Alfors' Schwarz Lemma

Mathematical Sciences Institute Belagavi in association with The(Indian) Mathematics Consortium Lecture Series On Operator Theory

> Gadadhar Misra Indian Statistical Institute Bangalore And Indian Institute of Technology Gandhinagar

February 25-27, 2022

• Let $B(0,r) = \{z \in \mathbb{C} : |z| < r\}$ be the open disc of radius r and B[0,r] be closed disc of radius r.

- Let $B(0,r) = \{z \in \mathbb{C} : |z| < r\}$ be the open disc of radius r and B[0,r] be closed disc of radius r.
- Schwarz Lcmma: Suppose that $f: B(0,1) \rightarrow B(0,1)$ is a holomorphic function with f(0) = 0. Then

Let B(0,r) = {z ∈ C : |z| < r} be the open disc of radius r and B[0,r] be closed disc of radius r.
Schwarz Lcmma: Suppose that f : B(0,1) → B(0,1) is a holomorphic function with f(0) = 0. Then
(i) |f(z)| ≤ |z|, z ∈ B(0,1)

Let B(0,r) = {z ∈ C : |z| < r} be the open disc of radius r and B[0,r] be closed disc of radius r.
Schwarz Lcmma: Suppose that f : B(0,1) → B(0,1) is a holomorphic function with f(0) = 0. Then

(i) |f(z)| ≤ |z|, z ∈ B(0,1)
(ii) |f'(0)| ≤ 1

• Let $B(0,r) = \{z \in \mathbb{C} : |z| < r\}$ be the open disc of radius r and B[0,r] be closed disc of radius r.

• Schwarz Lemma: Suppose that $f: B(0,1) \rightarrow B(0,1)$ is a holomorphic function with f(0) = 0. Then

(i) $|f(z)| \leq |z|, z \in B(0,1)$ (ii) $|f'(0)| \leq 1$ (iii) If these exists $z_0 \in B(0,1), z_0 \neq 0$ such that $|f(z_0)| = |z_0|$ or |f'(0)| = 1, then f must be of the form $f(z) = cz, z \in B(0,1)$, for some c with |c| = 1.

• Let $B(0,r) = \{z \in \mathbb{C} : |z| < r\}$ be the open disc of radius r and B[0,r] be closed disc of radius r.

• Schwarz Lcmma: Suppose that $f: B(0,1) \rightarrow B(0,1)$ is a holomorphic function with f(0) = 0. Then

(i) $|f(z)| \le |z|, z \in B(0,1)$ (ii) $|f'(0)| \le 1$ (iii) If these exists $z_0 \in B(0,1), z_0 \ne 0$ such that $|f(z_0)| = |z_0|$ or |f'(0)| = 1, then f must be of the

- form f(z) = cz, $z \in B(0,1)$, for some c with |c| = 1.
- The Proof of the Schwarz lemma is an in immediate Consequence of the Maximum modulus principle.

maximum modulus principle

• The maximun modulus principle: Suppose that Ω is a bounded domain (open and connected) in \mathbb{C} , f is <u>a holomorplic function on Ω , and $B[a, R] \subseteq \Omega$.</u> Then

 $|f(a)| \leqslant \sup\{|f(a+re^{i\theta})|: \theta \in \mathbb{R}\}.$

Equality occurs if and only of f is constant.

maximum modulus principle

• The maximun modulus principle: Suppose that Ω is a bounded domain (open and connected) in \mathbb{C} , f is a holomorplic function on Ω , and $B[a, R] \subseteq \Omega$. Then

 $|f(a)| \leqslant \sup\{|f(a+re^{i\theta})|: \theta \in \mathbb{R}\}.$

Equality occurs if and only of f is constant.

