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a question of invariant subspaces

e For a fixed A\ € R, let L* be the Hilbert space of
measurable (complex-valued) functions on the open unit
disc D such that
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a question of invariant subspaces

o For a fixed A €R, let L* be the Hilbert space of
measurable (complex-valued) functions on the open unit
disc D such that

113 = [ A== £(2)]?dA, < co.
(dA, stands for dxdy, z =z +iy. )

e Let G be the simply connected covering group of
SU(1,1);9(2) and ¢'(z) = % still make sense for
g€G. The group G acts on L* by a unitary
representation {U,} via the multiplier g (z)~>2.

e Explicitly (it is simpler to write down U, . than U, ),

U f(2) = ' ()2 f(g(2))-
Unitarity follows from the identity
(1—12?)|g’ (2)| = 1—|g(2)|?-




(U, is the representation induced in Mackey's sense by the
character —3 of K, the stabiilizer of 0 in G. This follows
by observing that any g € K acts by a rotation g(z) = ez,

< 5
and then ¢'(z) Ll )
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an invariant subspace

e The subspace H* of holomorphic functions in L* is
invariant under {U,}.
(H» #0 if and only if A\ >1; in this case, the restriction
of {U,} to H* is the holomorphic discrete series.)

e H* is also an invariant subspace for the operator M
defined by M f(z) = zf(z).

e Question: Is H* the only subspace invariant under both
{U,} and M?
Note: A similar question can be asked if we regard {U,}
as a representation on C>°(D).




Mackey's theorem, multiplier and
induced representations
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- Let G be a connected Lie group, H C G closed,
D=G/H, and 0€ D be the base point. The group G
acts transitively, via L (g'H) = gg'H , on the space of
cosets G/H.
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imprimitivity

- Let G be a connected Lie group, H C G closed,
D=G/H, and 0€ D be the base point. The group G
acts transitively, via L (g'H) = gg'H , on the space of
cosets G/H.

- suppose that U: G — U(X') is a unitary representation
of the group G on the Hilbert space X" and that
0:Cy(D)— L(X) is a * - homomorphism of the C* -
algebra of continuous functions C(2) vanishing at co
on the algebra £(X) of all bounded operators acting on
the Hilbert space X.

- Then setting (g- f)(w) = f(g7' - w),w € D, the pair (U,p)
is said to be a representation of the G' -space 2 if it
forms an imprimitivity:

U(g)*o(f)U(g9) =0(g-f) =, f€Cy(D),g€q.




multiplier representation

- A multiplier is a C*° map m:Gx2D — GL(V) such that
m(gh,z) =m(g,hz)m(h,z),g9,h € G,z € D.

It follows that m(e,z) =1I,, and that m is determined
from the values m(g,0), g€ G, and that

0,,(h) :=m(h,0) is a representation of H. Finally,
m(g,g *2)=m(gt,2)7, g€G,2€D. The multiplier
representation U™ acts on C>(D,V):

(U 1) (2) = mlg™ 2 f(g™2), f € C=(D,V), z€ D,




multiplier representation

- A multiplier is a C*° map m:Gx2D — GL(V) such that
m(gh,z) =m(g,hz)m(h,z),g,h € G,z € D.

It follows that m(e,z) =1, and that m is determined
from the values m(g,0), g€ G, and that

0,,(h) :=m(h,0) is a representation of H. Finally,
m(g,g12)=m(gt,2)7!, g€ G,2€D. The multiplier
representation U™ acts on C(D,V):

(U F)(z) =mlg™,2) " fg™2), f €C=(D,V), z € D.

- Conversely, the map 7: G — C*(D,V), called a
multiplier representation,

(m(g)f)(2) = (m(g~",2)) "' f(g7'2), 2€ D, f€ H,g €G,

is a homomorphism if and only if m: Gx 2D —GL(V) is a
multiplier.
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subgroup H. A multiplier representation of G with
multiplier m? is said to be induced by o
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induced representation

A homomorphism of this form, called multiplier
representation, comes from a representation o of the
subgroup H. A multiplier representation of G with
multiplier m? is said to be induced by o

- If the representation o is unitary, the induced
representation can be made unitary. This is achieved by
Mackey as follows.

