Flag structure for operators in the Cowen-Douglas class GADADHAR MISRA

(joint work with Kui Ji, C. Jiang and D. Keshari)

The Cowen-Douglas class $B_n(\Omega)$ consists of those bounded linear operators Ton a complex separable Hilbert space \mathcal{H} which possess an open set $\Omega \subset \mathbb{C}$ of eigenvalues of constant multiplicity n and admit a holomorphic choice of eigenvectors: $s_1(w), \ldots, s_n(w), w \in \Omega$, in other words, there exists holomorphic functions $s_1, \ldots, s_n : \Omega \to \mathcal{H}$ which span the eigenspace of T at $w \in \Omega$.

The holomorphic choice of eigenvectors s_1, \ldots, s_n defines a holomorphic Hermitian vector bundle E_T via the map

$$s: \Omega \to \operatorname{Gr}(n, \mathcal{H}), \ s(w) = \ker(T - w) \subseteq \mathcal{H}.$$

In the paper [3], Cowen and Douglas show that there is a one to one correspondence between the unitary equivalence class of the operators T in $B_n(\Omega)$ and the equivelence classes of the holomorphic Hermitian vector bundles E_T determined by them. They also find a set of complete invariants for this equivalence consisting of the curvature \mathcal{K} of E_T and a certain number of its covariant derivatives. Unfortunately, these invariants are not easy to compute unless n is 1.

Finding similarity invariants for operators in the class $B_n(\Omega)$ has been somewhat difficult from the beginning. The conjecture made by Cowen and Douglas in [3] was shown to be false [1, 2]. However, significant progress on the question of similarity has been made recently (cf. [6, 9]).

We isolate a subset of irreducible operators in the Cowen-Douglas class $B_n(\Omega)$ for which a complete set of tractable unitary invariants is relatively easy to identify. We also determine when two operators in this class are similar.

We introduce below this smaller class $\mathcal{F}B_2(\Omega)$ of operators in $B_2(\Omega)$ leaving out the more general definition for now.

DEFINITION 1. We let $\mathcal{F}B_2(\Omega)$ denote the set of bounded linear operators T for which we can find operators T_0, T_1 in $\mathcal{B}_1(\Omega)$ and an intertwiner S between T_0 and T_1 , that is, $T_0S = ST_1$ so that

$$T = \begin{pmatrix} T_0 & S \\ 0 & T_1 \end{pmatrix}.$$

An operator T in $B_2(\Omega)$ admits a decomposition of the form (cf. [9, Theorem 1.49, pp. 48]) $\begin{pmatrix} T_0 & S \\ 0 & T_1 \end{pmatrix}$ for some pair of operators T_0 and T_1 in $B_1(\Omega)$. Conversely, an operator T, which admits a decomposition of this form for some choice of T_0, T_1 in $B_1(\Omega)$ is seen to be in $B_2(\Omega)$. In defining the new class $\mathcal{F}B_2(\Omega)$, we are merely imposing one additional condition, namely that $T_0S = ST_1$.

We show that T is in the class $\mathcal{F}B_2(\Omega)$ if and only if there exist a frame $\{\gamma_0, \gamma_1\}$ of the vector bundle E_T such that $\gamma_0(w)$ and $t_1(w) := \frac{\partial}{\partial w}\gamma_0(w) - \gamma_1(w)$ are orthogonal for all w in Ω . This is also equivalent to the existence of a frame $\{\gamma_0, \gamma_1\}$ of the vector bundle E_T such that $\frac{\partial}{\partial w} \|\gamma_0(w)\|^2 = \langle \gamma_1(w), \gamma_0(w) \rangle, w \in \Omega$. Our first main theorem on unitary classification is given below.

THEOREM 1. Let $T = \begin{pmatrix} T_0 & S \\ 0 & T_1 \end{pmatrix}$ and $\tilde{T} = \begin{pmatrix} \tilde{T}_0 & \tilde{S} \\ 0 & \tilde{T}_1 \end{pmatrix}$ be two operators in $\mathcal{F}B_2(\Omega)$. Also let t_1 and \tilde{t}_1 be non-zero sections of the holomorphic Hermitian vector bundles E_{T_1} and $E_{\tilde{T}_1}$ respectively. The operators T and \tilde{T} are equivalent if and only if $\mathcal{K}_{T_0} = \mathcal{K}_{\tilde{T}_0}$ (or $\mathcal{K}_{T_1} = \mathcal{K}_{\tilde{T}_1}$) and $\frac{||S(t_1)||^2}{||t_1||^2} = \frac{||\tilde{S}(\tilde{t}_1)||^2}{||\tilde{t}_1||^2}$.

