Determinant of an operator

Gadadhar Misra Indian Institute of Science

Bangalore

in consultation with Paramita Pramanick, Kalyan Sinha and Cherian Varughese

Series of Webinars on Advanced Topics in Mathematical Sciences Organized by: Department of Mathematics, IIT Kharagpur

March 3, 2021

- 1. The identity $x^2 1 = (x+1)(x-1)$ used by the ancient Babylonians.
- 2. The fundamental identity $\sin^2 x + \cos^2 x = 1$ of trigonometry.
- 3. (Newton's forumale) If $e_m = \sum_{1 \leq i_1 < \dots < i_m \leq n} \lambda_{i_1} \cdots \lambda_{i_m}$ and $p_k = \lambda_1^k + \dots + \lambda_n^k$, then for $m = 1, 2, \dots$,

 $me_m = \sum_{k=1}^{m} (-1)^{k-1} p_k e_{m-k}.$

The Jacobi identity: [[a,b],c]+[[b,c],a]+[[c,a],b]=0 for Lie structures.

- 1. The identity $x^2 1 = (x+1)(x-1)$ used by the ancient Babylonians.
- 2. The fundamental identity $\sin^2 x + \cos^2 x = 1$ of trigonometry.
- 3. (Newton's forumale) If $e_m = \sum_{1 \leq i_1 < \dots < i_m \leq n} \lambda_{i_1} \cdots \lambda_{i_m}$ and $p_k = \lambda_1^k + \dots + \lambda_n^k$, then for $m = 1, 2, \dots$,

 $me_m = \sum_{k=1}^m (-1)^{k-1} p_k e_{m-k}.$

The Jacobi identity: [[a,b],c]+[[b,c],a]+[[c,a],b]=0 for Lie structures.

- 1. The identity $x^2 1 = (x+1)(x-1)$ used by the ancient Babylonians.
- 2. The fundamental identity $\sin^2 x + \cos^2 x = 1$ of trigonometry.
- 3. (Newton's forumale) If $e_m = \sum_{1 \leq i_1 < \dots < i_m \leq n} \lambda_{i_1} \cdots \lambda_{i_m}$ and $p_k = \lambda_1^k + \dots + \lambda_n^k$, then for $m = 1, 2, \dots$,

 $me_m = \sum_{k=1}^m (-1)^{k-1} p_k e_{m-k}.$

4. The Jacobi identity: [[a,b],c] + [[b,c],a] + [[c,a],b] = 0 for Lie structures.

- 1. The identity $x^2 1 = (x+1)(x-1)$ used by the ancient Babylonians.
- 2. The fundamental identity $\sin^2 x + \cos^2 x = 1$ of trigonometry.
- 3. (Newton's forumale) If $e_m = \sum_{1 \leq i_1 < \cdots < i_m \leq n} \lambda_{i_1} \cdots \lambda_{i_m}$ and $p_k = \lambda_1^k + \cdots + \lambda_n^k$, then for $m = 1, 2, \ldots$,

 $me_m = \sum_{k=1}^m (-1)^{k-1} p_k e_{m-k}.$

4. The Jacobi identity: [[a,b],c]+[[b,c],a]+[[c,a],b]=0 for Lie structures.

- 1. The identity $x^2 1 = (x+1)(x-1)$ used by the ancient Babylonians.
- 2. The fundamental identity $\sin^2 x + \cos^2 x = 1$ of trigonometry.
- 3. (Newton's forumale) If $e_m = \sum_{1 \leq i_1 < \cdots < i_m \leq n} \lambda_{i_1} \cdots \lambda_{i_m}$ and $p_k = \lambda_1^k + \cdots + \lambda_n^k$, then for $m = 1, 2, \ldots$,

 $me_m = \sum_{k=1}^m (-1)^{k-1} p_k e_{m-k}.$

4. The Jacobi identity: [[a,b],c] + [[b,c],a] + [[c,a],b] = 0 for Lie structures.

Any $\mathbf{n}\times\mathbf{n}$ matrix A is the root of the Hamilton-Cayley polynomial

$$det(\lambda - A) = \lambda^{n} + \sum_{i=1}^{n} \gamma_{i}(A) \lambda^{n-i},$$

where $\gamma_1(A) = -tr(A), \dots, \gamma_n(A) = (-1)^n det(A).$

For a 2×2 , matrix A, this means that $A^2 - tr(A)A + det(A)I = 0.$

Now, if tr(A) = 0, then $A^2 = -det(A)I$. Therefore, $[A^2, B] = A^2B - BA^2 = 0$.

It follows that for three 2×2 matrices A,B,C, we have the Wagner identity

Any $\mathbf{n}\times\mathbf{n}$ matrix A is the root of the Hamilton-Cayley polynomial

$$det(\lambda - A) = \lambda^{n} + \sum_{i=1}^{n} \gamma_{i}(A) \lambda^{n-i},$$

where $\gamma_1(A) = -tr(A), \dots, \gamma_n(A) = (-1)^n \operatorname{det}(A).$

For a 2×2 , matrix A, this means that $A^2 - tr(A)A + det(A)I = 0$.

Now, if tr(A) = 0, then $A^2 = -det(A)I$. Therefore, $[A^2, B] = A^2B - BA^2 = 0$.

