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A question of invariant subspaces



a question of invariant subspaces

• For a fixed 𝜆 ∈ ℝ, let 𝐿𝜆 be the Hilbert space of
measurable (complex-valued) functions on the open unit
disc 𝔻 such that

‖𝑓‖2
𝜆 = ∫𝔻(1− |𝑧|2)𝜆−2|𝑓(𝑧)|2𝑑𝐴𝑧 < ∞.

(𝑑𝐴𝑧 stands for 𝑑𝑥𝑑𝑦, 𝑧 = 𝑥+𝑖𝑦. )

• Let 𝐺 be the simply connected covering group of
𝑆𝑈(1,1);𝑔(𝑧) and 𝑔′(𝑧) = 𝜕(𝑔(𝑧))

𝜕𝑧 still make sense for
𝑔 ∈ 𝐺. The group 𝐺 acts on 𝐿𝜆 by a unitary
representation {𝑈𝑔} via the multiplier 𝑔′(𝑧)−𝜆/2.

• Explicitly (it is simpler to write down 𝑈𝑔−1 than 𝑈𝑔 ),

𝑈𝑔−1𝑓(𝑧) = 𝑔′(𝑧)𝜆/2𝑓(𝑔(𝑧)).
Unitarity follows from the identity
(1− |𝑧|2)|𝑔′(𝑧)| = 1−|𝑔(𝑧)|2.
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Mackey

(𝑈𝑔 is the representation induced in Mackey’s sense by the
character −𝜆

2 of 𝐾, the stabiilizer of 0 in 𝐺. This follows
by observing that any 𝑔 ∈ 𝐾 acts by a rotation 𝑔(𝑧) = 𝑒𝑖𝜃𝑧,
and then 𝑔′(𝑧)−𝜆/2 = 𝑒−𝑖 𝜆

2 𝜃. )
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an invariant subspace

• The subspace 𝐻𝜆 of holomorphic functions in 𝐿𝜆 is
invariant under {𝑈𝑔}.
(𝐻𝜆 ≠ 0 if and only if 𝜆 > 1; in this case, the restriction
of {𝑈𝑔} to 𝐻𝜆 is the holomorphic discrete series.)

• 𝐻𝜆 is also an invariant subspace for the operator 𝑀
defined by 𝑀𝑓(𝑧) = 𝑧𝑓(𝑧).

• Question: Is 𝐻𝜆 the only subspace invariant under both
{𝑈𝑔} and 𝑀?
Note: A similar question can be asked if we regard {𝑈𝑔}
as a representation on 𝐶∞(𝔻).
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Mackey’s theorem, multiplier and
induced representations



imprimitivity

- Let 𝐺 be a connected Lie group, 𝐻 ⊆ 𝐺 closed,
𝒟 = 𝐺/𝐻 , and 0 ∈ 𝒟 be the base point. The group 𝐺
acts transitively, via 𝐿𝑔(𝑔′𝐻) = 𝑔𝑔′𝐻 , on the space of
cosets 𝐺/𝐻.

- suppose that 𝑈 ∶ 𝐺 → 𝒰(𝒦) is a unitary representation
of the group 𝐺 on the Hilbert space 𝒦 and that
𝜚 ∶ 𝐶𝐶𝐶0(𝒟) → ℒ(𝒦) is a ∗ - homomorphism of the 𝐶∗ -
algebra of continuous functions 𝐶𝐶𝐶0(𝒟) vanishing at ∞
on the algebra ℒ(𝒦) of all bounded operators acting on
the Hilbert space 𝒦.