Cowen and Douglas point out in [3] that an operator in $B_1(\Omega)$ must be irreducible. However, determining which operators in $B_n(\Omega)$ are irreducible is a formidable task. It turns out that the operators in $\mathcal{F}B_2(\Omega)$ are always irreducible. Indeed, if we assume S is invertible, then T is strongly irreducible.

Recall that an operator T in the Cowen-Douglas class $B_n(\Omega)$, up to unitary equivalence, is the adjoint of the multiplication operator M on a Hilbert space \mathcal{H} consisting of holomorphic functions on $\Omega^* := \{\bar{w} : w \in \Omega\}$ possessing a reproducing kernel K. What about operators in $\mathcal{F}B_n(\Omega)$? For n = 2, a model for these operators is described below.

Let $\gamma = (\gamma_0, \gamma_1)$ be a holomorphic frame for the vector bundle $E_T, T \in \mathcal{F}B_2(\Omega)$. Then the operator T is unitarily equivalent to the adjoint of the multiplication operator M on a reproducing kernel Hilbert space $\mathcal{H}_{\Gamma} \subseteq \operatorname{Hol}(\Omega^*, \mathbb{C}^2)$ possessing a reproducing kernel $K_{\Gamma} : \Omega^* \times \Omega^* \to \mathbb{C}^{2 \times 2}$. It is easy to write down the kernel K_{Γ} explicitly: For $z, w \in \Omega^*$, we have

$$\begin{split} K_{\Gamma}(z,w) &= \begin{pmatrix} \langle \gamma_{0}(\bar{w}), \gamma_{0}(\bar{z}) \rangle & \langle \gamma_{1}(\bar{w}), \gamma_{0}(\bar{z}) \rangle \\ \langle \gamma_{0}(\bar{w}), \gamma_{1}(\bar{z}) \rangle & \langle \gamma_{1}(\bar{w}), \gamma_{1}(\bar{z}) \rangle \end{pmatrix} \\ &= \begin{pmatrix} \langle \gamma_{0}(\bar{w}), \gamma_{0}(\bar{z}) \rangle & \frac{\partial}{\partial \bar{w}} \langle \gamma_{0}(\bar{w}), \gamma_{0}(\bar{z}) \rangle \\ \frac{\partial}{\partial z} \langle \gamma_{0}(\bar{w}), \gamma_{0}(\bar{z}) \rangle & \frac{\partial^{2}}{\partial z \partial \bar{w}} \langle \gamma_{0}(\bar{w}), \gamma_{0}(\bar{z}) \rangle + \langle t_{1}(\bar{w}), t_{1}(\bar{z}) \rangle \end{pmatrix}, \end{split}$$

where t_1 and $\gamma_0 := S(t_1)$ are frames of the line bundles E_{T_1} and E_{T_0} respectively. It follows that $\gamma_1(w) := \frac{\partial}{\partial w} \gamma_0(w) - t_1(w)$ and that $t_1(w)$ is orthogonal to $\gamma_0(w)$, $w \in \Omega$.

Setting $K_0(z, w) = \langle \gamma_0(\bar{w}), \gamma_0(\bar{z}) \rangle$ and $K_1(z, w) = \langle t_1(\bar{w}), t_1(\bar{z}) \rangle$, we see that the reproducing kernel K_{Γ} has the form:

(1)
$$K_{\Gamma}(z,w) = \begin{pmatrix} K_0(z,w) & \frac{\partial}{\partial \overline{w}} K_0(z,w) \\ \frac{\partial}{\partial z} K_0(z,w) & \frac{\partial^2}{\partial z \partial \overline{w}} K_0(z,w) + K_1(z,w) \end{pmatrix}.$$

We now give examples of natural classes of operators that belong to $\mathcal{F}B_2(\Omega)$. Indeed, we were led to the definition of this new class $\mathcal{F}B_2(\Omega)$ of operators by trying to understand these examples better.

An operator T is called *homogeneous* if $\phi(T)$ is unitarily equivalent to T for all ϕ in Möb which are analytic on the spectrum of T.

