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Topological data analysis

Topological data analysis (TDA) is an approach to the analysis
of datasets using techniques from topology and other
mathematics.

Typically, topologists classify objects into classes of “similar
shapes” by the number of holes.
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As highlighted in a recent series of columns in the IMS Bulletin,
the collaboration of three different disciplines, topology,
probability, and statistics, is indispensable for the development of
TDA.

▶ The author of the column has invented a word, TOPOS
(=topology, probability, and statistics).

However, there are still only limited number of probabilistic and
statistical works in TDA.
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Betti numbers

Basic quantifier in algebraic topology.

Given a topological space X, the 0-th Betti number β0(X) is
defined as

β0(X) = the number of connected components in X.

For k ≥ 1, the k-th Betti number βk(X) is defined as

βk(X) = the number of k-dim holes in X.

▶ More intuitively,

β1(X) = the number of “closed loops” in X.

β2(X) = the number of “hollows” in X.

4 / 35



Betti numbers

Basic quantifier in algebraic topology.

Given a topological space X, the 0-th Betti number β0(X) is
defined as

β0(X) = the number of connected components in X.

For k ≥ 1, the k-th Betti number βk(X) is defined as

βk(X) = the number of k-dim holes in X.

▶ More intuitively,

β1(X) = the number of “closed loops” in X.

β2(X) = the number of “hollows” in X.

4 / 35



5 / 35



5 / 35



Scheme

1. Generate random sample from an underlying probability law.

(Xi): iid Rd-valued random variables, d ≥ 2, with spherically
symmetric density f .

Case I: regularly varying tail

f has a regularly varying tail: for some α > d,

lim
r→∞

f(rte1)

f(re1)
= t−α for every t > 0 ,

where e1 = (1, 0, . . . , 0) ∈ Rd.

For example,

f(x) = C/
(
1 + ||x||α

)
, x ∈ Rd, α > d .

6 / 35



Scheme

1. Generate random sample from an underlying probability law.

(Xi): iid Rd-valued random variables, d ≥ 2, with spherically
symmetric density f .

Case I: regularly varying tail

f has a regularly varying tail: for some α > d,

lim
r→∞

f(rte1)

f(re1)
= t−α for every t > 0 ,

where e1 = (1, 0, . . . , 0) ∈ Rd.

For example,

f(x) = C/
(
1 + ||x||α

)
, x ∈ Rd, α > d .

6 / 35



Scheme

1. Generate random sample from an underlying probability law.

(Xi): iid Rd-valued random variables, d ≥ 2, with spherically
symmetric density f .

Case I: regularly varying tail

f has a regularly varying tail: for some α > d,

lim
r→∞

f(rte1)

f(re1)
= t−α for every t > 0 ,

where e1 = (1, 0, . . . , 0) ∈ Rd.

For example,

f(x) = C/
(
1 + ||x||α

)
, x ∈ Rd, α > d .

6 / 35



Case II: exponentially decaying tail

Assume that f(x) = L
(
∥x∥

)
e−ψ(||x||), x ∈ Rd.

▶ ψ′(z) > 0, ψ(z) → ∞, (1/ψ′)′(z) → 0 as z → ∞.

▶ ψ is a von-Mises function.

▶ L : R+ → R+ can be ignored in the tail of f .

For example,

f(x) = Ce−||x||τ/τ , x ∈ Rd, τ > 0.
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To make our story simpler, we will work on special examples in the
following.

Case I:

f(x) = C/
(
1 + ||x||α

)
, x ∈ Rd, α > d .

Case II:

f(x) = Ce−||x||τ/τ , x ∈ Rd, τ > 0.

If 0 < τ < 1, f has a subexponential tail.

If τ = 1, f has an exponential tail.

If τ > 1, f has a superexponential tail.

Note: All the results in this talk hold in the general setup.
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2. Draw random balls of radius t about X ′
is.

3. Establish the limit theorems for Betti numbers of the union of
balls.
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Core = a centered ball in which random points are scattered
very densely so that the union of balls inside the region is
contractible (= can continuously shrink to a single point).

Formal definition.

Given a set of random points Xn = {X1, . . . , Xn}, a centered ball
B(0;Rn) is called a core if

P
{
B(0;Rn) ⊂

∪
X∈Xn∩B(0;Rn)

B(X; 1)

}
→ 1, n → ∞.
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Proposition [Adler et. al, 2014].

