The Arveson-Douglas conjecture for semi-submodules

Gadadhar Misra

Indian Institute of Science Bangalore (after talking to Soumitra Ghara, Surjit Kumar, Paramita Pramanick, and Kalyan Sinha)

Conference on Functional Analysis @ IIT Bombay- 2019 Oct 19, 2019

 $\|p \cdot f\| \leq C_p \|f\|, f \in \mathscr{H}, p \in \mathbb{C}[\underline{z}].$

The multiplication M_j , $1 \le j \le m$, by the coordinate functions z_j : $M_j f := z_j \cdot f$, then defines a commutative tuple $\mathbf{M} = (M_1, ..., M_m)$ of linear bounded operators acting on \mathcal{H} and vice-versa.

- dim ℋ/m_wℋ = n < ∞ for all w ∈ Ω, where m_w is the maximal ideal in C[z] at w and
- there exists a holomorphic choice of linearly independent vectors $\{s_1(w), \ldots, s_n(w)\}$ in $\mathcal{H}/\mathfrak{m}_w \mathcal{H}$.

 $\|p \cdot f\| \leq C_p \|f\|, f \in \mathscr{H}, p \in \mathbb{C}[\underline{z}].$

The multiplication M_j , $1 \le j \le m$, by the coordinate functions z_j : $M_j f := z_j \cdot f$, then defines a commutative tuple $\mathbf{M} = (M_1, ..., M_m)$ of linear bounded operators acting on \mathcal{H} and vice-versa.

- dim ℋ/m_wℋ = n < ∞ for all w ∈ Ω, where m_w is the maximal ideal in C[z] at w and
- there exists a holomorphic choice of linearly independent vectors $\{s_1(w), \ldots, s_n(w)\}$ in $\mathcal{H}/\mathfrak{m}_w \mathcal{H}$.

 $\|p \cdot f\| \leq C_p \|f\|, f \in \mathscr{H}, p \in \mathbb{C}[\underline{z}].$

The multiplication M_j , $1 \le j \le m$, by the coordinate functions z_j : $M_j f := z_j \cdot f$, then defines a commutative tuple $\mathbf{M} = (M_1, ..., M_m)$ of linear bounded operators acting on \mathcal{H} and vice-versa.

- dim $\mathscr{H}/\mathfrak{m}_w \mathscr{H} = n < \infty$ for all $w \in \Omega$, where \mathfrak{m}_w is the maximal ideal in $\mathbb{C}[z]$ at w and
- there exists a holomorphic choice of linearly independent vectors $\{s_1(w), \ldots, s_n(w)\}$ in $\mathcal{H}/\mathfrak{m}_w \mathcal{H}$.

 $\|p \cdot f\| \leq C_p \|f\|, f \in \mathscr{H}, p \in \mathbb{C}[\underline{z}].$

The multiplication M_j , $1 \le j \le m$, by the coordinate functions z_j : $M_j f := z_j \cdot f$, then defines a commutative tuple $\mathbf{M} = (M_1, ..., M_m)$ of linear bounded operators acting on \mathcal{H} and vice-versa.

- dim $\mathscr{H}/\mathfrak{m}_w \mathscr{H} = n < \infty$ for all $w \in \Omega$, where \mathfrak{m}_w is the maximal ideal in $\mathbb{C}[z]$ at w and
- there exists a holomorphic choice of linearly independent vectors $\{s_1(w), \ldots, s_n(w)\}$ in $\mathcal{H}/\mathfrak{m}_w\mathcal{H}$.

essentially r - reductive modules

A Hilbert module \mathcal{M} over the polynomial ring $\mathbb{C}[z]$ is said to be essentially *r* - reductive if the module multiplication m_p , $p \in \mathbb{C}[z]$ is essentially normal, that is,

- The Hardy and the Bergman modules H²(D) and A²(D) over the disc algebra 𝔄(D) are essentially reductive.
- The Drury-Arveson module H_m^2 is a module over the polynomial ring $\mathbb{C}[z]$ which is essentially reductive, although, the module multiplication does not extend to the ball algebra.
- Apart from asking if a Hilbert module *M* is essentially reductive, one may also ask which submodules and quotient modules are essentially reductive. It is likely to have an interesting answer if *M* is essentially reductive.
- Neither the Hardy module nor the Bergman module over the algebra A(D^m), m > 1, is essentially reductive. However, some quotient modules of the Hardy module over A(D^m), m > 1, are essentially reductive while some are not.

