Simultaneous invariant subspaces of $L^2(\mathbb{D})$

Joint Spectra and related Topics in Complex Dynamics and Representation Theory (Banff International Research Station, May 21 – 26, 2023)

Gadadhar Misra (joint with Adam Korányi)

May 23, 2023

Indian Statistical Institute Bangalore And Indian Institute of Technology Gandhinagar A question of invariant subspaces

group action, homogeneous operators, associated representation

definitions and results

What are the associated representations

invariant subspace

main result

A question of invariant subspaces

a question of invariant subspaces

 For a fixed λ ∈ ℝ, let L^λ be the Hilbert space of measurable (complex-valued) functions on the open unit disc D such that

 $\|f\|_{\lambda}^{2} = \int_{\mathbb{D}} (1-|z|^{2})^{\lambda-2} |f(z)|^{2} dA_{z} < \infty.$

(dA_z stands for dxdy, z = x + iy.)

a question of invariant subspaces

 For a fixed λ ∈ ℝ, let L^λ be the Hilbert space of measurable (complex-valued) functions on the open unit disc D such that

 $\overline{\|f\|_{\lambda}^2=\int_{\mathbb{D}}(1-|z|^2)^{\lambda-2}|f(z)|^2}dA_z<\infty.$

(dA_z stands for \overline{dxdy} , z = x + iy.)

• Let G be the simply connected covering group of SU(1,1); g(z) and $g'(z) = \frac{\partial(g(z))}{\partial z}$ still make sense for $g \in G$. The group G acts on L^{λ} by a unitary representation $\{U_a\}$ via the multiplier $g'(z)^{-\lambda/2}$.

a question of invariant subspaces

 For a fixed λ∈ ℝ, let L^λ be the Hilbert space of measurable (complex-valued) functions on the open unit disc D such that

 $\|f\|_{\lambda}^{2} = \int_{\mathbb{D}} (1-|z|^{2})^{\lambda-2} |f(z)|^{2} dA_{z} < \infty.$

(dA_z stands for dxdy, z = x + iy.)

- Let G be the simply connected covering group of SU(1,1); g(z) and $g'(z) = \frac{\partial(g(z))}{\partial z}$ still make sense for $g \in G$. The group G acts on L^{λ} by a unitary representation $\{U_q\}$ via the multiplier $g'(z)^{-\lambda/2}$.
- Explicitly (it is simpler to write down $U_{q^{-1}}$ than U_q),

 $U_{q^{-1}}f(\overline{z)} = g'(z)^{\lambda/2}\overline{f(g(z))}.$

Unitarity follows from the identity $(1-|z|^2)|g'(z)| = 1-|g(z)|^2.$

 $(U_g$ is the representation induced in Mackey's sense by the character $-\frac{\lambda}{2}$ of K, the stabiilizer of 0 in G. This follows by observing that any $g \in K$ acts by a rotation $g(z) = e^{i\theta}z$, and then $g'(z)^{-\lambda/2} = e^{-i\frac{\lambda}{2}\theta}$.)

an invariant subspace

The subspace H^λ of holomorphic functions in L^λ is invariant under {U_g}.
(H^λ ≠ 0 if and only if λ > 1; in this case, the restriction of {U_g} to H^λ is the holomorphic discrete series.)

an invariant subspace

- The subspace H^λ of holomorphic functions in L^λ is invariant under {U_g}.
 (H^λ ≠ 0 if and only if λ > 1; in this case, the restriction of {U_g} to H^λ is the holomorphic discrete series.)
- H^λ is also an invariant subspace for the operator M defined by Mf(z) = zf(z).

an invariant subspace

- The subspace H^λ of holomorphic functions in L^λ is invariant under {U_g}.
 (H^λ ≠ 0 if and only if λ > 1; in this case, the restriction of {U_g} to H^λ is the holomorphic discrete series.)
- H^λ is also an invariant subspace for the operator M defined by Mf(z) = zf(z).
- Question: Is H^λ the only subspace invariant under both {U_g} and M?
 Note: A similar question can be asked if we regard {U_g} as a representation on C[∞](D).

Mackey's theorem, multiplier and induced representations

imprimitivity

- Let G be a connected Lie group, $H \subseteq G$ closed, $\mathcal{D} = G/H$, and $0 \in \mathcal{D}$ be the base point. The group G acts transitively, via $L_g(g'H) = gg'H$, on the space of cosets G/H.

imprimitivity

- Let G be a connected Lie group, $H \subseteq G$ closed, $\mathcal{D} = G/H$, and $0 \in \mathcal{D}$ be the base point. The group G acts transitively, via $L_g(g'H) = gg'H$, on the space of cosets G/H.
- suppose that $U: G \to \mathcal{U}(\mathcal{K})$ is a unitary representation of the group G on the Hilbert space \mathcal{K} and that $\varrho: \mathbf{C}_0(\mathcal{D}) \to \mathcal{L}(\mathcal{K})$ is a * - homomorphism of the C^* algebra of continuous functions $\mathbf{C}_0(\mathcal{D})$ vanishing at ∞ on the algebra $\mathcal{L}(\mathcal{K})$ of all bounded operators acting on the Hilbert space \mathcal{K} .

