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in conclusion ...

• Suppose the restiction of a bounded operator T on a Hilbert space
H to “all” the two dimensional subspaces is contractive. Then it
does not necessarily follow that the operator T is contractive.

• Suppose that the operator T possesses an eigenvector γ(w) for w in
some open set in U ⊆C and that the map w 7→ γ(w) is holomorphic.
Then the restriction of the operator T −w to the two dimensional
subspaces {γ(w),γ′(w)}, w ∈ U is nilpotent and encodes important
information about the operator T. Indeed, in some instances, “as we
have seen”, this information is enough to determine the unitary
equivalence class of the operator T.

• While the norm bound for the operator T is not related to those of
the two dimensional restrictions directly, it (metric inequalities) can
be extracted from these (curvature inequalities)!

• Without any additional effort, may work with commuting tuples of
bounded operators on a Hilbert space possessing an open set of joint
eigenvalues w in some open set U ⊆Cm.
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holomorphic functions

• Let H be a Hilbert space and D be the unit disc. Suppose that there
exists a map γ : D→H which is holomorphic, that is, the complex
valued function

w →〈γ(w),ζ〉, w ∈D,

is holomorphic for every vector ζ in H .

• The derivative γ′(w) : C→H of the map γ at w may therefore be
thought of as a vector in H .

• Let Γ(w) ⊆H , w ∈D, be the subspace consisting of the two linearly
independent vectors γ(w) and γ′(w).
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Nilpotent action on Γ(w)

• There is a natural nilpotent action N(w) on the space Γ(w)
determined by the rule

γ′(w)
N(w)−→ γ(w)

N(w)−→ 0.

• Let e0(w), e1(w) be the orthonormal basis for Γ(w) obtained from
γ(w), γ′(w) by the Gram-Schmidt orthonormalization. The matrix
representation of N(w) with respect to this orthonormal basis is of

the form
(

0 h(w)
0 0

)
.

• It is easy to compute h(w). Indeed, we have

h(w) = ∥γ(w)∥2

(∥γ′(w)∥2∥γ(w)∥2 −|〈γ′(w),γ(w)〉|2)
1
2

.
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contraction

• Now, the operator wI +N(w) =
(

w h(w)
0 w

)
defined on Γ(w) is

contractive if and only if h(w) ≤ 1−|w|2.

• Let H be the Hilbert space ℓ2(N) and γ0(w) = (1,w,w2, . . . ,wn, . . .).
Clearly, 〈γ0(w),ζ〉 = ζ0 +wζ̄1 +·· ·+wnζ̄n +·· · is holomorphic for
every choice of ζ= (ζ0,ζ1 . . .ζn, . . .) in ℓ2(N).

• Now, γ′0(w) = (0,1,2w, . . . ,nwn−1, . . .). A simple computation gives

h0(w) = 1−|w|2 and thus
∥∥∥(

w h0(w)
0 w

)∥∥∥= 1.

• This is the restriction of the unilateral backward shift operator to the
invariant subspace Γ(w) ⊆ ℓ2(N).
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curvature

• The holomorphic function γ admits a power series expansion in
some small neighborhood of 0, say, γ(w) =∑∞

k=0 ζk wk, ζk ∈H . Then
we have

∥γ(w)∥2 = 〈γ(w),γ(w)〉 =∑
j,k
〈ζj,ζk〉wjw̄k.

• Using the linearity of differentiation, we then find that

K (w) := − ∂2

∂w̄∂w
log〈γ(w),γ(w)〉

= − ∂

∂w̄

〈 ∂
∂wγ(w),γ(w)〉
〈γ(w),γ(w)〉

= −∥ ∂
∂wγ(w)∥2∥γ(w)∥2 −|〈 ∂

∂wγ(w),γ(w)〉|2
∥γ(w)∥4 .



curvature

• The holomorphic function γ admits a power series expansion in
some small neighborhood of 0, say, γ(w) =∑∞

k=0 ζk wk, ζk ∈H . Then
we have

∥γ(w)∥2 = 〈γ(w),γ(w)〉 =∑
j,k
〈ζj,ζk〉wjw̄k.

