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• In geophysics context, surfaces can be broadly 

categorized as time-dependent, or time-independent 

• Examples of time-dependent surfaces: cloud fields, 

bathymetric fields, topographic surfaces of tidal regions 

• Examples of time-independent surfaces: topographic 

surfaces of fluvial regions 

• The retrieval of parameters from the changes in the forms 

of natural features is the study area in this work 

• Mathematical morphology is appropriately applied as it is a 

mathematical tool which is of geometric relevance 

 

1. Introduction 
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1.1 Objectives 

• To characterize geophysically relevant surfaces 

via: 

 - Segmenting the surfaces into different regions, 

 - Deriving a new metric from propagation of flow  

      fields in the basins. 
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Data Used [9/19] 

B. Water Surfaces – Synthetic Basin and Realistic Basin 
• Three synthetic cases (Figs 1.5a-1.5c) with different internal 

topographic regions that replicate the (i) flat, (ii) undulated without 
channels, and (iii) undulated with channels conspicuous in 
topography are considered. 

• In reality, these three cases mimic topography of shallow water 
regimes (eg., shallow lakes with flat bottom topography), bays 
and estuaries, and basins of floodplains and tidal environments. 

• Fig 1.5a (Case 1) shows a simple basin with single inlet from 
which the water propagates uniformly within the mask set. With 
this assumption, oscillations in tidal levels and forcing will 
influence the whole tidal basin that is assumed to be flat. 

• Fig 1.5b (Case 2) also assumes a single inlet but the water would 
first flow into channelized regions of uniform elevation followed by 
inland region. Hence, channelized sets and inlet are of different 
elevations. 

 

5 



www.company.com 

Data Used [10/19] 

• Nevertheless, in contrast to Fig 1.5a, flow fields in channelized 
sets in Fig 1.5b maintain orthogonality with the flow fields in 
nonchannelized sets. This is justifiable as flow propagation in 
channelized zones precedes flow propagation in nonchannelized 
regions. 

• In Fig 1.5c (Case 3), the basin also shows a single inlet and 
water flow alternatively into channel region and into inland until 
the propagating waterfronts reach the basin boundary. 
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Fig 1.5 Tidal basins with different assumptions: (a) flat tidal basin, (b) tidal basin 
with a channelized and nonchannelized zones (multiple sets of topological 

significance), and (c) tidal basin with multiple sets, sets indexed with even and odd 
indexes, respectively, refer to channelized and nonchannelized zones. (d)–(f) 3D 

mesh representation of three synthetic tidal basin shown in (a)-(c). 
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Data Used [12/19] 

• The Digital Bathymetric Map (DBM) of part of Central San 
Francisco Bay, acquired with multibeam system, has been 
utilized with permission from the United States Geological Survey 
(USGS). 

• The coastal SFB’s bathymetry which is of 4 m resolution and tide-
corrected to mean low water level has been acquired through 
multibeam sonar system that provides echo sounders with 60 
beams, collected in 1997 using a Simrad EM 1000 multibeam 
swath mapping system. 

• The region of interest in SFB area, of size 512 x 480 pixels, 
covers approximately from 374841″N to 375134″N, and from 
122262″W to 1222928″W. 

• As shown in Fig 1.6c, this region corresponds to a part at the 
mouth of the bay from which the tidal flow fields from the Golden 
Gate, located at the bottom left corner of Fig 1.6c, enter into the 
bay. 

• It covers bathymetric depressions from the depth of -115 m to -14 
m.  
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(a) 

(b) (c) 

Fig 1.6 (a) 3D view of remote sensing data of Central San Francisco Bay, (b) 
bathymetry of Central San Francisco Bay, (c) bathymetry of inset of (b). 
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Data Used [16/19] 

• USGS DEM data is a geospatial file format developed by USGS 
for storing raster-based DEM. 

• In this work, the 10 m grid spacing DEM of coastal Santa Cruz 
region, downloaded from San Francisco Bay Area Regional 
Database (BARD) is used. 

• Santa Cruz (California, US) is located on the northern edge of 
Monterey Bay, about 115 km south of San Francisco. 

• At 10 m grid spacing, the Santa Cruz DEM is available as 7.5 
minutes standard DEM format on Universal Transverse Mercator 
(UTM) projection on Zone 10 in North America. 

• The case study region of interest in Santa Cruz, of size 346 x 654 
pixels, covers approximately from 365635″N to 370000″N, and 
from 1220356″W to 1220538″W. 

• Fig 1.9a depicts the 3D view of Santa Cruz while Fig 1.9b shows 
the DEM of a minor basin in Santa Cruz in grayscale. This basin 
has discharges flowing into the sea and covers elevation ranges 
between 1 m and 263 m.  
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(a) 

(b) 

Fig 1.9 (a) 3D view of Santa Cruz, and (b) Digital elevation map of Santa Cruz. 
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Data Used [18/19] 

• Topographic Synthetic Aperture Radar (TOPSAR) DEMs of 
Cameron Highlands and Petaling regions of Malaysia from Tay et 
al.(2007) are used. 

