ROAD DISTRESS ASSESSMENT Application of Mathematical Morphology

Chakravarthy Bhagvati

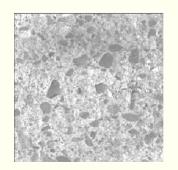
chakcs@uohyd.ernet.in

School of Computer & Information
Sciences
University of Hyderabad
1 April 2015

INDIAN STATISTICAL INSTITUTE, BENGALURU

OVERVIEW

- Normalized Opening Distributions
 - morphological opening and opening distributions
 - matched and mis-matched geometries
 - o normalized distributions
- Pavement Distress Assessment Application
 - o morphological algorithm for Texture Defect Analysis
 - o application to pavement distress assessment


TEXTURE ANALYSIS

Texture:

- distribution of gray scales...
- repetition of elementary patterns...

Common Uses of Texture:

Classification: Types, Similarities, Dif-

ferences

Description: Characteristics

Segmentation: Boundaries, Regions

Retrieval: Databases, Image

Archives

TEXTURE DEFECT ANALYSIS

Textures reflect variations in physical properties... roughness, graininess, porosity, etc.

Inhomogeneities or regions of no texture

Texture defects

Multiple textures or regions of secondary texture

DEFECT ANALYSIS

Detection: Identifying the presence of a defect.

How small a defect can be detected?

Characterization: Classifying into different types

Measurement: Calculating areas, dimensions, aspect ratios and other geometric properties

Desirable to search for features that may be correlated to physical properties

- *derive* texture features from physical properties
- estimate surface properties from image textures

Relationship between dolerite texture and porosity[Serra82]

OVERVIEW OF TEXTURE ANALYSIS

Translation of the perceptually important notions into computational approaches

Statistical Methods

- o motivated by Julesz's and Gagalowicz's work
- o low-level, feature-based approach suitable for images with no clearly-defined patterns

Structural

- addresses the concern that statistical features cannot be correlated with observed patterns
- Julesz's results are not strictly valid for structured textures

Filter-based

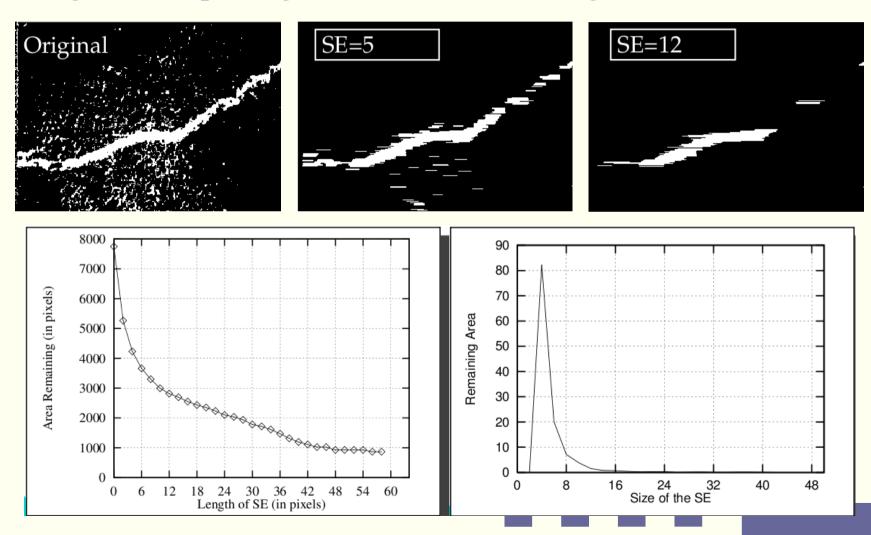
- o considers images as 1D or 2D signals
- analyzes periodicities in observed patterns via the frequency content in the image