imprimitivity

- Let G be a connected Lie group, $H \subseteq G$ closed, $\mathcal{D} = G/H$, and $0 \in \mathcal{D}$ be the base point. The group G acts transitively, via $L_g(g'H) = gg'H$, on the space of cosets G/H.
- suppose that $U: G \to \mathcal{U}(\mathcal{K})$ is a unitary representation of the group G on the Hilbert space \mathcal{K} and that $\varrho: \mathbf{C}_0(\mathcal{D}) \to \mathcal{L}(\mathcal{K})$ is a * - homomorphism of the C^* algebra of continuous functions $\mathbf{C}_0(\mathcal{D})$ vanishing at ∞ on the algebra $\mathcal{L}(\mathcal{K})$ of all bounded operators acting on the Hilbert space \mathcal{K} .
- Then setting $(g \cdot f)(w) = f(g^{-1} \cdot w), w \in \mathcal{D}$, the pair (U, ϱ) is said to be a representation of the G -space \mathcal{D} if it forms an imprimitivity:

 $U(q)^* \rho(f) U(q) = \rho(q \cdot f) =, f \in \boldsymbol{C}_0(\mathcal{D}), q \in \boldsymbol{G}.$

6

multiplier representation

- A multiplier is a C^{∞} map $m: G \times \mathcal{D} \to \mathsf{GL}(V)$ such that $m(gh,z) = m(g,hz)m(h,z), g,h \in G, z \in \mathcal{D}.$

It follows that $m(e,z) \equiv I_V$ and that m is determined from the values m(g,0), $g \in G$, and that $\sigma_m(h) := m(h,0)$ is a representation of H. Finally, $m(g,g^{-1}z) = m(g^{-1},z)^{-1}$, $g \in G, z \in \mathcal{D}$. The multiplier representation U^m acts on $C^\infty(\mathcal{D},V)$:

 $\big(\big(U_g^m f \big)(z) = m(g^{-1},z)^{-1} f(g^{-1}z), f \in C^\infty(\mathcal{D},V), z \in \mathcal{D}.$

multiplier representation

- A multiplier is a C^{∞} map $m: G \times \mathcal{D} \to \mathsf{GL}(V)$ such that $m(gh,z) = m(g,hz)m(h,z), g, h \in G, z \in \mathcal{D}.$

It follows that $m(e,z) \equiv I_V$ and that m is determined from the values m(g,0), $g \in G$, and that $\sigma_m(h) := m(h,0)$ is a representation of H. Finally, $m(g,g^{-1}z) = m(g^{-1},z)^{-1}$, $g \in G, z \in \mathcal{D}$. The multiplier representation U^m acts on $C^{\infty}(\mathcal{D},V)$:

 $\big(U_g^mf\big)(z)=m(g^{-1},z)^{-1}f(g^{-1}z),\,f\in C^\infty(\mathcal{D},V),\,z\in\mathcal{D}.$

– Conversely, the map $\pi:G\to C^\infty(\mathcal{D},V)$, called a multiplier representation,

 $(\pi(g)f)(z)=(m(g^{-1},z))^{-1}f\left(g^{-1}z\right),\ z\in\mathcal{D},f\in\mathcal{H},g\in G\text{,}$

is a homomorphism if and only if $m: G \times \mathcal{D} \to \operatorname{GL}(V)$ is a multiplier.

- A homomorphism of this form, called multiplier representation, comes from a representation σ of the subgroup H. A multiplier representation of G with multiplier m^{σ} is said to be induced by σ

- A homomorphism of this form, called multiplier representation, comes from a representation σ of the subgroup H. A multiplier representation of G with multiplier m^{σ} is said to be induced by σ
- If the representation σ is unitary, the induced representation can be made unitary. This is achieved by Mackey as follows.

- A homomorphism of this form, called multiplier representation, comes from a representation σ of the subgroup H. A multiplier representation of G with multiplier m^{σ} is said to be induced by σ
- If the representation σ is unitary, the induced representation can be made unitary. This is achieved by Mackey as follows.
- There is a measurable cross section (actually can be C^{∞} or holomorphic depending on the pair of groups G, H) $s: G/H \to G$, i.e., $p \circ s = id_{|G/H}$.