• The Cameron Highlands study region encompasses 10115-
10120E longitudes and 431- 436N latitudes, while the 
Petaling region is located between 10137-10140E and 259- 
302N. 

• Cameron Highlands has rough physical relief and covers hilly 
terrain at altitudes between 400 m and 1800 m, while the Petaling 
region is a district located in Selangor which is comparatively flat 
with highest altitude of 215 m. 

• Cameron Highlands DEM covers an area of 900 x 900 pixels with 
10 m resolution, while Petaling DEM covers a region of 750 x 800 
pixels with 5 m resolution.  
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• Based on the extracted channel network, these two DEMs are 

demarcated into 14 sub-basins: 7 from Cameron Highlands DEM 

(Fig 1.10a) and 7 from Petaling DEM (Fig 1.10b). 

 

(a) (b) 

Fig 1.10 (a) 7 delineated sub-basins of Cameron Highlands DEM, and (b) 7 
delineated sub-basins of Petaling DEM. 
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Segmentation of Sets and Functions through Multiscale 

Convexity Analysis [20/32] 

• The convex hull of MODIS cloud image (Fig 1.4a) is constructed 
(Fig 2.12i).  

• Fig 1.4a is the input grayscale image, while Fig 2.12a-2.12h 
depict the closings computed using eight directional half planes. 
These eight directional half-plane closings include closings from 
the pair of left-right, upper-lower, 3π/4, and π/4 directions.  

• Finally, the point-wise minima of Fig 2.12a-2.12h result in the 
grayscale convex hull in Fig 2.12i. 

• In Fig 2.13a-2.13d and Fig 2.13e-2.13h, the grayscale convex 
hulls obtained for the 25th, 50th, 75th, and 100th opened MODIS 
images (cloud-1 and cloud-2) are shown. 

• It is observed that the convex hull decreases in size and 
encompasses smaller cloud area as the size of structuring 
element B increases. 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Fig 2.12 Convex hull generation of cloud function (Fig 1.4a) by half planes, based on the 
work of Soille (1998): (a) left-vertical half plane, (b) right-vertical half plane, (c) upper 

horizontal half plane, (d) lower horizontal half plane, (e) left half plane of orientation 3π/4, 
(f) right half plane of orientation 3π/4, (g) right half plane of orientation π/4, (h) left half 
plane of orientation π/4, and (i) intersection of all half-plane closings from Figs 2.12(a)-

2.12(h), resulting in grayscale convex hull of cloud function shown in Fig 1.4a. 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

Fig 2.13 (a-d) Convex hulls of 25th, 50th, 75th, and 100th opened versions of cloud-1, and  

(e-h) convex hulls of 25th, 50th, 75th, and 100th opened versions of cloud-2. 
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Segmentation of Sets and Functions through Multiscale 

Convexity Analysis [23/32] 

• A cloud field possesses a convex hull that acts as a super set to 

cloud field, and hence the area of the convex hull is greater than 

or equal to its corresponding cloud field. 

• The area of cloud field (and also convex hull function) is the area 

computed as the sum of the gray values corresponding to the 

pixels of all spatial positions within a function 

                                    and 

• It is obvious that the areas of multiscale cloud fields at 

decreasing resolution, together with areas of their corresponding 

convex hulls at decreasing resolutions, are in a decreasing trend, 

as shown in Fig 2.14a and 2.14b. 
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Fig 2.14 (a) Log-log graph between cloud area and convex hull versus corresponding radius 
of structuring element for cloud-1, (b) log-log graph between cloud area and convex hull 

versus corresponding radius of structuring element for cloud-2. 
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Segmentation of Sets and Functions through Multiscale 

Convexity Analysis [25/32] 

• The relationships between area of function and area of 
convex hulls are mathematically expressed as: 

 (1)  

 (2) 

                      , and 

 (3)                                      

 for  

• From Figs 2.14a and 2.14b, it is observed that: 
– Areas of multiscale clouds and their corresponding convex 

hulls are merging at a point, 

– The multiscale clouds are the subfunctions of corresponding 
convex hulls, 

• The relationship between the areas of convex hull and its 
cloud is shown on a log-log scale in Figs 2.15a and 2.15b. 
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Fig 2.15 Log-log graph of convex hull versus cloud area for cloud-1, and (b) log-log graph of 
convex hull versus cloud area for cloud-2. 
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Segmentation of Sets and Functions through Multiscale 

Convexity Analysis [27/32] 

• To characterize clouds of varied spatial heterogeneities, the ratio 

between cloud area and its convex hull area is considered, and it 

could range between (0,1) as the area of a convex hull of a cloud 

is always greater than or equal to the area of its cloud. 