It follows that for three 2×2 matrices A,B,C, we have the Wagner identity

Any $\mathbf{n}\times\mathbf{n}$ matrix A is the root of the Hamilton-Cayley polynomial

$$det(\lambda - A) = \lambda^{n} + \sum_{i=1}^{n} \gamma_{i}(A) \lambda^{n-i},$$

where $\gamma_1(A) = -tr(A), \dots, \gamma_n(A) = (-1)^n det(A).$

For a 2×2 , matrix A, this means that $A^2 - tr(A)A + det(A)I = 0$.

Now, if tr(A) = 0, then $A^2 = -det(A)I$. Therefore, $[A^2, B] = A^2B - BA^2 = 0$.

It follows that for three 2×2 matrices A,B,C, we have the Wagner identity

Any $\mathbf{n} \times \mathbf{n}$ matrix A is the root of the Hamilton-Cayley polynomial

$$det(\lambda - A) = \lambda^{n} + \sum_{i=1}^{n} \gamma_{i}(A) \lambda^{n-i},$$

where $\gamma_1(A) = -tr(A), \dots, \gamma_n(A) = (-1)^n det(A).$

For a 2×2 , matrix A, this means that $A^2 - tr(A)A + det(A)I = 0$.

Now, if tr(A) = 0, then $A^2 = -\det(A)I$. Therefore, $[A^2, B] = A^2B - BA^2 = 0$.

It follows that for three 2×2 matrices A, B, C, we have the Wagner identity

We see that the non-commutative polynomial $[[X,Y]^2,Z] = (XY - YX)^2 Z - Z(XY - YX)^2$ is zero when evaluated on any three 2×2 matrices A,B,C since tr(AB - BA) is always zero. However, Wagner's identity is not true for 3×3 matrices.

It is therefore natural to say that a non-commutative polynomial P in the ring $F[X_1, \ldots, X_m]$ is a polynomial identity for an algebra \mathscr{R} if it vanishes identically when evaluated on any m elements A_1, \ldots, A_m from the algebra in \mathscr{R} .

We have seen that taking m = 3, $\mathscr{R} = \mathscr{M}_2(\mathbb{C})$, the non-commutative polynomial $P[X, Y, Z] := [[X, Y]^2, Z]$ serves as a polynomial identity in $\mathscr{M}_2(\mathbb{C})$.

Another example of a polynomial identity for 2×2 matrices: $[X^2, Y][X, Y] = [X, Y][X^2, Y].$

We see that the non-commutative polynomial $[[X,Y]^2,Z] = (XY - YX)^2Z - Z(XY - YX)^2$ is zero when evaluated on any three 2×2 matrices A,B,C since tr(AB - BA) is always zero. However, Wagner's identity is not true for 3×3 matrices. It is therefore natural to say that a non-commutative polynomial P in the ring $F[X_1,...,X_m]$ is a polynomial identity for an algebra \mathscr{R} if it vanishes identically when evaluated on any m elements $A_1,...,A_m$ from the algebra in \mathscr{R} .

We have seen that taking m = 3, $\mathscr{R} = \mathscr{M}_2(\mathbb{C})$, the non-commutative polynomial $P[X, Y, Z] := [[X, Y]^2, Z]$ serves as a polynomial identity in $\mathscr{M}_2(\mathbb{C})$.

Another example of a polynomial identity for 2×2 matrices: [X², Y][X, Y] - [X, Y][X², Y].

We see that the non-commutative polynomial $[[X,Y]^2,Z] = (XY - YX)^2Z - Z(XY - YX)^2$ is zero when evaluated on any three 2×2 matrices A,B,C since tr(AB - BA) is always zero. However, Wagner's identity is not true for 3×3 matrices. It is therefore natural to say that a non-commutative polynomial P in the ring $F[X_1, \ldots, X_m]$ is a polynomial identity for an algebra \mathscr{R} if it vanishes identically when evaluated on any m elements A_1, \ldots, A_m from the algebra in \mathscr{R} .

We have seen that taking m = 3, $\mathscr{R} = \mathscr{M}_2(\mathbb{C})$, the non-commutative polynomial $P[X, Y, Z] := [[X, Y]^2, Z]$ serves as a polynomial identity in $\mathscr{M}_2(\mathbb{C})$.

Another example of a polynomial identity for 2×2 matrices: [X², Y][X, Y] - [X, Y][X², Y].

We see that the non-commutative polynomial $[[X,Y]^2,Z] = (XY - YX)^2Z - Z(XY - YX)^2$ is zero when evaluated on any three 2×2 matrices A,B,C since tr(AB - BA) is always zero. However, Wagner's identity is not true for 3×3 matrices. It is therefore natural to say that a non-commutative polynomial P in the ring $F[X_1,...,X_m]$ is a polynomial identity for an algebra \mathscr{R} if it vanishes identically when evaluated on any m elements $A_1,...,A_m$ from the algebra in \mathscr{R} .

We have seen that taking m = 3, $\mathscr{R} = \mathscr{M}_2(\mathbb{C})$, the non-commutative polynomial $P[X, Y, Z] := [[X, Y]^2, Z]$ serves as a polynomial identity in $\mathscr{M}_2(\mathbb{C})$.

Another example of a polynomial identity for 2×2 matrices: [X², Y][X, Y] - [X, Y][X², Y].

What are the implications of the existence of a polynomial identity in an algebra?

What are the polynomial identities of a given algebra? What happens in the particular example of the matrix algebra?

What are the implications of the existence of a polynomial identity in an algebra?

What are the polynomial identities of a given algebra? What happens in the particular example of the matrix algebra?

What are the implications of the existence of a polynomial identity in an algebra?

What are the polynomial identities of a given algebra? What happens in the particular example of the matrix algebra?

