Quantitative geomorphology in earth surface processes and tectonic analyses

S. Sinha-Roy

Birla Institute of Scientific Research Jaipur

Talk layout

- 1. Basic concepts of geomorphology
- 2. Critical Zone
- 3. Earth Surface System Science
- 4. Tectonic Geomorphology (Examples)

Earth Surface Architecture : Geomorphology

Changing Paradigms

1. Evolutionary Geomorphology

- Davisian Erosion Cycles / peneplain (Davis, 1840) (Footprints of Darwinian Evolution)
- Time is a process
- Questioned by Penk (1845) (Slope retreat / pediplain)

2. Process Geomorphology

- Landforms achieve equilibrium between resisting forces and driving forces (Gilbert, 1918)
- Triad : Process Form Time

3. Quantitative Dynamic Geomorphology

- Drainage basin morphology (stream order, density etc.) (Horton, 1945, Strahler, 1952)
- Newtonian mechanistic approach (stream power, fluvial erosion, diffusion/transport laws (Schumm, 1956, Melton, 1958)
- Dynamic equilibrium approach (Tectonic geomorphology : Landform/Tectonics/Climate coupling)

4. Thermodynamic Geomorphology

- Entropy concept (Leopold & Longbein, 1962, Scheidegger, 1970, Hugget, 2007)

5. Predictive Geomorphology

- Earthcast (extreme events flood, landslide)
- Mathematical morphology (Fractal, Spatio-temporal Geoscience Information System analysis)
- Deterministic & Numerical models
- Artificial Neuron Network (ANN)

Landscape evolution model of Davis (1840)

Landscape evolution : Davis vs Penk

Geomorphic Diversity

Geomorphic diversity comprises dynamic systems :

- **1.** Morphologic System (Form) (e,g.Landform, hill-slope geometry, drainage system, soil system etc.)
- 2. Cascading System (Flow) (e,g. erosion, mass-flow, chemical flux etc.)
- **3. Process-Response System** (e.g. process-product dynamics produce process-form domains)
- These domains constitute the Earth Surface
- **3D** aspect of Earth Surface : **CRITICAL ZONE**

Factors driving critical zone development

 $\Phi_{\rm CZ}=f\left({\sf P}_{\rm X},\,{\sf L}_{\rm O},\,{\sf t}\right)$

- Φ_{cz} = Specific property of critical zone (e.g. soil type and structure)
- P_x = External energy (solar radiation) + mass flux
 (precipitation) + primary production (carbon cycle)
- L_o = System state (e.g. relief, parent rock)
- t = Age of system

(Jenny, 1961)

Critical zone energy balance

Energy flux balance equation :

 $\mathbf{E}_{CZ} = \mathbf{E}_{ET} + \mathbf{E}_{PPT} + \mathbf{E}_{BIO} + \mathbf{E}_{ELV} + \mathbf{E}_{GEO} (\mathbf{W} \mathbf{m}^{-2}) \quad \text{(Rasmussen et al, (2011))}$

- E_{cz} = Energy flux balance in critical zone
- E_{ET} = Latent heat of evapotranspiration
- E_{PPT} = Precipitation X specific heat of water X temperature
- E_{BIO} = Net biomass production X biomass enthalpy
- E_{ELV} = Potential energy of regolith X mass of regolith
- E_{GEO} = Gibbs energy of mineral transformation reaction in regolith

Energy flux balance (E_{CZ}) controls the composition and structure of the critical zone

Critical Zone Interfaces

- 1. Landscape atmosphere
- 2. Landscape surface water
- 3. Soil vegetation
- 4. Soil bedrock
- 5. Vadose zone groundwater
- 6. Microbe soil/bedrock
- The interface dynamics controls Critical Zone geometry and composition
- Critical Zone is a timed memory of the past and present biospheregeosphere dynamics.
- Interface dynamics and fluxes of critical zone control earth-surface architecture and produce Earth-Surface System

Earth Surface System

Hill-slope as a geomorphic system

Hill-slope dynamic system

Earth Surface : System Approach

System characters

1. Nonlinearity

- System output (or response) is not proportional to input (or forcing)
- Possess self-organised criticality (SOC) producing geopatterns caused by system's internal dynamics without external forcing
- Attain dynamic equilibrium until SOC is reached
- SOC defines system disturbance that separates two sub-systems

2. Fractal geometry

- Many landscapes show fractal pattern, power-law scaling and evolve self-similarly (Evolutionary Geomorphology (cf. Phillips, 2006)
- If landscape morphology follows Chaos theory simple perturbation (Butterfly effect) can cause complex geopatterns and drastic response (catastrophe) in non-linear manner
- This makes prediction/forecasting (Earthcast) of extreme events (e.g. flood, landslide etc) difficult. Mathematical morphologic analysis may help earthcasting.