essentially r - reductive modules

A Hilbert module \mathcal{M} over the polynomial ring $\mathbb{C}[z]$ is said to be essentially *r* - reductive if the module multiplication m_p , $p \in \mathbb{C}[z]$ is essentially normal, that is,

- The Hardy and the Bergman modules H²(D) and A²(D) over the disc algebra 𝒜(D) are essentially reductive.
- The Drury-Arveson module H_m^2 is a module over the polynomial ring $\mathbb{C}[z]$ which is essentially reductive, although, the module multiplication does not extend to the ball algebra.
- Apart from asking if a Hilbert module \mathscr{M} is essentially reductive, one may also ask which submodules and quotient modules are essentially reductive. It is likely to have an interesting answer if \mathscr{M} is essentially reductive.
- Neither the Hardy module nor the Bergman module over the algebra A(D^m), m > 1, is essentially reductive. However, some quotient modules of the Hardy module over A(D^m), m > 1, are essentially reductive while some are not.

A Hilbert module \mathcal{M} over the polynomial ring $\mathbb{C}[z]$ is said to be essentially *r* - reductive if the module multiplication m_p , $p \in \mathbb{C}[z]$ is essentially normal, that is,

- The Hardy and the Bergman modules H²(D) and A²(D) over the disc algebra 𝒜(D) are essentially reductive.
- The Drury-Arveson module H_m^2 is a module over the polynomial ring $\mathbb{C}[z]$ which is essentially reductive, although, the module multiplication does not extend to the ball algebra.
- Apart from asking if a Hilbert module *M* is essentially reductive, one may also ask which submodules and quotient modules are essentially reductive. It is likely to have an interesting answer if *M* is essentially reductive.
- Neither the Hardy module nor the Bergman module over the algebra A(D^m), m > 1, is essentially reductive. However, some quotient modules of the Hardy module over A(D^m), m > 1, are essentially reductive while some are not.

A Hilbert module \mathcal{M} over the polynomial ring $\mathbb{C}[z]$ is said to be essentially *r* - reductive if the module multiplication m_p , $p \in \mathbb{C}[z]$ is essentially normal, that is,

- The Hardy and the Bergman modules H²(D) and A²(D) over the disc algebra 𝒜(D) are essentially reductive.
- The Drury-Arveson module H_m^2 is a module over the polynomial ring $\mathbb{C}[z]$ which is essentially reductive, although, the module multiplication does not extend to the ball algebra.
- Apart from asking if a Hilbert module \mathscr{M} is essentially reductive, one may also ask which submodules and quotient modules are essentially reductive. It is likely to have an interesting answer if \mathscr{M} is essentially reductive.
- Neither the Hardy module nor the Bergman module over the algebra A(D^m), m > 1, is essentially reductive. However, some quotient modules of the Hardy module over A(D^m), m > 1, are essentially reductive while some are not.

A Hilbert module \mathcal{M} over the polynomial ring $\mathbb{C}[z]$ is said to be essentially *r* - reductive if the module multiplication m_p , $p \in \mathbb{C}[z]$ is essentially normal, that is,

- The Hardy and the Bergman modules H²(D) and A²(D) over the disc algebra 𝒜(D) are essentially reductive.
- The Drury-Arveson module H_m^2 is a module over the polynomial ring $\mathbb{C}[z]$ which is essentially reductive, although, the module multiplication does not extend to the ball algebra.
- Apart from asking if a Hilbert module \mathscr{M} is essentially reductive, one may also ask which submodules and quotient modules are essentially reductive. It is likely to have an interesting answer if \mathscr{M} is essentially reductive.
- Neither the Hardy module nor the Bergman module over the algebra A(D^m), m > 1, is essentially reductive. However, some quotient modules of the Hardy module over A(D^m), m > 1, are essentially reductive while some are not.

the restriction

There is one other possibility that we haven't considered.