What are the implications of the existence of a polynomial identity in an algebra?

What are the polynomial identities of a given algebra? What happens in the particular example of the matrix algebra?

Let \mathfrak{S}_h be the permutation group on $\,h\,$ symbols and $\,S_h\,$ be the standard polynomial

 $\mathrm{S}_{h}(\mathrm{X}_{1},...,\mathrm{X}_{h}) := \sum_{\sigma \in \mathfrak{S}_{h}} \mathrm{Sgn}(\sigma) \mathrm{X}_{\sigma(1)} \cdots \mathrm{X}_{\sigma(h)}$

in non-commuting variables X_1, \ldots, X_h . For any set of 2n element A_1, \ldots, A_{2n} in the algebra $\mathscr{M}_n(\mathscr{R})$ of $n \times n$ matrices over a commutative ring \mathscr{R} , the Amitsur-Levitzki theorem asserts that $S_{2n}(A_1, \ldots, A_{2n}) = 0$,

We can multiply more than two matrices. We can write $A \times B \times C$ for the product of A, B and C. The order of the matrices is important, but the order in which we perform the multiplication is not. This is because multiplication of matrices is associative, that is

 $(\mathbf{A} \times \mathbf{B}) \times \mathbf{C} = \mathbf{A} \times (\mathbf{B} \times \mathbf{C}).$

Here is the Amitsur Levitzki Theorem for $~2\times 2~$ matrices: For every four $~2\times 2~$ matrices ~A,B,C,~ and ~D~,~

 $\begin{array}{l} \mathbf{A}\times\mathbf{B}\times\mathbf{C}\times\mathbf{D}\mathbf{B}\times\mathbf{A}\times\mathbf{C}\times\mathbf{D}\mathbf{A}\times\mathbf{B}\times\mathbf{D}\times\mathbf{C}+\mathbf{B}\times\mathbf{A}\times\mathbf{D}\times\mathbf{C}-\\ \mathbf{A}\times\mathbf{C}\times\mathbf{B}\times\mathbf{D}+\mathbf{C}\times\mathbf{A}\times\mathbf{B}\times\mathbf{D}+\mathbf{A}\times\mathbf{C}\times\mathbf{D}\times\mathbf{B}-\\ \mathbf{C}\times\mathbf{A}\times\mathbf{D}\times\mathbf{B}+\mathbf{A}\times\mathbf{D}\times\mathbf{B}\times\mathbf{C}-\mathbf{D}\times\mathbf{A}\times\mathbf{B}\times\mathbf{C}-\mathbf{A}\times\mathbf{D}\times\mathbf{C}\times\mathbf{B}+\\ \mathbf{D}\times\mathbf{A}\times\mathbf{C}\times\mathbf{B}+\mathbf{C}\times\mathbf{D}\times\mathbf{A}\times\mathbf{B}-\mathbf{C}\times\mathbf{D}\times\mathbf{B}\times\mathbf{A}-\\ \mathbf{D}\times\mathbf{C}\times\mathbf{A}\times\mathbf{B}+\mathbf{D}\times\mathbf{C}\times\mathbf{B}\times\mathbf{A}-\mathbf{B}\times\mathbf{D}\times\mathbf{A}\times\mathbf{C}+\\ \mathbf{B}\times\mathbf{D}\times\mathbf{C}\times\mathbf{A}+\mathbf{D}\times\mathbf{B}\times\mathbf{A}\times\mathbf{C}-\mathbf{D}\times\mathbf{B}\times\mathbf{C}\times\mathbf{A}+\\ \mathbf{B}\times\mathbf{C}\times\mathbf{A}\times\mathbf{D}-\mathbf{B}\times\mathbf{C}\times\mathbf{D}\times\mathbf{A}-\mathbf{C}\times\mathbf{B}\times\mathbf{A}\times\mathbf{D}+\\ \mathbf{C}\times\mathbf{B}\times\mathbf{D}\times\mathbf{A}=0. \end{array}$

The sum of the products of the matrices for all 24 possible permutations with the signs is always 0.

Here is the Amitsur Levitzki Theorem for $2\times 2\,$ matrices: For every four $2\times 2\,$ matrices A,B,C, and D ,

 $\begin{array}{l} \mathbf{A}\times\mathbf{B}\times\mathbf{C}\times\mathbf{D}\mathbf{B}\times\mathbf{A}\times\mathbf{C}\times\mathbf{D}\mathbf{A}\times\mathbf{B}\times\mathbf{D}\times\mathbf{C}+\mathbf{B}\times\mathbf{A}\times\mathbf{D}\times\mathbf{C}-\\ \mathbf{A}\times\mathbf{C}\times\mathbf{B}\times\mathbf{D}+\mathbf{C}\times\mathbf{A}\times\mathbf{B}\times\mathbf{D}+\mathbf{A}\times\mathbf{C}\times\mathbf{D}\times\mathbf{B}-\\ \mathbf{C}\times\mathbf{A}\times\mathbf{D}\times\mathbf{B}+\mathbf{A}\times\mathbf{D}\times\mathbf{B}\times\mathbf{C}-\mathbf{D}\times\mathbf{A}\times\mathbf{B}\times\mathbf{C}-\mathbf{A}\times\mathbf{D}\times\mathbf{C}\times\mathbf{B}+\\ \mathbf{D}\times\mathbf{A}\times\mathbf{C}\times\mathbf{B}+\mathbf{C}\times\mathbf{D}\times\mathbf{A}\times\mathbf{B}-\mathbf{C}\times\mathbf{D}\times\mathbf{B}\times\mathbf{A}-\\ \mathbf{D}\times\mathbf{C}\times\mathbf{A}\times\mathbf{B}+\mathbf{D}\times\mathbf{C}\times\mathbf{B}\times\mathbf{A}-\mathbf{B}\times\mathbf{D}\times\mathbf{A}\times\mathbf{C}+\\ \mathbf{B}\times\mathbf{D}\times\mathbf{C}\times\mathbf{A}+\mathbf{D}\times\mathbf{B}\times\mathbf{A}\times\mathbf{C}-\mathbf{D}\times\mathbf{B}\times\mathbf{C}\times\mathbf{A}+\\ \mathbf{B}\times\mathbf{C}\times\mathbf{A}\times\mathbf{D}-\mathbf{B}\times\mathbf{C}\times\mathbf{D}\times\mathbf{A}-\mathbf{C}\times\mathbf{B}\times\mathbf{A}\times\mathbf{D}+\\ \mathbf{C}\times\mathbf{B}\times\mathbf{D}\times\mathbf{A}=0. \end{array}$