• Hence, eq 2.14 can never exceed the unity value.  

• Multiscale convexity measure                   is defined as the ratio of 

areas under the function              and its corresponding convex 

hull                     :  

}{ rBfCM 
}{ rBfA 

}]{[ rBfCHA 

}]{[
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rBfCHA

rBfA
rBfCM




  (2.14) 
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Segmentation of Sets and Functions through Multiscale 

Convexity Analysis [28/32] 

• To achieve appropriate segmentation process, changes that 

occur across multiscale cloud fields and their corresponding 

convex hulls are recorded in terms of areas. 

• By using eq 2.14, the convexity measures at corresponding 

resolutions are estimated by taking the ratio of areas of cloud 

fields and areas of corresponding convex hulls. 

• These convexity measures computed for cloud-1 and cloud-2 are 

plotted as a function of the resolution imposed due to multiscale 

opening, as shown in Figs 2.16a and 2.16b. 
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Segmentation of Sets and Functions through Multiscale 

Convexity Analysis [30/32] 

• From Figs 1.6a-1.6b, it is observed that there exist three different 
morphological regions. 

• These crossover scales/radii are observed, for cloud-1, at scales 
or radii of structuring element of 1, 12, 32, and 100. 

• In the middle region of cloud-1 (i.e., 12th cycle of opening to 32nd 
cycle of opening), the rate of change in convexity measure 
across resolutions is observed more than that of inner and 
external portions of cloud field. 

• As a basis to categorize the cloud field, the convexity measure 
pattern across scales is thus divided into three groups. Group 1 – 
c.m. corresponding to s.e. from n =1 to 11, Group 2 – from n = 12 
to 31, and Group 3 – from n = 32 to 100. 

• Hence, Group 2 exhibits a higher rate of change, followed by 
Group 3 showing a moderate of change, and lastly Group 1 gives 
the slowest rate of increment, across multiple resolutions. 
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Segmentation of Sets and Functions through Multiscale 

Convexity Analysis [31/32] 

• Based on the segregated phases shown in Figs 2.16a and 2.16b, 
Figs 2.17a and 2.17c are generated.  

• It is observed that regions embedded within the segmented 
zones have different degrees of spatial homogeneities (Fig 
2.17b). 

• These classes for cloud-1 and cloud-2 are separated by choosing 
an “opening level” of image that changes abruptly, which can be 
observed from the graphs in Figs 2.16a and 2.16b. 

• Shape-based segmentation of clouds has hitherto received little 
attention. Thus, the proposed method of segmenting cloud into 
regions of morphologic significance would provide a new insight. 
Regions within a cloud can be classified/categorized based on 
their general morphological constitutions and furthermore could 
be linked according to their potential to yield precipitation. 
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Fig 2.17 (a) Colour-coded binarized (by choosing threshold gray level value 128) cloud-
images at three threshold-opening cycles superimposed on binarized original cloud-1 

colour-coded with green, (b) boundaries of 12th, 32nd, and 100th opened cloud-1 images and 
thresholded original cloud-1 superimposed on the original cloud image, (c) colour-coded 

binarized (by choosing a threshold gray level value 110) cloud-2 images at threshold-
opening cycles superimposed on binarized cloud-2 colour-coded with green, and (d) 

boundaries of 12th, 49th, and 100th opened cloud-2 images and thresholded original cloud-2 
superimposed on the original cloud image. 

(a) (b) 

(c) (d) 
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6. Morphological Complexity Measures [1/11] 

• For surfaces of geophysical nature, complexity measures explain 

the possible links with the processes involved in the formation of 

the surface. Such complexity measures include fractal dimension, 

granulometric indices, fourier descriptors etc.  

• Within a surface, there may exist several different regions with 

different spatial complexities.  

• Following the segmented fractal and cloud function, the 

morphological complexity (also known as roughness indices, or 

spatial complexity) for each segmented zone is investigated.  

• This study offers new insights to quantitative characterization of 

spatial objects such as trees, and also geophysical fields 

including clouds, rainfall, temperature, vegetation, elevations, and 

landscapes. 
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(a) (b) (c) (d) 

(e) (f) 

Fig 3.1 (a-d) Six zones segmented from deterministic and random Koch Quadric and Koch 
Triadic fractals, and (e, f) Four zones segmented from realistic MODIS clouds. 

• Each of the segmented six zones from fractals, and each of the four 

zones partitioned from cloud fields evidently possess different degrees of 

spatial complexity measures. A simple framework is provided here to 

compute the complexity measure of each segmented zone. 
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8. Geodesic Flow Fields and Spectrum of Discrete 

Functions [1/21] 

• A framework to derive flow fields and spectrum in discrete 
functions particularly in digital topographic basins and cloud field 
is presented.  

