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the Schwarz Lemma

• Let 𝐵(0,𝑟) = {𝑧 ∈ ℂ ∶ |𝑧 ∣< 𝑟} be tht open disc of
radius 𝑟 and 𝐵[0,𝑟] be closed disc of radius 𝑟.

• Schwarz Lcmma: Suppose that 𝑓 ∶ 𝐵(0,1) → 𝐵(0,1)
is a holomorphic function with 𝑓(0) = 0. Then

(i) |𝑓(𝑧)| ⩽ |𝑧|,𝑧 ∈ 𝐵(0,1)
(ii) |𝑓′(0)| ⩽ 1

(iii) If these exists 𝑧0 ∈ 𝐵(0,1),𝑧0 ≠ 0 such that
|𝑓(𝑧0)| = |𝑧0| or |𝑓′(0)| = 1, then 𝑓 must be of the
form 𝑓(𝑧) = 𝑐𝑧, 𝑧 ∈ 𝐵(0,1), for Some 𝑐 with |𝑐| = 1.

• The Proof of the Schwarz lemma is an in
immediate Consequence of the Maximum modulus
principle.
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maximum modulus principle
• The maximun modulus principle: Suppose that Ω is

a bounded domain (open and connected) in ℂ, 𝑓 is
a holomorplic function on Ω, and 𝐵[𝑎,𝑅] ⊆ Ω. Then

|𝑓(𝑎)| ⩽ sup{|𝑓(𝑎+𝑟𝑒𝑖𝜃)| ∶ 𝜃 ∈ ℝ}.

Equality occurs if and only of 𝑓 is constant.

• Proof: Assume that ∣𝑓 (𝑎+𝑟𝑒1𝜃)∣ ⩽ |𝑓(𝑎)|, 𝜃 ∈ ℝ. Then
the holomorplic function 𝑓 has a power series
expansion

𝑓(𝑧) = ∑𝑐𝑛(𝑧 −𝑎)𝑛, 𝑧 ∈ 𝐵(𝑎,𝑅),

and If 0 < 𝑟 < 𝑅, we have (Parsevel’s formula)

∑|𝑐𝑛|2 𝑟2𝑛 = 1/2𝜋∫
𝜋

−𝜋
∣𝑓 (𝑎+𝑟𝑒𝑖𝜃)∣2 𝑑𝜃.
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proof of the Schwarz lemma
• lt follows that

∑ ∣ 𝑐𝑛 ∣2 𝑟2𝑛 ⩽ |𝑓(𝑎)|2 = |𝑐0|2.
Hence 0 = 𝑐1 = 𝑐2 = ⋯, implying 𝑓(𝑧) = 𝑓(𝑎), 𝑧 ∈ 𝐵(𝑎,𝑟).
Since Ω is connected, it follows 𝑓 must be a
constant.

• Proof of the Schwarz Lemma: Since 𝑓(0) = 0,
we have 𝑎0 = 0 , 𝑓(𝑧) = ∑∞

𝑛=1 𝑎𝑛𝑧𝑛, 𝑧 ∈ 𝐵(0,1). Let
ℎ(𝑧) = ∑∞

𝑛=1 𝑎𝑛𝑧𝑛−1, 𝑧 ∈ 𝐵(0,1). Then ℎ is holomorphic
on 𝐵(0,1) and 𝑓(𝑧) = 𝑧ℎ(𝑧), 𝑧 ∈ 𝐵(0,1). By the
maximum modulus theorem
sup{|ℎ(𝑧)| ∶ |𝑧| ≤ 𝑟} = sup{|ℎ(𝑧)| ∶ |𝑧| = 𝑟} = 1

𝑟 sup{|𝑓(𝑧)| ∶ |𝑧| ≤ 𝑟}
for all 𝑟, 0 < 𝑟 < 1. Since |𝑓(𝑧)| ≤ 1 for all 𝑧 ∈ 𝐵(0,1)
we get, on letting 𝑟 → 1, that sup{|ℎ(𝑧)|;𝑧 ∈ 𝐵(0,1)} ≤ 1.
Hence |𝑓(𝑧)| ≤ |𝑧| for all 𝑧 ∈ 𝐵(0,1). This completes
the proof of (i).
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proof of the Schwarz lemma

• Moreover, if |𝑓 (𝑧0)| = |𝑧0| for some 𝑧0 ≠ 0, then
|ℎ(𝑧0)| = 1 and, by the maximum modulus theorem, ℎ
is a constant function of modulus 1, that is,
there exists 𝜃 ∈ ℝ such that 𝑓(𝑧) = 𝑧ℎ(𝑧) = 𝑒𝑖𝜃𝑧,
𝑧 ∈ 𝐵(0,1).

