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examples of identities

Examples of identities are so ubiquitous that they often escape
our notice. Here is a list of some of these.

1. The identity x2 −1 = (x+1)(x−1) used by the ancient
Babylonians.

2. The fundamental identity sin2 x+ cos2 x = 1 of trigonometry.
3. (Newton’s forumale) If em = ∑1≤i1<···<im≤n λi1 · · ·λim and

pk = λ k
1 + · · ·+λ k

n , then for m = 1,2, . . . ,

mem = ∑m
k=1(−1)k−1pkem−k.

4. The Jacobi identity: [[a,b],c]+ [[b,c],a]+ [[c,a],b] = 0 for Lie
structures.
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Hamilton-Cayley polynomial

Any n×n matrix A is the root of the Hamilton-Cayley
polynomial

det(λ −A) = λ n +∑n
i=1 γi(A)λ n−i,

where γ1(A) =−tr(A), . . . ,γn(A) = (−1)n det(A).

For a 2×2, matrix A, this means that
A2 − tr(A)A+det(A)I = 0.
Now, if tr(A) = 0 , then A2 =−det(A)I. Therefore,
[A2,B] = A2B−BA2 = 0.
It follows that for three 2×2 matrices A,B,C, we have the
Wagner identity

[[A,B]2,C] = 0
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polynomial identity

We see that the non-commutative polynomial
[[X,Y]2,Z] = (XY−YX)2Z−Z(XY−YX)2 is zero when
evaluated on any three 2×2 matrices A,B,C since
tr(AB−BA) is always zero.
However, Wagner’s identity is not true for 3×3 matrices.
It is therefore natural to say that a non-commutative polynomial
P in the ring F[X1, . . . ,Xm] is a polynomial identity for an
algebra R if it vanishes identically when evaluated on any m
elements A1, . . . ,Am from the algebra in R.
We have seen that taking m = 3, R = M2(C), the
non-commutative polynomial P[X,Y,Z] := [[X,Y]2,Z] serves as a
polynomial identity in M2(C).

Another example of a polynomial identity for 2×2 matrices:
[X2,Y][X,Y]− [X,Y][X2,Y].
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questions

Which algebras satisfy polynomial identity
What are the implications of the existence of a polynomial
identity in an algebra?
What are the polynomial identities of a given algebra? What
happens in the particular example of the matrix algebra?
The polynomial XY−YX defines a polynomial identity in an
algebra R if and only if R is commutative.
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Amitsur-Levitzki Theorem

Let Sh be the permutation group on h symbols and Sh be
the standard polynomial

Sh(X1, ...,Xh) := ∑σ∈Sh Sgn(σ)Xσ(1) · · ·Xσ(h)

in non-commuting variables X1, . . . ,Xh. For any set of 2n
element A1, . . . ,A2n in the algebra Mn(R) of n×n matrices
over a commutative ring R, the Amitsur-Levitzki theorem
asserts that S2n(A1, . . . ,A2n) = 0,

We can multiply more than two matrices. We can write A×B×C
for the product of A,B and C. The order of the matrices is
important, but the order in which we perform the multiplication is
not. This is because multiplication of matrices is associative, that is

(A×B)×C = A× (B×C).

6



2×2

Here is the Amitsur Levitzki Theorem for 2×2 matrices: For
every four 2×2 matrices A,B,C, and D ,

A×B×C×DB×A×C×DA×B×D×C+B×A×D×C−
A×C×B×D+C×A×B×D+A×C×D×B−
C×A×D×B+A×D×B×C−D×A×B×C−A×D×C×B+

D×A×C×B+C×D×A×B−C×D×B×A−
D×C×A×B+D×C×B×A−B×D×A×C+

B×D×C×A+D×B×A×C−D×B×C×A+

B×C×A×D−B×C×D×A−C×B×A×D+

C×B×D×A = 0.
The sum of the products of the matrices for all 24 possible
permutations with the signs is always 0.
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The proof of the Amitsur-Levitzki Theorem by Rosset

The standard polynomial Sh is easily seen to be multi-linear
and alternating. Thus

Sh(X1, . . . ,Xi +X′
i, . . . ,Xh) = Sh(X1, . . . ,Xi, . . . ,Xh)

+Sh(X1, . . . ,X′
i, . . . ,Xh)

and vanishes if two of the arguments are equal, that is,
Sh(X1, . . . ,X, . . . ,X, . . . ,Xh) = 0.
Hence to prove the Amitsur-Levitzki Theorem, it suffices to prove
that Sh(B1, . . . ,B2h), where B1, . . . ,B2h is chosen from any
(vector space) basis of the algebra Mh(C). In particular, it is
enough to choose them from the set of elementary matrices Ei,j ,
where Ei,j is the matrix with 1 at the position (i, j) and 0
elsewhere.
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The proof by Rosset

Thus we can verify the validity of the Amitsur-Levitzki theorem
by checking that S4(E1,1,E1,2,E2,1,E2,2). The proof in the
general case can be given based on this idea.
A very short proof due to Rosset is based on a very clever use of
the Cayley-Hamilton theorem.
He uses a particular instance of the Hamilton-Cayley trace
identity which is of the form

Ak +∑k
j=1

(
∑j1+···+ju=j α(j1,...,ju)trAj1 · · ·trAju

)
Ak−j = 0,

where α(j1,...,ju) ∈Q are determined explicitly.
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hyponormal operators

An operator T on a Hilbert space H is said to be hyponormal
if the commutator [T∗,T] := T∗T−TT∗ is positive.
The Berger-Shaw theorem says that if T is a m-cyclic
hyponormal operator, then the commutator [T∗,T] is trace class
and

tr[T∗,T]≤ m
π A(σ(T))

