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rt module over the polynomial ring C[z] := Clzy,. .., 2]
space #¢ which is a Cz] -module if for some C,, > 0,

lp-fIl < Gollfll, f € #, p € C[].

The multiplication M;, 1 <j < m, by the coordinate functions z;:
M;f :=z;-f, then defines a commutative tuple M = (M, ...,M,,) of
linear bounded operators acting on .7# and vice-versa.

A Hilbert module .7# over the polynomial ring C|[z] is said to be in the
Cowen-Douglas class B,(Q), n€eN, if

o dim.7 /m, 7 =n < e forall we Q, where m,, is the maximal ideal
inClz] atw and

® there exists a holomorphic choice of linearly independent vectors
{s1(w),...,sn(W)} in I /m,, 7.
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® Apart from asking if a Hilbert module .7/ is essentially reductive, one
may also ask which submodules and quotient modules are essentially
reductive. It is likely to have an interesting answer if .# is essentially
reductive.
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essentially r - reductive modules

ibert module .7 over the polynomial ring C[z] is said to be
y r - reductive if the module multiplication m,, p € C[z] is
normal, that is,

p(T)*,p(T)) € F(4), peCE].

e The Hardy and the Bergman modules 72 (ID) and A”(ID) over the disc
algebra <7 (D) are essentially reductive.

® The Drury-Arveson module /7, is a module over the polynomial ring
Clz] which is essentially reductive, although, the module multiplication
does not extend to the ball algebra.

® Apart from asking if a Hilbert module .7/ is essentially reductive, one
may also ask which submodules and quotient modules are essentially
reductive. It is likely to have an interesting answer if .# is essentially
reductive.

® Neither the Hardy module nor the Bergman module over the algebra
o/ (D™), m > 1, is essentially reductive. However, some quotient
modules of the Hardy module over <7 (D™), m > 1, are essentially
reductive while some are not.
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the restriction

There is one other possibility that we haven’t considered.

The weighted Bergman modules over a bounded symmetric domain Q
are reductive if and only if the rank of the domain Q is 1, Ghara,
Kumar and Pramanick.

However, like the case of the polydisc, these possess several quotient
modules which are essentially reductive.

To be specific, take Q to be the unit ball in n X n matrices. The
Euclidean ball B,, embeds into it.




example

® Jetz €, map tothe n x n matrix whose first column is z and each
of the remaining (n— 1) columns is the zero vector of size n.




example

® Jetz €, map tothe n x n matrix whose first column is z and each
of the remaining (n— 1) columns is the zero vector of size n.

® If we consider the submodule . of functions vanishing on B, in the
weighted Bergman module 7 v) (Q), then the corresponding quotient
module 2 can be identified with the restriction of the functions in
V) (Q) to the zero set, namely, B,,.




example

® Jetz €, map tothe n x n matrix whose first column is z and each
of the remaining (n— 1) columns is the zero vector of size n.

® If we consider the submodule . of functions vanishing on B, in the
weighted Bergman module .77"(") (Q), then the corresponding quotient
module 2 can be identified with the restriction of the functions in
V) (Q) to the zero set, namely, B,,.

® In consequence, the quotient module is isomorphic to the weighted
Bergman module .2#(") (B,,) and these are essentially reductive.




example

® Jetz €, map tothe n x n matrix whose first column is z and each
of the remaining (n— 1) columns is the zero vector of size n.

® If we consider the submodule . of functions vanishing on B, in the
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module 2 can be identified with the restriction of the functions in
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Q. What about a similar question involving semi-submodules?
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Arveson-Douglas Conjecture

a (Arveson). Let . be an essentially reductive Hilbert module
A be a submodule of .7 and 2 =.Z © .V, be the

ing quotient module. The submodule ./ is essentially
reductive if and only if so is 2.

Arveson-Douglas Conjecture. Let .# be a essentially reductive Hilbert
module over the algebra C[z] consisting of holomorphic functions
defined on Q C C™. If the ideal / is homogeneous, that is, generated
by homogeneous polynomials, then the submodule [/] is r -essentially
reductive for every r > dim V(I).

A positive solution to the Arveson-Douglas conjecture implies that

0—=<¢(1)— Z(1]) = Cc(VI)NIB,) =0

is a short exact sequence. One of the main questions is to identify the
K -homology class [.7 ([I])] defined by this extension. In the case that

I={0} andm =1, the Toeplitz index theorem for T gives the answer

to this question.




tensor product

d .7, be Hilbert spaces of holomorphic functions on Q so
that they possess reproducing kernels K; and K;, respectively. Assume
that the natural action of C[z] on the Hilbert space .7, is continuous,
that is, the map (p, ) — ph defines a bounded operator on M,, for

p € Clz]. (We make no such assumption about the Hilbert space .. )
Now, C|[z] acts naturally on the Hilbert space tensor product .#| @ .,
via the map

(p,(h®k)) = ph@k,p € Clz|, he M, k € M.