• Using the linearity of differentiation, we then find that

K (w) := − ∂2

∂w̄∂w
log〈γ(w),γ(w)〉

= − ∂

∂w̄

〈 ∂
∂wγ(w),γ(w)〉
〈γ(w),γ(w)〉

= −∥ ∂
∂wγ(w)∥2∥γ(w)∥2 −|〈 ∂

∂wγ(w),γ(w)〉|2
∥γ(w)∥4 .



negative curvature

• The Cauchy - Schwarz inequality implies that

∥ ∂

∂w
γ(w)∥2∥γ(w)∥2 −|〈 ∂

∂w
γ(w),γ(w)〉|2 ≥ 0.

It therefore follows that the curvature K (w) is negative.

• Since h(w)2 =− 1
K (w) , setting

K0(w) :=− 1
h0(w)2 =− 1

(1−|w|2)2 ,

we conclude that the inequality h(w) ≤ (1−|w|2) is equivalent to the
curvature inequality K (w) ≤K0(w).

• Let L be the trivial holomorphic line bundle over the unit disc D.
We can think of γ as a frame for L with the induced metric given by
g(w) := ∥γ(w)∥2, w ∈D. Then K is the curvature of the line bundle
L .
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a class of operators

• Let T : H →H be a bounded linear operator for which
a) each w ∈D is an eigenvalue,
b) the w 7→ γ(w), where γ(w) is the eigenvector with eigenvalue w is

holomorphic.
c) the dimension of the eigenspace is 1.

• The class of operators B1(D) was introduced by Cowen and Douglas.
They showed, among other things, that the unitary equivalence class
of the operator T and the equivalence class of holomorphic
Hermitian bundle L determined by the holomorphic frame γ

determine each other.

• As a result, the curvature function K is a complete invariant for the
operator T.

• Also, they show that an operator T in this class is unitarily equivalent
to the adjoint M∗ of the multiplication operatorM by the
co-ordinate function on some Hilbert space H of holomorphic
functions on Ω∗ := {z ∈C : z̄ ∈Ω} possessing a reproducing kernel K .
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kernel function

• Let Ω∗ := {w̄ : w ∈Ω}. A kernel function K : Ω∗×Ω∗ →C is
holomorphic in the first and anti-holomorphic in the second
variable. Therefore, the map w → K (·,w̄),w ∈Ω is holomorphic.

• It is Hermitian, K (z,w) = K (w,z) , and positive definite, that is,((
K (wi,wj)

))n
i,j=1 is positive definite for every subset {w1, . . . ,wn} of

Ω∗, n ∈N.

• For any fixed w ∈Ω∗, the holomorphic function K (·,w) belongs to
H and

f (w) = 〈f ,K (·,w)〉, f ∈H , w ∈Ω∗.

• The reproducing property of K ensures that M∗K (·,w) = w̄K (·,w).
Therefore, for w ∈Ω, γ(w̄) := K (·,w̄) defines a natural holomorphic
frame for the operator M∗.



kernel function

• Let Ω∗ := {w̄ : w ∈Ω}. A kernel function K : Ω∗×Ω∗ →C is
holomorphic in the first and anti-holomorphic in the second
variable. Therefore, the map w → K (·,w̄),w ∈Ω is holomorphic.

• It is Hermitian, K (z,w) = K (w,z) , and positive definite, that is,((
K (wi,wj)

))n
i,j=1 is positive definite for every subset {w1, . . . ,wn} of

Ω∗, n ∈N.

• For any fixed w ∈Ω∗, the holomorphic function K (·,w) belongs to
H and

f (w) = 〈f ,K (·,w)〉, f ∈H , w ∈Ω∗.

• The reproducing property of K ensures that M∗K (·,w) = w̄K (·,w).
Therefore, for w ∈Ω, γ(w̄) := K (·,w̄) defines a natural holomorphic
frame for the operator M∗.



kernel function

• Let Ω∗ := {w̄ : w ∈Ω}. A kernel function K : Ω∗×Ω∗ →C is
holomorphic in the first and anti-holomorphic in the second
variable. Therefore, the map w → K (·,w̄),w ∈Ω is holomorphic.