- Then setting (𝑔 ⋅ 𝑓)(𝑤) = 𝑓(𝑔−1 ⋅𝑤), 𝑤 ∈ 𝒟 , the pair (𝑈,𝜚)
is said to be a representation of the 𝐺 -space 𝒟 if it
forms an imprimitivity:

𝑈(𝑔)∗𝜚(𝑓)𝑈(𝑔) = 𝜚(𝑔 ⋅ 𝑓) =, 𝑓 ∈ 𝐶𝐶𝐶0(𝒟), 𝑔 ∈ 𝐺.
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multiplier representation

- A multiplier is a 𝐶∞ map 𝑚 ∶ 𝐺×𝒟 → GL(𝑉 ) such that

𝑚(𝑔ℎ,𝑧) = 𝑚(𝑔,ℎ𝑧)𝑚(ℎ,𝑧), 𝑔,ℎ ∈ 𝐺, 𝑧 ∈ 𝒟.
It follows that 𝑚(𝑒,𝑧) ≡ 𝐼𝑉 and that 𝑚 is determined
from the values 𝑚(𝑔,0), 𝑔 ∈ 𝐺, and that
𝜎𝑚(ℎ) ∶= 𝑚(ℎ,0) is a representation of 𝐻. Finally,
𝑚(𝑔,𝑔−1𝑧) = 𝑚(𝑔−1,𝑧)−1, 𝑔 ∈ 𝐺, 𝑧 ∈ 𝒟. The multiplier
representation 𝑈𝑚 acts on 𝐶∞(𝒟,𝑉 ):
(𝑈𝑚

𝑔 𝑓)(𝑧) = 𝑚(𝑔−1,𝑧)−1𝑓(𝑔−1𝑧), 𝑓 ∈ 𝐶∞(𝒟,𝑉 ), 𝑧 ∈ 𝒟.

- Conversely, the map 𝜋 ∶ 𝐺 → 𝐶∞(𝒟,𝑉 ), called a
multiplier representation,

(𝜋(𝑔)𝑓)(𝑧) = (𝑚(𝑔−1,𝑧))−1𝑓 (𝑔−1𝑧) , 𝑧 ∈ 𝒟,𝑓 ∈ ℋ,𝑔 ∈ 𝐺,

is a homomorphism if and only if 𝑚 ∶ 𝐺×𝒟 → GL(𝑉 ) is a
multiplier.
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induced representation

- A homomorphism of this form, called multiplier
representation, comes from a representation 𝜎 of the
subgroup 𝐻. A multiplier representation of 𝐺 with
multiplier 𝑚𝜎 is said to be induced by 𝜎

- If the representation 𝜎 is unitary, the induced
representation can be made unitary. This is achieved by
Mackey as follows.

- There is a measurable cross section (actually can be 𝐶∞

or holomorphic depending on the pair of groups 𝐺,𝐻 )
𝑠 ∶ 𝐺/𝐻 → 𝐺 , i.e., 𝑝 ∘ 𝑠 = id|𝐺/𝐻.

- There is a unique quasi-invariant measure 𝜇 on 𝐺/𝐻 ,
i.e., 𝜇∘𝐿𝑔 and 𝜇 are absolutely continuous for all 𝑔 ∈ 𝐺.
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Mackey’s imprimitivity theorem

• Set 𝒦 ∶= 𝐿2(𝐺/𝐻,𝜇,𝑉 ). The representation Ind induced
from a unitary representation 𝜎 of 𝐻 acting on 𝑉 is
then given by the formula

(Ind(𝑔)𝑓)(𝑔′𝐻) = 𝑑(𝜇∘𝐿−1
𝑔 )

𝑑𝜇 𝜎(ℎ)(𝑓 ∘𝐿−1
𝑔 )(𝑔′𝐻), 𝑔 ∈ 𝐺,

where ℎ is determined from the relation
𝑔𝑠(𝐿−1

𝑔 𝑔′𝐻) = 𝑠(𝑔′𝐻)ℎ.

• Mackey’s Imprimitivity theorem says that any pair (𝑈,𝜚)
of imprimitivity is necessarily an induced representation.

• Mackey described these modulo suitable equivalence.

• Question: If we replace the ∗ -homomorphism 𝜌 of a
commutative 𝐶∗ -algebra by an algebra homomorphism,
then what should we expect? Answer: These are the
commuting tuples of homogeneous operators!

