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the Schwarz Lemma

o Let B(0,r)={z€C:|z|<r} be tht open disc of
radius r and BJ0,r] be closed disc of radius r.
o Schwarz Lemma: Suppose that f: B(0,1) — B(0,1)
is a holomorphic Function with f(0)=0. Then
(D 1£(z)| < |2l,= € B(0,1)
(i) 17 (0)<1
(i) & these exists 2y € B(0,1),20#0 such that

|£(z0)| = |z0] or |f(0))=1, then f must be of the
Form f(z)=cz z€B(0,1), for Some ¢ with [c|=1

e The Proof of the Schwarz lemma is an in
immediate Consegquence of the Maximum modulus

Pr‘inciplc.



moximum modulus principle

e The maximun modulus principle: suppose that 0 is
a bounded domain (opcr\ aond connected) inc, f is
a holomorplic function on 0, and Bla,R|C Q. Then

|f(a)l < sup{|f(a+re?)|: 6 € R}.

Equdlity occurs i and only of fis constant.



maoximum modulus principle

o The maximun modulus principle: suppose that 0 is
a bounded domain (opcn and connected) inc, f is
a holomorplic function on 0, and Bla,R Q. Then

|f(a)] < sup{|f(a+re?)|: 0 €R}.
Equdlity occurs i and only of fis constant.

e Proot: Assume that |f(a+re'?)|<|f(a), 6€R  Then
the holomorplic Function f has a power series
expansion

f(2)=D ca(z—a)"  2€ B(a,R),

ond IF 0<r <R we have (Parsevels formula)

Z\cn|2r2" = 1/277/ ‘f(a—l—rem)fde.



ProoP of the Schwarz lemma

o It Follows that
Do len Prm <[ (@) = el
Hence 0=c, =c, =, implyil’la f(z) = f(a), z€ B(a,r).

Since Q is connected, it Follows f must be a
constant.



ProoP of the Schwarz lemma
e It Follows that
Zlcn 2r2n | f(a)? = Icol2
Hence 0=c, =c, =, implyil’la f(z) = f(a), z€ B(a,r).

Since Q is connected, it Pollowe f must be a
constant.

o Prook of the schwarz Lemma: Since f(0) =
we have a, =0, f(z)=3" a,2", z€ B(0,1). I_c+

g E=dS il M zeB(Onl)1 nThcn h is holomorphic
on B(0,1) and f(z)=zh(z), 2€B(0,1). By the

maximum modulus theorem
sup{|h(2)| : 12| <7} = sup{|h(2)] : |z] = r} = L sup{|f(2)] : [2] < 7}

For al r, 0<r<1. Since |f(z)|<1 For al ze B(0,1)
we get, on letting r — 1, that sup{|h(z)|;2 € B(0,1)} < 1.

Hence [f(2)| <|z| For all z€ B(0,1). This completes

the Prool: of (.



ProoP of the Schwarz lemma

e Moreover, if |f(z)| =z For some z,+0, then
|h(z)| =1 and, by the maximum modulus theorem, h
is a constant function of modulus 1, that is,

there exists 0 c R such that f(z) = zh(z) =€z,
z € B(0,1).



PF‘OO—(: of the Schwarz lemma

e Moreover, if |f(z)| =z ¥For some z,+0, then
|h(z)| =1 and, by the maximum modulus theorem, h
is a constant function of modulus 1, that is,
there exists 0 c R such that f(z) = zh(z) =€z,
z€ B(0,1).

o Since % = n(z) For > B(0,1)\{0} and f(0)=0 it
Follows that

700 |—|Irq|f|(;)—lmlh 2l = Ih(O)| < 1.

W 17/(0)] = [1r(0)] = 1, then by the maximum modulus

theorem, h is a constant function of modulus 1
and as before f(z)=¢z e B(0,1).



automorphisms of the disc

« Theorem: For a fixed a€ B(0,1), ¢,(z)=2=2 isa
rational function mapping B(0,1) onto B(0,1) and
adlso 9B(0,1) onto 9B(0,1). 1t is one to one on B[0,1].

The inverse of ¢, is ¢ .




automorphisms of the disc

« Theorem: For a Fixed a€ B(0,1), ¢,(z)=2=2 isa
rational Function mapping B(0,1) onto B(0,1) and
also 9B(0,1) onto 9B(0,1). I is one to one on B[0,1].