• It is Hermitian, K (z,w) = K (w,z) , and positive definite, that is,((
K (wi,wj)

))n
i,j=1 is positive definite for every subset {w1, . . . ,wn} of

Ω∗, n ∈N.

• For any fixed w ∈Ω∗, the holomorphic function K (·,w) belongs to
H and

f (w) = 〈f ,K (·,w)〉, f ∈H , w ∈Ω∗.

• The reproducing property of K ensures that M∗K (·,w) = w̄K (·,w).
Therefore, for w ∈Ω, γ(w̄) := K (·,w̄) defines a natural holomorphic
frame for the operator M∗.



kernel function

• Let Ω∗ := {w̄ : w ∈Ω}. A kernel function K : Ω∗×Ω∗ →C is
holomorphic in the first and anti-holomorphic in the second
variable. Therefore, the map w → K (·,w̄),w ∈Ω is holomorphic.

• It is Hermitian, K (z,w) = K (w,z) , and positive definite, that is,((
K (wi,wj)

))n
i,j=1 is positive definite for every subset {w1, . . . ,wn} of

Ω∗, n ∈N.

• For any fixed w ∈Ω∗, the holomorphic function K (·,w) belongs to
H and

f (w) = 〈f ,K (·,w)〉, f ∈H , w ∈Ω∗.

• The reproducing property of K ensures that M∗K (·,w) = w̄K (·,w).
Therefore, for w ∈Ω, γ(w̄) := K (·,w̄) defines a natural holomorphic
frame for the operator M∗.



curvature inequality

• For any operator T in the calsss B1(Ω) , we have (T −wI)γ(w) = 0.
Differentiating with respect to w, we see that

Tγ′(w) = γ(w)+wγ′(w).

Thus the restriction of T −wI to the subspace Γ(w) is nilpotent of
order 2. We therefore set NT (w) := (T −wI)|Γ(w). We assign the
natural meaning to hT and KT .

• The backward shift S− acting on the space ℓ2(N) is easily seen to
satisfy all of a), b) and c) with γ(w) = (1,w,w2, . . . ,wn, . . .). The
curvature KS− (w) coincides with K0(w) =−(1−|w|2)−2.

PROPOSITION
If T is a contraction in B1(D), then KT (w) ≤KS− (w).

Proof. If T is a contraction, then clearly so is the operator wI +NT (w)
and the contractivity of wI +NT (w) is equivalent to KT (w) ≤KS− (w).
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Thus the restriction of T −wI to the subspace Γ(w) is nilpotent of
order 2. We therefore set NT (w) := (T −wI)|Γ(w). We assign the
natural meaning to hT and KT .

• The backward shift S− acting on the space ℓ2(N) is easily seen to
satisfy all of a), b) and c) with γ(w) = (1,w,w2, . . . ,wn, . . .). The
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weighted shifts

• Let H be the space ℓ2(N), as before. Now, let T : ℓ2(N) → ℓ2(N) be a
weighted shift, that is, T(a0,a1, . . . ,an, . . .) = (a1w0, . . . ,anwn−1, . . .) for
some choice of w0, . . . ,w1, . . . ∈C. For w ∈C with |w| small, it is
possible to find complex numbers α0,α1, . . . such that

T(α0,α1w,α2w2, . . .) = w(α0,α1w,α2w2, . . .)

and having the additional property that the dimension of this
eigenspace is 1.

• Now, the operator T is contractive if and only if supn wn ≤ 1 . Here

∥γ(w)∥2 = ∥(α0,α1w, . . . ,αnwn, . . .)∥2

=
∞∑

n=0
|αn|2|w|2n

• Thus KT (w) =− ∂2

∂w̄∂w log∥γ(w)∥2 ≤KS− (w), assuming only that
supn wn ≤ 1.
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an alternative description

• The curvature inequality for a contraction becomes evident after we
make the following observations.