9



Mackey’s imprimitivity theorem

• Set 𝒦 ∶= 𝐿2(𝐺/𝐻,𝜇,𝑉 ). The representation Ind induced
from a unitary representation 𝜎 of 𝐻 acting on 𝑉 is
then given by the formula

(Ind(𝑔)𝑓)(𝑔′𝐻) = 𝑑(𝜇∘𝐿−1
𝑔 )

𝑑𝜇 𝜎(ℎ)(𝑓 ∘𝐿−1
𝑔 )(𝑔′𝐻), 𝑔 ∈ 𝐺,

where ℎ is determined from the relation
𝑔𝑠(𝐿−1

𝑔 𝑔′𝐻) = 𝑠(𝑔′𝐻)ℎ.
• Mackey’s Imprimitivity theorem says that any pair (𝑈,𝜚)
of imprimitivity is necessarily an induced representation.

• Mackey described these modulo suitable equivalence.

• Question: If we replace the ∗ -homomorphism 𝜌 of a
commutative 𝐶∗ -algebra by an algebra homomorphism,
then what should we expect? Answer: These are the
commuting tuples of homogeneous operators!

9



Mackey’s imprimitivity theorem

• Set 𝒦 ∶= 𝐿2(𝐺/𝐻,𝜇,𝑉 ). The representation Ind induced
from a unitary representation 𝜎 of 𝐻 acting on 𝑉 is
then given by the formula

(Ind(𝑔)𝑓)(𝑔′𝐻) = 𝑑(𝜇∘𝐿−1
𝑔 )

𝑑𝜇 𝜎(ℎ)(𝑓 ∘𝐿−1
𝑔 )(𝑔′𝐻), 𝑔 ∈ 𝐺,

where ℎ is determined from the relation
𝑔𝑠(𝐿−1

𝑔 𝑔′𝐻) = 𝑠(𝑔′𝐻)ℎ.
• Mackey’s Imprimitivity theorem says that any pair (𝑈,𝜚)
of imprimitivity is necessarily an induced representation.

• Mackey described these modulo suitable equivalence.

• Question: If we replace the ∗ -homomorphism 𝜌 of a
commutative 𝐶∗ -algebra by an algebra homomorphism,
then what should we expect? Answer: These are the
commuting tuples of homogeneous operators!

9



Mackey’s imprimitivity theorem

• Set 𝒦 ∶= 𝐿2(𝐺/𝐻,𝜇,𝑉 ). The representation Ind induced
from a unitary representation 𝜎 of 𝐻 acting on 𝑉 is
then given by the formula

(Ind(𝑔)𝑓)(𝑔′𝐻) = 𝑑(𝜇∘𝐿−1
𝑔 )

𝑑𝜇 𝜎(ℎ)(𝑓 ∘𝐿−1
𝑔 )(𝑔′𝐻), 𝑔 ∈ 𝐺,

where ℎ is determined from the relation
𝑔𝑠(𝐿−1

𝑔 𝑔′𝐻) = 𝑠(𝑔′𝐻)ℎ.
• Mackey’s Imprimitivity theorem says that any pair (𝑈,𝜚)
of imprimitivity is necessarily an induced representation.

• Mackey described these modulo suitable equivalence.

• Question: If we replace the ∗ -homomorphism 𝜌 of a
commutative 𝐶∗ -algebra by an algebra homomorphism,
then what should we expect? Answer: These are the
commuting tuples of homogeneous operators! 9



group action, homogeneous
operators, associated
representation



the Möbius group, the 2 - fold covering group SU(1,1)

- The Möbius group, to be denoted 𝐺0 in what follows,
consists of the bi-holomorphic automorphisms of 𝔻 of
the form 𝜑𝜃,𝑎(𝑧) = 𝑒𝑖𝜃 𝑧−𝑎

1−�̄�𝑧 , 0 ≤ 𝜃 < 2𝜋, and 𝑎 in the
unit disc 𝔻.