The sum of the products of the matrices for all 24 possible permutations with the signs is always 0.

The standard polynomial S_h is easily seen to be multi-linear and alternating. Thus

$$\begin{split} S_h(X_1,\ldots,X_i+X_i',\ldots,X_h) &= S_h(X_1,\ldots,X_i,\ldots,X_h) \\ &+ S_h(X_1,\ldots,X_i',\ldots,X_h) \end{split}$$

and vanishes if two of the arguments are equal, that is, $S_h(X_1,\ldots,X,\ldots,X_h)=0.$

Hence to prove the Amitsur-Levitzki Theorem, it suffices to prove that $S_h(B_1,\ldots,B_{2h})$, where B_1,\ldots,B_{2h} is chosen from any (vector space) basis of the algebra $\mathscr{M}_h(\mathbb{C})$. In particular, it is enough to choose them from the set of elementary matrices $E_{i,j}$, where $E_{i,j}$ is the matrix with 1 at the position (i,j) and 0 elsewhere.

The standard polynomial S_h is easily seen to be multi-linear and alternating. Thus

$$\begin{split} S_h(X_1,\ldots,X_i+X_i',\ldots,X_h) &= S_h(X_1,\ldots,X_i,\ldots,X_h) \\ &+ S_h(X_1,\ldots,X_i',\ldots,X_h) \end{split}$$

and vanishes if two of the arguments are equal, that is, $S_h(X_1,\ldots,X,\ldots,X_h)=0.$

Hence to prove the Amitsur-Levitzki Theorem, it suffices to prove that $S_h(B_1,\ldots,B_{2h}),$ where B_1,\ldots,B_{2h} is chosen from any (vector space) basis of the algebra $\mathscr{M}_h(\mathbb{C}).$ In particular, it is enough to choose them from the set of elementary matrices $E_{i,j}$, where $E_{i,j}$ is the matrix with 1 at the position (i,j) and 0 elsewhere.

Thus we can verify the validity of the Amitsur-Levitzki theorem by checking that $S_4(E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2})$. The proof in the general case can be given based on this idea.

A very short proof due to Rosset is based on a very clever use of the Cayley-Hamilton theorem.

He uses a particular instance of the Hamilton-Cayley trace identity which is of the form

$$\begin{split} A^k + \sum_{j=1}^k \left(\sum_{j_1 + \dots + j_u = j} \alpha_{(j_1, \dots, j_u)} \mathrm{tr} A^{j_1} \cdots \mathrm{tr} A^{j_u} \right) A^{k-j} = 0, \\ \text{where} \quad \alpha_{(j_1, \dots, j_u)} \in \mathbb{Q} \quad \text{are determined explicitly.} \end{split}$$

Thus we can verify the validity of the Amitsur-Levitzki theorem by checking that $S_4(E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2})$. The proof in the general case can be given based on this idea.

A very short proof due to Rosset is based on a very clever use of the Cayley-Hamilton theorem.

He uses a particular instance of the Hamilton-Cayley trace identity which is of the form

$$\begin{split} \mathrm{A}^{k} + & \sum_{j=1}^{k} \left(\sum_{j_{1} + \dots + j_{u} = j} \alpha_{(j_{1}, \dots, j_{u})} \mathrm{tr} \mathrm{A}^{j_{1}} \cdots \mathrm{tr} \mathrm{A}^{j_{u}} \right) \mathrm{A}^{k-j} = 0, \\ \mathrm{where} \quad & \alpha_{(j_{1}, \dots, j_{u})} \in \mathbb{Q} \quad \mathrm{are \ determined \ explicitly}. \end{split}$$

Thus we can verify the validity of the Amitsur-Levitzki theorem by checking that $S_4(E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2})$. The proof in the general case can be given based on this idea.

A very short proof due to Rosset is based on a very clever use of the Cayley-Hamilton theorem.

He uses a particular instance of the Hamilton-Cayley trace identity which is of the form

$$\begin{split} A^k + \sum_{j=1}^k \left(\sum_{j_1 + \dots + j_u = j} \alpha_{(j_1, \dots, j_u)} \mathrm{tr} A^{j_1} \cdots \mathrm{tr} A^{j_u} \right) & A^{k-j} = 0, \\ \mathrm{where} \ \ \alpha_{(j_1, \dots, j_u)} \in \mathbb{Q} \ \ \mathrm{are \ determined \ explicitly}. \end{split}$$

An operator T on a Hilbert space \mathscr{H} is said to be hyponormal if the commutator $[T^*, T] := T^*T - TT^*$ is positive.