• Proof: Assume that $|f(a+re^{1\theta})| \leq |f(a)|$, $\theta \in \mathbb{R}$. Then the holomorphic function f has a power series expansion

 $f(z) = \sum c_n (z-a)^n, \quad z \in B(a,R),$ and if 0 < r < R, we have (Parsevel's formula) $\sum |c_n|^2 r^{2n} = 1/2\pi \int_{-\pi}^{\pi} |f(a+re^{i\theta})|^2 d\theta.$

It follows that

 $\sum_{\substack{|c_n|^2 r^{2n} \leq |f(a)|^2 = |c_0|^2.}} |f(a)|^2 = |c_0|^2.$ Hence $0 = c_1 = c_2 = \cdots$, implying f(z) = f(a), $z \in B(a, r)$. Since Ω is connected, it follows f must be a constant.

It follows that

$$\begin{split} &\sum |c_n|^2 r^{2n} \leqslant |f(a)|^2 = |c_0|^2.\\ \text{Hence } 0 = c_1 = c_2 = \cdots, \quad \text{implying } f(z) = f(a), \quad z \in B(a,r).\\ \text{Since } \Omega \quad \text{is connected, it follows } f \quad \text{must be a constant.} \end{split}$$

• Proof of the Schwarz Lemma: Since f(0) = 0, we have $a_0 = 0$, $f(z) = \sum_{n=1}^{\infty} a_n z^n$, $z \in B(0,1)$. Let $h(z) = \sum_{n=1}^{\infty} a_n z^{n-1}$, $z \in B(0,1)$. Then h is holomorphic on B(0,1) and f(z) = zh(z), $z \in B(0,1)$. By the maximum modulus theorem

$$\begin{split} \sup\{|h(z)|:|z|\leq r\} &= \sup\{|h(z)|:|z|=r\} = \frac{1}{r}\sup\{|f(z)|:|z|\leq r\}\\ \text{for all } r, \quad 0< r<1. \quad \text{Since } |f(z)|\leq 1 \text{ for all } z\in B(0,1)\\ \text{we get, on letting } r\to 1, \text{ that } \sup\{|h(z)|;z\in B(0,1)\}\leq 1.\\ \text{Hence } |f(z)|\leq |z| \text{ for all } z\in B(0,1). \text{ This completes}\\ \text{the proof of (i).} \end{split}$$

• Moreover, if $|f(z_0)| = |z_0|$ for some $z_0 \neq 0$, then $|h(z_0)| = 1$ and, by the maximum modulus theorem, h is a constant function of modulus 1, that is, there exists $\theta \in \mathbb{R}$ such that $f(z) = zh(z) = e^{i\theta}z$, $z \in B(0, 1)$.

- Moreover, if $|f(z_0)| = |z_0|$ for some $z_0 \neq 0$, then $|h(z_0)| = 1$ and, by the maximum modulus theorem, h is a constant function of modulus 1, that is, there exists $\theta \in \mathbb{R}$ such that $f(z) = zh(z) = e^{i\theta}z$, $z \in B(0,1)$.
- Since $\frac{f(z)}{z}=h(z)$ for $z\in B(0,1)\backslash\{0\}$ and f(0)=0 it follows that

$$|f'(0)| = \lim_{\substack{z \to 0 \\ z \neq 0}} \frac{|f(z)|}{|z|} = \lim_{z \to 0} |h(z)| = |h(0)| \le 1.$$

If |f'(0)| = |h(0)| = 1, then by the maximum modulus theorem, h is a constant function of modulus 1 and as before $f(z) = e^{i\theta}z$, $z \in B(0,1)$.

automorphisms of the disc

• Theorem: For a fixed $\alpha \in B(0,1)$, $\varphi_{\alpha}(z) := \frac{z-\alpha}{1-\bar{\alpha}z}$ is a rational function mapping B(0,1) onto B(0,1) and also $\partial B(0,1)$ onto $\partial B(0,1)$. It is one to one on B[0,1]. The inverse of φ_{α} is $\varphi_{-\alpha}$.

