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the Cowen-Douglas class

A Hilbert module over the polynomial ring C[z] := C[z1, . . . ,zm]
is a Hilbert space H which is a C[z] -module if for some Cp > 0,

‖p · f‖ ≤ Cp‖f‖, f ∈H , p ∈ C[z].

The multiplication Mj, 1≤ j≤ m, by the coordinate functions zj:
Mjf := zj · f , then defines a commutative tuple M = (M1, ...,Mm) of
linear bounded operators acting on H and vice-versa.
A Hilbert module H over the polynomial ring C[z] is said to be in the
Cowen-Douglas class Bn(Ω), n ∈ N, if

• dimH /mwH = n < ∞ for all w ∈Ω, where mw is the maximal ideal
in C[z] at w and

• there exists a holomorphic choice of linearly independent vectors
{s1(w), . . . ,sn(w)} in H /mwH .
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essentially r - reductive modules

A Hilbert module M over the polynomial ring C[z] is said to be
essentially r - reductive if the module multiplication mp, p ∈ C[z] is
essentially normal, that is,

[p(T)∗,p(T)] ∈Sr(M ), p ∈ C[z].
• The Hardy and the Bergman modules H2(D) and A2(D) over the disc

algebra A (D) are essentially reductive.
• The Drury-Arveson module H2

m is a module over the polynomial ring
C[z] which is essentially reductive, although, the module multiplication
does not extend to the ball algebra.

• Apart from asking if a Hilbert module M is essentially reductive, one
may also ask which submodules and quotient modules are essentially
reductive. It is likely to have an interesting answer if M is essentially
reductive.

• Neither the Hardy module nor the Bergman module over the algebra
A (Dm), m > 1, is essentially reductive. However, some quotient
modules of the Hardy module over A (Dm), m > 1, are essentially
reductive while some are not.
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the restriction

There is one other possibility that we haven’t considered.
• The weighted Bergman modules over a bounded symmetric domain Ω

are reductive if and only if the rank of the domain Ω is 1, Ghara,
Kumar and Pramanick.

• However, like the case of the polydisc, these possess several quotient
modules which are essentially reductive.
To be specific, take Ω to be the unit ball in n×n matrices. The
Euclidean ball Bn embeds into it.
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example

• Let z ∈ Bn map to the n×n matrix whose first column is z and each
of the remaining (n−1) columns is the zero vector of size n.

• If we consider the submodule S of functions vanishing on Bn in the
weighted Bergman module H (ν)(Ω), then the corresponding quotient
module Q can be identified with the restriction of the functions in
H (ν)(Ω) to the zero set, namely, Bn.

• In consequence, the quotient module is isomorphic to the weighted
Bergman module H (ν)(Bn) and these are essentially reductive.

Q. What about a similar question involving semi-submodules?
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Arveson-Douglas Conjecture

Lemma (Arveson). Let M be an essentially reductive Hilbert module
over C[z], N be a submodule of M and Q = M 	N , be the
corresponding quotient module. The submodule N is essentially
reductive if and only if so is Q.
Arveson-Douglas Conjecture. Let M be a essentially reductive Hilbert
module over the algebra C[z] consisting of holomorphic functions
defined on Ω⊆ Cm. If the ideal I is homogeneous, that is, generated
by homogeneous polynomials, then the submodule [I] is r -essentially
reductive for every r > dimV(I).
A positive solution to the Arveson-Douglas conjecture implies that

0→ C ([I])→T ([I])→ C(V(I)∩∂Bm)→ 0

is a short exact sequence. One of the main questions is to identify the
K - homology class [T ([I])] defined by this extension. In the case that
I = {0} and m = 1, the Toeplitz index theorem for T gives the answer
to this question.
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tensor product

Let M1 and M2 be Hilbert spaces of holomorphic functions on Ω so
that they possess reproducing kernels K1 and K2, respectively. Assume
that the natural action of C[z] on the Hilbert space M1 is continuous,
that is, the map (p,h)→ ph defines a bounded operator on Mp for
p ∈ C[z]. (We make no such assumption about the Hilbert space M2. )
Now, C[z] acts naturally on the Hilbert space tensor product M1⊗M2
via the map

(p,(h⊗ k))→ ph⊗ k,p ∈ C[z], h ∈M1, k ∈M2.