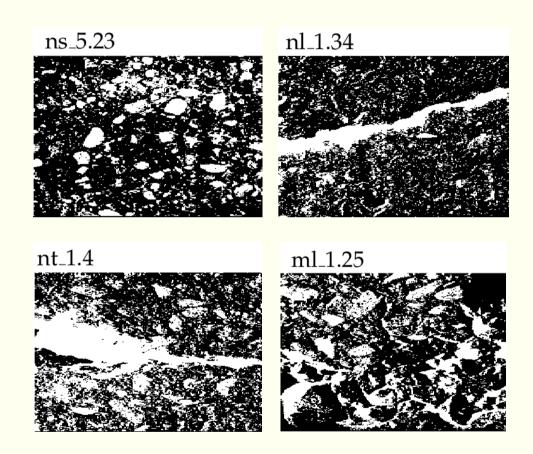
ISSUES AND PROBLEMS

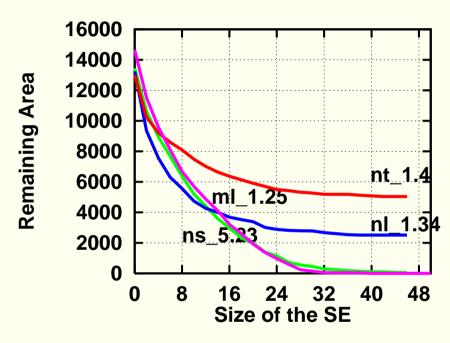
- Traditional approach—three-step process of *segment*, *classify* and *measure*
 - Segmentation is a difficult problem
- Cannot handle *intrinsic* variations in texture
- Multiple approaches for multiple types of defects
 - complex algorithms
 - o large feature sets
 - high computational cost
- Other issues
 - detection of small defects
 - o hard to measure dimensions without segmentation

A solution may be to use Mathematical Morphology!

MATHEMATICAL MORPHOLOGY


- Serra and Matheron (1967–1970)
- roots in materials analysis
- non-linear image processing technique


- basic elements images and structuring elements (SE)
- non-linear operations
 - o hit-or-miss
 - o minima or maxima
 - union or intersection
- Manipulates pixel coordinates and not intensities as in signal processing based techniques
- Operators:
 - Dilation (⊕) and Erosion(⊖)
 - Opening (○) and Closing (●)


OPENING DISTRIBUTION

Measures particle size distributions — plot of the area remaining in the image after opening vs. size of structuring element

OPENING DISTRIBUTIONS (contd.)

The presence of cracks is revealed in the opening distributions with linear (horizontal) structuring elements

PROBLEMS WITH OPENING DISTRIBUTIONS

- Scales of defect and normal texture must be different
- Choice of structuring element is critical
 - Linear structuring element highly sensitive to inhomogeneities
 - Circular structuring element sensitive to multiple textures

Some proposed solutions in literature

- Battery of structuring elements
- Restrict domain of application
- Search for an optimal structuring element
- Use multiple approaches
 - Edge-detection for inhomogeneities
 - Texture analysis methods for multiple textures

NORMALIZED DISTRIBUTIONS

We explore a different approach

```
Basic Idea: Image texture = Ideal texture + Defective texture 
⇒ Particle distribution= Ideal particle distribution + 
Deviations due to defects
```

Normalized distributions *remove* ideal particle distributions – emphasize deviations due to defects

$$\eta = rac{ ext{Particle distribution from an image}}{ ext{Ideal particle distribution}} = rac{ ext{Ideal particle distribution}}{ ext{Ideal particle distribution}}$$

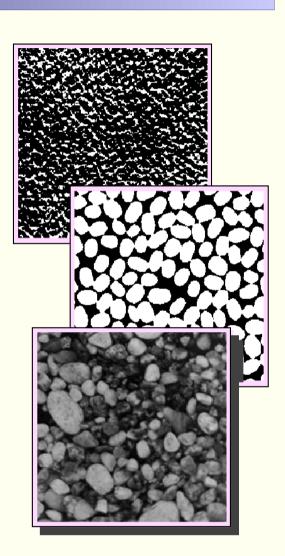
 η is a flat-line(= 1.0) if there are no defects Undershoot, i.e., $\eta < 1.0$ indicates a deficiency of particles Overshoot, i.e., $\eta > 1.0$ indicates an excess of particles

IDEAL PARTICLE DISTRIBUTION

Ideal particle distributions obtained in three ways:

- A-priori or theoretical knowledge
 - o specified or known from porosity, roughness, strength, etc.
 - o e.g., highway materials, X-ray crystallography, materials engineering applications...
- Empirical measurements
 - o computed from *known* non-defective images
 - o results in training and operational phases
- Standard mathematical families of distributions
 - Several natural processes may be approximated by well-known mathematical distributions
 - o e.g., Gaussian, Raleigh, Exponential, Weibull, etc.