automorphisms of the disc

- Theorem: For a fixed $\alpha \in B(0,1)$, $\varphi_{\alpha}(z) := \frac{z-\alpha}{1-\alpha z}$ is a rational function mapping B(0,1) onto B(0,1) and also $\partial B(0,1)$ onto $\partial B(0,1)$. It is one to one on B[0,1]. The inverse of φ_{α} is $\varphi_{-\alpha}$.
- Proof: The function φ_{α} is holomorphic in the whole plane except for $z = 1/\bar{\alpha}$ which is outside B[0,1]. We see that $\varphi_{-\alpha}(\varphi_{\alpha}(z)) = z$. Thus φ_{α} is one-one and $\varphi_{-\alpha}$ is its inverse. If $t \in \mathbb{R}$, then

$$\left|\frac{e^{it}-\alpha}{1-\bar{\alpha}e^{it}}\right| = \left|\frac{e^{it}-\alpha}{e^{-it}-\bar{\alpha}}\right| = 1,$$

and we see that φ_{α} maps $\partial B(0,1)$ into itself. The same is true of $\varphi_{-\alpha}$ hence $\varphi_{\alpha}(\partial B[0,1]) = \partial B[0,1]$. Applying the maximum modulus principle, we conclude that $\varphi_{\alpha}(B(0,1)) \subseteq B(0,1)$. This is equally true of $\varphi_{-\alpha}$.

Schwarz lemma, in general

• Suppose that α , β are complex numbers; $|\alpha|, |\beta| < 1$ Question: How large can $|f'(\alpha)|$ be if $f: B(0,1) \rightarrow B(0,1)$ and $f(\alpha) = \beta$?

Schwarz lemma, in general

- Suppose that α , β are complex numbers; $|\alpha|, |\beta| < 1$ Question: How large can $|f'(\alpha)|$ be if $f: B(0,1) \rightarrow B(0,1)$ and $f(\alpha) = \beta$?
- Answer: $|f'(\alpha)| \leq \frac{1-|\beta|^2}{1-|\alpha|^2}$. To verify this, put $g = \varphi_{\beta} \circ f \circ \varphi_{-\alpha}$. Since $\varphi_{\beta}, \ \varphi_{\alpha} : B(0,1) \to B(0,1)$, it follows that $g : B(0,1) \to B(0,1)$. Also, g(0) = 0. Thus $|g'(0)| \leq 1$ by the Schwarz lemma. Differentiating g using the chain rule, we have

 $g'(0) = \varphi'_{\beta}(\beta) \ f'(\alpha) \ \varphi'_{-\alpha}(0).$

This verifies the correctness of our answer since

 $\varphi'_{\alpha}(0) = 1 - |\alpha|^2, \ \varphi'_{\alpha}(\alpha) = (1 - |\alpha|^2)^{-1}.$

Schwarz lemma, in general

- Suppose that α , β are complex numbers; $|\alpha|, |\beta| < 1$ Question: How large can $|f'(\alpha)|$ be if $f: B(0,1) \rightarrow B(0,1)$ and $f(\alpha) = \beta$?
- Answer: $|f'(\alpha)| \leq \frac{1-|\beta|^2}{1-|\alpha|^2}$. To verify this, put $g = \varphi_{\beta} \circ f \circ \varphi_{-\alpha}$. Since $\varphi_{\beta}, \ \varphi_{\alpha} : B(0,1) \to B(0,1)$, it follows that $g : B(0,1) \to B(0,1)$. Also, g(0) = 0. Thus $|g'(0)| \leq 1$ by the Schwarz lemma. Differentiating g using the chain rule, we have

 $g'(0) = \varphi'_{\beta}(\beta) f'(\alpha) \varphi'_{-\alpha}(0).$

This verifies the correctness of our answer since

 $\varphi_{\alpha}'(0) = 1 - |\alpha|^2, \ \varphi_{\alpha}'(\alpha) = (1 - |\alpha|^2)^{-1}.$