The Berger-Shaw theorem says that if T is a m-cyclic hyponormal operator, then the commutator $[T^*,T]$ is trace class and

 $\operatorname{tr}[\mathrm{T}^*,\mathrm{T}] \leq \frac{\mathrm{m}}{\pi} \mathrm{A}(\boldsymbol{\sigma}(\mathrm{T}))$

There has been some attempt to show that if a commuting n-tuple of bounded linear operators T is hyponormal and cyclic, then the cross commutators must be trace class. The first of these is due to Athavale and the other is due to Douglas and Yan. Douglas and Yan using techniques from commutative algebra reduce their proof to the case of a single operator. An operator T on a Hilbert space \mathscr{H} is said to be hyponormal if the commutator $[T^*,T] := T^*T - TT^*$ is positive.

The Berger-Shaw theorem says that if T is a m-cyclic hyponormal operator, then the commutator $[T^*,T]$ is trace class and

 $\operatorname{tr}[\mathrm{T}^*,\mathrm{T}] \leq \frac{\mathrm{m}}{\pi} \mathrm{A}(\boldsymbol{\sigma}(\mathrm{T}))$

There has been some attempt to show that if a commuting n-tuple of bounded linear operators T is hyponormal and cyclic, then the cross commutators must be trace class. The first of these is due to Athavale and the other is due to Douglas and Yan. Douglas and Yan using techniques from commutative algebra reduce their proof to the case of a single operator. An operator T on a Hilbert space \mathscr{H} is said to be hyponormal if the commutator $[T^*, T] := T^*T - TT^*$ is positive.

The Berger-Shaw theorem says that if T is a m-cyclic hyponormal operator, then the commutator $[T^*,T]$ is trace class and

 $\mathrm{tr}[\mathrm{T}^*,\mathrm{T}] \leq \tfrac{\mathrm{m}}{\pi} \mathrm{A}(\sigma(\mathrm{T}))$

There has been some attempt to show that if a commuting n-tuple of bounded linear operators T is hyponormal and cyclic, then the cross commutators must be trace class. The first of these is due to Athavale and the other is due to Douglas and Yan.

Douglas and Yan using techniques from commutative algebra reduce their proof to the case of a single operator. An operator T on a Hilbert space \mathscr{H} is said to be hyponormal if the commutator $[T^*, T] := T^*T - TT^*$ is positive.

The Berger-Shaw theorem says that if T is a m-cyclic hyponormal operator, then the commutator $[T^*,T]$ is trace class and

 $\mathrm{tr}[\mathrm{T}^*,\mathrm{T}] \leq \tfrac{\mathrm{m}}{\pi} \mathrm{A}(\sigma(\mathrm{T}))$

There has been some attempt to show that if a commuting n-tuple of bounded linear operators T is hyponormal and cyclic, then the cross commutators must be trace class. The first of these is due to Athavale and the other is due to Douglas and Yan. Douglas and Yan using techniques from commutative algebra reduce their proof to the case of a single operator.

A commuting n -tuple T of operators acting on a Hilbert space \mathscr{H} is said to be m-cyclic if there exists a set of vectors $\zeta\{m\} := \{\zeta_1, \dots, \zeta_m\}$ such that closed linear span of the vectors

 $\{p(T_1,\ldots,T_n)\zeta:\zeta\in\zeta\{m\},p\in\mathbb{C}[z]\}.$

is all of $\ {\mathscr H}$

A commuting n -tuple T of operators acting on a Hilbert space ${\mathscr H}$ is said to be strongly hyponormal if

 $\left[\left[\mathrm{T}^*,\mathrm{T}
ight]
ight]:=\left(\!\left(\left[\mathrm{T}^*_j,\mathrm{T}_i
ight]
ight)\!
ight)_{i,j=1}^{\mathrm{n}}:igoplus_{\mathrm{n}}\mathscr{H}\longrightarrowigoplus_{\mathrm{n}}\mathscr{H}$

is positive, that is, for each $\mathbf{x} \in \bigoplus_{n} \mathscr{H}$, $\langle [[\mathbf{T}^*, \mathbf{T}]] \mathbf{x}, \mathbf{x} \rangle \geq 0$, and it is said to be weakly hyponormal if for each vector $(\alpha_1, \dots, \alpha_n) \in \mathbb{C}^n$, the sum $\sum_{i=1}^{n} \alpha_i \mathbf{T}_i$ is a hyponormal operator on \mathscr{H} .

A commuting **n**-tuple **T** of operators acting on a Hilbert space \mathscr{H} is said to be m-cyclic if there exists a set of vectors $\zeta\{\mathbf{m}\} := \{\zeta_1, \dots, \zeta_m\}$ such that closed linear span of the vectors {p(T₁,...,T_n) ζ : $\zeta \in \zeta$ {m}, p $\in \mathbb{C}[z]$ }.

is all of \mathscr{H}

A commuting n -tuple T of operators acting on a Hilbert space \mathscr{H} is said to be m-cyclic if there exists a set of vectors $\zeta\{m\} := \{\zeta_1, \ldots, \zeta_m\}$ such that closed linear span of the vectors

 $\{p(T_1,\ldots,T_n)\zeta:\zeta\in\zeta\{m\},p\in\mathbb{C}[z]\}.$

is all of $\ {\mathscr H}$

A commuting n -tuple T of operators acting on a Hilbert space \mathscr{H} is said to be strongly hyponormal if