• Hereafter, “basin” refers to inland, tidal, floodplain, coastal, 
estuary regions, and digital topographies which include DEMs 
and DBMs, and “topography” refers to both surficial and bottom 
topographies.  

• Through analysis of flow fields that are simulated via geodesic 
morphology, a new descriptor is generated that characterizes 
such discrete functions.  

• This framework is demonstrated on (i) three synthetic basins, (ii) 
one realistic DEM, (iii) one realistic DBM, and (iv) two MODIS 
cloud fields.  

• This study provides potentially invaluable insights to further 
investigate the travel-time flood propagation within basins of both 
fluvial and tidal systems, as well as the travel-time field and flow 
perturbations in cloud.  

29 



www.company.com 

Geodesic Flow Fields and Spectrum of Discrete 

Functions [2/21] 

• Computation of this new descriptor involves the following five 

steps: 

(i) basin or cloud field in digital form 
representing topographic 
fluctuations or height variations, 
respectively, as an input 

(ii) hierarchical threshold decomposition                     
of basin or cloud into sets 

(iii) proper indexing of these sets to     
determine the marker set(s) and its 
(their) corresponding mask set(s) 

(iv) perform geodesic propagation that 
provides basic flow field structures 

(v) finally to generate a new  
descriptorgeodesic spectrum to 
characterize basin or cloud 
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Geodesic Flow Fields and Spectrum of Discrete 

Functions [3/21] 

• The methodology involves two major steps: (i) decomposition of a 

function into threshold regions via threshold decomposition 

technique, and (ii) computation of geodesic dilations between 

marker (inlet) and mask (basin or threshold region). 

• Consider a grayscale image represented by a nonnegative 2D 

sequence  which assumes J + 1 possible intensity values:                                       

             . For instance, if the image is encoded as 8 bit/pixel, 

then J = 255. Threshold decomposed binary images or sets are 

obtained by thresholding  at all possible intensity levels, 

Jj ,,2,1,0 
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Geodesic Flow Fields and Spectrum of Discrete 

Functions [4/21] 

• The sets (     ) form a sequence of sets that characterize    

entirely, and are such that for any threshold elevations    and  

with                                        ,  for     ranging between 1 and J.  

• By employing simple logical difference between the successive 

threshold-decomposed sets, marker set(s) and its (their) mask 

set(s) are further obtained according to                         . Each 

thresholded set denoted by      is obtained by              , where  

                          .  

• Fig 5.1 depicts threshold decomposition of an image     (e.g., 

digital topography) and isolation of threshold sets. In this figure, 

original image  has maximum intensity level of J = 4. Threshold 

decomposed sets       with 1, 2, 3, 4, and 5 (J + 1) are, 

respectively, shown along with the isolated sets with index  

ranging from 1, 2, , J. The sets are isolated by              . 

jf f

j 1j
)()()()1( 1 jj ffjj   j

][ 1 ijj Sff  

iS 1 jj ff
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f

jf

1 jj ff
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Geodesic Flow Fields and Spectrum of Discrete 

Functions [5/21] 

• Two sets, which are mask and marker sets, are considered.  

• Let the mask set be denoted as Si+1and marker set as Si. To 
implement geodesic propagation with uniform velocity within a 
mask with certain boundary conditions from the marker set, (i) 
morphological dilation iteratively on with a structuring element B 
which is symmetric about the origin, and of primitive size 5 × 5 
(e.g., Fig 5.2), (ii) logical intersection between the dilated marker 
and mask sets, and (iii) logical union of flow fields at respective 
discrete times, are employed.  

• Fig 5.3 illustrates the result of intersecting the dilated marker set 
and mask set after four iterations.  
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Fig 5.2 Octagonal symmetric structuring elements of various primitive sizes ranging from 
5 × 5 to 11 × 11. These primitive sizes can be considered as B in the employed equations 

to simulate flow fields with various velocities.  

Fig 5.3 (a) Marker set Si (in red) and mask set Si+1 (in white), (b) after iterative dilations 
up to fourth level superposed on the mask set Si+1, and (c) the dilated marker set of four 

iterations intersected with mask set Si+1. 
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Geodesic Flow Fields and Spectrum of Discrete 

Functions [7/21] 

• By taking synthetic basin Case 3 (Fig 1.5c) as example, the basin 
that consists of nine zones is decomposed into nine sets by 
specifying threshold elevations (values).  

• These nine decomposed sets are designated with set-orders 
ranging from 1 to 9 (Fig 5.4). The union of these sets (   ) and (   ) 
satisfies the inclusion relationship (Maragos and Ziff, 1990) as 
shown in  

 

        

• For simplified representation, the decomposed sets thus obtained 
are denoted respectively as                             , with i ranging from 
1 to J (Fig 5.4).  