GAUSSIAN NUMBER OF PARTICLES MODEL


Gaussian distribution describes several textures that have

- a specific scale
- large numbers of particles

Most of the particles are of a specific size and all the rest cluster around the *mean* size.

Number of particles at a scale x

$$N(x) = \mu_T e^{-\frac{(x-T)^2}{2\sigma^2}}$$

NORMALISED DISTRIBUTIONS: GAUSSIAN MODEL

Area in the image at scale x for the Gaussian model

$$A_x = \text{Number of particles at } x \times \text{Area of each particle}$$

$$= \left(\mu_T e^{\frac{(x-T)^2}{2\sigma^2}}\right) \Phi(x)$$

 $\Phi(x)$ governs structuring element/texture interaction For matched geometry,

$$\Phi(x) = 0, \quad \text{if } x \le D$$

= Area of particle, $\quad \text{if } x > D$

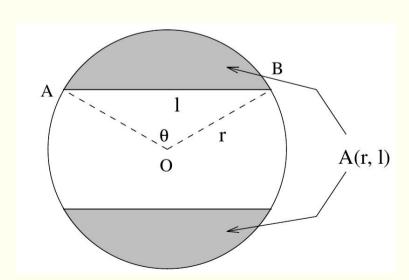
For mis-matched geometry,

$$\Phi(x) = \mathcal{F}(\text{Particles of sizes } > x)$$

MATCHED GEOMETRY

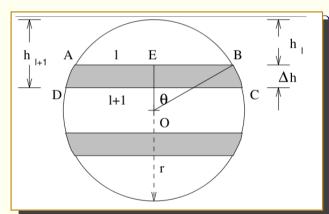
SQUARE particles and linear SEs

$$\eta_G(x) = \begin{cases} \frac{A(0)}{\sqrt{2\pi}\sigma\mu_T T^2}, & x = 0\\ \frac{[A(x-1) - A(x)]}{\mu_T x^2 e^{-\frac{(x-T)^2}{2\sigma^2}}}, & T - 3\sigma \le x \le T + 3\sigma\\ \frac{[A(x-1) - A(x)]}{x^2} + 1, \text{ otherwise} \end{cases}$$

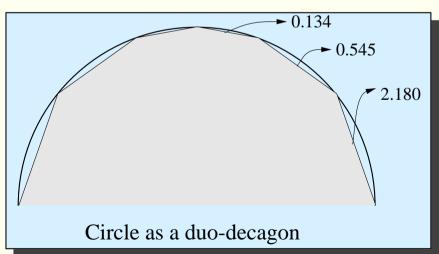

MISMATCHED GEOMETRY

What happens when we open a circle with a line SE?

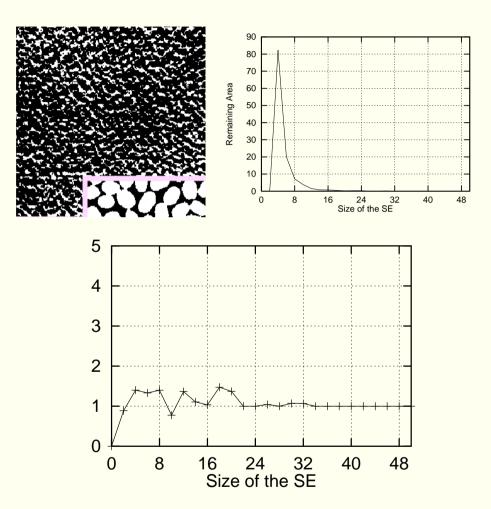
$$OD(l) = A_o - A(l)$$


$$= \sum_{d=1}^{D_{max}} N_d \frac{\pi d^2}{4} - \sum_{d=1}^{l} N_d \frac{\pi d^2}{4} - \sum_{d=l+1}^{D_{max}} \frac{N_d}{2} \left[d^2 \sin^{-1} \left(\frac{l}{d} \right) - l \sqrt{d^2 - l^2} \right]$$