The inverse of ¢, is ¢ .

o Prook: The function ¢, is holomorphic in the
whole plane except For z=1/a which is outside
B[0,1]. We see that ¢ (¢, (2) =2 Thus ¢, is
one-one and ¢ , is its inverse. - tc R then

e W

€ «

et o L,

1—aett
and we see that ¢, maps 9B(0,1) into itself. The
same is true of ¢, hence ¢, (8BJ0,1]) = dB[0,1].
Applying the maximum modulus principle, we
conclude that ¢, (B(0,1)) C B(0,1). This is equally

true of G
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Schwarz lemmag, in acncral

« Suppose that a, § are complex numbers; |af,[3] <1
Question: How large can |f/(a)| be iF
f:B(0,1) = B(0,1) and f(a)=p52

o Answer: |f/(a)] < Fz. To verify this, put
g:@ﬁofogoiof Since ©gs v, : B(0,1) = B(0,1), it
Follows that ¢: B(0,1) — B(0,1). Also, g(0)=0. Thus
lg’(0)| <1 by the Schwarz lemma. DiH:cranriaJrina

g using the chain rule, we have

9'(0) =5(B) f'(a) ¢ 4(0).

This verifies the correcthess of our answer
since

0a(0)=1—]af?, ¢, (a)=(1—]af*)"".



Schwarz lemmag, in acncral

« Suppose that a, § are complex numbers; |al,[8] <1
Question: How large can |f/(a)| be iF
f:B(0,1) = B(0,1) and f(a)=p52

o Answer: |f/(a) < F2:. To verify this, put
g=wpgofop_, Since vz ¢,:B(0,1) = B(0,1), it
Follows that ¢: B(0,1) — B(0,1). Also, g(0)=0. Thus
lg’(0)| <1 by the Schwarz lemma. Di?@crcn’riaﬁna

g ueing the chain rule, we have
9'(0) =5(B) f'(a) ¥.4(0).

This verifies the correcthess of our answer
since

¢a(0)=1—[a?, ¢ (a)=(1—[a*)""
« Equality occurs ik and only ik g(z) =c,, For some
cilel=1. Thus f(z) =9 glcp,(2)), z€ B(0,1).
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o A remarkable Feature: f is a rational function,
aH'hough ho con+inui+y assumption was made on f

hear the boundary.



the au’romorphic:»m group

o A remarkable Feature: f is a rational function,
aH'houf]h ho con+inui+y assumption was made on f

hear the boundary.

« Theorm: Suppose that f is a biective

holomorphic Ffunction on B(0,1) and that f(a)=0
Then there exists a constant c:|c|=1 such that

f(z)=c p,(2), z€ B(0,1).
Prook: Let g be the inverse of f, defined by
9(f(2))=2, € B(0,1). Sihce f is ohe to one, f/ has
ho zero in B(0,1), so g defines a holomorphic
Function on B(0,1). We have |f/(a)] < —p,
g (0) <1—]a’. By the chain rule, ¢/(0)f (a) = 1.
Since ¢'(0) f(a) =1, therefore we must have
|/ ()| = Tla\?’ l9(0)|=1—|a]?>. Hence with =0, f
must be of the Form ¢ ¢,



distance dccrcasiﬂa
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distance dccrcasiﬂa

o Let f:B(0,1) = B(0,1) be holomorphic. Then for
any abe B(,1), |[L9S| <ot

1—abl*

o In particular, 1_f;/f(Z>>“2 <tp Foradl zeB(1)



distance dccrcasiﬂa

o Let f:B(0,1)— B(0,1) be holomorphic. Then for
any abe B(0,1), |H9| <t

e In particular, 4 f(<z>>“

<itr Foradl zeB(,1)

« Riemannion Metric: A ¢2 Function ¢: Q- R,
defined on an open connected subset 0 of ¢, is
said to be a Riemannion metric. & f: B(0,1) — B(0,1)
i5 holomorphic, then it is distance decreasing with
respect to the Poincare metric: o(z) := ﬁ

defined on B(0,1), that is, f*(0) <o



distance dccrcasiﬂa

Let f:B(0,1)— B(0,1) be holomorphic. Then For
any a,be B(0,1), |[L9S| <t

In particular, F'(2)

= o < T for all ze B(0,1).