- There is a measurable cross section (actually can be C*
or holomorphic depending on the pair of groups G, H )
s:G/H—G ,ie, pos=idg/py-

- There is a unique quasi-invariant measure 1 on G/H ,
i.e., oL, and ;i are absolutely continuous for all g € 0
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Mackey’s imprimitivity theorem

e Set X :=L*(G/H,u,V). The representation Ind induced
from a unitary representation ¢ of H actingon V' is
then given by the formula

(tnd(g) )(g'H) = L5) o) (fo 1) (o H), g €6,

where h is determined from the relation
gs(L,'g'H) = s(g'H)h.
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Mackey’s imprimitivity theorem

e Set X :=L*(G/H,u,V). The representation Ind induced
from a unitary representation o of H actingon V' is
then given by the formula

(1nd(g) ) (o’ H) = “EL) o) (£o L21) (g H), g € G,

Em
where h is determined from the relation
9s(Ly*g'H) = s(g'H)h.

e Mackey's Imprimitivity theorem says that any pair (U, )
of imprimitivity is necessarily an induced representation.

e Mackey described these modulo suitable equivalence.

e Question: If we replace the * -homomorphism p of a
commutative C* -algebra by an algebra homomorphism, &
then what should we expect? Answer: These are the
commuting tuples of homogeneous operators!




group action, homogeneous
operators, associated
representation
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the Maobius group, the 2 - fold covering group SU(1,1)

- The Mobius group, to be denoted G, in what follows,
consists of the bi-holomorphic automorphisms of D of
the form ¢, ,(2) =%, 0<60<2m, and a in the
unit disc D.

- The linear group G :=SU(1,1) is the group of complex
2 x 2 matrices of the form g:= (; é ) with
|a|?—|B|? =1. It acts on the unit disc by the rule

g(z) = 2.




the Maobius group, the 2 - fold covering group SU(1,1)

- The Mobius group, to be denoted G, in what follows,
consists of the bi-holomorphic automorphisms of D of
the form ¢, ,(2) =%, 0<60<2m, and a in the
unit disc D.

The linear group G :=SU(1,1) is the group of complex

2 x 2 matrices of the form g:= (g é ) with
|a|?—|B]> =1. It acts on the unit disc by the rule
g(z) = 5.

Clearly, the element ¢ and —g give rise to the same
action. One may say that the kernel of the SU(1,1)

action on the unit disc is the normal subgroup {I,—I}.




the Mobius group, the 2 - fold covering group SU(1,1)

- The Mobius group, to be denoted G, in what follows,
consists of the bi-holomorphic automorphisms of D of
the form ¢, ,(2) =%, 0<60<2m, and a in the

T#0%
unit disc D.
- The linear group G :=SU(1,1) is the group of complex
2 x 2 matrices of the form g:= (; L; ) with

la|2—|BI> =1. It acts on the unit disc by the rule
o8
g(z) = e
- Clearly, the element g and —g give rise to the same

action. One may say that the kernel of the SU(1,1)
action on the unit disc is the normal subgroup {I,—I}.

- We let G denote the universal covering group of G.



homogeneous operators

- The biholomorphic map ¢, , comes from the action of a
g €SU(1,1), namely,

ack
g= 1 exp(zi) (0] ( il 70/)
9= /1]aP DN 85 e 2

and also from gy, o, .




homogeneous operators

- The biholomorphic map ¢, , comes from the action of a
g€SU(1,1), namely,

G 1 exp(ig) 0 ( # 7a)
: W 0 exp(—ig) e
and also from gy, o, -

- The map g+ (20,a) is a2 to1l smooth homomorphism,
i.e., it is a 2 -fold Lie group covering of the Mobius
group G.




homogeneous operators

- The biholomorphic map ¢, , comes from the action of a
g€SU(1,1), namely,

e A exp(ig) 0 ( ™ 7(1)
. Vi-lal? 0 exp(fig) 22l
and also from gy, o, -

- The map g+ (20,a) is a2 to 1l smooth homomorphism,
i.e., it is a 2 -fold Lie group covering of the Mobius
group G.