- A homomorphism of this form, called multiplier representation, comes from a representation σ of the subgroup H. A multiplier representation of G with multiplier m^{σ} is said to be induced by σ
- If the representation σ is unitary, the induced representation can be made unitary. This is achieved by Mackey as follows.
- There is a measurable cross section (actually can be C^{∞} or holomorphic depending on the pair of groups G, H) $s: G/H \to G$, i.e., $p \circ s = id_{|G/H}$.
- There is a unique quasi-invariant measure μ on G/H , i.e., $\mu \circ L_a$ and μ are absolutely continuous for all $g \in G$

• Set $\mathcal{K} := L^2(\overline{G/H}, \mu, V)$. The representation Ind induced from a unitary representation σ of H acting on V is then given by the formula

$$\begin{split} \big(\operatorname{Ind}(g)f\big)(g'H) &= \frac{d\big(\mu \circ L_g^{-1}\big)}{d\mu} \sigma(h)\big(f \circ L_g^{-1}\big)(g'H), g \in G, \\ \text{where } h \quad \text{is determined from the relation} \\ gs(L_g^{-1}g'H) &= s(g'H)h. \end{split}$$

• Set $\mathcal{K} := L^2(\overline{G/H}, \mu, V)$. The representation Ind induced from a unitary representation σ of H acting on V is then given by the formula

 $\big(\operatorname{Ind}(g)f\big)(g'H) = \frac{d\big(\mu \circ L_g^{-1}\big)}{d\mu} \sigma(h) \big(f \circ L_g^{-1}\big)(g'H), g \in G,$

where h is determined from the relation $gs(L_g^{-1}g'H) = s(g'H)h.$

• Mackey's Imprimitivity theorem says that any pair (U, ϱ) of imprimitivity is necessarily an induced representation.

• Set $\mathcal{K} := L^2(G/H, \mu, V)$. The representation Ind induced from a unitary representation σ of H acting on V is then given by the formula

 $\big(\operatorname{Ind}(g)f\big)(g'H) = \frac{d\big(\mu \circ L_g^{-1}\big)}{d\mu} \sigma(h) \big(f \circ L_g^{-1}\big)(g'H), g \in G,$

where h~ is determined from the relation $gs(L_g^{-1}g'H)=s(g'H)h.$

- Mackey's Imprimitivity theorem says that any pair (U, ϱ) of imprimitivity is necessarily an induced representation.
- Mackey described these modulo suitable equivalence.

• Set $\mathcal{K} := L^2(\overline{G/H}, \mu, V)$. The representation Ind induced from a unitary representation σ of H acting on V is then given by the formula

 $\big(\operatorname{Ind}(g)f\big)(g'H) = \frac{d\big(\mu \circ L_g^{-1}\big)}{d\mu} \sigma(h) \big(f \circ L_g^{-1}\big)(g'H), g \in G,$

where h is determined from the relation $gs(L_g^{-1}g'H) = s(g'H)h.$

- Mackey's Imprimitivity theorem says that any pair (U, ϱ) of imprimitivity is necessarily an induced representation.
- Mackey described these modulo suitable equivalence.
- Question: If we replace the * -homomorphism ρ of a commutative C* -algebra by an algebra homomorphism, then what should we expect? Answer: These are the commuting tuples of homogeneous operators!

group action, homogeneous operators, associated representation

the Möbius group, the 2 – fold covering group $\operatorname{SU}(1,1)$

- The Möbius group, to be denoted G_0 in what follows, consists of the bi-holomorphic automorphisms of $\mathbb D$ of the form $\varphi_{\theta,a}(z) = e^{i\theta} \frac{z-a}{1-\bar{a}z}$, $0 \le \theta < 2\pi$, and a in the unit disc $\mathbb D$.

the Möbius group, the 2 – fold covering group $\mathrm{SU}(1,1)$

- The Möbius group, to be denoted G_0 in what follows, consists of the bi-holomorphic automorphisms of $\mathbb D$ of the form $\varphi_{\theta,a}(z) = e^{i\theta} \frac{z-a}{1-\bar{a}z}$, $0 \le \theta < 2\pi$, and a in the unit disc $\mathbb D$.
- The linear group $G := \operatorname{SU}(1,1)$ is the group of complex 2×2 matrices of the form $g := \begin{pmatrix} \alpha & \beta \\ \bar{\beta} & \bar{\alpha} \end{pmatrix}$ with $|\alpha|^2 |\beta|^2 = 1$. It acts on the unit disc by the rule $g(z) = \frac{\alpha z + \beta}{\bar{\alpha} + \beta z}$.

the Möbius group, the 2 – fold covering group $\mathrm{SU}(1,1)$

- The Möbius group, to be denoted G_0 in what follows, consists of the bi-holomorphic automorphisms of $\mathbb D$ of the form $\varphi_{\theta,a}(z) = e^{i\theta} \frac{z-a}{1-\bar{a}z}$, $0 \le \theta < 2\pi$, and a in the unit disc $\mathbb D$.
- The linear group $G := \operatorname{SU}(1,1)$ is the group of complex 2×2 matrices of the form $g := \begin{pmatrix} \alpha & \beta \\ \bar{\beta} & \bar{\alpha} \end{pmatrix}$ with $|\alpha|^2 |\beta|^2 = 1$. It acts on the unit disc by the rule $g(z) = \frac{\alpha z + \beta}{\bar{\alpha} + \beta z}$.
- Clearly, the element g and -g give rise to the same action. One may say that the kernel of the SU(1,1) action on the unit disc is the normal subgroup {I,-I}.

