycle property, namely

J(ψϕ,z) = J(ϕ,ψ(z))J(ψ,z), ϕ,ψ ∈ Aut(D), z ∈D .

This makes the map ϕ → Uϕ a homomorphism.
Thus we have a unitary representation of the Lie group Aut(D) on
A2(D).
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the proof that ID is an invariant

Let ϕ : D → D̃ be a bi-holomorphic map. Applying the change of
variable formula twice to the function logBD̃ (ϕ(z),ϕ(w)), we have

(( ∂ 2

∂ zi∂ w̄j
logBD̃ (ϕ(z),ϕ(w))

))
ij =

(( ∂ϕ`

∂ zi

))
i`

((
(

∂ 2

∂ z`∂ w̄k
logBD )(ϕ(z),ϕ(w))

))
`k

(( ∂ ϕ̄k

∂ z̄j

))
kj.

Now, the Bergman kernel BD transforms according to the rule:

detCDϕ(w)BD̃ (ϕ(w),ϕ(w))detCDϕ(w) = BD (w,w),

Thus KBD̃◦(ϕ,ϕ)(w,w) equals KBD
(w,w). Hence we conclude that

KBD
is quasi-invariant under a bi-holomorphic map ϕ , namely,

Dϕ(w)]KD̃ (ϕ(w),ϕ(w))Dϕ(w) = KD (w,w), w ∈D .



the proof cntd.

Taking determinants on both sides we get

detKD (w,w) = JCϕf (z)detKD̃ (ϕ(w),ϕ(w)).

Thus we get the invariance of ID :

detKD (w,w)
BD (w,w)

=
|JCϕ(z)|2 detKD̃ (ϕ(w),ϕ(w))

BD (w,w)

=
|JCϕ(z)|2 detKD̃ (ϕ(w),ϕ(w))
|JCϕ(w)|2BD̃ (ϕ(w),ϕ(w))

=
detKD̃ (ϕ(w),ϕ(w))

BD̃ (ϕ(w),ϕ(w))

Theorem
For any homogeneous domain D in Cn, the function ID (z) is constant.
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proof of the theorem

Since D ⊆ Cn is homogeneous, it follows that there exists a
bi-holomorphic map ϕu of D for each u ∈D such that ϕu(0) = u.
Applying the transformation rule for I, we have

ID (0) =
detKD (0,0)

BD (0,0)

=
detKD (ϕu(0),ϕu(0))

BD (ϕu(0),ϕu(0))

=
detKD (u,u)

BD (u,u)
= ID (u), u ∈D

It is easy to compute ID (0) when D is the bi-disc and the Euclidean
ball in C2. For these two domains, it has the value 4 and 9
respectively. We conclude that these domains therefore can’t be
bi-holomorphically equivalent!
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new kernels?

Let K be a complex valued positive definite kernel on D . For w in
D , and p in the set {1, . . . ,d}, let ep : Ω→H be the
antiholomorphic function:

ep(w) := Kw(·)⊗
∂

∂ w̄p
Kw(·)−

∂

∂ w̄p
Kw(·)⊗Kw(·).

Setting G(z,w)p,q = 〈ep(w),eq(z)〉, we have

1
2

G(z,w)p,q
] = K(z,w)

∂ 2

∂ zq∂ w̄p
K(z,w)− ∂

∂ w̄p
K(z,w)

∂

∂ zq
K(z,w)).

The curvature K of the metric K is given by the (1,1) - form
∑

∂ 2

∂wq∂ w̄p
logK(w,w)dwq∧dw̄p. Set

KK(z,w) :=
(( ∂ 2

∂ zq∂ w̄p
logK(z,w)

))
qp.

We note that K(z,w)2K (z,w) = 1
2 G(z,w)]. Hence K(z,w)2K (z,w)

defines a positive definite kernel on D taking values in Hom(V,V).



rewrite the transformation rule

Or equivalently,

K (ϕ(z),ϕ(w)) = Dϕ(z)]
−1

K (z,w)Dϕ(z)
−1

= Dϕ(z)]
−1

K (z,w)
(
Dϕ(w)]

−1)∗
= m0(ϕ,z)K (z,w)m0(ϕ,w)∗,

where m0(ϕ,z) = Dϕ(z)]−1 and multiplying both sides by K2, we
have

K(ϕ(z),ϕ(w))2K (ϕ(z),ϕ(w)) = m2(ϕ,z)K(z,w)2K (z,w)m2(ϕ,w)∗,

where m2(ϕ,z) =
(

detC Dϕ(w)2Dϕ(z)]
)−1 is a multiplier. Of course,

we now have that
(i) K2+λ (z,w)K (z,w) , λ > 0, is a positive definite kernel and

(ii) it transforms with the co-cycle mλ (ϕ,z) =
(

detC Dϕ(z)2+λ Dϕ(z)†)−1

in place of m2(ϕ,z).
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Thank you!