- The linear group 𝐺 ∶= SU(1,1) is the group of complex
2×2 matrices of the form 𝑔 ∶= (𝛼 𝛽

̄𝛽 �̄� ) with
|𝛼|2 −|𝛽|2 = 1. It acts on the unit disc by the rule
𝑔(𝑧) = 𝛼𝑧+𝛽

�̄�+ ̄𝛽𝑧 .
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homogeneous operators

- The biholomorphic map 𝜑𝜃,𝑎 comes from the action of a
𝑔 ∈ SU(1,1), namely,

𝑔 = 1
√1−|𝑎|2 ( exp(𝑖 𝜃

2 ) 0
0 exp(−𝑖 𝜃

2 )
)( 1 −𝑎

−�̅� 1 ),

and also from 𝑔𝜃+2𝜋,𝑎.

- The map 𝑔 ↦ (2𝜃,𝑎) is a 2 to 1 smooth homomorphism,
i.e., it is a 2 -fold Lie group covering of the Möbius
group 𝐺.

- A bounded linear operator 𝑇 on a complex separable
Hilbert space ℋ with 𝜎(𝑇 ) ⊆ �̅� is said to be
homogeneous if 𝜑𝜃,𝑎(𝑇 ) ∶= 𝑒𝑖𝜃(𝑇 −𝑎𝐼)(𝐼 − ̄𝑎𝑇 )−1 is
unitarily equivalent to 𝑇 for all 𝜑𝜃,𝑎 ∈ 𝐺0.
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definitions and results



homogeneous operators and associated representations

• The ∗ - homomorphism 𝜌𝑁 induced by 𝑁 , namely,
𝜌𝑁(𝑓) = 𝑓(𝑁) satisfying the imprimitivity condition is
easily checked to be the condition of homogeneity for
the operator 𝑁 .

• To every homogeneous irreducible operator 𝑇 there
corresponds an associated unitary representation ̃𝜋 of
the universal covering group ̃𝐺 ∶

̃𝜋( ̃𝑔)∗𝑇 ̃𝜋( ̃𝑔) = (𝑝 ̃𝑔)(𝑇 ), ̃𝑔 ∈ ̃𝐺,
where 𝑝 ∶ ̃𝐺 → 𝐺 is the natural homomorphism.

• If 𝑇 is contractive irreducible homogeneous operator,
then the homomorphism 𝜌𝑇 induced by 𝑇 , namely,
𝜌𝑇 (𝑝) = 𝑝(𝑇 ) is the compression of an imprimitivity.
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subnormal operators

• An operator 𝑇 on a Hilbert space ℋ is said to be
subnormal if there exists a normal operator 𝑁 on a
Hilbert space 𝒦 such that ℋ is an invariant subspace
for 𝑁 and 𝑁|ℋ = 𝑇 .

• Two such normal extensions are unitarily equivalent if
they are assumed to be minimal, that is, 𝒦 is the
smallest reducing subspace of 𝑁 containing ℋ.

• A minimal normal extension, say mne(𝑇 ), always exists
and is uniquely determined modulo unitary equivalence.

• If 𝑇 is a subnormal irreducible homogeneous operator,
then the homomorphism 𝜌𝑇 is the restriction to some
simultaneous invariant subspace of an imprimitivity.
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some results

• In other words, if 𝑇 is subnormal and homogeneous,
then the mne(𝑇 ) is also homogeneous.

• Moreover, if a subnormal homogeneous operator has an
associated representation, say 𝑈, then together with 𝑇 ,
the representation 𝑈 also extends to an associated
representation of the mne(𝑇 ).

• A list of all the normal operators that are homogeneous
is not hard to produce. For these, we also determine all
the associated representations. The result suggests a
possible approach to finding all the homogeneous
subnormal operators:

• Every homogeneous subnormal operator is the restriction
to a common invariant subspace of a homogeneous normal
operator and one of its associated representations.
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homogeneous normal

Theorem

Let 𝑁 ∈ ℒ(ℋ) be a normal operator. Then 𝑁 is
homogeneous if and only if there exists 𝑚,𝑚′ ∈ {0}∪ℕ∪{∞}
such that 𝑁 = 𝐴𝑚 ⊕𝐵𝑚′ , where 𝐴𝑚 is the 𝑚 -fold direct
sum of 𝑀𝑧 on 𝐿2(𝔻,𝑑𝐴) and 𝐵𝑚′ is 𝑚′ -fold direct sum of
𝑀𝑧 on 𝐿2(𝕋,𝑑𝜃) .