the Möbius group, the 2 – fold covering group $\mathrm{SU}(1,1)$

- The Möbius group, to be denoted G_0 in what follows, consists of the bi-holomorphic automorphisms of $\mathbb D$ of the form $\varphi_{\theta,a}(z) = e^{i\theta} \frac{z-a}{1-\bar{a}z}$, $0 \le \theta < 2\pi$, and a in the unit disc $\mathbb D$.
- The linear group $G := \operatorname{SU}(1,1)$ is the group of complex 2×2 matrices of the form $g := \begin{pmatrix} \alpha & \beta \\ \bar{\beta} & \bar{\alpha} \end{pmatrix}$ with $|\alpha|^2 |\beta|^2 = 1$. It acts on the unit disc by the rule $g(z) = \frac{\alpha z + \beta}{\bar{\alpha} + \beta z}$.
- Clearly, the element g and -g give rise to the same action. One may say that the kernel of the SU(1,1) action on the unit disc is the normal subgroup {I,-I}.
- We let $ilde{G}$ denote the universal covering group of G.

homogeneous operators

– The biholomorphic map $\varphi_{\theta,a}~$ comes from the action of a $g\in {\rm SU}(1,1),~$ namely,

$$g = \frac{1}{\sqrt{1-|a|^2}} \binom{\exp{(i\frac{\theta}{2})} \quad 0}{0 \quad \exp(-i\frac{\theta}{2})} \binom{1}{-\bar{a} \quad 1},$$

and also from $g_{ heta+2\pi,a}.$

homogeneous operators

– The biholomorphic map $\varphi_{\theta,a}~$ comes from the action of a $g\in {\rm SU}(1,1),~$ namely,

$$g = \frac{1}{\sqrt{1-|a|^2}} \binom{\exp{(i\frac{\theta}{2})} \quad 0}{0 \quad \exp{(-i\frac{\theta}{2})}} (\begin{matrix} 1 & -a \\ -\bar{a} & 1 \end{matrix}),$$

and also from $g_{ heta+2\pi,a}.$

The map g → (2θ, a) is a 2 to 1 smooth homomorphism,
 i.e., it is a 2 -fold Lie group covering of the Möbius
 group G.

homogeneous operators

– The biholomorphic map $\varphi_{\theta,a}$ comes from the action of a $g\in {\rm SU}(1,1)$, namely,

$$g = \frac{1}{\sqrt{1-|a|^2}} \binom{\exp{(i\frac{\theta}{2})} \quad 0}{0 \quad \exp{(-i\frac{\theta}{2})}} \binom{1}{-\bar{a} \quad 1},$$

and also from $g_{\theta+2\pi,a}$.

- The map g → (2θ, a) is a 2 to 1 smooth homomorphism,
 i.e., it is a 2 -fold Lie group covering of the Möbius group G.
- A bounded linear operator T on a complex separable Hilbert space \mathcal{H} with $\sigma(T) \subseteq \overline{\mathbb{D}}$ is said to be homogeneous if $\varphi_{\theta,a}(T) := e^{i\theta}(T-aI)(I-\overline{a}T)^{-1}$ is unitarily equivalent to T for all $\varphi_{\theta,a} \in G_0$.

definitions and results

homogeneous operators and associated representations

• The * - homomorphism ρ_N induced by N, namely, $\rho_N(f)=f(N)$ satisfying the imprimitivity condition is easily checked to be the condition of homogeneity for the operator N.

homogeneous operators and associated representations

- The * homomorphism ρ_N induced by N, namely, $\rho_N(f) = f(N)$ satisfying the imprimitivity condition is easily checked to be the condition of homogeneity for the operator N.
- To every homogeneous irreducible operator T there corresponds an associated unitary representation π̃ of the universal covering group G̃:

 $\tilde{\pi}(\tilde{g})^*T\tilde{\pi}(\tilde{g}) = (p\tilde{g})(T), \ \tilde{g} \in \tilde{G},$

where $p: \tilde{G} \to G$ is the natural homomorphism.

homogeneous operators and associated representations

- The * homomorphism ρ_N induced by N, namely, $\rho_N(f) = f(N)$ satisfying the imprimitivity condition is easily checked to be the condition of homogeneity for the operator N.
- To every homogeneous irreducible operator T there corresponds an associated unitary representation π̃ of the universal covering group G̃:

 $\tilde{\pi}(\tilde{g})^*T\tilde{\pi}(\tilde{g})=(p\tilde{g})(T),\,\tilde{g}\in\tilde{G},$

where $p: \tilde{G} \to G$ is the natural homomorphism.

• If T is contractive irreducible homogeneous operator, then the homomorphism ρ_T induced by T, namely, $\rho_T(p) = p(T)$ is the compression of an imprimitivity.

• An operator T on a Hilbert space \mathcal{H} is said to be subnormal if there exists a normal operator N on a Hilbert space \mathcal{K} such that \mathcal{H} is an invariant subspace for N and $N_{|\mathcal{H}} = T$.