- The weighted Bergman modules over a bounded symmetric domain Ω are reductive if and only if the rank of the domain Ω is 1, Ghara, Kumar and Pramanick.
- However, like the case of the polydisc, these possess several quotient modules which are essentially reductive.

There is one other possibility that we haven't considered.

- The weighted Bergman modules over a bounded symmetric domain Ω are reductive if and only if the rank of the domain Ω is 1, Ghara, Kumar and Pramanick.
- However, like the case of the polydisc, these possess several quotient modules which are essentially reductive.

There is one other possibility that we haven't considered.

- The weighted Bergman modules over a bounded symmetric domain Ω are reductive if and only if the rank of the domain Ω is 1, Ghara, Kumar and Pramanick.
- However, like the case of the polydisc, these possess several quotient modules which are essentially reductive.

There is one other possibility that we haven't considered.

- The weighted Bergman modules over a bounded symmetric domain Ω are reductive if and only if the rank of the domain Ω is 1, Ghara, Kumar and Pramanick.
- However, like the case of the polydisc, these possess several quotient modules which are essentially reductive.

example

- If we consider the submodule *S* of functions vanishing on B_n in the weighted Bergman module *H*^(v)(Ω), then the corresponding quotient module *Q* can be identified with the restriction of the functions in *H*^(v)(Ω) to the zero set, namely, B_n.
- In consequence, the quotient module is isomorphic to the weighted Bergman module $\mathscr{H}^{(v)}(\mathbb{B}_n)$ and these are essentially reductive.
- Q. What about a similar question involving semi-submodules?

- Let $\mathbf{z} \in \mathbb{B}_n$ map to the $n \times n$ matrix whose first column is \mathbf{z} and each of the remaining (n-1) columns is the zero vector of size n.
- If we consider the submodule *S* of functions vanishing on B_n in the weighted Bergman module *H*^(ν)(Ω), then the corresponding quotient module *Q* can be identified with the restriction of the functions in *H*^(ν)(Ω) to the zero set, namely, B_n.
- In consequence, the quotient module is isomorphic to the weighted Bergman module $\mathscr{H}^{(v)}(\mathbb{B}_n)$ and these are essentially reductive.
- Q. What about a similar question involving semi-submodules?

- Let $\mathbf{z} \in \mathbb{B}_n$ map to the $n \times n$ matrix whose first column is \mathbf{z} and each of the remaining (n-1) columns is the zero vector of size n.
- If we consider the submodule *S* of functions vanishing on B_n in the weighted Bergman module *H*^(ν)(Ω), then the corresponding quotient module *Q* can be identified with the restriction of the functions in *H*^(ν)(Ω) to the zero set, namely, B_n.
- In consequence, the quotient module is isomorphic to the weighted Bergman module *H*^(v)(B_n) and these are essentially reductive.
- Q. What about a similar question involving semi-submodules?

- Let $\mathbf{z} \in \mathbb{B}_n$ map to the $n \times n$ matrix whose first column is \mathbf{z} and each of the remaining (n-1) columns is the zero vector of size n.
- If we consider the submodule *S* of functions vanishing on B_n in the weighted Bergman module *H*^(ν)(Ω), then the corresponding quotient module *Q* can be identified with the restriction of the functions in *H*^(ν)(Ω) to the zero set, namely, B_n.
- In consequence, the quotient module is isomorphic to the weighted Bergman module *H*^(v)(B_n) and these are essentially reductive.
- Q. What about a similar question involving semi-submodules?

Lemma (Arveson). Let \mathscr{M} be an essentially reductive Hilbert module over $\mathbb{C}[z]$, \mathscr{N} be a submodule of \mathscr{M} and $\mathscr{Q} = \mathscr{M} \ominus \mathscr{N}$, be the corresponding quotient module. The submodule \mathscr{N} is essentially reductive if and only if so is \mathscr{Q} .

Arveson-Douglas Conjecture. Let \mathscr{M} be a essentially reductive Hilbert module over the algebra $\mathbb{C}[\mathbf{z}]$ consisting of holomorphic functions defined on $\Omega \subseteq \mathbb{C}^m$. If the ideal I is homogeneous, that is, generated by homogeneous polynomials, then the submodule [I] is r-essentially reductive for every $r > \dim V(I)$.