• Set S1 denotes the inlet point. The set with immediate higher index 
acts as mask set to the marker set with preceding index.  
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Fig 5.4 Decomposition of synthetic tidal basin shown in Fig 1.5c 
into sets, that consists of channelized and nonchannelized 

regions. (a)-(i) sets representing channelized and 
nonchannelized regions of which the mean elevations increase 

from S1 to S9. The sets designated with even- and odd-
numbered indexes, represent the zones occupied by 

channelized and nonchannelized regions respectively. 
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Geodesic Flow Fields and Spectrum of Discrete 

Functions [9/21] 

• Geodesic morphological transformations (Lantuejoul and 

Maisonneuve, 1984) are adopted to simulate flow field 

propagation in discrete functions like basin and cloud field. 

• James Sethian’s (1999) level set theory and Jean Serra’s (1982) 

random sets and mathematical morphologic concepts offer 

various transformations to simulate flow fields within basin with 

physical viability.   

• To implement geodesic transformations, the basin is considered 

as a mask, and the inlet point (through which water flows into the 

basin during the high flood) is taken as a marker from which the 

flow propagates into the basin as the flood level increases.  
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Geodesic Flow Fields and Spectrum of Discrete 

Functions [10/21] 

• The marker set is represented as     and mask set is denoted  as    

            , followed by iterative morphological dilation on     with a 

structuring element  which is of primitive size 5 × 5 and 

symmetric about the origin. Finally, to retrieve the flow fields at 

respective discrete time, logical intersection between the dilated 

marker set and mask set is performed, as given in eq 5.2: 

 

• In a flat basin where there is no distinction between channelized 

and nonchannelized regions in terms of elevations (e.g. Figs 

1.5a, 1.5d), the total flow field can be defined in morphological 

terms as the intersections of gradients of successively dilated 

marker set with the mask set. nth-time step gradient between the 

successively dilated marker set is defined as 

 

iS
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n  (5.3) 

38 



www.company.com 

Geodesic Flow Fields and Spectrum of Discrete 

Functions [11/21] 

• The total flow field in the simplest Case 1 (Figs 1.5a, 1.5d) can be 

achieved by following eq 5.4. In order to visualize the flow fields 

within the channelized and nonchannelized zones (or sets), a 

logical union operation is considered in the respective governing 

equations:  
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Fig 5.5 (a) Flow fields with isotropic propagation, (b) isotropic flow fields, and 
orthogonality between the flow fields of channelized and nonchannelized zones is 

obvious, and (c) flow fields within the tidal basin.  

(a) (b) (c) 
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Fig 5.5 Result of simulation at different time instances for Case 3. 
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Fig 5.6 (a) Flow field simulated on Santa Cruz DEM by using octagon structuring element, (b) 
flow field simulated on San Francisco Bay bathymetry by using octagon structuring element, 

and (c) flow field simulated on San Francisco Bay without considering bathymetry. 

(a) (b) (c) 
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Figure 5.7 (a) Simulated flow fields of MODIS cloud-1, and (b) simulated flow fields of MODIS 
cloud-2. 

(a) (b) 
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Geodesic Flow Fields and Spectrum of Discrete 

Functions [16/21] 

• A new morphological descriptor based on geodesic flow 

spectrum to explain inter zone morphologic relationship is 

proposed. 

• Area of each set decomposed from discrete functions (or 

threshold elevation regions, TER), denoted as          is estimated 

according to                  , and area of all the TERs                   is 

estimated as                     .  

• Geodesic flow spectrum is the area embedded between the 

successive flow fields. This spectrum of decomposed elevation 

set        with structuring element     of radius n is denoted as             

     , and is defined as follows: .  
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Geodesic Flow Fields and Spectrum of Discrete 

Functions [17/21] 

• The decomposed set-wise entropy based on total area of all the 

sets, as decomposed from the function, is defined as: 

 

 

• This geodesic spectrum forms a one-dimensional path support of 

different TERs and adjacent TERs which could help to better 

understand the morphological structures of the basins. 

• Potentially valuable insights and links with instantaneous unit 

hydrograph can be further explored. These functions provide 

general geodesic distribution pattern, which further implies that 

geodesic function of each TER is in someway similar to 

geomorphic width function.  
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Case Type Dyn  

Rang

e 

No. 

Dec 

Gray 

value 

Range 

Elevation 

Range 

(m) 

Used 

SE 

No. 