• Since 𝑓(𝑧)
𝑧 = ℎ(𝑧) for 𝑧 ∈ 𝐵(0,1)\{0} and 𝑓(0) = 0 it

follows that

|𝑓 ′(0)| = lim
𝑧→0
𝑧≠0

|𝑓(𝑧)|
|𝑧| = lim

𝑧→0
|ℎ(𝑧)| = |ℎ(0)| ≤ 1.

If |𝑓 ′(0)| = |ℎ(0)| = 1, then by the maximum modulus
theorem, ℎ is a constant function of modulus 1
and as before 𝑓(𝑧) = 𝑒𝑖𝜃𝑧, 𝑧 ∈ 𝐵(0,1).
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automorphisms of the disc
• Theorem: For a fixed 𝛼 ∈ 𝐵(0,1), 𝜑𝛼(𝑧) ∶= 𝑧−𝛼

1−�̅�𝑧 is a
rational function mapping 𝐵(0,1) onto 𝐵(0,1) and
also 𝜕𝐵(0,1) onto 𝜕𝐵(0,1). It is one to one on 𝐵[0,1].
The inverse of 𝜑𝛼 is 𝜑−𝛼.

• Proof: The function 𝜑𝛼 is holomorphic in the
whole plane except for 𝑧 = 1/ ̄𝛼 which is outside
𝐵[0,1]. We see that 𝜑−𝛼(𝜑𝛼(𝑧)) = 𝑧. Thus 𝜑𝛼 is
one-one and 𝜑−𝛼 is its inverse. If 𝑡 ∈ ℝ, then

∣ 𝑒𝑖𝑡 −𝛼
1− ̄𝛼𝑒𝑖𝑡 ∣ = ∣ 𝑒𝑖𝑡 −𝛼

𝑒−𝑖𝑡 − ̅𝛼 ∣ = 1,

and we see that 𝜑𝛼 maps 𝜕𝐵(0,1) into itself. The
same is true of 𝜑−𝛼 hence 𝜑𝛼(𝜕𝐵[0,1]) = 𝜕𝐵[0,1].
Applying the maximum modulus principle, we
conclude that 𝜑𝛼(𝐵(0,1)) ⊆ 𝐵(0,1). This is equally
true of 𝜑−𝛼.



automorphisms of the disc
• Theorem: For a fixed 𝛼 ∈ 𝐵(0,1), 𝜑𝛼(𝑧) ∶= 𝑧−𝛼

1−�̅�𝑧 is a
rational function mapping 𝐵(0,1) onto 𝐵(0,1) and
also 𝜕𝐵(0,1) onto 𝜕𝐵(0,1). It is one to one on 𝐵[0,1].
The inverse of 𝜑𝛼 is 𝜑−𝛼.

• Proof: The function 𝜑𝛼 is holomorphic in the
whole plane except for 𝑧 = 1/ ̄𝛼 which is outside
𝐵[0,1]. We see that 𝜑−𝛼(𝜑𝛼(𝑧)) = 𝑧. Thus 𝜑𝛼 is
one-one and 𝜑−𝛼 is its inverse. If 𝑡 ∈ ℝ, then

∣ 𝑒𝑖𝑡 −𝛼
1− ̄𝛼𝑒𝑖𝑡 ∣ = ∣ 𝑒𝑖𝑡 −𝛼

𝑒−𝑖𝑡 − ̅𝛼 ∣ = 1,

and we see that 𝜑𝛼 maps 𝜕𝐵(0,1) into itself. The
same is true of 𝜑−𝛼 hence 𝜑𝛼(𝜕𝐵[0,1]) = 𝜕𝐵[0,1].
Applying the maximum modulus principle, we
conclude that 𝜑𝛼(𝐵(0,1)) ⊆ 𝐵(0,1). This is equally
true of 𝜑−𝛼.