Let Xn = {X1, . . . , Xn} be an iid random sample with density

f(x) = C/
(
1 + ||x||α

)
, x ∈ Rd, α > d .

Then, there exists a sequence R
(c)
n = C ′(n/ log n)1/α for some

C ′ > 0, such that

P
{
B(0;R(c)

n ) ⊂
∪

X∈Xn∩B(0;R
(c)
n )

B(X; 1)

}
→ 1 , n → ∞,

i.e., B(0;R
(c)
n ) is a core.
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Proposition [Adler et. al, 2014].

Let Xn = {X1, . . . , Xn} be an iid random sample with density

f(x) = Ce−||x||τ/τ , x ∈ Rd, τ > 0.

Then,

P
{
B(0;R(c)

n ) ⊂
∪

X∈Xn∩B(0;R
(c)
n )

B(X; 1)

}
→ 1 , n → ∞,

holds, where

R(c)
n =

(
τ log n− τ log log(τ log n)1/τ + C ′ )1/τ .
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Proposition [Adler et. al, 2014] (continued).

(i) If 0 < τ ≤ 1, i.e, f has either a subexponential or an exponential
tail,

P
{
there exist random points outside B(0;R(c)

n )
}
→ 1, n → ∞.

(ii) If τ > 1, i.e, f has a superexponential tail,

P
{
there exist random points outside B(0;R(c)

n )
}
→ 0, n → ∞.

13 / 35



The related notion, a weak core, plays a more decisive role in the
characterization of the limit theorems for Betti numbers.

Definition

Let f be a spherically symmetric density on Rd and R
(w)
n → ∞ be a

sequence determined by

nf
(
R(w)
n e1

)
→ 1 , n → ∞ .

Then B(0;R
(w)
n ) is called a weak core.
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Case I (power-law tail)

If f(x) = C/
(
1 + ∥x∥α

)
, x ∈ Rd, α > d, then

R(w)
n = (Cn)1/α.

c.f. R(c)
n = C ′(n/ log n)1/α.

R
(c)
n /R

(w)
n → 0, but they share the same regular variation

exponent, 1/α.

Case II (exponentially decaying tail)

If f(x) = Ce−∥x∥τ/τ , x ∈ Rd, τ > 0, then

R(w)
n = (τ log n+ τ logC)1/τ .

c.f. R(c)
n =

(
τ log n− τ log log(τ log n)1/τ + C ′ )1/τ .
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Betti number in the tail

Xn = {X1, . . . , Xn}: iid Rd-valued random variables drawn from
a power-law distribution or a (sub)exponential distribution.

For k ≥ 1, define

βk,n(t) := βk

( ∪
X∈Xn\B(0;Rn)

B(X; t)

)
, t ≥ 0 ,

where Rn is a non-random sequence with Rn ≥ R
(w)
n (= radius

of a weak core).
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Layered non-trivial homologies

Assume f(x) = C/
(
1 + ∥x∥α

)
, x ∈ Rd, α > d.

Asymptotically (i.e., n → ∞), we observe the following layered
structure.
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Layered non-trivial homologies

Assume f(x) = Ce−∥x∥τ/τ , x ∈ Rd, 0 < τ ≤ 1 (i.e., having a
(sub)exponential tail).

Asymptotically (i.e., n → ∞), we observe the following layered
structure.

In what follows, we only treat power-law tail distributions.
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Looking at the asymptotic (i.e., n → ∞) spatial distribution of
k-dim holes,

Three different regimes must be considered.
We set, respectively,

▶ [1]: Rn = (Cn)1/(α−d/(k+2)),
▶ [2]: (Cn)1/α ≪ Rn ≪ (Cn)1/(α−d/(k+2)),
▶ [3]: Rn = (Cn)1/α,

and compute βk,n(t) by counting k-dim holes outside B(0;Rn).
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In the regime [1],

There exist finitely many k-dim holes formed by k + 2 random
points outside B(0;Rn) as n → ∞.
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Example (k = 1)

The appearance of holes is a rare event.
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Limiting process for βk,n(t):

Nk(t) :=

∫
(Rd)k+1

ht(0, y1, . . . , yk+1)Mk(dy).