Flow 

Field 

Entropy 

Case 1 Synthetic 0-1 1 0-1 0-1 Rhombus 113 2.014109 

Case 2 Synthetic 0-3 3 0-1 0-1 Rhombus 97 0.335195 

1-2 2 39 0.666177 

2-3 3 46 0.987891 

Case 3 Synthetic 0-7 8 0-1 0-1 Rhombus 108 0.174197 

1-2 2 39 0.421361 

2-3  3 67 0.136298 

3-4 4 32 0.272975 

4-5 5 90 0.164091 

5-6 6 29 0.562372 

6-7 7 14 0.122462 

7-8 8 17 0.332124 

Table 5.1 Details of synthetic and realistic digital topographies considered with their gray 
levels’ and corresponding elevation/or depth ranges, and entropy values estimated for each 

threshold elevation/depth decomposed set of each digital topographic basin. 
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SF-Bay Bathymet

ry 

0-255 7 0-33 -115 to -

106 

Octagon 34 0.048562 

34-59 -105 to -91 146 0.593921 

60-100 -90 to -68 57 0.365169 

101-150 -67 to -46 57 0.604285 

151-201 -45  to -27 23 0.304051 

202-233 -26 to -15 56 0.321996 

234-255 -14  to 0 22 0.120496 

SC-Topo Topograp

hy 

0-255 14 0-1 0-1 Octagon 60 0.084891 

2-14 2-14 65 0.150806 

15-34  15-35 36 0.163969 

35-65 36-67 36 0.147204 

66-85 68-88 32 0.131617 

86-102 89-105 31 0.11603 

103-124 106-128 35 0.190187 

125-157 129-162 73 0.239391 

158-182 163-188 27 0.288595 

183-197 189-203 12 0.130263 

198-212 204-218 17 0.129661 

213-239 219-246 18 0.104142 

240-252 247-260 11 0.078623 

253-255 261-263 7 0.024073 
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Case Dyn  

Range 

No. 

Dec 

Segmented 

zone 

SE 

Used 

No. 

Flow 

Field 

Entropy 

MODIS-cloud 1 0-255 3 Inner  Disc 141 2.0782 

Middle  105 1.873986 

Outer 175 1.769853 

MODIS-cloud 2 0-255 3 Inner Disc 73 1.81023 

Middle 338 2.422433 

Outer 100 1.50687 

Table 5.2 Details of MODIS cloud fields considered with their number of 
flow fields and entropy values estimated for each segmented zone. 
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Figure 5.8  Probability of estimated area flooded/propagated at each discrete time step.  
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9. Investigation of Time-varying Phenomena [1/21] 

• Interpolation is a technique used to generate intermediary images 
between the initial and final images (Beucher, 1998).  

• Various tools are available to create interpolation, including 
classical arithmetic interpolation, morphing techniques, and 
weighting functions.  

• However, morphological interpolation is adopted here as it better 
preserves the topological (connectivity) properties of the images 
(Mathematical Morphology and Image Interpolation (No date). 
The Image Interpolation Page [Online]).  

• Iwanowski and Serra (1999) defined morphological interpolation 
between two sets (e.g., set X and set Y) as, 

  M(X,Y) = {(X  B)(Y B )}    (6.1) 
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Probability distribution - M13
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Fig 6.7 Probability of estimated area flooded at each discrete time step, from (a) M1  to (o) 
M15. 

• Besides, the zone-wise entropy for each time-varying fractal, with respect to 

total area of all the zones in the fractal, is defined as:  
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Fractal  Crossover 

scales 

No.  

dec 

No. flow 

field 

Entropy Fractal  Crossover 

scales 

No. 

dec 

No. flow 

field 

Entropy 

M1 5, 12, 16, 20, 31 6 241 

9 

8 

32 

41 

33 

0.711406 

0.259817 

0.108419 

0.221616 

0.636800 

0.303360 

M9 14, 58, 99 4 239 

8 

22 

100 

0.042599 

0.035425 

0.446141 

1.523238 

M2 14, 30, 53, 71 5 239 

22 

24 

31 

72 

0.162451 

0.263529 

0.200571 

0.577769 

0.967334 

M10 15, 58, 100 4 239 

28 

54 

101 

0.035253 

0.039616 

0.494237 

1.527305 

M3 13, 30, 56, 77 5 238 

18 

24 

35 

78 

0.069039 

0.250096 

0.042545 

0.672546 

1.077001 

M11 15, 58, 100 4 239 

28 

55 

101 

0.028256 

0.028346 

0.533474 

1.519841 

M4 14, 28, 59, 82 5 239 

13 

24 

32 

83 

0.067557 

0.176975 

0.054788 

0.622612 

1.173347 

M12 16, 59, 101 4 240 

27 

55 

102 

0.024655 

0.029049 

0.541056 

1.519717 

M5 14, 26, 60, 90 5 238 

15 

23 

41 

91 

0.054754 

0.119036 

0.029971 

0.525751 

1.349119 

M13 16, 60, 101 4 239 

27 

82 

103 

0.020976 

0.014666 

0.568972 

1.530993 

M6 15, 25, 61, 95 5 239 

12 

21 

41 

96 

0.066291 

0.086667 

0.029225 

0.440837 

1.450388 

M14 16, 61, 102 4 240 

36 

55 

104 

0.010041 

0.021141 

0.554284 

1.532161 

M7 14, 61, 97 4 239 

9 

18 

100 

0.051704 

0.082322 

0.373257 

1.544069 

M15 11, 102 3 239 

93 

104 

0.005831 

0.651933 

1.530318 

M8 15, 61, 98 4 240 

6 

19 

101 

0.059185 

0.070256 

0.389670 

1.537758 

Table 6.2 Details of time-varying fractal sets considered with their crossover scales 
determined, number of decomposed zones, number of geodesic flow fields obtained, 