• Equality occurs if and only if $g(z) = c_z$, for some c: |c| = 1. Thus $f(z) = \varphi_{-\beta}(c\varphi_{\alpha}(z)), z \in B(0, 1)$.

the automorphism group

• A remarkable feature: f is a rational function, although no continuity assumption was made on fnear the boundary.

the automorphism group

- A remarkable feature: f is a rational function, although no continuity assumption was made on f near the boundary.
- Theorm: Suppose that f is a bijective holomorphic function on B(0,1) and that $f(\alpha) = 0$. Then there exists a constant c: |c| = 1 such that

 $\overline{f(z)} = c \ \varphi_{\alpha}(z), \ z \in B(0,1).$

Proof: Let g be the inverse of f, defined by g(f(z)) = z, $z \in B(0,1)$. Since f is one to one, f' has no zero in B(0,1), so g defines a holomorphic function on B(0,1). We have $|f'(\alpha)| \leq \frac{1}{1-|\alpha|^2}$, $|g'(0)| \leq 1-|\alpha|^2$. By the chain rule, $g'(0) f'(\alpha) = 1$. Since $g'(0) f'(\alpha) = 1$, therefore we must have $|f'(\alpha)| = \frac{1}{1-|\alpha|^2}$, $|g'(0)| = 1-|\alpha|^2$. Hence with $\beta = 0$, f must be of the form $c \varphi_{\alpha}$.

• Let $f: B(0,1) \to B(0,1)$ be holomorphic. Then for any $a, b \in B(0,1)$, $\left| \frac{f(a) - f(b)}{1 - f(a)f(b)} \right| \le \left| \frac{a-b}{1-\overline{a}b} \right|$.

- Let $f: B(0,1) \to B(0,1)$ be holomorphic. Then for any $a, b \in B(0,1)$, $\left| \frac{f(a)-f(b)}{1-f(a)f(b)} \right| \le \left| \frac{a-b}{1-ab} \right|$.
- In particular, $\frac{|f'(z)|}{1-|f(z)|^2} \leq \frac{1}{1-|z|^2}$ for all $z \in B(0,1)$.

- Let $f: B(0,1) \to B(0,1)$ be holomorphic. Then for any $a, b \in B(0,1)$, $\left|\frac{f(a)-f(b)}{1-f(a)f(b)}\right| \le \left|\frac{a-b}{1-ab}\right|$.
- In particular, $\frac{|f'(z)|}{1-|f(z)|^2} \leq \frac{1}{1-|z|^2}$ for all $z \in B(0,1)$.
- Riemannian Metric: A C^2 function $\varphi: \Omega \to \mathbb{R}_+$ defined on an open connected subset Ω of \mathbb{C} , is said to be a Riemannian metric. If $f: B(0,1) \to B(0,1)$ is holomorphic, then it is distance decreasing with respect to the Poincare metric: $\varrho(z) := \frac{1}{1-|z|^2}$ defined on B(0,1), that is, $f^*(\varrho) \leq \varrho$.

- Let $f: B(0,1) \to B(0,1)$ be holomorphic. Then for any $a, b \in B(0,1)$, $\left|\frac{f(a)-f(b)}{1-f(a)f(b)}\right| \le \left|\frac{a-b}{1-\overline{a}b}\right|$.
- In particular, $\frac{|f'(z)|}{1-|f(z)|^2} \leq \frac{1}{1-|z|^2}$ for all $z \in B(0,1)$.
- Riemannian Metric: A C^2 function $\varphi: \Omega \to \mathbb{R}_+$ defined on an open connected subset Ω of \mathbb{C} , is said to be a Riemannian metric. If $f: B(0,1) \to B(0,1)$ is holomorphic, then it is distance decreasing with respect to the Poincare metric: $\varrho(z) := \frac{1}{1-|z|^2}$ defined on B(0,1), that is, $f^*(\varrho) \leq \varrho$.
- Here for any metric $\varphi: \Omega \to \mathbb{R}_+$ on Ω , and any C^2 -function $f: \tilde{\Omega} \to \Omega$, the pull-back $f^*\varphi$ is

 $(f^*\varphi)(z) := |f'(z)| \varphi(f(z))$

and it defines a metric on $\tilde{\Omega}$.