A positive solution to the Arveson-Douglas conjecture implies that

 $0 \to \mathscr{C}([I]) \to \mathscr{T}([I]) \to C(V(I) \cap \partial \mathbb{B}_m) \to 0$

is a short exact sequence. One of the main questions is to identify the K - homology class $[\mathscr{T}([I])]$ defined by this extension. In the case that $I = \{0\}$ and m = 1, the Toeplitz index theorem for \mathbb{T} gives the answer to this question.

Lemma (Arveson). Let \mathscr{M} be an essentially reductive Hilbert module over $\mathbb{C}[z]$, \mathscr{N} be a submodule of \mathscr{M} and $\mathscr{Q} = \mathscr{M} \ominus \mathscr{N}$, be the corresponding quotient module. The submodule \mathscr{N} is essentially reductive if and only if so is \mathscr{Q} .

Arveson-Douglas Conjecture. Let \mathscr{M} be a essentially reductive Hilbert module over the algebra $\mathbb{C}[z]$ consisting of holomorphic functions defined on $\Omega \subseteq \mathbb{C}^m$. If the ideal I is homogeneous, that is, generated by homogeneous polynomials, then the submodule [I] is r -essentially reductive for every $r > \dim V(I)$.

A positive solution to the Arveson-Douglas conjecture implies that

 $0 o \mathscr{C}([I]) o \mathscr{T}([I]) o C(V(I) \cap \partial \mathbb{B}_m) o 0$

is a short exact sequence. One of the main questions is to identify the K - homology class $[\mathscr{T}([I])]$ defined by this extension. In the case that $I = \{0\}$ and m = 1, the Toeplitz index theorem for \mathbb{T} gives the answer to this question.

Lemma (Arveson). Let \mathscr{M} be an essentially reductive Hilbert module over $\mathbb{C}[z]$, \mathscr{N} be a submodule of \mathscr{M} and $\mathscr{Q} = \mathscr{M} \ominus \mathscr{N}$, be the corresponding quotient module. The submodule \mathscr{N} is essentially reductive if and only if so is \mathscr{Q} .

Arveson-Douglas Conjecture. Let \mathscr{M} be a essentially reductive Hilbert module over the algebra $\mathbb{C}[z]$ consisting of holomorphic functions defined on $\Omega \subseteq \mathbb{C}^m$. If the ideal I is homogeneous, that is, generated by homogeneous polynomials, then the submodule [I] is r -essentially reductive for every $r > \dim V(I)$.

A positive solution to the Arveson-Douglas conjecture implies that

 $0 \to \mathscr{C}([I]) \to \mathscr{T}([I]) \to C(V(I) \cap \partial \mathbb{B}_m) \to 0$

is a short exact sequence. One of the main questions is to identify the K - homology class $[\mathscr{T}([I])]$ defined by this extension. In the case that $I = \{0\}$ and m = 1, the Toeplitz index theorem for \mathbb{T} gives the answer to this question.

Let \mathcal{M}_1 and \mathcal{M}_2 be Hilbert spaces of holomorphic functions on Ω so that they possess reproducing kernels K_1 and K_2 , respectively. Assume that the natural action of $\mathbb{C}[\underline{z}]$ on the Hilbert space \mathcal{M}_1 is continuous, that is, the map $(p,h) \to ph$ defines a bounded operator on M_p for $p \in \mathbb{C}[\underline{z}]$. (We make no such assumption about the Hilbert space \mathcal{M}_2 .) Now, $\mathbb{C}[\underline{z}]$ acts naturally on the Hilbert space tensor product $\mathcal{M}_1 \otimes \mathcal{M}_2$ via the map

$(p,(h\otimes k)) \to ph\otimes k, p \in \mathbb{C}[\underline{z}], h \in \mathcal{M}_1, k \in \mathcal{M}_2.$

The map $h \otimes k \to hk$ identifies the Hilbert space $\mathcal{M}_1 \otimes \mathcal{M}_2$ as a reproducing kernel Hilbert space of holomorphic functions on $\Omega \times \Omega$. The module action is then the point-wise multiplication $(p,hk) \to (ph)k$, where $((ph)k)(z_1,z_2) = p(z_1)h(z_1)k(z_2), z_1,z_2 \in \Omega$.