and entropy values estimated. 
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Investigation of Time-varying Phenomena [19/21] 

• To characterize the evolving cloud fields, segmentation for each 

cloud field (i.e., from f1 to f15) is first performed via multiscale 

convexity measure, and based on the decomposed zones, 

complexity measures for decomposed zones for each evolving 

cloud function are computed; furthermore flow field propagation is 

simulated and as a result, geodesic spectrum is generated. 
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Cloud Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 

CM NCM CM NCM CM NCM CM NCM CM NCM CM NCM 

f1 2.55 0.43 2.79 0.40 2.78 0.40 5.13 0.14 5.02 0.12 0 0 

f2 3.78 0.27 3.77 0.27 5.67 0.10 3.93 0.23 0 0 NA NA 

f3 4.03 0.24 4.85 0.16 4.49 0.18 4.58 0.17 0 0 NA NA 

f4 4.29 0.21 5.41 0.12 4.11 0.21 3.60 0.28 0 0 NA NA 

f5 1.95 0.49 4.33 0.21 5.63 0.10 4.12 0.22 0 0 NA NA 

f6 2.28 0.46 4.42 0.20 5.72 0.10 3.45 0.27 0 0 NA NA 

f7 2.96 0.37 4.52 0.19 5.74 0.10 2.96 0.33 0 0 NA NA 

f8 2.16 0.43 2.29 0.46 5.51 0.11 5.05 0.12 0 0 NA NA 

f9 4.59 0.18 4.73 0.17 5.50 0.12 0 0 NA NA NA NA 

f10 4.64 0.17 4.57 0.17 5.44 0.12 0 0 NA NA NA NA 

f11 5.04 0.14 4.85 0.16 5.03 0.15 0 0 NA NA NA NA 

f12 5.13 0.13 4.82 0.16 4.84 0.17 0 0 NA NA NA NA 

f13 5.51 0.11 4.72 0.16 4.24 0.22 0 0 NA NA NA NA 

f14 5.03 0.13 5.27 0.11 3.90 0.26 0 0 NA NA NA NA 

f15 4.51 0.15 5.31 0.11 4.38 0.21 0 0 NA NA NA NA 

Table 6.3 Complexity measures of morphologically significant zones 
decomposed from evolving cloud fields. 
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Cloud Crossover 

scales 

No.  

dec 

No. flow 

field 

Entropy Cloud  Crossover 

scales 

No. 

dec 

No. flow 

field 

Entropy 

f1 6, 13, 20, 57, 

100 

6 523 

18 

48 

70 

31 

243 

2.499713 

1.031239 

1.252941 

1.782520 

1.327629 

2.290906 

f9 25, 53, 100 4 490 

128 

82 

175 

2.109592 

2.009009 

1.750292 

2.131398 

f2 14, 28, 83, 

100 

5 523 

43 

145 

47 

239 

2.476323 

1.409085 

2.126950 

1.169401 

2.326011 

f10 27, 54, 100 4 490 

70 

84 

179 

2.259992 

1.636701 

1.810857 

2.145319 

f3 17, 48, 73, 

100 

5 523 

50 

89 

102 

159 

2.456436 

1.553055 

1.426105 

1.893751 

1.931581 

f11 36, 67, 100 4 490 

138 

66 

185 

2.057739 

2.061566 

1.677090 

2.168453 

f4 20, 67, 87, 

100 

5 523 

91 

74 

23 

432 

2.453930 

1.781784 

1.644839 

1.235328 

2.579422 

f12 40, 71, 100 4 484 

139 

93 

194 

1.954383 

2.056434 

1.716976 

2.197023 

f5 4, 25, 81, 100 5 523 

105 

93 

28 

265 

2.246884 

1.711594 

1.835823 

1.324502 

2.360653 

f13 51, 81, 100 4 484 

172 

67 

207 

1.774722 

2.141432 

1.566769 

2.227641 

f6 5, 27, 87, 100 5 523 

74 

91 

29 

275 

2.269566 

1.642102 

1.795090 

1.294802 

2.374706 

f14 38, 85, 100 4 449 

304 

64 

285 

1.461633 

2.207588 

1.476008 

2.399226 

f7 8, 32, 91, 100 5 523 

74 

86 

23 

281 

2.300931 

1.613692 

1.788957 

1.060923 

2.385565 

f15 30, 79, 100 4 490 

148 

64 

236 

1.640367 

1.900151 

1.591535 

2.306958 

f8 5, 10, 58, 100 5 523 

74 

80 

57 

167 

2.399837 

1.197022 

1.873356 

1.579724 

2.123957 

Table 6.4 Details of evolving cloud fields considered with their crossover scales determined, number of 
decomposed zones, number of geodesic flow fields obtained, and entropy values estimated. 
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10. Conclusions [1/5] 