Schwarz lemma, in general
• Suppose that 𝛼, 𝛽 are complex numbers; |𝛼|, |𝛽| < 1

Question: How large can |𝑓 ′(𝛼)| be if
𝑓 ∶ 𝐵(0,1) → 𝐵(0,1) and 𝑓(𝛼) = 𝛽?

• Answer: |𝑓 ′(𝛼)| ≤ 1−|𝛽|2
1−|𝛼|2 . To verify this, put

𝑔 = 𝜑𝛽 ∘ 𝑓 ∘𝜑−𝛼. Since 𝜑𝛽, 𝜑𝛼 ∶ 𝐵(0,1) → 𝐵(0,1), it
follows that 𝑔 ∶ 𝐵(0,1) → 𝐵(0,1). Also, 𝑔(0) = 0. Thus
|𝑔′(0)| ≤ 1 by the Schwarz lemma. Differentiating
𝑔 using the chain rule, we have

𝑔′(0) = 𝜑′
𝛽(𝛽) 𝑓 ′(𝛼) 𝜑′

−𝛼(0).
This verifies the correctness of our answer
since

𝜑′
𝛼(0) = 1−|𝛼|2, 𝜑′

𝛼(𝛼) = (1− |𝛼|2)−1.
• Equality occurs if and only if 𝑔(𝑧) = 𝑐𝑧, for some

𝑐 ∶ |𝑐| = 1. Thus 𝑓(𝑧) = 𝜑−𝛽(𝑐𝜑𝛼(𝑧)), 𝑧 ∈ 𝐵(0,1).
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the automorphism group
• A remarkable feature: 𝑓 is a rational function,

although no continuity assumption was made on 𝑓
near the boundary.

• Theorm: Suppose that 𝑓 is a bijective
holomorphic function on 𝐵(0,1) and that 𝑓(𝛼) = 0.
Then there exists a constant 𝑐 ∶ |𝑐| = 1 such that

𝑓(𝑧) = 𝑐 𝜑𝛼(𝑧), 𝑧 ∈ 𝐵(0,1).
Proof: Let 𝑔 be the inverse of 𝑓 , defined by
𝑔(𝑓(𝑧)) = 𝑧, 𝑧 ∈ 𝐵(0,1). Since 𝑓 is one to one, 𝑓 ′ has
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|𝑔′(0)| ≤ 1−|𝛼|2. By the chain rule, 𝑔′(0)𝑓 ′(𝛼) = 1.
Since 𝑔′(0) 𝑓 ′(𝛼) = 1, therefore we must have
|𝑓 ′(𝛼)| = 1

1−|𝛼|2 , |𝑔′(0)| = 1−|𝛼|2. Hence with 𝛽 = 0 , 𝑓
must be of the form 𝑐 𝜑𝛼.



the automorphism group
• A remarkable feature: 𝑓 is a rational function,

although no continuity assumption was made on 𝑓
near the boundary.

• Theorm: Suppose that 𝑓 is a bijective
holomorphic function on 𝐵(0,1) and that 𝑓(𝛼) = 0.
Then there exists a constant 𝑐 ∶ |𝑐| = 1 such that

𝑓(𝑧) = 𝑐 𝜑𝛼(𝑧), 𝑧 ∈ 𝐵(0,1).
Proof: Let 𝑔 be the inverse of 𝑓 , defined by
𝑔(𝑓(𝑧)) = 𝑧, 𝑧 ∈ 𝐵(0,1). Since 𝑓 is one to one, 𝑓 ′ has
no zero in 𝐵(0,1), so 𝑔 defines a holomorphic
function on 𝐵(0,1). We have |𝑓 ′(𝛼)| ≤ 1

1−|𝛼|2 ,
|𝑔′(0)| ≤ 1−|𝛼|2. By the chain rule, 𝑔′(0)𝑓 ′(𝛼) = 1.
Since 𝑔′(0) 𝑓 ′(𝛼) = 1, therefore we must have
|𝑓 ′(𝛼)| = 1