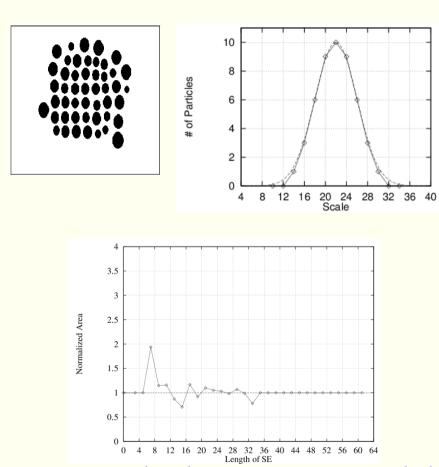
$$= \sum_{d=l+1}^{D_{max}} N_d \left[\frac{\pi d^2}{4} - \frac{1}{2} \left\{ d^2 \sin^{-1} \left(\frac{l}{d} \right) - l \sqrt{d^2 - l^2} \right\} \right]$$


MISMATCHED GEOMETRY...

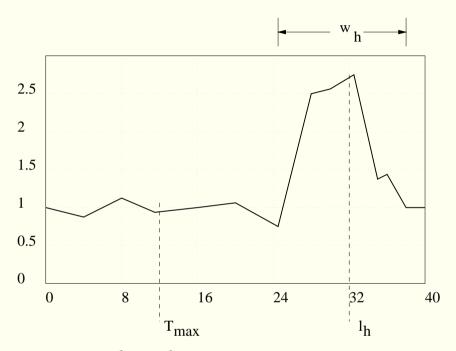
$$A'(l) = \sqrt{2\pi}\sigma\mu_T \frac{2l+1}{2} \left[2.180 \left\{ \operatorname{erf}\left(\frac{\frac{10l}{9} - 1 - T}{\sqrt{2}\sigma}\right) - \operatorname{erf}\left(\frac{l - T}{\sqrt{2}\sigma}\right) \right\} + 1 \right]$$



$$.134 \left\{ \operatorname{erf} \left(\frac{3}{\sqrt{2}} \right) - \operatorname{erf} \left(\frac{2l - T}{\sqrt{2}\sigma} \right) \right\} \right]$$

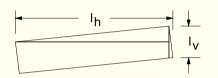

Area removed between successive openings = $\frac{(2l+1)\Delta h}{}$

EXAMPLES OF NORMALIZED DISTRIBUTIONS

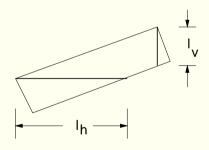


Matched Geometry Model

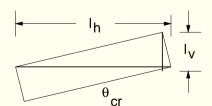
Mis-matched Geometry Model


FEATURES FOR TEXTURE DEFECT ANALYSIS

Location of overshoot/undershoot: l_h or l_v Width of overshoot/undershoot: w_h or w_v Height/width ratio of overshoot Magnitude of overshoot/undershoot


DETECTING INHOMOGENEITIES

Dependent on orientation with respect to SE Let l and w be the length and width of the inhomogeneity


When θ is *small*

- θ is obtained from normalized area
- $l = l_h \cos(\theta)$
- $w = l_v \cos(\theta)$

When θ is large

- $\bullet \ \theta = \tan^{-1}(l_v/l_h)$
- $w = l_h \sin(\theta)$

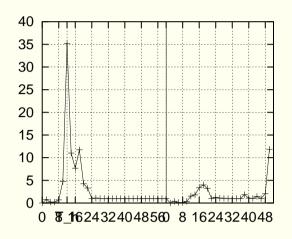
Critical angle: θ_{cr} separates small and large

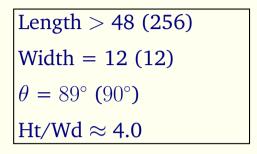
DEFECT ANALYSIS ALGORITHM

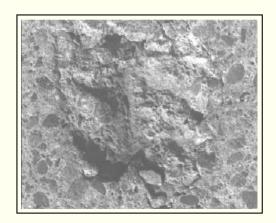
- 1. Compute $\eta(x)$ in horizontal and vertical directions
- 2. If the height-to-width ratio > 1, then linear inhomogeneity
- 3. if $\theta < \theta_{cr}$
 - compute θ , l as $l_h \cos(\theta)$, w as $l_v \cos(\theta)$
- 4. else
 - compute θ as $\tan^{-1}(l_v/l_h)$, w as $l_h\sin(\theta)$
- 5. Else
 - if l_h and $l_v > T_{max}$, then circular inhomogeneity
 - compute diameter as maximum scale of overshoot
- 6. else
 - multiple texture is present
 - compute scales of multiple texture as scales of deviations
 - compute area of the defect from height of overshoot