There has been some attempt to show that if a commuting
n-tuple of bounded linear operators T is hyponormal and cyclic,
then the cross commutators must be trace class. The first of
these is due to Athavale and the other is due to Douglas and Yan.
Douglas and Yan using techniques from commutative algebra
reduce their proof to the case of a single operator.
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strong and weak hyponormal

A commuting n -tuple T of operators acting on a Hilbert space
H is said to be m-cyclic if there exists a set of vectors
ζ{m} := {ζ1, . . . ,ζm} such that closed linear span of the vectors

{p(T1, . . . ,Tn)ζ : ζ ∈ ζ{m},p ∈ C[z]}.
is all of H

A commuting n -tuple T of operators acting on a Hilbert space
H is said to be strongly hyponormal if[[

T∗,T
]]

:=
((
[T∗

j ,Ti]
))n

i,j=1 :
⊕

n H −→
⊕

n H

is positive, that is, for each x ∈
⊕

n H ,
⟨[[

T∗,T
]]

x,x
⟩
≥ 0, and

it is said to be weakly hyponormal if for each vector
(α1, . . . ,αn) ∈ Cn, the sum ∑n

i=1 αiTi is a hyponormal operator
on H .
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question

Question: If the n -tuple T is strongly hyponormal and cyclic,
then does it follow that the commutators [T∗

j ,Ti] , 1 ≤ i, j ≤ n is
necessarily trace class?
It is easy to verify that the answer is “no”, in general. Take for
instance, the example of the Hardy space H2(D2) and the pair
of operators to be the multiplication by the coordinate functions
(M1,M2) . Here the operators M∗

j Mi −MiM∗
j = 0 , j ̸= i.

However, the commutators M∗
j Mj −MjM∗

j are of infinite
multiplicity and they are not even compact.
What might be a possible generalization of the Berger-Shaw
theorem to the case of commuting tuples of operators?
Athavale finds the answer after making a strong assumption on
the nature of the multiplicity of the commuting tuple while
Douglas and Yan make very strong assumption on the joint
spectrum.

12



question

Question: If the n -tuple T is strongly hyponormal and cyclic,
then does it follow that the commutators [T∗

j ,Ti] , 1 ≤ i, j ≤ n is
necessarily trace class?
It is easy to verify that the answer is “no”, in general. Take for
instance, the example of the Hardy space H2(D2) and the pair
of operators to be the multiplication by the coordinate functions
(M1,M2) . Here the operators M∗

j Mi −MiM∗
j = 0 , j ̸= i.

However, the commutators M∗
j Mj −MjM∗

j are of infinite
multiplicity and they are not even compact.
What might be a possible generalization of the Berger-Shaw
theorem to the case of commuting tuples of operators?
Athavale finds the answer after making a strong assumption on
the nature of the multiplicity of the commuting tuple while
Douglas and Yan make very strong assumption on the joint
spectrum.

12



question

Question: If the n -tuple T is strongly hyponormal and cyclic,
then does it follow that the commutators [T∗

j ,Ti] , 1 ≤ i, j ≤ n is
necessarily trace class?
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what we do

Instead of asking for the trace of the commutators to be finite,
we only ask that the trace of a “certain” determinant (or, in the
language of Helton and Howe, the generalized commutator) is
finite.
One may argue that it is not asking for much. But then to arrive
at this conclusion, we don’t assume much either.
As in the Berger-Shaw theorem, we assume finite multiplicity but
instead of either strong or weak hyponormality, we only assume
that the determinant is positive. In many ways, it is a mild
condition and this gives us the finiteness of the trace, what is
more, we can even get an explicit bound.
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what is the determinant

Let B := ((Bij)) be an n×n block matrix with entries from
L (H ). The determinant of B is the operator
Det(B) := ∑σ ,τ sgn(σ)Bτ(1),σ(τ(1))Bτ(2),σ(τ(2)) · · ·Bτ(n),σ(τ(n)).

The map Det : L (H )n × . . .×L (H )n 7→ L (H ) is clearly an
alternating multi-linear map.
Let T = (T1,T2, . . . ,Tn) be a n -tuple of commuting operators.
Let us say that the determinant of the n -tuple T is the
operator Det(

[[
T∗,T

]]
).

For operators of the form [[T∗,T]] , Helton and Howe define the
generalized commutator of A = (A1,A2, . . . ,A2n) :

GC(A) := S2n
(
A1, . . . ,A2n

)
.

The generalized commutator of the n -tuple of commuting
operators T is the operator GC(A) if we choose
A1 = T∗

1,A2 = T1, . . . ,A2n−1 = T∗
n,A2n = Tn.
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Det and GC are the same

Thanks to Cherian Varughese, we see that Det(T) and GC(T)

are equal, which is perhaps implicit in the paper of Helton and
Howe.
Recall the example of the pair of multiplication operators on the
Hardy space, H2(D2). In this case,

[[
M∗,M

]]
=

(
[(Mz ⊗ I)∗,(Mz ⊗ I)] [(I⊗Mz)∗,(Mz ⊗ I)]
[(Mz ⊗ I)∗,(I⊗Mz)] [(I⊗Mz)∗,(I⊗Mz)]

)

=

(
P⊗ I 0

0 I⊗P

)
≥ 0.

It now follows that Det
([[

M∗,M
]])

= 2(P⊗P).

Thus Det
([[

M∗,M
]])

is positive and trace class.

indeed, tr
(
Det

[[
M∗,M

]])
= 2.
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Thank You!
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