- An operator T on a Hilbert space \mathcal{H} is said to be subnormal if there exists a normal operator N on a Hilbert space \mathcal{K} such that \mathcal{H} is an invariant subspace for N and $N_{i\mathcal{H}} = T$.
- Two such normal extensions are unitarily equivalent if they are assumed to be minimal, that is, *X* is the smallest reducing subspace of *N* containing *H*.

- An operator T on a Hilbert space \mathcal{H} is said to be subnormal if there exists a normal operator N on a Hilbert space \mathcal{K} such that \mathcal{H} is an invariant subspace for N and $N_{\mathcal{H}} = T$.
- Two such normal extensions are unitarily equivalent if they are assumed to be minimal, that is, *K* is the smallest reducing subspace of *N* containing *H*.
- A minimal normal extension, say mne(T), always exists and is uniquely determined modulo unitary equivalence.

- An operator T on a Hilbert space \mathcal{H} is said to be subnormal if there exists a normal operator N on a Hilbert space \mathcal{K} such that \mathcal{H} is an invariant subspace for N and $N_{|\mathcal{H}} = T$.
- Two such normal extensions are unitarily equivalent if they are assumed to be minimal, that is, *K* is the smallest reducing subspace of *N* containing *H*.
- A minimal normal extension, say mne(T), always exists and is uniquely determined modulo unitary equivalence.
- If T is a subnormal irreducible homogeneous operator, then the homomorphism ρ_T is the restriction to some simultaneous invariant subspace of an imprimitivity.

• In other words, if T is subnormal and homogeneous, then the mne(T) is also homogeneous.

- In other words, if T is subnormal and homogeneous, then the mne(T) is also homogeneous.
- Moreover, if a subnormal homogeneous operator has an associated representation, say U, then together with T, the representation U also extends to an associated representation of the mne(T).

- In other words, if T is subnormal and homogeneous, then the mne(T) is also homogeneous.
- Moreover, if a subnormal homogeneous operator has an associated representation, say U, then together with T, the representation U also extends to an associated representation of the mne(T).
- A list of all the normal operators that are homogeneous is not hard to produce. For these, we also determine all the associated representations. The result suggests a possible approach to finding all the homogeneous subnormal operators:

- In other words, if T is subnormal and homogeneous, then the mne(T) is also homogeneous.
- Moreover, if a subnormal homogeneous operator has an associated representation, say U, then together with T, the representation U also extends to an associated representation of the mne(T).
- A list of all the normal operators that are homogeneous is not hard to produce. For these, we also determine all the associated representations. The result suggests a possible approach to finding all the homogeneous subnormal operators:
- Every homogeneous subnormal operator is the restrictio
 to a common invariant subspace of a homogeneous normal operator and one of its associated representations.

homogeneous normal

Theorem

Let $N \in \mathcal{L}(\mathcal{H})$ be a normal operator. Then N is homogeneous if and only if there exists $m, m' \in \{0\} \cup \mathbb{N} \cup \{\infty\}$ such that $N = A_m \oplus B_{m'}$, where A_m is the m-fold direct sum of M_z on $L^2(\mathbb{D}, dA)$ and $B_{m'}$ is m'-fold direct sum of M_z on $L^2(\mathbb{T}, d\theta)$.

homogeneous normal

Theorem

Let $N \in \mathcal{L}(\mathcal{H})$ be a normal operator. Then N is homogeneous if and only if there exists $m, m' \in \{0\} \cup \mathbb{N} \cup \{\infty\}$ such that $N = A_m \oplus B_{m'}$, where A_m is the m-fold direct sum of M_z on $L^2(\mathbb{D}, dA)$ and $B_{m'}$ is m'-fold direct sum of M_z on $L^2(\mathbb{T}, d\theta)$.

 The question of determining which homogeneous operators are subnormal then is equivalent to asking what are the subspaces of

 $\left(\oplus_m L^2(\mathbb{D}, dA)\right) \oplus \left(\oplus_{m'} L^2(\mathbb{T}, d\theta)\right)$

simultaneously invariant under the unitary representation U and the multiplication operator M.

tools and techniques

All homogeneous operators in B_m(D), modulo unitary equivalence, are known. We identify which operators among these are subnormal, that is, appear as the restriction of a normal operator to an invariant subspace. For this, we need some tools from representation theory which we recall. Let X be either D or T.