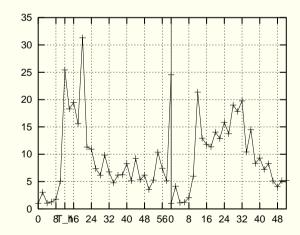
APPLICATION: ROAD DISTRESS ASSESSMENT

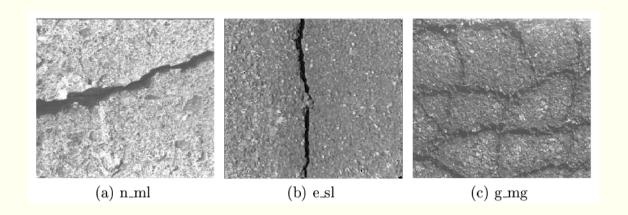
New York State Thruway Authority's distress classification scheme

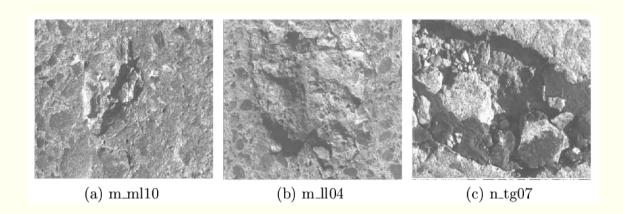

- detection of defects on pavement surfaces
- both inhomogeneities and multiple textures are present


DEFECT FEATURE	DESCRIPTION
Cracking	Separation of pavement surface
Pitting	A small region where material is lost from sur-
	face due to freeze-thaw action and aggregate
	expansion
Spalling	Breakdown of material especially along the
	sides of a crack
Material Loss	Wearing away of surface due to loss of asphalt
	or tar binder


Further classification based on pavement type and other non-visual factors


PAVEMENT CLASSIFICATION EXAMPLES




$$l_h = 20$$
, $l_v = 32$
Height/Width ≈ 0.8
Area = 24.72%

CRACKING DISTRESS EXAMPLES

Image	Horizontal			Vertical			Class
	l_h	w_h	Ht/Wd	l_v	w_v	Ht/Wd	
n_ml13	16	8	2.63	14	4	11.25	Linear Cracking
	22	8	2.25	16	10	1.40	
	>48	4	13.75 $ $	30	6	2.67	Open
				36	4	3.00	Transverse
e_sl15	12	6	5.83	16	12	0.33	Linear Cracking
	18	8	1.38	>48	4	3.00	Open
							Longitudinal
g_mg19	12	6	7.33	14	12	4.16	Linear Cracking
	18	4	6.50	26	4	8.00	Alligator
	28	6	2.33				Dominant direction:
	38	6	1.5				Transverse
	>48	4	5.25				

SPALLING DISTRESS EXAMPLES

Image	Horizontal		Vertical		Area (%)	Rating
	l_h	Ht/Wd	l_v	Ht/Wd		
m_ml10	18	0.70	20	0.80	10.14	Circular
			36	0.83		Inhomoheneity
						Medium Spalling
m_ll04	20	< 0.78	32	< 0.50	24.72	Circular
						Inhomogeneity
						Large Spalling
n_tg07	24	0.93	22	3.07	25.39	Circular
	>48	8.87	36	0.88		Inhomogeneity +
						Horizontal cracking
						Wide spalled crack

CONCLUSIONS

- Introduced the idea of normalized opening distributions for texture defect analysis
- Showed results from a pavement distress assessment application
 - o in reality, nearly 425 pavement images for the year 1993 1994 were analyzed
 - \circ distress assessment matched human performance on 401 images (i.e., an accuracy of $\approx 92\%$)
- Opening distributions are powerful tools for texture as well as texture defect analysis
- The basis of Mathematical Morphology in materials analysis is nicely used in this application!

Thank You