• The question of determining which homogeneous
operators are subnormal then is equivalent to asking
what are the subspaces of

(⊕𝑚𝐿2(𝔻,𝑑𝐴))⊕(⊕𝑚′ 𝐿2(𝕋,𝑑𝜃))
simultaneously invariant under the unitary representation
𝑈 and the multiplication operator 𝑀 .
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tools and techniques

• All homogeneous operators in 𝐵𝑚(𝔻), modulo unitary
equivalence, are known. We identify which operators
among these are subnormal, that is, appear as the
restriction of a normal operator to an invariant subspace.
For this, we need some tools from representation theory
which we recall. Let 𝑋 be either 𝔻 or 𝕋.

• Let 𝑉 be a vector space and for each fixed 𝑔 ∈ ̃𝐺,
𝑚 ∶ ̃𝐺×𝑋 → GL(𝑉 ) be a Borel multiplier:
𝑚(𝑒,𝑧) = 𝐼𝑉 , 𝑚(𝑔1𝑔2,𝑧) = 𝑚(𝑔1,𝑔2𝑧)𝑚(𝑔2,𝑧), 𝑧 ∈ 𝑋,

• Let ℋ be a Hilbert space of 𝑉 -valued functions on Ω.
A representation admitting a realization of the form

(𝜋(𝑔)𝑓)(𝑧) = (𝑚(𝑔−1,𝑧))−1𝑓 (𝑔−1𝑧) , 𝑧 ∈ 𝑋,𝑓 ∈ ℋ,𝑔 ∈ ̃𝐺
is said to be a multiplier representation.
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What are the associated
representations



Goal, the case of 𝕋

• Going to determine all the associated representations of
the homogeneous normal operators.

• Assume that the multiplication operator 𝑀 ,
(𝑀𝑓)(𝑧) = 𝑧𝑓(𝑧), 𝑧 ∈ 𝑋, 𝑓 ∈ ℋ, is bounded and that 𝜋
is a multiplier representation ̃𝐺 on ℋ. Then 𝑀 is
homogeneous and 𝜋 is associated with 𝑀.

Theorem
For 𝑀 on 𝐿2

𝑉 (𝑑𝜃) , dim𝑉 < ∞, the associated
representations are exactly the orthogonal direct sums (with
possible repetition) of arbitrary principal series
representations. They act on the (scalar valued) 𝐿2(𝑑𝜃)
subspaces by the multiplier ( 𝑔′(𝑒𝑖𝜃)

|𝑔′(𝑒𝑖𝜃)|)
−𝑘

∣𝑔′(𝑒𝑖𝜃)∣−
1
2 −𝑖𝜎 ,

−1
2 < 𝑘 < 1

2 , 𝜎 > 0.
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conventions

• For a given 𝑑 ∈ ℕ, let Λ denote a partition
𝑑 = 𝑑0 +⋯+𝑑𝑚 together with real numbers
𝜆0 < 𝜆1 < … < 𝜆𝑚. Write 𝑑 = |Λ|.

• For 𝜆 ∈ ℝ, let 𝜒𝜆 be the unitary representation of 𝕂 on
ℂ given by 𝜒𝜆 (𝑘𝜃) = 𝑒−𝜆𝜃, where 𝑘𝜃 ∈ 𝕂 acts in 𝔻 by
𝑧 ↦ 𝑒𝑖𝜃𝑧. We write

𝜒Λ(𝑘) = ⊕𝑗𝑑𝑗𝜒𝜆𝑗
(𝑘), 𝑘 ∈ 𝕂.