Ahlfors' Schwarz lemma

- The Gaussian curvature of a Riemannian metric φ^2 is defined to be

 $K_{\varphi}(z) = -\varphi(z)^{-2} \ \Delta \log \varphi(z).$

Ahlfors' Schwarz lemma

- The Gaussian curvature of a Riemannian metric φ^2 is defined to be

 $K_{\varphi}(z) = -\varphi(z)^{-2} \Delta \log \varphi(z).$

• Claim: We will verify that any holomorphic function $f: \Omega \to B(0, r)$ defines a metric f^*p_r of constant negative curvature on $\Omega \setminus \{f' = 0\}$, where $p_r(z) := \frac{r}{r^2 - |z|^2}$ is the Poincare metric of B(0, r) and $(f^*p_r)(z) := \frac{r|f'(z)|}{r^2 - |f(z)|^2}, z \in \Omega \setminus \{f' = 0\}.$

Ahlfors' Schwarz lemma

- The Gaussian curvature of a Riemannian metric φ^2 is defined to be

 $K_{\varphi}(z) = -\varphi(z)^{-2} \, \Delta \log \varphi(z).$

• Claim: We will verify that any holomorphic function $f: \Omega \to B(0,r)$ defines a metric f^*p_r of constant negative curvature on $\Omega \setminus \{f' = 0\}$, where $p_r(z) := \frac{r}{r^2 - |z|^2}$ is the Poincare metric of B(0,r) and $(f^*p_r)(z) := \frac{r|f'(z)|}{r^2 - |f(z)|^2}, z \in \Omega \setminus \{f' = 0\}.$

• Ahlfors' Lemma: Let $\varphi \ge 0$ be a continuous function on B(0,1). Assume that φ is C^2 on the open set $D_{\varphi} := \{\varphi > 0\}$. Suppose $K_{\varphi} \le -\eta$, on D_{φ} for some $\eta > 0$. Then

$$f^*(\varphi)(z) \leq \frac{4}{\eta} \frac{1}{1-|z|^2}, \ z \in B(0,1).$$

• Proof of the claim: For a holomorphic function f defined on an open connected set $\Omega \subseteq \mathbb{C}$ with $|f(z)| \leq r$, we have

 $\Delta | o$

$$\begin{split} \mathbf{g}(r^2 - |f|^2)^{-1} &= -4 \frac{\partial^2}{\partial \bar{z} \partial z} \log(r^2 - |f|^2) \\ &= 4 \frac{\partial}{\partial \bar{z}} \left(\frac{\bar{f}f'}{r^2 - |f|^2} \right) \\ &= 4f' \left(\frac{\bar{f}'}{r^2 - |f|^2} + \frac{\bar{f}f\bar{f}'}{(r^2 - |f|^2)^2} \right) \\ &= 4|f'|^2 \left(\frac{r^2 - |f|^2 + |f|^2}{(r^2 - |f|^2)^2} \right) \\ &= 4 \left(\frac{r|f'|}{r^2 - |f|^2} \right)^2 \end{split}$$