The map h ® k — hk identifies the Hilbert space .| @ .4, as a
reproducing kernel Hilbert space of holomorphic functions on Q x Q.
The module action is then the point-wise multiplication

(p, hk) — (ph)k, where ((ph)k)(z1,22) = p(z1)h(z1)k(z2), 21,22 € Q.

@




a new kernel

e the Hilbert module .7, ® .4, over Clz]. Let A CQxQ
be the nal subset {(z,z) 1z € Q} of Q x Q. Let.” be the
maximal submodule of functions in .#| ® .#> which vanish on A.
Thus )
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is a short exact sequence, where 2 = (/@ #>)/., X is the
inclusion map and Y is the natural quotient map. One can appeal to an
extension of an earlier result of Aronszajn to analyze the quotient
module 2 when the given modules are reproducing kernel Hilbert
spaces. The reproducing kernel of .77 is then the pointwise product
Ki(z,w)Ka(u,v) for z,w;u,v in Q. Set Hes = {fin :f € 7} and
Ifllja = inf{[lgl| : g € 2,81 =fin}-
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is a short exact sequence, where 2 = (/@ #>)/., X is the

inclusion map and Y is the natural quotient map. One can appeal to an
extension of an earlier result of Aronszajn to analyze the quotient

module 2 when the given modules are reproducing kernel Hilbert

spaces. The reproducing kernel of .77 is then the pointwise product
Ki(z,w)Ka(u,v) for z,w;u,v in Q. Set Hes = {fin :f € 7} and

Ifll|» = inf{|lg]| : g € 7,817 =firn}-

The quotient module is isomorphic to the module .77{.s whose

reproducing kernel is the pointwise product K (z,w)K;(z,w), z,w € Q. @
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another kernel!

e Q C CY is open connected and bounded. Let K : Q x Q be a
non- ive definite kernel. Then K defined by

K(z,w) = (K*3:9;1ogK (z,w)))

1<ij<d

is a C?*? valued non-negative definite kernel.

® We point out that ), ; 0;9;log K (w,w)dw; Adw; is the curvature of the
metric K (w,w).

To see that K defines a positive definite kernel on Q, set
qji(""') = K\\' & éiKu' o éiKu' ® KH", 1 < i <m

and note that each ¢ : Q — J7 is holomorphic. A simple calculation
then shows that

<¢_i(””>: 0:(2)) wonw = %(z, w).




what is the Hilbert module?

describe the Hilbert space, or more importantly, the Hilbert

(K) ? May be, it is a quotient of the Hilbert module
IR f so, How do we identify the corresponding submodule?




what is the Hilbert module?

describe the Hilbert space, or more importantly, the Hilbert

mo (K) ? May be, it is a quotient of the Hilbert module
IR f so, How do we identify the corresponding submodule?

Let 7 be the subspace of 7' (K) ® 7 (K) given by
V{gi(w) :weQ,1<i<m}.




what is the Hilbert module?

describe the Hilbert space, or more importantly, the Hilbert

mo (K) ? May be, it is a quotient of the Hilbert module
IR f so, How do we identify the corresponding submodule?

Let 7 be the subspace of 7' (K) ® 7 (K) given by

V{gi(w) :weQ,1<i<m}

From this definition, it is not clear which functions belong to the
subspace. We give an explicit description.




what is the Hilbert module?

describe the Hilbert space, or more importantly, the Hilbert
mo (K) ? May be, it is a quotient of the Hilbert module
IR f so, How do we identify the corresponding submodule?
Let 7 be the subspace of 7' (K) ® 7 (K) given by

V{gi(w) :weQ,1<i<m}

From this definition, it is not clear which functions belong to the
subspace. We give an explicit description.

Let 74 and 7% be the submodules defined by

4 ={f € H(K)® H(K) : f]a = 0}

and
We have

@




what is the Hilbert module?

describe the Hilbert space, or more importantly, the Hilbert

mo (K) ? May be, it is a quotient of the Hilbert module
IR f so, How do we identify the corresponding submodule?

Let 7 be the subspace of 7' (K) ® 7 (K) given by

V{gi(w) :weQ,1<i<m}

From this definition, it is not clear which functions belong to the
subspace. We give an explicit description.

Let 74 and 7% be the submodules defined by
A = {f € H(K)© A (K) : fla =0}
and
A ={f € H(K)@H(K) : fla = 0if|a = oof [a = ... = Iuf]a = 0}.

We have

°» S =5 ot @
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example

be the Hilbert module over the disc algebra determined by
the kernel K ) (z,w) := (1 — ziw)~** . We identify the tensor product
AP (D?) .= # 1) @ # M as a vector subspace of Hol(D x D).

AR D) = {f € APD D) : iy = (Bif)jp = (3F)1s =0},

where A:= {(z,z) : z € D}.
Set

J 7///1LL< ) ///‘jlu< )

The reproducing kernel for 2; is K(**#), while that of 2, is
K(A+u+2)

® This is the Clebsch-Gordan formula!




Thank You!