Let \mathscr{H} be the Hilbert module $\mathscr{M}_1 \otimes \mathscr{M}_2$ over $\mathbb{C}[\underline{z}]$. Let $\bigtriangleup \subseteq \Omega \times \Omega$ be the diagonal subset $\{(z,z) : z \in \Omega\}$ of $\Omega \times \Omega$. Let \mathscr{S} be the maximal submodule of functions in $\mathscr{M}_1 \otimes \mathscr{M}_2$ which vanish on \bigtriangleup . Thus

 $0 \to \mathscr{S} \xrightarrow{X} \mathscr{M}_1 \otimes \mathscr{M}_2 \xrightarrow{Y} \mathscr{Q} \to 0$

is a short exact sequence, where $\mathcal{Q} = (\mathcal{M}_1 \otimes \mathcal{M}_2)/\mathcal{S}$, *X* is the inclusion map and *Y* is the natural quotient map. One can appeal to an extension of an earlier result of Aronszajn to analyze the quotient module \mathcal{Q} when the given modules are reproducing kernel Hilbert spaces. The reproducing kernel of \mathcal{H} is then the pointwise product $K_1(z,w)K_2(u,v)$ for z,w;u,v in Ω . Set $\mathcal{H}_{res} = \{f_{|\Delta} : f \in \mathcal{H}\}$ and $\|f\|_{|\Delta} = \inf\{\|g\| : g \in \mathcal{H}, g_{|\Delta} \equiv f_{|\Delta}\}.$

• The quotient module is isomorphic to the module \mathscr{H}_{res} whose reproducing kernel is the pointwise product $K_1(z,w)K_2(z,w), z, w \in \Omega$.

Let \mathscr{H} be the Hilbert module $\mathscr{M}_1 \otimes \mathscr{M}_2$ over $\mathbb{C}[\underline{z}]$. Let $\bigtriangleup \subseteq \Omega \times \Omega$ be the diagonal subset $\{(z,z) : z \in \Omega\}$ of $\Omega \times \Omega$. Let \mathscr{S} be the maximal submodule of functions in $\mathscr{M}_1 \otimes \mathscr{M}_2$ which vanish on \bigtriangleup . Thus

 $0 \to \mathscr{S} \xrightarrow{X} \mathscr{M}_1 \otimes \mathscr{M}_2 \xrightarrow{Y} \mathscr{Q} \to 0$

is a short exact sequence, where $\mathcal{Q} = (\mathcal{M}_1 \otimes \mathcal{M}_2)/\mathcal{S}$, *X* is the inclusion map and *Y* is the natural quotient map. One can appeal to an extension of an earlier result of Aronszajn to analyze the quotient module \mathcal{Q} when the given modules are reproducing kernel Hilbert spaces. The reproducing kernel of \mathcal{H} is then the pointwise product $K_1(z,w)K_2(u,v)$ for z,w;u,v in Ω . Set $\mathcal{H}_{res} = \{f_{|\Delta} : f \in \mathcal{H}\}$ and $\|f\|_{|\Delta} = \inf\{\|g\| : g \in \mathcal{H}, g_{|\Delta} \equiv f_{|\Delta}\}.$

• The quotient module is isomorphic to the module \mathscr{H}_{res} whose reproducing kernel is the pointwise product $K_1(z,w)K_2(z,w)$, $z, w \in \Omega$.

Suppose $\Omega \subseteq \mathbb{C}^d$ is open connected and bounded. Let $K : \Omega \times \Omega$ be a non-negative definite kernel. Then \widetilde{K} defined by

 $\widetilde{K}(z,w) = \left(\left(K^2 \partial_i \bar{\partial}_j \log K(z,w) \right) \right)_{1 \le i,j \le d}$

is a $\mathbb{C}^{d \times d}$ valued non-negative definite kernel.

We point out that ∑_{i,j} ∂_i∂_j log K(w, w)dw_i ∧ dw̄_j is the curvature of the metric K(w, w).