The map h⊗ k→ hk identifies the Hilbert space M1⊗M2 as a
reproducing kernel Hilbert space of holomorphic functions on Ω×Ω.
The module action is then the point-wise multiplication
(p,hk)→ (ph)k, where ((ph)k)(z1,z2) = p(z1)h(z1)k(z2), z1,z2 ∈Ω.



a new kernel

Let H be the Hilbert module M1⊗M2 over C[z]. Let4⊆Ω×Ω

be the diagonal subset {(z,z) : z ∈Ω} of Ω×Ω. Let S be the
maximal submodule of functions in M1⊗M2 which vanish on4.
Thus

0→S
X→M1⊗M2

Y→Q→ 0

is a short exact sequence, where Q = (M1⊗M2)/S , X is the
inclusion map and Y is the natural quotient map. One can appeal to an
extension of an earlier result of Aronszajn to analyze the quotient
module Q when the given modules are reproducing kernel Hilbert
spaces. The reproducing kernel of H is then the pointwise product
K1(z,w)K2(u,v) for z,w;u,v in Ω. Set Hres = {f|4 : f ∈H } and
‖f‖|4 = inf{‖g‖ : g ∈H ,g|4 ≡ f|4}.

• The quotient module is isomorphic to the module Hres whose
reproducing kernel is the pointwise product K1(z,w)K2(z,w), z,w ∈Ω.
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another kernel!

Suppose Ω⊆ Cd is open connected and bounded. Let K : Ω×Ω be a
non-negative definite kernel. Then K̃ defined by

K̃(z,w) =
((

K2
∂i∂̄j logK(z,w)

))
1≤i,j≤d

is a Cd×d valued non-negative definite kernel.
• We point out that ∑i,j ∂i∂̄j logK(w,w)dwi∧dw̄j is the curvature of the

metric K(w,w).

To see that K̃ defines a positive definite kernel on Ω, set

φi(w) := Kw⊗ ∂̄iKw− ∂̄iKw⊗Kw,1≤ i≤ m

and note that each φ : Ω→H is holomorphic. A simple calculation
then shows that

〈φj(w),φi(z)〉H ⊗H = K̃(z,w).
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what is the Hilbert module?

How to describe the Hilbert space, or more importantly, the Hilbert
module H (K̃) ? May be, it is a quotient of the Hilbert module
H ⊗H ? If so, How do we identify the corresponding submodule?
Let H0 be the subspace of H (K)⊗H (K) given by∨
{φi(w) : w ∈Ω,1≤ i≤ m}.

From this definition, it is not clear which functions belong to the
subspace. We give an explicit description.
Let H1 and H2 be the submodules defined by

H1 = {f ∈H (K)⊗H (K) : f |∆ = 0}

and

H2 = {f ∈H (K)⊗H (K) : f |∆ = ∂1f |∆ = ∂2f |∆ = ...= ∂mf |∆ = 0}.

We have
• H11 = H ⊥

2 	H ⊥
1
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example

Let H (λ ) be the Hilbert module over the disc algebra determined by
the kernel K(λ )(z,w) := (1− zw̄)−2λ . We identify the tensor product
H (λ ,µ)(D2) := H (λ )⊗H (µ) as a vector subspace of Hol(D×D).
Set

H
(λ ,µ)

k (D2) :=
{

f ∈H (λ ,µ)(D2) : f|M = (∂1f )|M = · · ·(∂ k−1
1 f )|M = 0

}
,

where M:= {(z,z) : z ∈ D}.
Set

Qk := H
(λ ,µ)

k (D2)	H
(λ ,µ)

k+1 (D2).

The reproducing kernel for Q1 is K(λ+µ), while that of Q2 is
K(λ+µ+2) .

• This is the Clebsch-Gordan formula!
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Thank You!