• Modulo unitary equivalence, all the 𝑑 - dimensional
representations of 𝕂 are obtained this way with |Λ| = 𝑑.
Define, for 𝜆 ∈ ℝ,

𝑚𝜆(𝑔,𝑧) = ( 𝑔′(𝑧)
∣𝑔′(𝑧)∣)

−𝜆
, 𝑚Λ = ⊕𝑗𝑑𝑗𝑚𝜆𝑗 .
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the case of 𝔻

Theorem
For 𝑀 acting on 𝐿2

𝑉 (𝑑𝐴) , the associate representations are
exactly the unitary multiplier representations given by 𝑚Λ

with 𝑑 = |Λ|.

• The proof involves the imprimitivity theorem due to
Mackey establishing the equivalence of the associated
representation with the induced representation Ind𝐺

𝐾(𝜒Λ).

• Moreover the associated representation of the direct
sum 𝑀 ⊕𝑀 acting on 𝐿2

𝑉 (𝑑𝜃)⊕𝐿2
𝑉 ′(𝑑𝐴) is necessarily

the direct sum of the ones we have already found.
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invariant subspace



invariant subspaces

Theorem
For dim 𝑉 < ∞, the 𝑈 - invariant subspaces of 𝐿2

𝑉 (𝑑𝜃) are
the orthogonal direct sums of 1 - dimensional subspaces
with 𝑈 acting on them as

⊕(𝑘,𝑠)≠(0,0)𝑑𝑘,𝑠𝑃𝑘𝑠 ⊕𝑑+𝑃 + ⊕𝑑−𝑃 −, 𝑑𝑘,𝑠 ∈ ℕ.

Let 𝑆 be the restriction of 𝑀 acting on 𝐿2(𝑑𝜃) to the
Hardy space 𝐻2.
Corollary
Any homogeneous subnormal operator whose mne is 𝑀 on
𝐿2

𝑉 (𝜃), must be the orthogonal direct sum 𝑈 ⊕𝑑𝑆, where 𝑈
is a homogeneous unitary and 𝑑 ∈ ℕ.
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quasi-invariant

• Let 𝑄 be a 𝜈 -measwable map of 𝔻 to the positive
definite matirices on 𝑉 , and let 𝐿2(𝑉 ,𝑄,𝜈) be the
Hilbert space consisting of functions 𝑓 ∶ 𝔻 → 𝑉 with norm

∫𝔻 ⟨(𝑄(𝑧)𝑓(𝑧),𝑓(𝑧))⟩𝑉 𝑑𝜈(𝑧) < ∞.

• The operator 𝑀 on this space is another realization of
the “same” normal operator 𝑀 on 𝐿2

𝑉 (𝑑𝜈). The unitary
isomorphism is given by the map 𝑓 ↦ 𝑄1/2𝑓.

• A multiplier 𝑚 on 𝐿2(𝑉 ,𝑄,𝜈) gives a unitary
representation if and only if (easy) 𝑄 is quasi-invariant:

𝑄(𝑔 ⋅ 𝑧) = 𝑚(𝑔,𝑧)∗−1𝑄(𝑧)𝑚(𝑔,𝑧)−1 (∀𝑔,𝑎.𝑎.𝑧)
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an important observation

• Given two such spaces, with 𝑄 and 𝑄′, respectively, 𝑚
and 𝑚′, we say 𝑚 and 𝑚′ are equivalent if there
exists a measurable 𝜙 ∶ 𝔻 → 𝐺𝐿(𝑉 ) such that

𝑚′(𝑔,𝑧) = 𝜙(𝑔 ⋅ 𝑧)𝑚(𝑔,𝑧)𝜙(𝑧)−1.

• Cleraly, 𝑓 ↦ 𝑓 ′ = 𝜙𝑓 is a Hilberet space isomorphism
between 𝐿2

𝑉 (𝑄,𝜈) and 𝐿2
𝑉 (𝑄′,𝜈) intertwining the

multiplier representations given by 𝑚, 𝑚′ and the
multiplication operator 𝑀 on these two spaces.