1−|𝛼|2 , |𝑔′(0)| = 1−|𝛼|2. Hence with 𝛽 = 0 , 𝑓
must be of the form 𝑐 𝜑𝛼.



distance decreasing
• Let 𝑓 ∶ 𝐵(0,1) → 𝐵(0,1) be holomorphic. Then for

any 𝑎,𝑏 ∈ 𝐵(0,1), ∣ 𝑓(𝑎)−𝑓(𝑏)
1−𝑓(𝑎)𝑓(𝑏) ∣ ≤ ∣ 𝑎−𝑏

1−�̄�𝑏 ∣.

• In particular, |𝑓′(𝑧)|
1−|𝑓(𝑧)|2 ≤ 1

1−|𝑧|2 for all 𝑧 ∈ 𝐵(0,1).

• Riemannian Metric: A 𝐶2 function 𝜑 ∶ Ω → ℝ+
defined on an open connected subset Ω of ℂ, is
said to be a Riemannian metric. If 𝑓 ∶ 𝐵(0,1) → 𝐵(0,1)
is holomorphic, then it is distance decreasing with
respect to the Poincare metric: 𝜚(𝑧) ∶= 1
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defined on 𝐵(0,1), that is, 𝑓∗(𝜚) ≤ 𝜚.
• Here for any metric 𝜑 ∶ Ω → ℝ+ on Ω, and any

𝐶2-function 𝑓 ∶ Ω̃ → Ω, the pull-back 𝑓∗𝜑 is
(𝑓∗𝜑)(𝑧) ∶= |𝑓 ′(𝑧)|𝜑(𝑓(𝑧))

and it defines a metric on Ω̃.
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Ahlfors’ Schwarz lemma
• The Gaussian curvature of a Riemannian metric

𝜑2 is defined to be
𝐾𝜑(𝑧) = −𝜑(𝑧)−2 Δ log 𝜑(𝑧).

• Claim: We will verify that any holomorphic
function 𝑓 ∶ Ω → 𝐵(0,𝑟) defines a metric 𝑓∗𝑝𝑟 of
constant negative curvature on Ω\{𝑓 ′ = 0}, where
𝑝𝑟(𝑧) ∶= 𝑟

𝑟2−|𝑧|2 is the Poincare metric of 𝐵(0,𝑟) and

(𝑓∗𝑝𝑟)(𝑧) ∶= 𝑟|𝑓 ′(𝑧)|
𝑟2 −|𝑓(𝑧)|2 , 𝑧 ∈ Ω\{𝑓 ′ = 0}.

• Ahlfors’ Lemma: Let 𝜑 ≥ 0 be a continuous
function on 𝐵(0,1). Assume that 𝜑 is 𝐶2 on the
open set 𝐷𝜑 ∶= {𝜑 > 0}. Suppose 𝐾𝜑 ≤ −𝜂, on 𝐷𝜑
for some 𝜂 > 0. Then

𝑓∗(𝜑)(𝑧) ≤ 4
𝜂

1
1− |𝑧|2 , 𝑧 ∈ 𝐵(0,1).
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• Proof of the claim: For a holomorphic function
𝑓 defined on an open connected set Ω ⊆ ℂ with
|𝑓(𝑧)| ≤ 𝑟, we have

Δ log(𝑟2 −|𝑓|2)−1 = −4 𝜕2

𝜕 ̄𝑧𝜕𝑧 log(𝑟2 −|𝑓|2)

= 4 𝜕
𝜕 ̄𝑧 (

̄𝑓𝑓 ′

𝑟2 −|𝑓|2 )

= 4𝑓 ′ (
̄𝑓 ′

𝑟2 −|𝑓|2 +
̄𝑓𝑓 ̄𝑓 ′

(𝑟2 −|𝑓|2)2 )

= 4|𝑓 ′|2 (𝑟2 −|𝑓|2 +|𝑓|2
(𝑟2 −|𝑓|2)2 )

= 4( 𝑟|𝑓 ′|
𝑟2 −|𝑓|2 )