 $\left[\left[T^*,T\right]\right] := \left(\!\left[T_j^*,T_i\right]\!\right)_{i,j=1}^n : \bigoplus_n \mathscr{H} \longrightarrow \bigoplus_n \mathscr{H}$

A commuting n -tuple T of operators acting on a Hilbert space \mathscr{H} is said to be m-cyclic if there exists a set of vectors $\zeta\{m\} := \{\zeta_1, \ldots, \zeta_m\}$ such that closed linear span of the vectors

 $\{p(T_1,\ldots,T_n)\zeta:\zeta\in\zeta\{m\},p\in\mathbb{C}[z]\}.$

is all of $\ {\mathscr H}$

A commuting n -tuple T of operators acting on a Hilbert space \mathscr{H} is said to be strongly hyponormal if

 $\left[\left[T^*,T\right]\right]:=\left(\!\!\left([T_j^*,T_i]\right)\!\!\right)_{i,j=1}^n:\bigoplus_n\mathscr{H}\longrightarrow\bigoplus_n\mathscr{H}$

A commuting n -tuple T of operators acting on a Hilbert space \mathscr{H} is said to be m-cyclic if there exists a set of vectors $\zeta\{m\} := \{\zeta_1, \dots, \zeta_m\}$ such that closed linear span of the vectors

 $\{p(T_1,\ldots,T_n)\zeta:\zeta\in\zeta\{m\},p\in\mathbb{C}[z]\}.$

is all of $\ {\mathscr H}$

A commuting n -tuple T of operators acting on a Hilbert space \mathscr{H} is said to be strongly hyponormal if

 $\left[\left[T^*,T\right]\right]:=\left(\!\!\left([T_j^*,T_i]\right)\!\!\right)_{i,j=1}^n:\bigoplus_n\mathscr{H}\longrightarrow\bigoplus_n\mathscr{H}$

A commuting n -tuple T of operators acting on a Hilbert space \mathscr{H} is said to be m-cyclic if there exists a set of vectors $\zeta\{m\} := \{\zeta_1, \dots, \zeta_m\}$ such that closed linear span of the vectors

 $\{p(T_1,\ldots,T_n)\zeta:\zeta\in\zeta\{m\},p\in\mathbb{C}[z]\}.$

is all of $\ {\mathscr H}$

A commuting n -tuple T of operators acting on a Hilbert space \mathscr{H} is said to be strongly hyponormal if

 $\left[\left[T^*,T\right]\right]:=\left(\!\!\left([T_j^*,T_i]\right)\!\!\right)_{i,j=1}^n:\bigoplus_n\mathscr{H}\longrightarrow\bigoplus_n\mathscr{H}$

question

Question: If the n -tuple T is strongly hyponormal and cyclic, then does it follow that the commutators $[T_j^*,T_i]$, $1\leq i,j\leq n$ is necessarily trace class?

It is easy to verify that the answer is "no", in general. Take for instance, the example of the Hardy space $\,H^2(\mathbb{D}^2)\,$ and the pair of operators to be the multiplication by the coordinate functions (M_1,M_2) . Here the operators $\,M_j^*M_i-M_iM_j^*=0\,\,,\,\,j\neq i.$ However, the commutators $\,M_j^*M_j-M_jM_j^*\,$ are of infinite multiplicity and they are not even compact.

What might be a possible generalization of the Berger-Shaw theorem to the case of commuting tuples of operators? Athavale finds the answer after making a strong assumption on the nature of the multiplicity of the commuting tuple while Douglas and Yan make very strong assumption on the joint spectrum.

question

Question: If the n -tuple T is strongly hyponormal and cyclic, then does it follow that the commutators $[T_j^*,T_i]$, $1\leq i,j\leq n$ is necessarily trace class?

It is easy to verify that the answer is "no", in general. Take for instance, the example of the Hardy space $\,H^2(\mathbb{D}^2)\,$ and the pair of operators to be the multiplication by the coordinate functions (M_1,M_2) . Here the operators $\,M_j^*M_i-M_iM_j^*=0\,\,,\,\,j\neq i.$ However, the commutators $\,M_j^*M_j-M_jM_j^*\,$ are of infinite multiplicity and they are not even compact.

What might be a possible generalization of the Berger-Shaw theorem to the case of commuting tuples of operators?

Athavale finds the answer after making a strong assumption on the nature of the multiplicity of the commuting tuple while Douglas and Yan make very strong assumption on the joint spectrum.

question

Question: If the n -tuple T is strongly hyponormal and cyclic, then does it follow that the commutators $[T_j^*,T_i]$, $1\leq i,j\leq n$ is necessarily trace class?

It is easy to verify that the answer is "no", in general. Take for instance, the example of the Hardy space $\,H^2(\mathbb{D}^2)\,$ and the pair of operators to be the multiplication by the coordinate functions (M_1,M_2) . Here the operators $\,M_j^*M_i-M_iM_j^*=0\,\,,\,\,j\neq i.$ However, the commutators $\,M_j^*M_j-M_jM_j^*\,$ are of infinite multiplicity and they are not even compact.

What might be a possible generalization of the Berger-Shaw theorem to the case of commuting tuples of operators?

Athavale finds the answer after making a strong assumption on the nature of the multiplicity of the commuting tuple while Douglas and Yan make very strong assumption on the joint spectrum. Instead of asking for the trace of the commutators to be finite, we only ask that the trace of a "certain" determinant (or, in the language of Helton and Howe, the generalized commutator) is finite.