Mk is a Poisson random measure with Lebesgue intensity
measure on (Rd)k+1.

ht(0, y1, . . . , yk+1) = 1

{
βk

(
B(0; t) ∪

∪k+1
i=1 B(yi; t)

)
= 1

}
with 0, y1, . . . , yk+1 ∈ Rd.
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ht(0,y) can be expressed as

ht(0,y) = h+
t (0,y)− h−

t (0,y),

where h+
t and h−

t are some other indicator functions, which are
non-decreasing in t.

Accordingly,

Nk(t) =

∫
(Rd)k+1

h+
t (0,y)Mk(dy)−

∫
(Rd)k+1

h−
t (0,y)Mk(dy)

:= N+
k (t)−N−

k (t).

We can prove that N+
k (t) and N−

k (t) are represented as a
(time-changed) Poisson process.

▶ However, Nk(t) is not a (time-changed) Poisson process.
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Theorem 1. [O., 2016]

In the regime [1], we have, as n → ∞,

βk,n(t) ⇒ N+
k (t)−N−

k (t).

24 / 35



In the regime [2],

There exist infinitely many k-dim holes formed by k + 2 points
outside B(0;Rn) as n → ∞.
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Example (k = 1)

The appearance of holes is no longer a rare event.
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Limiting process for βk,n(t): Define a Gaussian process

Yk(t) :=

∫
(Rd)k+1

ht(0, y1, . . . , yk+1)Gk(dy).

Gk is a Gaussian random measure with Lebesgue control
measure on (Rd)k+1.

ht(0, y1, . . . , yk+1) = 1

{
βk

(
B(0; t) ∪

∪k+1
i=1 B(yi; t)

)
= 1

}
with 0, y1, . . . , yk+1 ∈ Rd.
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Using the decomposition ht = h+
t − h−

t , we can write

Yk(t) =

∫
(Rd)k+1

h+
t (0,y)Gk(dy)−

∫
(Rd)k+1

h−
t (0,y)Gk(dy)

:= Y +
k (t)− Y −

k (t).

Then, Y +
k (t) and Y −

k (t) are represented as a (time-changed)
Brownian motion.

▶ Yk(t) is a Gaussian process, but it is not a (time-changed)
Brownian motion.
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Theorem 2. [O., 2016]

In the regime [2], we have, as n → ∞,

βk,n(t)− E
{
βk,n(t)

}(
nk+2R

d−α(k+2)
n

)1/2 ⇒ Y +
k (t)− Y −

k (t).
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In the regime [3],
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Example (k = 1)

In the regimes [1] and [2], all the one-dim holes contributing to
β1,n(t) in the limit are always of the form

In the regime [3], many different kinds of one-dim holes (which
exist close enough to a weak core) contribute to β1,n(t) in the
limit.
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The limiting Gaussian process is given by

Zk(t) :=
∞∑

i=k+2

∑
j>0

Z
(i,j)
k (t) .

Z
(i,j)
k (t) is a Gaussian process representing the connected

components that are formed by i points and contain j holes.

Example: Z(15,2)
1 (t) (i.e., k = 1, i = 15, j = 2).
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Rewrite Zk(t) as

Zk(t) = Z
(k+2,1)
k (t) +

∞∑
i=k+3

∑
j>0

Z
(i,j)
k (t) .

Z
(k+2,1)
k (t) represents the connected components that are

formed by k + 2 points and contain a single k-dimensional hole.

Example: Z(3,1)
1 (t) (i.e., k = 1, i = 3, j = 1).

Z
(k+2,1)
k (t) is “similar” to the Yk(t) in the regime [2].
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Theorem 3. [O., 2016]

In the regime [3], we have, as n → ∞,

βk,n(t)− E
{
βk,n(t)

}
nd/(2α)

⇒ Zk(t).
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Future works

Combine the following three fields.
▶ Heavy Tail Probability

▶ Long Range Dependence

▶ Topological Data Analysis

Heavy tailed moving average process

Let (Xi) be an iid Rd-valued random variables with a regularly
varying tail.

Then,

Yn := Xn + AXn−1 +BXn−2, n = 1, 2, . . .

defines a MA(2) process, where A and B are non-random
d× d-matrices with ∥A∥, ∥B∥ < 1.
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