• Verify, using the two properties:

M∗K (·,w) = w̄K (·,w) the closed linear span of {K (·,w) : w ∈D} =H ,

that
∥M∗∥ ≤ 1 if and only if K0(z,w) := (1− w̄z)K (z,w)

is positive definite. But the curvature of the metric K0(w,w) is always
negative, that is,

0 ≥ − ∂2

∂w̄∂w
logK0(w,w)

= − ∂2

∂w̄∂w
logK (w,w)+ (1−|w|2)−2,

which is equivalent to the inequality KT (w) ≤−(1−|w|2)−2 .
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a counter example

• What about the converse? We give an example to show that the
converse is false in general.

• Let W be the weighted shift operator with the weight sequence

{
√

1
2 ,

√
16
15 ,1,1, . . .}. Evidently, it is not a contraction. However, in this

case, we can pick γ(w) with ∥γ(w)∥2 = 8+8|w|2−|w|4
1−|w|2 . Clearly, we have

− ∂2

∂w∂w̄
log(8+8|w|2 −|w|4) =−8(8−4|w|2 −|w|4)

(8+8|w|2 −|w|4)2 , w ∈D,

which is negative for |w| < 1. In this example, we therefore find that
KW (w) ≤KS− (w), although the operator W is not a contraction.



a counter example

• What about the converse? We give an example to show that the
converse is false in general.

• Let W be the weighted shift operator with the weight sequence

{
√

1
2 ,

√
16
15 ,1,1, . . .}. Evidently, it is not a contraction. However, in this

case, we can pick γ(w) with ∥γ(w)∥2 = 8+8|w|2−|w|4
1−|w|2 . Clearly, we have

− ∂2

∂w∂w̄
log(8+8|w|2 −|w|4) =−8(8−4|w|2 −|w|4)

(8+8|w|2 −|w|4)2 , w ∈D,

which is negative for |w| < 1. In this example, we therefore find that
KW (w) ≤KS− (w), although the operator W is not a contraction.



polarization

• If γ is holomorphic and admits the power series expansion
γ(w) = ζ0+ζ1w+ζ2w2+·· · , then the norm ∥γ(w)∥2 is a function of w
and w̄. It has the form

∞∑
j,k=0

〈ζj,ζk〉wjw̄k, ζ0,ζ2, . . . ∈H .

Polarizing ∥γ(w)∥2, we obtain a new function γ̃(z,w) := 〈γ(z),γ(w)〉.
• Thus

((
γ̃(zi,zj)

))
is non negative definite for all choices of z1, . . .zn in

D. This is just the positive-definiteness of the kernel function
K (z,w) = 〈γ(z),γ(w)〉!

• The curvature K is a real analytic function and we have shown that
−K is positive.

• Let K̃ (z,w) := ∂2

∂w̄∂z log γ̃(z,w) denote the function obtained from
polarization of the curvature K .

• What about positive definiteness of −K̃ ?
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a secret

• Refining the computation that established the positivity of K , we
obtain a stronger inequality. Set

φ(w) := K (·,w)⊗ ∂̄K (·,w)− ∂̄K (·,w)⊗K (·,w).

Note that φ(w) ∈H , w ∈D.
• Moreover, a straightforward computation using the reproducing

property of K shows that

〈φ(z),φ(w)〉 = ∥ ∂

∂w
γ(w)∥2∥γ(w)∥2 −|〈 ∂

∂w
γ(w),γ(w)〉|2

= ∥φ(w)∥4 ∂2

∂w̄∂w
log∥φ(w)∥−2

=−GK−2 (w),

where γ(w) = K (·,w), as before and GK−2 is the Gaussian curvature
of the metric K (w,w)−2.

• Thus the Gaussian curvature GK−2 is a non-negative definite kernel.
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inequality for the Gaussian curvature

PROPOSITION
Let T ∈ B1(D) be a contraction. Assume that T is unitarily equivalent to the
operator M∗ on (H ,K ) for some non-negative definite kernel K on the
unit disc. Then the following inequality holds:

K 2(z,w) ⪯S−2
D (z,w)GK−1 (z,w),

that is, the matrix((
S−2
D (wi,wj)GK−1 (wi,wj)−K 2(wi,wj)

))n

i,j=1

is non-negative definite for every subset {w1, . . . ,wn} of D and n ∈N.



the proof

• Setting G(z,w) = (1−zw̄)K (z,w), we see that

−G(z,w)2∂∂̄ logG(z,w)

= (1−zw̄)2K 2(z,w)
(−∂∂̄ logK (z,w)+∂∂̄ logSD(z,w)

)
,

z,w ∈D. Since G(z,w) is non-negative definite on D×D, it follows
that

(1−zw̄)2K (z,w)2(−∂∂̄ logK (z,w)+∂∂̄ logSD(z,w)
)⪯ 0.