One may argue that it is not asking for much. But then to arrive at this conclusion, we don't assume much either.

As in the Berger-Shaw theorem, we assume finite multiplicity but instead of either strong or weak hyponormality, we only assume that the determinant is positive. In many ways, it is a mild condition and this gives us the finiteness of the trace, what is more, we can even get an explicit bound. Instead of asking for the trace of the commutators to be finite, we only ask that the trace of a "certain" determinant (or, in the language of Helton and Howe, the generalized commutator) is finite.

One may argue that it is not asking for much. But then to arrive at this conclusion, we don't assume much either.

As in the Berger-Shaw theorem, we assume finite multiplicity but instead of either strong or weak hyponormality, we only assume that the determinant is positive. In many ways, it is a mild condition and this gives us the finiteness of the trace, what is more, we can even get an explicit bound. Instead of asking for the trace of the commutators to be finite, we only ask that the trace of a "certain" determinant (or, in the language of Helton and Howe, the generalized commutator) is finite.

One may argue that it is not asking for much. But then to arrive at this conclusion, we don't assume much either.

As in the Berger-Shaw theorem, we assume finite multiplicity but instead of either strong or weak hyponormality, we only assume that the determinant is positive. In many ways, it is a mild condition and this gives us the finiteness of the trace, what is more, we can even get an explicit bound.

Let $B := ((B_{ij}))$ be an $n \times n$ block matrix with entries from $\mathscr{L}(\mathscr{H})$. The determinant of B is the operator

 $\mathrm{Det}(\mathrm{B}) := \sum_{\sigma,\tau} \mathrm{sgn}(\sigma) \mathrm{B}_{\tau(1),\sigma(\tau(1))} \mathrm{B}_{\tau(2),\sigma(\tau(2))} \cdots \mathrm{B}_{\tau(n),\sigma(\tau(n))}.$

The map $\operatorname{Det} : \mathscr{L}(\mathscr{H})^n \times \ldots \times \mathscr{L}(\mathscr{H})^n \mapsto \mathscr{L}(\mathscr{H})$ is clearly an alternating multi-linear map.

Let $T = (T_1, T_2, ..., T_n)$ be a n-tuple of commuting operators. Let us say that the determinant of the n-tuple T is the operator $Det([T^*, T]])$.

For operators of the form $[\![T^*,T]\!]$, Helton and Howe define the generalized commutator of $\ A=(A_1,A_2,\ldots,A_{2n})$:

$$GC(A) := S_{2n}(A_1, \dots, A_{2n}).$$

Let $B := ((B_{ij}))$ be an $n \times n$ block matrix with entries from $\mathscr{L}(\mathscr{H})$. The determinant of B is the operator

 $\mathrm{Det}(\mathrm{B}) := \sum_{\sigma,\tau} \mathrm{sgn}(\sigma) \mathrm{B}_{\tau(1),\sigma(\tau(1))} \mathrm{B}_{\tau(2),\sigma(\tau(2))} \cdots \mathrm{B}_{\tau(n),\sigma(\tau(n))}.$

The map $\text{Det}: \mathscr{L}(\mathscr{H})^n \times \ldots \times \mathscr{L}(\mathscr{H})^n \mapsto \mathscr{L}(\mathscr{H})$ is clearly an alternating multi-linear map.

Let $T = (T_1, T_2, ..., T_n)$ be a n-tuple of commuting operators. Let us say that the determinant of the n-tuple T is the operator $Det([T^*, T]])$.

For operators of the form $[\![T^*,T]\!]$, Helton and Howe define the generalized commutator of $\ A=(A_1,A_2,\ldots,A_{2n})$:

$$GC(A) := S_{2n}(A_1, \dots, A_{2n}).$$

Let $B := ((B_{ij}))$ be an $n \times n$ block matrix with entries from $\mathscr{L}(\mathscr{H})$. The determinant of B is the operator

 $\mathrm{Det}(\mathrm{B}) := \sum_{\sigma,\tau} \mathrm{sgn}(\sigma) \mathrm{B}_{\tau(1),\sigma(\tau(1))} \mathrm{B}_{\tau(2),\sigma(\tau(2))} \cdots \mathrm{B}_{\tau(n),\sigma(\tau(n))}.$

The map $\operatorname{Det} : \mathscr{L}(\mathscr{H})^n \times \ldots \times \mathscr{L}(\mathscr{H})^n \mapsto \mathscr{L}(\mathscr{H})$ is clearly an alternating multi-linear map.

Let $T = (T_1, T_2, ..., T_n)$ be a n-tuple of commuting operators. Let us say that the determinant of the n-tuple T is the operator $Det([T^*, T]])$.

For operators of the form $[\![T^*,T]\!]$, Helton and Howe define the generalized commutator of $\ A=(A_1,A_2,\ldots,A_{2n})$:

 $\mathrm{GC}(\mathrm{A}) := \mathrm{S}_{2\mathrm{n}}(\mathrm{A}_1, \dots, \mathrm{A}_{2\mathrm{n}}).$

Let $B := ((B_{ij}))$ be an $n \times n$ block matrix with entries from $\mathscr{L}(\mathscr{H})$. The determinant of B is the operator

 $\mathrm{Det}(\mathrm{B}) := \sum_{\sigma,\tau} \mathrm{sgn}(\sigma) \mathrm{B}_{\tau(1),\sigma(\tau(1))} \mathrm{B}_{\tau(2),\sigma(\tau(2))} \cdots \mathrm{B}_{\tau(n),\sigma(\tau(n))}.$

The map $\operatorname{Det} : \mathscr{L}(\mathscr{H})^n \times \ldots \times \mathscr{L}(\mathscr{H})^n \mapsto \mathscr{L}(\mathscr{H})$ is clearly an alternating multi-linear map.