To see that \tilde{K} defines a positive definite kernel on Ω , set

 $\phi_i(w) := K_w \otimes \bar{\partial}_i K_w - \bar{\partial}_i K_w \otimes K_w, 1 \le i \le m$

and note that each $\phi: \Omega \to \mathscr{H}$ is holomorphic. A simple calculation then shows that

 $\langle \phi_j(w), \phi_i(z) \rangle_{\mathscr{H} \otimes \mathscr{H}} = \widetilde{K}(z, w).$

Suppose $\Omega \subseteq \mathbb{C}^d$ is open connected and bounded. Let $K : \Omega \times \Omega$ be a non-negative definite kernel. Then \widetilde{K} defined by

 $\widetilde{K}(z,w) = \left(\left(K^2 \partial_i \bar{\partial}_j \log K(z,w) \right) \right)_{1 \le i,j \le d}$

is a $\mathbb{C}^{d \times d}$ valued non-negative definite kernel.

We point out that ∑_{i,j} ∂_i ∂_j log K(w, w)dw_i ∧ dw̄_j is the curvature of the metric K(w, w).

To see that K defines a positive definite kernel on Ω , set

 $\phi_i(w) := K_w \otimes \bar{\partial}_i K_w - \bar{\partial}_i K_w \otimes K_w, 1 \le i \le m$

and note that each $\phi: \Omega \to \mathscr{H}$ is holomorphic. A simple calculation then shows that

 $\langle \phi_j(w), \phi_i(z) \rangle_{\mathscr{H} \otimes \mathscr{H}} = \widetilde{K}(z, w).$

Suppose $\Omega \subseteq \mathbb{C}^d$ is open connected and bounded. Let $K : \Omega \times \Omega$ be a non-negative definite kernel. Then \widetilde{K} defined by

 $\widetilde{K}(z,w) = \left(\left(K^2 \partial_i \bar{\partial}_j \log K(z,w) \right) \right)_{1 \le i,j \le d}$

is a $\mathbb{C}^{d \times d}$ valued non-negative definite kernel.

We point out that ∑_{i,j} ∂_i ∂_j log K(w, w)dw_i ∧ dw̄_j is the curvature of the metric K(w, w).

To see that \widetilde{K} defines a positive definite kernel on Ω , set

$$\phi_i(w) := K_w \otimes \bar{\partial}_i K_w - \bar{\partial}_i K_w \otimes K_w, 1 \le i \le m$$

and note that each $\phi:\Omega\to \mathscr{H}\,$ is holomorphic. A simple calculation then shows that

 $\langle \phi_j(w), \phi_i(z) \rangle_{\mathscr{H} \otimes \mathscr{H}} = \widetilde{K}(z, w).$

How to describe the Hilbert space, or more importantly, the Hilbert module $\mathscr{H}(\widetilde{K})$? May be, it is a quotient of the Hilbert module $\mathscr{H} \otimes \mathscr{H}$? If so, How do we identify the corresponding submodule?

Let \mathcal{H}_0 be the subspace of $\mathcal{H}(K) \otimes \mathcal{H}(K)$ given by $\overline{\bigvee} \{ \phi_i(w) : w \in \Omega, 1 \le i \le m \}.$

From this definition, it is not clear which functions belong to the subspace. We give an explicit description.

Let \mathscr{H}_1 and \mathscr{H}_2 be the submodules defined by

 $\mathscr{H}_1 = \{ f \in \mathscr{H}(K) \otimes \mathscr{H}(K) : f|_{\Delta} = 0 \}$

and

 $\mathscr{H}_{2} = \{ f \in \mathscr{H}(K) \otimes \mathscr{H}(K) : f|_{\Delta} = \partial_{1} f|_{\Delta} = \partial_{2} f|_{\Delta} = \ldots = \partial_{m} f|_{\Delta} = 0 \}.$

How to describe the Hilbert space, or more importantly, the Hilbert module $\mathscr{H}(\widetilde{K})$? May be, it is a quotient of the Hilbert module $\mathscr{H} \otimes \mathscr{H}$? If so, How do we identify the corresponding submodule? Let \mathscr{H}_0 be the subspace of $\mathscr{H}(K) \otimes \mathscr{H}(K)$ given by $\overline{\nabla} \{ \phi_i(w) : w \in \Omega, 1 \le i \le m \}$.