• Proof of the claim: For a holomorphic function f defined on an open connected set $\Omega \subseteq \mathbb{C}$ with $|f(z)| \leq r$, we have

$$\begin{split} \mathbf{g}(r^2 - |f|^2)^{-1} &= -4 \frac{\partial^2}{\partial \bar{z} \partial z} \log(r^2 - |f|^2) \\ &= 4 \frac{\partial}{\partial \bar{z}} \left(\frac{\bar{f}f'}{r^2 - |f|^2} \right) \\ &= 4f' \left(\frac{\bar{f}'}{r^2 - |f|^2} + \frac{\bar{f}f\bar{f}'}{(r^2 - |f|^2)^2} \right) \\ &= 4|f'|^2 \left(\frac{r^2 - |f|^2 + |f|^2}{(r^2 - |f|^2)^2} \right) \\ &= 4 \left(\frac{r|f'|}{r^2 - |f|^2} \right)^2 \end{split}$$

• In particular,

 $\Delta | o a$

$$\Delta \log \frac{r}{r^2 - |z|^2} = 4 \left(\frac{r}{r^2 - |z|^2} \right)^2, \ |z| < r.$$

proof of Ahlfors' lemma

• Fix $\zeta \in \mathbb{D}$, and let $r \in (|\zeta|, 1)$. Put $p_r(z) = \frac{r}{r^2 - |z|^2}$ on B(0,r). Since $p_r(z) \to \infty$ as $|z| \to r$ and $f^*\varphi$ is continuous on B[0,r], it is clear that the function $\psi := \frac{f^*\varphi}{p_r}$ attain its maximum on B(0,r) at some $\xi \in B(0,r)$. If $(f^*\varphi)(\xi) = 0$, then $\varphi \equiv 0$.

proof of Ahlfors' lemma

- Fix $\zeta \in \mathbb{D}$, and let $r \in (|\zeta|, 1)$. Put $p_r(z) = \frac{r}{r^2 |z|^2}$ on B(0,r). Since $p_r(z) \to \infty$ as $|z| \to r$ and $f^*\varphi$ is continuous on B[0,r], it is clear that the function $\psi := \frac{f^*\varphi}{p_r}$ attain its maximum on B(0,r) at some $\xi \in B(0,r)$. If $(f^*\varphi)(\xi) = 0$, then $\varphi \equiv 0$.
- Hence we may assume that $\xi \in D_{\varphi}$. Then ξ is also a local maximum of $\log \psi$, and it follows that $\Delta \log \psi \leq 0$ at q. Now, at ξ :

$$\begin{split} 0 \geq \Delta \log \psi &= \Delta \log f^* \varphi - \Delta \log p_r \\ &\geq 4 (f^* \varphi^2 - p_r^2), \end{split}$$

that is, $\psi(\xi) \leq 1$. Thus $f^*\varphi \leq p_r$ on B(0,r). Letting $r \uparrow 1$, we conclude that $(f^*\varphi)(z) \leq \frac{1}{1-|p|^2}, z \in B(0,1)$, as required.

• Definition: For any open connected set $\Omega \subseteq \mathbb{C}$, let $N\mathfrak{C}(\Omega)$ denote the set of continuous functions $\varphi \ge 0$ on Ω such that φ is C^2 on $\{\varphi > 0\}$ and $\Delta \log \varphi \ge 4\varphi^2$ there.

- Definition: For any open connected set $\Omega \subseteq \mathbb{C}$, let $N\mathfrak{C}(\Omega)$ denote the set of continuous functions $\varphi \ge 0$ on Ω such that φ is C^2 on $\{\varphi > 0\}$ and $\Delta \log \varphi \ge 4\varphi^2$ there.
- It is easy, using the chain rule, to verify: Proposition: Suppose that $f:\Omega \to \tilde{\Omega}$ is a holomorphic maps of open connected sets in \mathbb{C} . Then $\varphi \in N\mathfrak{C}(\tilde{\Omega})$ implies $f^*\varphi = |f'|(\varphi \circ f)$ is in $N\mathfrak{C}(\Omega)$.