2

• In particular,

Δ log 𝑟
𝑟2 −|𝑧|2 = 4( 𝑟

𝑟2 −|𝑧|2 )
2

, |𝑧| < 𝑟.
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proof of Ahlfors’ lemma
• Fix 𝜁 ∈ 𝔻, and let 𝑟 ∈ (|𝜁|,1). Put 𝑝𝑟(𝑧) = 𝑟

𝑟2−|𝑧|2 on
𝐵(0,𝑟). Since 𝑝𝑟(𝑧) → ∞ as |𝑧| → 𝑟 and 𝑓∗𝜑 is
continuous on 𝐵[0,𝑟], it is clear that the function
𝜓 ∶= 𝑓∗𝜑

𝑝𝑟
attain its maximum on 𝐵(0,𝑟) at some

𝜉 ∈ 𝐵(0,𝑟). If (𝑓∗𝜑)(𝜉) = 0, then 𝜑 ≡ 0.

• Hence we may assume that 𝜉 ∈ 𝐷𝜑. Then 𝜉 is
also a local maximum of log 𝜓, and it follows that
Δ log𝜓 ≤ 0 at 𝑞. Now, at 𝜉:

0 ≥ Δ log 𝜓 = Δ log 𝑓∗𝜑−Δ log 𝑝𝑟

≥ 4(𝑓∗𝜑2 −𝑝2
𝑟),

that is, 𝜓(𝜉) ≤ 1. Thus 𝑓∗𝜑 ≤ 𝑝𝑟 on 𝐵(0,𝑟). Letting
𝑟 ↑ 1, we conclude that (𝑓∗𝜑)(𝑧) ≤ 1

1−|𝑝|2 , 𝑧 ∈ 𝐵(0,1), as
required.
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applications
• Definition: For any open connected set Ω ⊆ ℂ, let

𝑁ℭ(Ω) denote the set of continuous functions
𝜑 ≥ 0 on Ω such that 𝜑 is 𝐶2 on {𝜑 > 0} and
Δ log𝜑 ≥ 4𝜑2 there.

• It is easy, using the chain rule, to verify:
Proposition: Suppose that 𝑓 ∶ Ω → Ω̃ is a
holomorphic maps of open connected sets in ℂ.
Then 𝜑 ∈ 𝑁ℭ(Ω̃) implies 𝑓∗𝜑 = |𝑓 ′| (𝜑 ∘𝑓) is in 𝑁ℭ(Ω).

• It follows from the Ahlfors lemma that
𝑁ℭ(ℂ) = {0}.

• Verification: Pick 𝜑 in 𝑁ℭ(ℂ). Fix 𝑎 ∈ ℂ. For any
𝑟 > |𝑎|, taking 𝑓 ∶ 𝐵(0,𝑟) → 𝐵(0,𝑟), 𝑓(𝑧) = 𝑧, Ahlfors
Lemma yields (𝑓∗𝜑)(𝑎) = 𝜑(𝑎) ≤ 𝑟

𝑟2−|𝑎|2 . As 𝑟 → ∞, we
see that 𝜑(𝑎) = 0.
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applications

• Corollary: Let 𝑓 ∶ ℂ → Ω, Ω ⊆ ℂ, be a holomophic
function. If 𝑁ℭ(Ω) ≠ {0}, then 𝑓 must be constant.

• Liouville’s theorem As a corollary, taking
Ω = 𝐵(0,𝑀), we see that every bounded entire
function must be a constant.

• Picard’s little theorem Similarly, if 𝑓 ∶ ℂ → ℂ{0,1},
where ℂ{0,1} ∶= ℂ\{0,1} is holomophic, then 𝑓 is
constant.

• proof: To verify this, all we need to do is show
that 𝑁ℭ(ℂ{0,1}) ≠ {0}. The non-zero function

𝜑(𝑧) = |𝑧|𝛽/2−1|1−𝑧|𝛽/2−1(1+ |𝑧|𝛽)(1+ |𝑧 −1|)𝛽, 𝛽 > 0,

is in 𝑁ℭ(ℂ{0,1}) for 0 < 𝛽 < 2/7.
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Thank You!