From this definition, it is not clear which functions belong to the subspace. We give an explicit description.

Let \mathscr{H}_1 and \mathscr{H}_2 be the submodules defined by

$$\mathscr{H}_1 = \{f \in \mathscr{H}(K) \otimes \mathscr{H}(K) : f|_{\Delta} = 0\}$$

and

 $\mathscr{H}_{2} = \{ f \in \mathscr{H}(K) \otimes \mathscr{H}(K) : f|_{\Delta} = \partial_{1}f|_{\Delta} = \partial_{2}f|_{\Delta} = \ldots = \partial_{m}f|_{\Delta} = 0 \}.$

How to describe the Hilbert space, or more importantly, the Hilbert module $\mathscr{H}(\widetilde{K})$? May be, it is a quotient of the Hilbert module $\mathscr{H} \otimes \mathscr{H}$? If so, How do we identify the corresponding submodule? Let \mathscr{H}_0 be the subspace of $\mathscr{H}(K) \otimes \mathscr{H}(K)$ given by $\overline{\bigvee} \{ \phi_i(w) : w \in \Omega, 1 \le i \le m \}.$

From this definition, it is not clear which functions belong to the subspace. We give an explicit description.

Let \mathscr{H}_1 and \mathscr{H}_2 be the submodules defined by

 $\mathscr{H}_1 = \{f \in \mathscr{H}(K) \otimes \mathscr{H}(K) : f|_\Delta = 0\}$

and

 $\mathscr{H}_{2} = \{ f \in \mathscr{H}(K) \otimes \mathscr{H}(K) : f|_{\Delta} = \partial_{1}f|_{\Delta} = \partial_{2}f|_{\Delta} = \ldots = \partial_{m}f|_{\Delta} = 0 \}.$

How to describe the Hilbert space, or more importantly, the Hilbert module $\mathscr{H}(\widetilde{K})$? May be, it is a quotient of the Hilbert module $\mathscr{H} \otimes \mathscr{H}$? If so, How do we identify the corresponding submodule? Let \mathscr{H}_0 be the subspace of $\mathscr{H}(K) \otimes \mathscr{H}(K)$ given by $\overline{\bigvee} \{\phi_i(w) : w \in \Omega, 1 \le i \le m\}.$

From this definition, it is not clear which functions belong to the subspace. We give an explicit description.

Let \mathscr{H}_1 and \mathscr{H}_2 be the submodules defined by

$$\mathscr{H}_1 = \{ f \in \mathscr{H}(K) \otimes \mathscr{H}(K) : f|_{\Delta} = 0 \}$$

and

 $\mathscr{H}_2 = \{ f \in \mathscr{H}(K) \otimes \mathscr{H}(K) : f|_\Delta = \partial_1 f|_\Delta = \partial_2 f|_\Delta = \ldots = \partial_m f|_\Delta = 0 \}.$

How to describe the Hilbert space, or more importantly, the Hilbert module $\mathscr{H}(\widetilde{K})$? May be, it is a quotient of the Hilbert module $\mathscr{H} \otimes \mathscr{H}$? If so, How do we identify the corresponding submodule? Let \mathscr{H}_0 be the subspace of $\mathscr{H}(K) \otimes \mathscr{H}(K)$ given by $\overline{\bigvee} \{\phi_i(w) : w \in \Omega, 1 \le i \le m\}.$

From this definition, it is not clear which functions belong to the subspace. We give an explicit description.

Let \mathscr{H}_1 and \mathscr{H}_2 be the submodules defined by

$$\mathscr{H}_1 = \{ f \in \mathscr{H}(K) \otimes \mathscr{H}(K) : f|_{\Delta} = 0 \}$$

and

 $\mathscr{H}_2 = \{ f \in \mathscr{H}(K) \otimes \mathscr{H}(K) : f|_\Delta = \partial_1 f|_\Delta = \partial_2 f|_\Delta = \ldots = \partial_m f|_\Delta = 0 \}.$

Let $\mathscr{H}^{(\lambda)}$ be the Hilbert module over the disc algebra determined by the kernel $K^{(\lambda)}(z,w) := (1-z\overline{w})^{-2\lambda}$. We identify the tensor product $\mathscr{H}^{(\lambda,\mu)}(\mathbb{D}^2) := \mathscr{H}^{(\lambda)} \otimes \mathscr{H}^{(\mu)}$ as a vector subspace of $Hol(\mathbb{D} \times \mathbb{D})$. Set