tools and techniques

- All homogeneous operators in B_m(D), modulo unitary equivalence, are known. We identify which operators among these are subnormal, that is, appear as the restriction of a normal operator to an invariant subspace. For this, we need some tools from representation theory which we recall. Let X be either D or T.
- Let V be a vector space and for each fixed $g \in \tilde{G}$, $m: \tilde{G} \times X \rightarrow \mathsf{GL}(V)$ be a Borel multiplier: $m(e, z) = I_V, \quad m(g_1g_2, z) = m(g_1, g_2z)m(g_2, z), z \in X,$

tools and techniques

- All homogeneous operators in B_m(D), modulo unitary equivalence, are known. We identify which operators among these are subnormal, that is, appear as the restriction of a normal operator to an invariant subspace. For this, we need some tools from representation theory which we recall. Let X be either D or T.
- Let V be a vector space and for each fixed $g \in \tilde{G}$, $m: \tilde{G} \times X \to \operatorname{GL}(V)$ be a Borel multiplier: $m(e,z) = I_V, \quad m(g_1g_2,z) = m(g_1,g_2z)m(g_2,z), z \in X,$
- Let \mathcal{H} be a Hilbert space of V -valued functions on Ω . A representation admitting a realization of the form $(\pi(g)f)(z) = (m(g^{-1},z))^{-1}f(g^{-1}z), z \in X, f \in \mathcal{H}, g \in \tilde{G}$ is said to be a multiplier representation.

What are the associated representations

Goal, the case of $\ensuremath{\mathbb{T}}$

 Going to determine all the associated representations of the homogeneous normal operators.

Goal, the case of $\ensuremath{\mathbb{T}}$

- Going to determine all the associated representations of the homogeneous normal operators.
- Assume that the multiplication operator M, (Mf)(z) = zf(z), z∈X, f∈ H, is bounded and that π is a multiplier representation G̃ on H. Then M is homogeneous and π is associated with M.

Goal, the case of $\ensuremath{\mathbb{T}}$

- Going to determine all the associated representations of the homogeneous normal operators.
- Assume that the multiplication operator M, (Mf)(z) = zf(z), z∈X, f∈ H, is bounded and that π is a multiplier representation G̃ on H. Then M is homogeneous and π is associated with M.

Theorem

For M on $L_V^2(d\theta)$, dim $V < \infty$, the associated representations are exactly the orthogonal direct sums (with possible repetition) of arbitrary principal series representations. They act on the (scalar valued) $L^2(d\theta)$ subspaces by the multiplier $\left(\frac{g'(e^{i\theta})}{|g'(e^{i\theta})|}\right)^{-k} |g'(e^{i\theta})|^{-\frac{1}{2}-i\sigma}$, $-\frac{1}{2} < k < \frac{1}{2}, \ \sigma > 0.$

conventions

• For a given $d \in \mathbb{N}$, let Λ denote a partition $d = d_0 + \dots + d_m$ together with real numbers $\lambda_0 < \lambda_1 < \dots < \lambda_m$. Write $d = |\Lambda|$.

conventions

- For a given $d \in \mathbb{N}$, let Λ denote a partition $d = d_0 + \dots + d_m$ together with real numbers $\lambda_0 < \lambda_1 < \dots < \lambda_m$. Write $d = |\Lambda|$.
- For $\lambda \in \mathbb{R}$, let χ_{λ} be the unitary representation of \mathbb{K} on \mathbb{C} given by $\chi_{\lambda}(k_{\theta}) = e^{-\lambda\theta}$, where $k_{\theta} \in \mathbb{K}$ acts in \mathbb{D} by $z \mapsto e^{i\theta}z$. We write

 $\chi_{\Lambda}(k) = \oplus_j d_j \chi_{\lambda_j}(k), \ k \in \mathbb{K}.$

conventions

- For a given $d \in \mathbb{N}$, let Λ denote a partition $d = d_0 + \dots + d_m$ together with real numbers $\lambda_0 < \lambda_1 < \dots < \lambda_m$. Write $d = |\Lambda|$.
- For $\lambda \in \mathbb{R}$, let χ_{λ} be the unitary representation of \mathbb{K} on \mathbb{C} given by $\chi_{\lambda}(k_{\theta}) = e^{-\lambda\theta}$, where $k_{\theta} \in \mathbb{K}$ acts in \mathbb{D} by $z \mapsto e^{i\theta}z$. We write

$$\chi_{\Lambda}(k) = \oplus_j d_j \chi_{\lambda_j}(k), \ k \in \mathbb{K}.$$

 Modulo unitary equivalence, all the d - dimensional representations of K are obtained this way with |Λ| = d. Define, for λ ∈ ℝ,

$$m^{\lambda}(g,z) = \left(\frac{g'(z)}{|g'(z)|}
ight)^{-\lambda}, \quad m^{\Lambda} = \oplus_j d_j m^{\lambda_j}.$$

the case of $\mathbb D$

Theorem

For M acting on $L^2_V(dA)$, the associate representations are exactly the unitary multiplier representations given by m^Λ with $d = |\Lambda|$.

• The proof involves the imprimitivity theorem due to Mackey establishing the equivalence of the associated representation with the induced representation $\operatorname{Ind}_{K}^{G}(\chi^{\Lambda})$.

the case of $\ensuremath{\mathbb{D}}$

Theorem

For M acting on $L^2_V(dA)$, the associate representations are exactly the unitary multiplier representations given by m^{Λ} with $d = |\Lambda|$.