• The case of continuous multiplier is particularly simple,
devoid of measure theoretic difficulties. In our situation,
every equivalence class of a multiplier contains one that
is continuous.
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some more observations

• Picking a continuous multiplier 𝑚 and putting 𝑧 = 0 , we
can rewrite the quasi-invariance of 𝑄 as follows:

𝑄(𝑔 ⋅ 0) = 𝑚(𝑔,0)∗−1𝑄(0)𝑚(𝑔,0)−1.

• If 𝑚 and 𝑚′ are continuous 𝐺𝐿(𝑉 ) -valued multipliers
such that 𝑚(𝑘,0) = 𝑚′(𝑘,0), 𝑘 ∈ 𝕂, then they are
equivalent.

• Also easy to see that 𝜌(𝑘) = 𝑚(𝑘,0), 𝑘 ∈ 𝕂, is unitary
with respect to some inner product ⟨𝑄0⋅, ⋅⟩𝑉 with some
𝑄0 > 0, then the map 𝑓 → 𝐹 with
𝐹(𝑔) = 𝑚(𝑔,0)−1𝑓(𝑔 ⋅ 0) is an isomorphism onto the
𝐿2

𝑉 -space of functions 𝐺 → 𝑉 such thet
𝐹(𝑔𝑘) = 𝜌(𝑘)−1𝐹(𝑔), which is the definition of the
induced representations 𝐼𝑛𝑑𝐺

𝐾(𝜌).
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example

• A classic example shows the use of redundancy in the
multipliers. In the scalar case, for any 𝜆 ∈ ℝ, we have
the multiplier 𝑔′(𝑧)−𝜆 equivalent to 𝑚𝜆(𝑔,𝑧).

• The multiplier 𝑔′(𝑧)−𝜆 acts on 𝐿2(𝑄𝑑𝜈) with
𝑄(𝑧) = (1− |𝑧|2)2𝜆 and preserves the subspace 𝔸(𝜆) of
holomorphic functions. This subspace is not {0} if and
only if 𝜆 > 1/2. When 𝜆 > 0, we have a Hilbert space
but the subspace of holomorphic functions is not {0} if
and only if 𝜆 > 1/2.

• The restriction of the operator 𝑀 to the subspace 𝔸(𝜆)

is then the subnormal homogeneous operator that we
have been looking for.
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holomorphic structure

• The operator 𝑀 on 𝔸(𝜆) can however, also be thought
of as the restriction of 𝑀 on 𝐿2(𝜈) to a subspace,
namely the space ℍ(𝜆) of elements of 𝔸(𝜆) multiplied by
𝜙−1, i.e, the subspace of 𝐿2(𝜈) of function 𝑓 such that
𝜙(𝑧)𝑓(𝑧) is holomorphic.

• This, in turn, can be interpreted as 𝑓 being holomorphic
with respect to a changed complex structure,
characterized by 𝜕

𝜕 ̄𝑧 (𝜙(𝑧)−1𝑓(𝑧)) = 0, computing this
amounts to 𝜕

𝜕 ̄𝑧𝑓(𝑧) = 𝜆𝑧
𝑙−|𝑧|2 𝑓(𝑧).

• This example already gives rise to the difficult open
question: If the subspace of holomorphic functions in
𝐿2((1− |𝑧|2)2𝜆𝑑𝜈) is the only subspace simultaneously
invariant under 𝑀 and 𝑈?
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main result



colorcyan main result

The irreducible homogeneous subnormal operators that can
be obtained by restricting (𝐿2

𝑉 (𝜈)) to the subspace of
functions holomorphic with respect to a 𝐺-invariant complex
structure are parametrized by 𝜂 > 1

2 , 𝑌 irreducible, and 𝑄0

commuting with 𝜒Λ(𝑘), 𝑘 ∈ 𝕂.
In particular, all of these are adjoints of operators in the
Cowen-Douglas class.
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Thank You!
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