- Definition: For any open connected set $\Omega \subseteq \mathbb{C}$, let $N\mathfrak{C}(\Omega)$ denote the set of continuous functions $\varphi \ge 0$ on Ω such that φ is C^2 on $\{\varphi > 0\}$ and $\Delta \log \varphi \ge 4\varphi^2$ there.
- It is easy, using the chain rule, to verify: Proposition: Suppose that f:Ω→Ω is a holomorphic maps of open connected sets in C. Then φ∈NC(Ω) implies f*φ=|f'|(φ∘f) is in NC(Ω).

• It follows from the Ahlfors lemma that $N\mathfrak{C}(\mathbb{C}) = \{0\}.$

- Definition: For any open connected set $\Omega \subseteq \mathbb{C}$, let $N\mathfrak{C}(\Omega)$ denote the set of continuous functions $\varphi \ge 0$ on Ω such that φ is C^2 on $\{\varphi > 0\}$ and $\Delta \log \varphi \ge 4\varphi^2$ there.
- It is easy, using the chain rule, to verify: Proposition: Suppose that $f:\Omega \to \tilde{\Omega}$ is a holomorphic maps of open connected sets in \mathbb{C} . Then $\varphi \in N\mathfrak{C}(\tilde{\Omega})$ implies $f^*\varphi = |f'|(\varphi \circ f)$ is in $N\mathfrak{C}(\Omega)$.
- It follows from the Ahlfors lemma that $N\mathfrak{C}(\mathbb{C}) = \{0\}.$
- Verification: Pick φ in $N\mathfrak{C}(\mathbb{C})$. Fix $a \in \mathbb{C}$. For any r > |a|, taking $f : B(0,r) \to B(0,r)$, f(z) = z, Ahlfors Lemma yields $(f^*\varphi)(a) = \varphi(a) \le \frac{r}{r^2 |a|^2}$. As $r \to \infty$, we see that $\varphi(a) = 0$.

• Corollary: Let $f : \mathbb{C} \to \Omega$, $\Omega \subseteq \mathbb{C}$, be a holomophic function. If $N\mathfrak{C}(\Omega) \neq \{0\}$, then f must be constant.

- Corollary: Let $f : \mathbb{C} \to \Omega$, $\Omega \subseteq \mathbb{C}$, be a holomophic function. If $N\mathfrak{C}(\Omega) \neq \{0\}$, then f must be constant.
- Liouville's theorem As a corollary, taking $\Omega = B(0,M)$, we see that every bounded entire function must be a constant.

- Corollary: Let $f : \mathbb{C} \to \Omega$, $\Omega \subseteq \mathbb{C}$, be a holomophic function. If $N\mathfrak{C}(\Omega) \neq \{0\}$, then f must be constant.
- Liouville's theorem As a corollary, taking $\Omega = B(0, M)$, we see that every bounded entire function must be a constant.
- Picard's little theorem Similarly, if f: C → C_{{0,1}}, where C_{{0,1} := C\{0,1} is holomophic, then f is constant.

- Corollary: Let $f : \mathbb{C} \to \Omega$, $\Omega \subseteq \mathbb{C}$, be a holomophic function. If $N\mathfrak{C}(\Omega) \neq \{0\}$, then f must be constant.
- Liouville's theorem As a corollary, taking $\Omega = B(0, M)$, we see that every bounded entire function must be a constant.
- Picard's little theorem Similarly, if $f: \mathbb{C} \to \mathbb{C}_{\{0,1\}}$, where $\mathbb{C}_{\{0,1\}} := \mathbb{C} \setminus \{0,1\}$ is holomophic, then f is constant.
- proof: To verify this, all we need to do is show that $N\mathfrak{C}(\mathbb{C}_{\{0,1\}}) \neq \{0\}$. The non-zero function

 $\varphi(z) = |z|^{\beta/2-1} |1-z|^{\beta/2-1} (1+|z|^{\beta}) (1+|z-1|)^{\beta}, \ \beta > 0,$

is in $N\mathfrak{C}(\mathbb{C}_{\{0,1\}})$ for $0 < \beta < 2/7$.

Thank You!