- A bounded linear operator 1" on a complex separable
Hilbert space ¢ with o(T) C D is said to be
homogeneous if ¢, ,(T) :=e(T'—al)(I—aT)™ " is
unitarily equivalent to T' for all ¢, , € G,.
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homogeneous operators and associated representations

e The * - homomorphism p, induced by N, namely,
pn(f) = f(IN) satisfying the imprimitivity condition is
easily checked to be the condition of homogeneity for
the operator N.

e To every homogeneous irreducible operator 7' there
corresponds an associated unitary representation @ of
the universal covering group G:

(G TR(§) = (p§)(T), §€ G,
where p: G — G is the natural homomorphism.

e If T is contractive irreducible homogeneous operator,
then the homomorphism p, induced by 7', namely,
pr(p) =p(T) is the compression of an imprimitivity.
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subnormal operators

e An operator 7' on a Hilbert space 7 s said fo be
subnormal if there exists a normal operator N on a
Hilbert space X* such that 7 is an invariant subspace
for N and N, =T.

e Two such normal extensions are unitarily equivalent if
they are assumed to be minimal, that is, X is the
smallest reducing subspace of N containing 7.

e A minimal normal extension, say mne(T'), always exists
and is uniquely determined modulo unitary equivalence.

e If T is a subnormal irreducible homogeneous operator,
then the homomorphism p; is the restriction fo some
simultaneous invariant subspace of an imprimitivity.




some results

e In other words, if T' is subnormal and homogeneous,
then the mne(T") is also homogeneous.




some results

e In other words, if T' is subnormal and homogeneous,
then the mne(T") is also homogeneous.

e Moreover, if a subnormal homogeneous operator has an
associated representation, say U, then fogether with T
the representation U also extends to an associated
representation of the mne(T).




some results

e In other words, if T' is subnormal and homogeneous,
then the mne(T") is also homogeneous.

e Moreover, if a subnormal homogeneous operator has an
associated representation, say U, then fogether with T
the representation U also extends to an associated
representation of the mne(T).

o A list of all the normal operators that are homogeneous
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possible approach to finding all the homogeneous
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some results

e In other words, if 7' is subnormal and homogeneous,
then the mne(T") is also homogeneous.

e Moreover, if a subnormal homogeneous operator has an
associated representation, say U, then together with T,
the representation U also extends to an associated
representation of the mne(T).

e A list of all the normal operators that are homogeneous
is not hard to produce. For these, we also determine all
the associated representations. The result suggests a
possible approach to finding all the homogeneous
subnormal operators:

e Every homogeneous subnormal operator is the restrictiott
to a common invariant subspace of a homogeneous normal

14

operator and one of its associated representations.



homogeneous normal

Theorem

Let N € £(J() be a normal operator. Then N is
homogeneous if and only if there exists m,m’ € {0} UNU {oo}
such that N=A, & B,,,, where A, is the m -fold direct
sum of M, on L?(D,dA) and B,, is m’ -fold direct sum of
M, on L2(T,df) .




homogeneous normal

Theorem

Let N € £(J() be a normal operator. Then N is
homogeneous if and only if there exists m,m’ € {0} UNU {oo}
such that N=A,, & B,,,, where A, is the m -fold direct
sum of M, on L?(D,dA) and B,, is m’ -fold direct sum of
M, on L2(T,df) .

e The question of determining which homogeneous
operators are subnormal then is equivalent to asking
what are the subspaces of

(6,,L?(D,dA)) & (®,, L*(T,db))

simultaneously invariant under the unitary representatiorfSjies
U and the multiplication operator M.