• Functions and synthetic fractal sets are decomposed into 
topologically prominent regions and it is found that each 
decomposed zone possesses varied degree of spatial 
complexity.  

• Multiscale grayscale morphological opening and multiscale binary 
morphological opening are employed to determine the crossover 
scales in the sequence of opened versions of sets and/or 
functions.  

• These crossover scales provide the basis to segment the sets 
and functions of varied complexities involved within. This 
decomposition process does not involve choosing an arbitrary 
threshold value. 

• The observation in variations in the complexity from one zone to 
another zone within a set and/or function paves the path to 
explore links between the growth process and the complexity of 
each decomposed zone.  
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Conclusions [2/5] 

• It is observed that each zone that is decomposed from either a 
function (e.g., digital topographies or cloud fields) or a set 
possesses a complexity index that varies from zone to zone. 

• Such spatial complexity variations are quantified by a host of 
indices.  The loss of information across resolutions is used to 
compute probability distributions. This loss of information is in 
terms of lost area of functions where multiscale morphological 
opening transformation is employed to generate function at 
multiple resolutions.  

• Morphological entropy values are computed for each 
decomposed zone . 

• It is found that each decomposed zone possesses unique 
morphological entropy. The results obtained are for the two 
demonstrated cases on synthetic fractal sets and also on clouds 
retrieved from MODIS satellite data. 

59 



www.company.com 

Conclusions [3/5] 

• The types of transformation that influence the landscape 
evolution are caused by exodynamic and endodynamic nature.  

• Although there is no clear approach to explore whether these two 
forces that shaped landscape into various forms could be 
separated out by understanding the degree of convexity of 
landscape, at least one can explain the stage of the landscape.  
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Conclusions [4/5] 

• Flow fields are generated within topographic and bathymetric 
basins through geodesic morphological transformations. These 
flow fields generated are different from that of flow fields usually 
generated via shallow water equations.  

• In reality, topographic and bathymetric undulations which are 
conspicuous on the surfaces will not be reflected in the flow fields 
generated using shallow water equations. In the proposed 
framework, marker and mask are similar to outlet and boundary 
of threshold elevation region decomposed from geophysical 
basin.  

• The spatial distribution pattern of the regions embedded between 
the successive flow fields is used to construct geodesic spectra 
of various basins. Such spectra can be compared with width 
function that is popular in geomorphology. This approach 
provides an indicator that has geometric support of surfaces 
which further provide new characteristics that cannot be 
unraveled from width function-like metrics.  

• The data on which this framework is demonstrated include DEMs 
and DBMs.  
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Conclusions [5/5] 

• The surficial characterization techniques demonstrated are on 
static surfaces. However, changes do occur over geophysical 
surfaces due to perturbations as time goes by.  

• Such surfaces where topographic changes are conspicuous 
across time periods are dynamic surfaces. Hence, the proposed 
frameworks have also been extended to dynamic surfaces to 
investigate the characteristics of the changing surfaces.  
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11. Future Work [1/2] 

• In this work attempts have been made to show how map 
algebraic concepts such as mathematical morphology could be 
employed to segment cloud fields, or generate flow fields within 
terrestrial basins such as fluvial and tidal basins.  

• Specifically, the scope of this entire framework can be foreseen 
in  

 (i) image information mining to retrieve valuable thematic 
maps,  

 (ii) employing those retrieved themes across spatial and 
temporal scales to understand the occurred changes that are 
essential to categorize a dynamical system. One such system 
of terrestrial importance is exogenically sensitive lakes.  

     One can make attempts to understand the behavior of such 
lakes under the influence of perturbations caused due to 
endogenic and exogenic processes.  
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Future Work [2/2] 

    (iii) If such a study gives concrete results, then one can 
cross check with other dynamical system which is also 
climatically sensitive.  

    For instance, tree-rings would provide climate 
behavioral patterns through which one can understand 
the fluctuations that occurred in the past in order to 
understand the future behavior. Although the studies 
on lakes and tree-rings seem to be independent, it is 
anticipated that the behavioral patterns of certain 
variables from the two cases are likely to provide 
insights in certain process. To carry out such studies, 
this work provides basic building blocks.  
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