 $\mathscr{H}^{(\lambda,\mu)}_{k}(\mathbb{D}^{2}) := \big\{ f \in \mathscr{H}^{(\lambda,\mu)}(\mathbb{D}^{2}) : f_{|\Delta} = (\partial_{\mathbf{l}} f)_{|\Delta} = \cdots (\partial_{\mathbf{l}}^{k-1} f)_{|\Delta} = 0 \big\},$

where $\triangle := \{(z, z) : z \in \mathbb{D}\}.$

Set

example

$$\mathscr{Q}_k := \mathscr{H}_k^{(\lambda,\mu)}(\mathbb{D}^2) \ominus \mathscr{H}_{k+1}^{(\lambda,\mu)}(\mathbb{D}^2).$$

The reproducing kernel for \mathscr{Q}_1 is $K^{(\lambda+\mu)}$, while that of \mathscr{Q}_2 is $K^{(\lambda+\mu+2)}$.

• This is the Clebsch-Gordan formula!

Let $\mathscr{H}^{(\lambda)}$ be the Hilbert module over the disc algebra determined by the kernel $K^{(\lambda)}(z,w) := (1-z\overline{w})^{-2\lambda}$. We identify the tensor product $\mathscr{H}^{(\lambda,\mu)}(\mathbb{D}^2) := \mathscr{H}^{(\lambda)} \otimes \mathscr{H}^{(\mu)}$ as a vector subspace of $Hol(\mathbb{D} \times \mathbb{D})$. Set

$$\mathscr{H}_{k}^{(\lambda,\mu)}(\mathbb{D}^{2}):=\big\{f\in\mathscr{H}^{(\lambda,\mu)}(\mathbb{D}^{2}):f_{\mid \bigtriangleup}=(\partial_{1}f)_{\mid \bigtriangleup}=\cdots(\partial_{1}^{k-1}f)_{\mid \bigtriangleup}=0\big\},$$

where $\triangle := \{(z, z) : z \in \mathbb{D}\}.$

Set

example

$$\mathscr{Q}_k := \mathscr{H}_k^{(\lambda,\mu)}(\mathbb{D}^2) \ominus \mathscr{H}_{k+1}^{(\lambda,\mu)}(\mathbb{D}^2).$$

The reproducing kernel for \mathcal{Q}_1 is $K^{(\lambda+\mu)}$, while that of \mathcal{Q}_2 is $K^{(\lambda+\mu+2)}$.

• This is the Clebsch-Gordan formula!

Let $\mathscr{H}^{(\lambda)}$ be the Hilbert module over the disc algebra determined by the kernel $K^{(\lambda)}(z,w) := (1-z\overline{w})^{-2\lambda}$. We identify the tensor product $\mathscr{H}^{(\lambda,\mu)}(\mathbb{D}^2) := \mathscr{H}^{(\lambda)} \otimes \mathscr{H}^{(\mu)}$ as a vector subspace of $Hol(\mathbb{D} \times \mathbb{D})$. Set

$$\mathscr{H}_{k}^{(\lambda,\mu)}(\mathbb{D}^{2}) := \big\{ f \in \mathscr{H}^{(\lambda,\mu)}(\mathbb{D}^{2}) : f_{|\Delta} = (\partial_{1}f)_{|\Delta} = \cdots (\partial_{1}^{k-1}f)_{|\Delta} = 0 \big\},$$

where $\triangle := \{(z, z) : z \in \mathbb{D}\}.$

Set

example

$$\mathscr{Q}_k := \mathscr{H}_k^{(\lambda,\mu)}(\mathbb{D}^2) \ominus \mathscr{H}_{k+1}^{(\lambda,\mu)}(\mathbb{D}^2).$$

The reproducing kernel for \mathscr{Q}_1 is $K^{(\lambda+\mu)}$, while that of \mathscr{Q}_2 is $K^{(\lambda+\mu+2)}$.

• This is the Clebsch-Gordan formula!

Thank You!