15



tools and techniques

e All homogeneous operators in B,,(D), modulo unitary
equivalence, are known. We identify which operators
among these are subnormal, that is, appear as the
restriction of a normal operator fo an invariant subspace.
For this, we need some tools from representation theory
which we recall. Let X be either D or T.
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tools and techniques

e All homogeneous operators in B,,(D), modulo unitary
equivalence, are known. We identify which operators
among these are subnormal, that is, appear as the
restriction of a normal operator fo an invariant subspace.
For this, we need some tools from representation theory
which we recall. Let X be either D or T.

e Let V be a vector space and for each fixed g € G,
m:Gx X —GL(V) be a Borel multiplier:

m(e,z) vy IV7 m(gl.QQ‘/z) = m(gla.QZZ)m(g%Z)a G E X7

e Let 7 be a Hilbert space of V -valued functions on (2.
A representation admitting a realization of the form

(m(9))(2) = (m(g~%,2)) f (g7'2), 2€ X, f€ H,g € G

is said to be a multiplier representation. 16




What are the associated
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e Assume that the multiplication operator M,
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homogeneous and 7 is associated with M.




Goal, the case of T

e Going to determine all the associated representations of
the homogeneous normal operators.

e Assume that the multiplication operator M,
(Mf)(z)=z2f(z), z€ X, f€H, is bounded and that 7
is a multiplier representation G on #. Then M s
homogeneous and 7 is associated with M.
Theorem
For M on L%,(df) , dimV < oo, the associated
representations are exactly the orthogonal direct sums (with
possible repetition) of arbitrary principal series
representations. They act on the (scalar valued) L?(d6)

i1 o
—5 0
9

/(10 —k .
subspaces by the multiplier (%) g’ (€%)]
—3<k<3, 0>0.
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conventions

e For a given d€ N, let A denote a partition
d=dy+---+d,, together with real numbers
A <A <...<A,. Writed=|Al

e For A€ R, let x, be the unitary representation of K on
C given by x, (ky) =e*? where k, €K actsin D by

2 ez, We write

X (k) = @jde/\j<k>7 kek.

e Modulo unitary equivalence, all the d - dimensional
representations of K are obtained this way with |A| =d.
Define, for A € R,

m)\(ga'Z) = ( gj('z) ) ; mh = EBjdjm)‘J.

18



the case of D

Theorem
For M acting on L%.(dA) , the associate representations are

exactly the unitary multiplier representations given by m*
with d = |A].

e The proof involves the imprimitivity theorem due to
Mackey establishing the equivalence of the associated
representation with the induced representation Indg(XA).




the case of D

Theorem
For M acting on L%.(dA) , the associate representations are

exactly the unitary multiplier representations given by m*
with d = |A].

e The proof involves the imprimitivity theorem due to
Mackey establishing the equivalence of the associated
representation with the induced representation Ind[G((XA).

e Moreover the associated representation of the direct
sum M @& M acting on L%.(df)® L?,(dA) is necessarily
the direct sum of the ones we have already found.
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invariant subspaces

Theorem
For dim V < oo, the U - invariant subspaces of L% (df) are

the orthogonal direct sums of 1 - dimensional subspaces
with U acting on them as

Dk, 5)(0,0) s Pos DAY PT AP, dy €N,

Let S be the restriction of M acting on L?(df) to the
Hardy space H2.

Corollary

Any homogeneous subnormal operator whose mne is M on
L%,(6), must be the orthogonal direct sum U@ dS, where U
is a homogeneous unitary and d € N.




quasi-invariant

e Let ) be a v -measwable map of D to the positive
definite matirices on V, and let L3(V,Q,v) be the
Hilbert space consisting of functions f: D — V' with norm

F{Q(2)[(2),f(2)),, dv(z) < oo.
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isomorphism is given by the map f Q/2f.




quasi-invariant

e Let ) be a v -measwable map of D to the positive
definite matirices on V, and let L?(V,Q,v) be the
Hilbert space consisting of functions f:D — V' with norm

F{Q(2)f(2),f(2)), dv(z) < oo.