Let $T = (T_1, T_2, ..., T_n)$ be a n-tuple of commuting operators. Let us say that the determinant of the n-tuple T is the operator $Det([T^*, T]])$.

For operators of the form $[\![T^*,T]\!]$, Helton and Howe define the generalized commutator of $\ A=(A_1,A_2,\ldots,A_{2n})$:

 $\mathrm{GC}(\mathrm{A}) := \mathrm{S}_{2\mathrm{n}}(\mathrm{A}_1, \dots, \mathrm{A}_{2\mathrm{n}}).$

Let $B := ((B_{ij}))$ be an $n \times n$ block matrix with entries from $\mathscr{L}(\mathscr{H})$. The determinant of B is the operator

 $\mathrm{Det}(\mathrm{B}) := \sum_{\sigma,\tau} \mathrm{sgn}(\sigma) \mathrm{B}_{\tau(1),\sigma(\tau(1))} \mathrm{B}_{\tau(2),\sigma(\tau(2))} \cdots \mathrm{B}_{\tau(n),\sigma(\tau(n))}.$

The map $\operatorname{Det} : \mathscr{L}(\mathscr{H})^n \times \ldots \times \mathscr{L}(\mathscr{H})^n \mapsto \mathscr{L}(\mathscr{H})$ is clearly an alternating multi-linear map.

Let $T = (T_1, T_2, ..., T_n)$ be a n-tuple of commuting operators. Let us say that the determinant of the n-tuple T is the operator $Det([T^*, T]])$.

For operators of the form $[\![T^*,T]\!]$, Helton and Howe define the generalized commutator of $\ A=(A_1,A_2,\ldots,A_{2n})$:

$$GC(A) := S_{2n}(A_1, \dots, A_{2n}).$$

Let $B := ((B_{ij}))$ be an $n \times n$ block matrix with entries from $\mathscr{L}(\mathscr{H})$. The determinant of B is the operator

 $\mathrm{Det}(\mathrm{B}) := \sum_{\sigma,\tau} \mathrm{sgn}(\sigma) \mathrm{B}_{\tau(1),\sigma(\tau(1))} \mathrm{B}_{\tau(2),\sigma(\tau(2))} \cdots \mathrm{B}_{\tau(n),\sigma(\tau(n))}.$

The map $\operatorname{Det} : \mathscr{L}(\mathscr{H})^n \times \ldots \times \mathscr{L}(\mathscr{H})^n \mapsto \mathscr{L}(\mathscr{H})$ is clearly an alternating multi-linear map.

Let $T = (T_1, T_2, ..., T_n)$ be a n-tuple of commuting operators. Let us say that the determinant of the n-tuple T is the operator $Det([T^*, T])$.

For operators of the form $[\![T^*,T]\!]$, Helton and Howe define the generalized commutator of $\ A=(A_1,A_2,\ldots,A_{2n})$:

$$\mathrm{GC}(\mathrm{A}) := \mathrm{S}_{2\mathrm{n}}(\mathrm{A}_1, \dots, \mathrm{A}_{2\mathrm{n}}).$$

Thanks to Cherian Varughese, we see that Det(T) and GC(T) are equal, which is perhaps implicit in the paper of Helton and Howe.

Recall the example of the pair of multiplication operators on the Hardy space, $H^2(\mathbb{D}^2)$. In this case,

$$\begin{split} \left[\begin{bmatrix} M^*, M \end{bmatrix} \right] &= \begin{pmatrix} [(M_z \otimes I)^*, (M_z \otimes I)] & [(I \otimes M_z)^*, (M_z \otimes I)] \\ [(M_z \otimes I)^*, (I \otimes M_z)] & [(I \otimes M_z)^*, (I \otimes M_z)] \end{pmatrix} \\ &= \begin{pmatrix} P \otimes I & 0 \\ 0 & I \otimes P \end{pmatrix} \geq 0. \end{split}$$

It now follows that $Det([[M^*, M]]) = 2(P \otimes P)$. Thus $Det([[M^*, M]])$ is positive and trace class. indeed, $tr(Det[[M^*, M]]) = 2$. Thanks to Cherian Varughese, we see that Det(T) and GC(T) are equal, which is perhaps implicit in the paper of Helton and Howe.

Recall the example of the pair of multiplication operators on the Hardy space, $H^2(\mathbb{D}^2)$. In this case,

$$\begin{split} \left[\begin{bmatrix} M^*, M \end{bmatrix} \right] &= \begin{pmatrix} [(M_z \otimes I)^*, (M_z \otimes I)] & [(I \otimes M_z)^*, (M_z \otimes I)] \\ [(M_z \otimes I)^*, (I \otimes M_z)] & [(I \otimes M_z)^*, (I \otimes M_z)] \end{pmatrix} \\ &= \begin{pmatrix} P \otimes I & 0 \\ 0 & I \otimes P \end{pmatrix} \geq 0. \end{split}$$

It now follows that $Det([[M^*, M]]) = 2(P \otimes P)$. Thus $Det([[M^*, M]])$ is positive and trace class. indeed, $tr(Det[[M^*, M]]) = 2$.

Thank You!