Thermodynamics of Earth-Surface System

1. Mass Balance

dM / dt = M_{in}- M_{out} = 0 (Steady-state) = Positive (Aggradation) = Negative (Degradation) where M = Mass of system M_{in} = Mass input M_{out} = Mass output

Law of mass conservation controls basin storage & mass flux which controls threshold parameters of the system

2. Entropy Balance

dG = dH - TdS

where dG = Free energy change
dH = Enthalpy change
dS - Entrony change

- as = Entropy change
 - T = Temperature

Entropy balance in Earth-surface System (ESS)

• In geomorphology Scheidegger (1970) suggested :

T (temp.) = h (height) H (enthalpy) = M (mass),

Entropy balance equation becomes dS = dM/h

 Kleidon et al (2013) modified the entropy balance equation : G (free energy) = A (potential + kinetic energy of water and sediment)

Entropy balance equation becomes dS = - dA/T(h)

Inferences :

All natural processes are Max. Entropy Production (MEP) process

- So : 1. Free energy of Earth-Surface System (ESS) decreases with time
 - 2. MEP happens if mass of ESS increases and/or height is reduced
 - **3. MEP happens if free energy of ESS decreases**
 - 4. MEP causes chaos/disorder of ESS to increase, ESS becomes increasingly nonlinear and unpredictable

Earth-Surface System (ESS)

Two important system state conditions

1. Threshold

- Intrinsic (variability absorbed by the system (e.g. stream gullying)
- Extrinsic (external forcing creating permanent change in the system) (e.g. climate change, tectonics)

2. Equilibrium

Types of equilibrium in Earth Surface System

(Chorley & Kennedy, 2002)

Evolutionary Earth Surface System under forcing

Tectonic forcing

- Tectonic forcing makes geomorphic systems to cross thresholds and change equilibrium dynamics
- Therefore, geomorphic systems record and preserve signatures of tectonic features, their degree and scale of activity
- Response of drainage systems and landforms to tectonic forcing is relatively quick and definitive
- Quantitative geomorphology for neotectonic and active deformation studies deals mainly with fluvial systems and their products in terms of Tectonic Geomorphic Indices.
- I discuss 10 geomorphic attributes linked with tectonic forcing in landform system

76*

78*

80"

74

GBF and BDZ Traces

1. Longitudinal River Profiles

Longitudinal profile of streams (SECTOR - 1)

Sinha Roy, 2006

Er = Profile integral Hmax = Maximum profile curve concavity

Normalised longitudinal river profile and its relation with river gradient

JOUR.GEOL.SOC.INDIA, VOL.58, AUGUST 2001

Hypothetical longitudinal river profile showing methodology of recognising neotectonic fault – block movement

FAULT GEOMETRY AND BLOCK MOVEMENT PATTERN DEDUCED FROM LONGITUDINAL RIVER PROFILE Figure 16

Jarawata 1 MASHI TRIBUTARY 380 360 Elevation (m) **Confluence With Mashi** Mangalwara 340 **River Main** V T **Uplifted Block** Uplifted Block -320 0 10 20 30 40 50 Distance (km) Kalwar Keran Ki Dhani **BANDI RIVER** 400 T Kotjewar Khijuriya Nohara Elevation (m) 095 J 320 Uplifted Block Uplifted Block -280 *. 0 25 50 75 100 125 Distance (km) 521 MEJ RIVER 421 Khatawada Lohli Elevation (m) V 321 - Downfaulted **Uplifted** Block 221 . 50 0 100 Distance (km)

Sinha-Roy, 2006

Longitudinal river profiles showing position of knckpoints and stages of incision