e The operator M on this space is another realization of
the “same” normal operator M on L% (dv). The unitary
isomorphism is given by the map f Q/2f.

o A multiplier m on L?(V,Q,v) gives a unitary
representation if and only if (easy) ) is quasi-invariant:

Qg-2) =m(g,2)" Q(2)m(g,2)™" (Vg,a.a.z)




an important observation

e Given two such spaces, with @ and Q’, respectively, m
and m’, we say m and m’ are equivalent if there
exists a measurable ¢ : D — GL(V) such that

m'(9,2) = 6(g- 2)ml(g,2)p(2) .
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an important observation

e Given two such spaces, with @ and Q’, respectively, m
and m’, we say m and m’ are equivalent if there
exists a measurable ¢ : D — GL(V) such that

m'(g,2) = (g- 2)mig,2)$(2)".

e Cleraly, f+ f"=¢f is a Hilberet space isomorphism
between L%.(Q,v) and L%, (Q’,v) intertwining the
multiplier representations given by m, m’ and the
multiplication operator M on these two spaces.

e The case of continuous multiplier is particularly simple,
devoid of measure theoretic difficulties. In our situation,
every equivalence class of a multiplier contains one that

is continuous.
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some more observations

e Picking a continuous multiplier m and putting z=0, we
can rewrite the quasi-invariance of () as follows:

Qg-0) =m(g,0)* ' Q(0)m(g,0)".
e If m and m’ are continuous GL(V') -valued multipliers

such that m(k,0) =m’(k,0), k€K, then they are
equivalent.

e Also easy to see that p(k) =m(k,0), k€K, is unitary
with respect to some inner product (Q°-,-);, with some
Q" >0, then the map f — F with
F(g) =m(g,0)"1f(g-0) is an isomorphism onto the
L% -space of functions G — V such thet
F(gk) = p(k)~'F(g), which is the definition of the
induced representations Ind%(p).




example

e A classic example shows the use of redundancy in the
multipliers. In the scalar case, for any A € R, we have

the multiplier ¢’(z)™ equivalent to m*(g,2).




example

e A classic example shows the use of redundancy in the
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example

e A classic example shows the use of redundancy in the
multipliers. In the scalar case, for any A € R, we have
the multiplier ¢’(z)™ equivalent to m*(g,2).

e The multiplier ¢’(2)~* acts on L*(Qdv) with
Q(z) = (1—2/*)** and preserves the subspace A of
holomorphic functions. This subspace is not {0} if and
only if A>1/2. When A >0, we have a Hilbert space
but the subspace of holomorphic functions is not {0} if
and only if A >1/2.

e The restriction of the operator M to the subspace A
is then the subnormal homogeneous operator that we

have been looking for.
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e The operator M on A®Y can however, also be thought
of as the restriction of M on L?(v) to a subspace,
namely the space H*) of elements of AN multiplied by
¢!, i.e, the subspace of L?(v) of function f such that
¢(2)f(z) is holomorphic.
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holomorphic structure

e The operator M on AP can however, also be thought
of as the restriction of M on L?(v) to a subspace,
namely the space H*) of elements of AN multiplied by
¢!, i.e, the subspace of L?(v) of function f such that
#(2)f(z) is holomorphic.

e This, in turn, can be interpreted as f being holomorphic
with respect to a changed complex structure,
characterized by Z (¢(z)~f(z)) =0, computing this
amounts to dzf( Z) = 1~ Wf( z).

e This example already gives rise to the difficult open
question: If the subspace of holomorphic functions in
L2((1—|2]?)**dv) is the only subspace simultaneously
invariant under M and U?
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main result




The irreducible homogeneous subnormal operators that can
be obtained by restricting (L% (v)) to the subspace of
functions holomorphic with respect to a G-invariant complex
structure are parametrized by > %, Y irreducible, and Q°
commuting with x, (k), k € K.

In particular, all of these are adjoints of operators in the
Cowen-Douglas class.




Thank Youl!
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