- The proof involves the imprimitivity theorem due to Mackey establishing the equivalence of the associated representation with the induced representation $\operatorname{Ind}_{K}^{G}(\chi^{\Lambda})$.
- Moreover the associated representation of the direct sum M⊕M acting on L²_V(dθ)⊕L²_{V'}(dA) is necessarily the direct sum of the ones we have already found.

invariant subspace

invariant subspaces

Theorem

For dim $V < \infty$, the U – invariant subspaces of $L^2_V(d\theta)$ are the orthogonal direct sums of 1 – dimensional subspaces with U acting on them as

 $\overline{\oplus_{(k,s)\neq (0,0)}} d_{k,s} P_{ks} \oplus d^+ P^+ \oplus d^- P^-, \quad d_{k,s} \in \mathbb{N}.$

Let S be the restriction of M acting on $L^2(d\theta)$ to the Hardy space H^2 .

Corollary

Any homogeneous subnormal operator whose mne is M on $L^2_V(\theta)$, must be the orthogonal direct sum $U \oplus dS$, where U is a homogeneous unitary and $d \in \mathbb{N}$.

quasi-invariant

• Let Q be a ν -measwable map of \mathbb{D} to the positive definite matirices on V, and let $L^2(V, Q, \nu)$ be the Hilbert space consisting of functions $f: \mathbb{D} \to V$ with norm $\int_{\mathbb{D}} \langle (Q(z)f(z), f(z)) \rangle_V d\nu(z) < \infty.$

quasi-invariant

• Let Q be a ν -measwable map of \mathbb{D} to the positive definite matirices on V, and let $L^2(V,Q,\nu)$ be the Hilbert space consisting of functions $f:\mathbb{D} \to V$ with norm $\int_{\mathbb{D}} \langle (Q(z)f(z),f(z)) \rangle_V d\nu(z) < \infty.$

 The operator M on this space is another realization of the "same" normal operator M on L²_V(dν). The unitary isomorphism is given by the map f → Q^{1/2}f.

quasi-invariant

• Let Q be a ν -measwable map of \mathbb{D} to the positive definite matirices on V, and let $L^2(V, Q, \nu)$ be the Hilbert space consisting of functions $f: \mathbb{D} \to V$ with norm $\int_{\mathbb{D}} \langle (Q(z)f(z), f(z)) \rangle_V d\nu(z) < \infty.$

- The operator M on this space is another realization of the "same" normal operator M on L²_V(dν). The unitary isomorphism is given by the map f → Q^{1/2}f.
- A multiplier m on $L^2(V,Q,\nu)$ gives a unitary representation if and only if (easy) Q is quasi-invariant:

 $Q(g \cdot z) = m(g,z)^{\ast^{-1}}Q(z)m(g,z)^{-1} \quad (\forall g, a.a.z)$

an important observation

 Given two such spaces, with Q and Q', respectively, m and m', we say m and m' are equivalent if there exists a measurable φ: D → GL(V) such that

 $m'(g,z)=\phi(g\cdot z)m(g,z)\phi(z)^{-1}.$

an important observation

 Given two such spaces, with Q and Q', respectively, m and m', we say m and m' are equivalent if there exists a measurable φ: D → GL(V) such that

 $m'(g,z) = \phi(g \cdot z)m(g,z)\phi(z)^{-1}.$

 Cleraly, f → f' = φf is a Hilberet space isomorphism between L²_V(Q, ν) and L²_V(Q', ν) intertwining the multiplier representations given by m, m' and the multiplication operator M on these two spaces.

an important observation

 Given two such spaces, with Q and Q', respectively, m and m', we say m and m' are equivalent if there exists a measurable φ: D → GL(V) such that

 $m'(g,z) = \phi(g \cdot z)m(g,z)\phi(z)^{-1}.$

- Cleraly, $f \mapsto f' = \phi f$ is a Hilberet space isomorphism between $L^2_V(Q,\nu)$ and $L^2_V(Q',\nu)$ intertwining the multiplier representations given by m, m' and the multiplication operator M on these two spaces.
- The case of continuous multiplier is particularly simple, devoid of measure theoretic difficulties. In our situation, every equivalence class of a multiplier contains one that is continuous.

some more observations

• Picking a continuous multiplier m and putting z = 0, we can rewrite the quasi-invariance of Q as follows:

 $Q(g \cdot 0) = m(g,0)^{*}{}^{-1}Q(0)m(g,0){}^{-1}.$

some more observations

- Picking a continuous multiplier m and putting z = 0, we can rewrite the quasi-invariance of Q as follows: $Q(g \cdot 0) = m(g, 0)^{*-1}Q(0)m(g, 0)^{-1}.$
- If m and m' are continuous GL(V) -valued multipliers such that $m(k,0) = m'(k,0), k \in \mathbb{K}$, then they are equivalent.