If an operator T is in $\mathcal{B}_1(\mathbb{D})$, then T is homogeneous if and only if $\mathcal{K}_T(w) = -\lambda(1-|w|^2)^{-2}$, for some $\lambda > 0$. The paper [10] provides a model for all homogeneous operators in $B_n(\mathbb{D})$. We describe them for n = 2. For $\lambda > 1$ and $\mu > 0$, set $K_0(z,w) = (1-z\bar{w})^{-\lambda}$ and $K_1(z,w) = \mu(1-z\bar{w})^{-\lambda-2}$. An irreducible operator T in $B_2(\mathbb{D})$ is homogeneous if and only if it is unitarily equivalent to the adjoint of the multiplication operator on the Hilbert space $\mathcal{H} \subseteq \operatorname{Hol}(\mathbb{D}, \mathbb{C}^2)$ determined

by the positive definite kernel given in equation (1). The similarity as well as a unitary classification of homogeneous operators in $B_n(\mathbb{D})$ were obtained in [10] using non-trivial results from representation theory of semi-simple Lie group. For n=2, this classification is a consequence of Theorem 1.

An operator T in $B_1(\Omega)$ acting on a Hilbert space \mathcal{H} makes it a module over the polynomial ring via the usual point-wise multiplication. An important tool in the study of these modules is the localization. This is the Hilbert module $J\mathcal{H}_{loc}^{(k)}$ corresponding to the spectral sheaf $J\mathcal{H}\otimes_{\mathcal{P}} \mathbb{C}^k_w$, where

- (1) \mathcal{P} is the polynomial ring,
- (2) \mathbb{C}_w^k is a k dimensional module over the polynomial ring,
- (2) \mathcal{O}_w is a *k* dimension on \mathbb{C}_w^k is via the map $\mathcal{J}(w)$, see [7, (2.8) pp. 376]; (4) $J : \mathcal{H} \to \operatorname{Hol}(\Omega, \mathbb{C}^k)$ is the jet map, namely, $Jf = \sum_{\ell=0}^{k-1} \partial^\ell f \otimes \varepsilon_{\ell+1}$, $\varepsilon_1, \ldots, \varepsilon_k$ are the standard unit vectors in \mathbb{C}^k .

We now consider the localization with k = 2. If we assume that the operator T has been realized as the adjoint of the multiplication operator on a Hilbert space of holomorphi function possessing a kernel function, say K, then the kernel $JK_{loc}^{(2)}$ for the localization (of rank 2) given in [7, (4.2) pp. 393] coincides with K_{Γ} of equation (1). In this case, we have $K_1 = K = K_0$.

As is to be expected, using the complete set of unitary invariants given in Theorem 1, we see that the unitary equivalence class of the Hilbert module \mathcal{H} is in one to one correspondence with that of $J\mathcal{H}_{loc}^{(2)}$.

Thus the class $\mathcal{F}B_2(\Omega)$ contains two very interesting classes of operators. For n > 2, we find that there are competing definitions. One of these contains the homogeneous operators and the other contains the Hilbert modules obtained from the localization.

References

- [1] D. N. Clark and G. Misra, Curvature and similarity, Mich. Math. J., 30(1983), 361 367.
- , On weighted shifts, curvature and similarity, J. London Math. Soc.,(2) 31(1985), [2]357 - 368.
- [3] M. J. Cowen and R. G. Douglas, Complex geometry and Operator theory, Acta Math. 141 (1978), 187 - 261.
- ____, On operators possessing an open set of eigenvalues, Memorial Conf. for Féjer-Riesz, [4]Colloq. Math. Soc. J. Bolyai, 1980, pp. 323 – 341.
- [5] R. E. Curto and N. Salinas, Generalized Bergman kernels and the Cowen-Douglas theory, Amer. J. Math. 106 (1984), 447 - 488.
- [6] R. G. Douglas, H.-K. Kwon and S. Treil, Similarity of n-hypercontractions and backward Bergman shifts, J. London Math. Soc., 88 (2013) 637-648
- R. G. Douglas, G. Misra and C. Varughese, On quotient modules the case of arbitrary mul-[7]tiplicity, J. Func. Anal., 174 (2000), 364398.
- [8] R. G. Douglas and V. I. Paulsen, Hilbert modules over function algebra, Longman Research Notes, 217, 1989.
- C. Jiang and Z. Wang, Strongly irreducible operators on Hilbert space. Pitman Research [9] Notes in Mathematics Series, 389. Longman, Harlow, 1998. x+243 pp.
- [10] A. Koranyi and G. Misra, A classification of homogeneous operators in the Cowen-Douglas class, Adv. Math., 226 (2011) 5338 - 5360.