Riemannion Metric: A €2 Function ¢: Q- R,
defined on an open connected subset 0 of ¢, is

said to be a Riemannian metric. & f: B(0,1) — B(0,1)
i5 holomorphic, then it is distance dccrca;inﬂ with
respect to the Poincare metric: o(z) = 15

defined on B(0,1), that is, f*(0) <o
Here For any metric ¢:Q—R, on 0 and any
o2-Function £:Q0—Q, the Pull—laack fro is

(fe)(2) = f"(2)| e(f(2))

aond it defines a metric on Q.
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©? is defined to be
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AhlFors’ Schwarz lemma

e The Gaussion curvature of a Riemannion metric
0? is defined to be

K, (2) =—p(2)7* Alogy(z)
e Claim: We wil vcri?y that any holomorphic

Function f:Q— B(0,r) defines a metric fp, ofF
constant ncgaﬁvc curvature on Q\{f =0}, where

p.(2) ===ty is the Poincare metric of B(0,r) and

(7P = e, s =0},

e Ahlfors Lemma: I_c+ ©>0 be a continuous
Function on B(0,1). Assume that ¢ is C? oh the
open set D, :={p>0}. Suppose K, < -5, oh D,
for some n>0. Then

Fo)E) <2

g z € B(0,1).



e Prook of the claim: For a holomorphic Function

f deFined on an open connected set Q€ with
lf(z)| <7, we have

82 IO 2 2
52571090° = I

L) ff
‘%h<ﬂ—uw>

s f R
=4 (r?—wfw‘+<r2—»fw>2>

_ /2T2—|f2+f|2>
‘W'<wamv

sl
:4<r;|&w>

Alog(r? - |f)~ = —4




e Prook of the clam: For a holomorphic Function
f defined on an open connected set QcC with

If(z)| <7, we have
02 :
Blog(r® ~ 1Pyt ==tgz log(r? —14P)
ek <ff>
CACETE

_4f( ' LI )

my PR
fome |ﬂ”+MP>
= ( 7P

T
:4<r;|&w>

e IN Par+icular,



ProoP ofF Ahlfors’ lemma

o« Fix ¢eD, andlet re(i¢l,1). Put p.(z)= =2 on
B(0,r). Sihce p.(z) >0 0s |zl »r and fro is
continuous on B[0,r], it is clear that the funhction
= J;l attain its maximum on B(0,7) at some

€€ BO,r). & (ffo)©)=0 then p=o0.



ProoP ofF Ahlfors’ lemma

o« Fix ¢eD, andlet re(i¢,1). Put p.(z)==Zp on
B(0,r). Since p,(z) >0 0s |z|»r and fro is
continuous on B[0,r], it is clear that the funhction
= 1;4" attain its maximum on B(0,7r) at some

ceBO,r). I ()€ =0 then p=0.
e Hence we may assume that ce D, Then¢ is

also a local maximum of logz/}, and it Follows that
Aloga/)go at ¢ Now, at ¢
0> Alogw = AlOﬁf*(p—A\ngr
> A(f*¢® —p7),
that is, (&) <1 Thus f*o<p, on B(0,r). LcHing
ri1, we conclude that (f*¢)(z) < =p. 2€ B(0,1), as

required,
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aPPhcaJrions

De finition: For any open connected set 0 cc, let

Ne(Q) denote the set of continuous functions
>0 on Q such that ¢ is €2 on {¢>0} and
Aloago >40% there.

it is easy, using the chain rule, to verify:
Pr'oposiﬂon: Suppose that 1:0-Q isa
holomorphic maps of open connected sets in C.
Then ¢ e NE(Q) implies fo=|f'|(pof) is in NE(Q).

it Follows From the AhFors lemma that

NE(C) = {0}.

Verification: Pick ¢ in N¢(C). Fix acC. For any
r>la|, toking f:B(0,r) = B(0,r), f()=2 AhlFors
Lemma yields (f*¢)(a) =¢(a) < mtm. AS r—00, We
see that p(a) =0.
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Function. IF Ne(Q) £ {0}, then f must be constant.

o Liouvile’s theorem As a corollary, taking
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constant.



applicaﬂons

o Corolary: Let f:C—=Q, QCC, be a holomophic
Function. IF Ne(Q) £ {0}, then f must be constant.

o Liouvile's theorem As a corollary, +akinﬁ
Q=B(0,M), we see that every bounded entire
Function must be a constant.

« Picards little theorem Similarly, ik f:C—C ),
where Cy,; :=C\{0,1} is holomophic, then f s
constant.

« proof: To verikby this, all we need to do is show
that Ne¢(Cy ) #{0}. The nhon-zero function

p(2) = [2lPP7H 1 =221 (1 + |21°) (1 + ]2 = 1])%, B> 0,

i5 Ih N&(Cpyqy) For 0<p<2/7.
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