some more observations

- Picking a continuous multiplier m and putting z = 0, we can rewrite the quasi-invariance of Q as follows: $Q(q \cdot 0) = m(q, 0)^{*^{-1}}Q(0)m(q, 0)^{-1}.$
- If m and m' are continuous GL(V) -valued multipliers such that $m(k,0) = m'(k,0), k \in \mathbb{K}$, then they are equivalent.
- Also easy to see that $\rho(k) = m(k,0), \quad k \in \mathbb{K}$, is unitary with respect to some inner product $\langle Q^0 \cdot, \cdot \rangle_V$ with some $Q^0 > 0$, then the map $f \to F$ with $F(g) = m(g,0)^{-1}f(g \cdot 0)$ is an isomorphism onto the L_V^2 -space of functions $G \to V$ such thet $F(gk) = \rho(k)^{-1}F(g)$, which is the definition of the induced representations $Ind_K^G(\rho)$.

example

 A classic example shows the use of redundancy in the multipliers. In the scalar case, for any λ∈ ℝ, we have the multiplier g'(z)^{-λ} equivalent to m^λ(g,z).

example

- A classic example shows the use of redundancy in the multipliers. In the scalar case, for any λ∈ ℝ, we have the multiplier g'(z)^{-λ} equivalent to m^λ(g,z).
- The multiplier g'(z)^{-λ} acts on L²(Qdν) with Q(z) = (1-|z|²)^{2λ} and preserves the subspace A^(λ) of holomorphic functions. This subspace is not {0} if and only if λ > 1/2. When λ > 0, we have a Hilbert space but the subspace of holomorphic functions is not {0} if and only if λ > 1/2.

example

- A classic example shows the use of redundancy in the multipliers. In the scalar case, for any λ∈ ℝ, we have the multiplier g'(z)^{-λ} equivalent to m^λ(g,z).
- The multiplier $g'(z)^{-\lambda}$ acts on $L^2(Qd\nu)$ with $Q(z) = (1-|z|^2)^{2\lambda}$ and preserves the subspace $\mathbb{A}^{(\lambda)}$ of holomorphic functions. This subspace is not $\{0\}$ if and only if $\lambda > 1/2$. When $\lambda > 0$, we have a Hilbert space but the subspace of holomorphic functions is not $\{0\}$ if and only if $\lambda > 1/2$.
- The restriction of the operator M to the subspace A^(\lambda) is then the subnormal homogeneous operator that we have been looking for.

holomorphic structure

• The operator M on $\mathbb{A}^{(\lambda)}$ can however, also be thought of as the restriction of M on $L^2(\nu)$ to a subspace, namely the space $\mathbb{H}^{(\lambda)}$ of elements of $\mathbb{A}^{(\lambda)}$ multiplied by ϕ^{-1} , i.e, the subspace of $L^2(\nu)$ of function f such that $\phi(z)f(z)$ is holomorphic.

holomorphic structure

- The operator M on $\mathbb{A}^{(\lambda)}$ can however, also be thought of as the restriction of M on $L^2(\nu)$ to a subspace, namely the space $\mathbb{H}^{(\lambda)}$ of elements of $\mathbb{A}^{(\lambda)}$ multiplied by ϕ^{-1} , i.e, the subspace of $L^2(\nu)$ of function f such that $\phi(z)f(z)$ is holomorphic.
- This, in turn, can be interpreted as f being holomorphic with respect to a changed complex structure, characterized by $\frac{\partial}{\partial \bar{z}} \left(\phi(z)^{-1} f(z) \right) = 0$, computing this amounts to $\frac{\partial}{\partial \bar{z}} f(z) = \frac{\lambda z}{l-|z|^2} f(z)$.

holomorphic structure

- The operator M on $\mathbb{A}^{(\lambda)}$ can however, also be thought of as the restriction of M on $L^2(\nu)$ to a subspace, namely the space $\mathbb{H}^{(\lambda)}$ of elements of $\mathbb{A}^{(\lambda)}$ multiplied by ϕ^{-1} , i.e, the subspace of $L^2(\nu)$ of function f such that $\phi(z)f(z)$ is holomorphic.
- This, in turn, can be interpreted as f being holomorphic with respect to a changed complex structure, characterized by $\frac{\partial}{\partial \bar{z}} \left(\phi(z)^{-1} f(z) \right) = 0$, computing this amounts to $\frac{\partial}{\partial \bar{z}} f(z) = \frac{\lambda z}{l-|z|^2} f(z)$.
- This example already gives rise to the difficult open question: If the subspace of holomorphic functions in $L^2((1-|z|^2)^{2\lambda}d\nu)$ is the only subspace simultaneously invariant under M and U?

main result

The irreducible homogeneous subnormal operators that can be obtained by restricting $(L^2_V(\nu))$ to the subspace of functions holomorphic with respect to a G-invariant complex structure are parametrized by $\eta > \frac{1}{2}$, Y irreducible, and Q^0 commuting with $\chi_{\Lambda}(k), k \in \mathbb{K}$.

In particular, all of these are adjoints of operators in the Cowen-Douglas class.

Thank You!