Sinha-Roy, 2013

76.00

2. Hypsometry

- Ea = Hypsometric integral
- Eh = Maximum concavity of the curve
- I = Curve slope inflection point

Examples of normalised hypsometric curves

Hypsometry and relative terrain uplift

Hypsometry of relative terrane uplift

Low relative uplift, high

_ denudation

Steady state landform

 High relative uplift, low denudation

0.97 - 1.02

Sinha-Roy, 2013

3. Topogarphic Profiles and Planation Surfaces

Topographic Profiles and Planation Surfaces (SECTOR - 1)

4. Stream Sinuosity Index

Where

S = Stream Sinuosity Index L = Straight line distance of stream SL = Actual distance along the stream

S > 1.0 High tectonic activity (Slope-steepening due to fault)

Sinha-Roy, 2013

5. Drainage Basin Asymmetry

Channel migration and abandoned channels of Mangli river on GBF Footwall

AF = 100(Ar/At)

where AF = Drainage basin asymmetry At = Total basin area Ar = Basin area on right bank

Lower the value of AF higher is the tectonic tilting

Fault – bound tilted tectonic blocks

6. Drainage Basin Relief Ratio

RR = (Ed - Ev) / L

Where

RR = Relief ratio Ed = Elevation of the highest point Ev = Elevation of the lowest point L = River length

Higher the RR value higher is the incision at river mouth due to tectonically controlled basin uplift

8. Stream Length Gradient Ratio

Basin boundary

$SL = (\Delta H / \Delta L)L$

where

- SL = Stream length gradient ratio
- ΔH = Change of elevation of reach (A-B)
- ΔL= Length of reach
- L = Total length of the channel from ΔL mid-point of the reach where the index is calculated to the highest point of the channel

SL = < 50 : very low tectonic activity

= > 200 : very high tectonic activity

9. Valley Floor Width to Height Ratio

Vf = 2Vfw / [(Eld – Esc) + (Erd – Esc)]

Where

Vf = Valley floor width to height ratio

Vfw = Width of the valley floor

- Eld = Elevation of left-hand valley divide looking downstream
- Erd = Elevation of right-hand valley divide looking downstream

Esc = elevation of stream channel (valley floor)

Vf = < 1.0 : Very high tectonic activity (V-shaped valley) = 1.0 - 1.5 : Moderate tectonic activity = > 1.5 : Low tectonic activity (U-shaped valley)

Deciphering reactivation of old faults using Smf, SL and Vf indices

Tectonic Activity Rank (TAR) of indices

Relative Tectonic Activity (RTA)

(RTA = Sum of TAR / Total no. of geomorphic indices used)
5 RTA classes : very low (<1.5), low (1.5-2.0), moderate (2.0 2.5), high
(2.5-3.0), very high (>3.0)

Sinha-Roy, 2013

Variation of Relative Tectonic Activity along Banas Dislocation Zone

Variation of Relative Tectonic Activity along Great Boundary Fault

Comparison between Relative Tectonic Activity along Great Boundary Fault and

Banas Dislocation Zone based on Smf, SL and Vf data

Sinha-Roy, 2013

Neotectonic segmentation of older faults

10. Fault Scarp

Distance

Extensional component of fault

e = d/tanθ (Wikins & Schultz, 2001)

Where

- e = Extension (m)
- d = Fault scarp surface offset
- θ = Scarp mid-slope angle

Morphogenic dating of fault scarp tan $\theta = a/\sqrt{(\pi \tau)} + b$ (Avouac, 1993)

Where

- θ = Midslope angle
- a = Half scarp surface offset
- **b** = tan of upslope angle
- τ = kt (where k = coefficient of mass diffusion, t = oldest age of

scarp formation (faulting)

(k in tropical climate = 5 sq. m per yr)

Segmented nature of fault reactivation deduced from morphogenic age of fault-scarps **Banas Dislocation Zone** Young reactivation **Great Boundary Fault** Old reactivation Young reactivation reactivation Young • Hindoli old reactivation Very Young reactivation • Bundi Morphogenic age (ka) of fault scarp (fault reactivation oldest age) Ν < 2 2 - 30 30-100 10 km 100-300 300-600 > 600 Sinha-Roy, 2013

Sinha-Roy, 2013

Geotectonic conclusion from quantitative geomorphology

Thank you