Also, SD(z,w)−2∂∂̄ logSD(z,w) = 1, therefore the proof is complete.

• The inequality for the Gaussian curvature is stronger than the
ordinary curvature inequality. For instance, this stronger form of the

inequality does not hold for the example ∥γ(w)∥2 = 8+8|w|2−|w|4
1−|w|2 .



the proof

• Setting G(z,w) = (1−zw̄)K (z,w), we see that

−G(z,w)2∂∂̄ logG(z,w)

= (1−zw̄)2K 2(z,w)
(−∂∂̄ logK (z,w)+∂∂̄ logSD(z,w)

)
,

z,w ∈D. Since G(z,w) is non-negative definite on D×D, it follows
that

(1−zw̄)2K (z,w)2(−∂∂̄ logK (z,w)+∂∂̄ logSD(z,w)
)⪯ 0.

Also, SD(z,w)−2∂∂̄ logSD(z,w) = 1, therefore the proof is complete.

• The inequality for the Gaussian curvature is stronger than the
ordinary curvature inequality. For instance, this stronger form of the

inequality does not hold for the example ∥γ(w)∥2 = 8+8|w|2−|w|4
1−|w|2 .



contractivity and infinite divisibility

• Say that a positive definite kernel K is infinitely divisible if K t is
positive definite for all t > 0. Ask if assuming that the kernel K (z,w)
is is both necessary and sufficient for positive definiteness of the
curvature function −K̃ .

• The answer is affirmative!

• Putting all this together we have the following theorem:

Theorem
Let T : H →H be a bounded linear operator satisfying a), b) and c)
admitting a holomorphic frame γ : D→H . Assume that (1−zw̄)γ̃(z,w) is
infinitely divisible. Then T is contractive if and only if the function

−K̃T (z,w)+K̃S− (z,w)

is positive definite.
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the proof

Proof.

• If the kernel K is infinitely divisible then logK must be conditionally
positive definite. This is the same as

K0(z,w) := logK (z,w)− logK (z,w0)− logK (w0,w)+ logK (w0,w0)

is a positive definite kernel for a fixed but arbitrary w0 ∈Ω . After
differentiating K0 twice, we obtain K̃ which is positive definite.

• Conversely, anti-differentiating K̃0 , determines logK0 up to addition
of a holomorphic function φ and its complex conjugate. Recall that if
logK0 is positive definite then K0 is infinitely divisible.



the proof

Proof.

• If the kernel K is infinitely divisible then logK must be conditionally
positive definite. This is the same as

K0(z,w) := logK (z,w)− logK (z,w0)− logK (w0,w)+ logK (w0,w0)

is a positive definite kernel for a fixed but arbitrary w0 ∈Ω . After
differentiating K0 twice, we obtain K̃ which is positive definite.

• Conversely, anti-differentiating K̃0 , determines logK0 up to addition
of a holomorphic function φ and its complex conjugate. Recall that if
logK0 is positive definite then K0 is infinitely divisible.



curvature inequality, strong form

Definition
If K is a non negative definite kernel such that (1−zw̄)K (z,w) is infinitely
divisible then we say that M on HK is infinitely divisible contraction.

Corollary
Let K be a positive definite kernel on the open unit disc. Assume that the
the adjoint M∗ of the multiplication operator M on the reproducing kernel
Hilbert space (H ,K ) belongs to B1(D). Then the polarization of the

function ∂2

∂w∂w̄ log
(
(1−ww̄)K (w,w)

)
is positive definite if and only if the

multiplication operator M is an infinitely divisible contraction.



Thank You!


