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Topological data analysis

@ Topological data analysis (TDA) is an approach to the analysis
of datasets using techniques from topology and other
mathematics.

e Typically, topologists classify objects into classes of “similar
shapes” by the number of holes.
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Topological data analysis

@ Topological data analysis (TDA) is an approach to the analysis
of datasets using techniques from topology and other

mathematics.

e Typically, topologists classify objects into classes of “similar
shapes” by the number of holes.

' Probability |:> 3

Statistics | I:>

Algebraic Topology

Applications

= Computational chemistry
= Sensor network

= Astrophysical science

* Manifold learning etc.
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@ As highlighted in a recent series of columns in the IMS Bulletin,
the collaboration of three different disciplines, topology,

probability, and statistics, is indispensable for the development of
TDA.

» The author of the column has invented a word, TOPOS
(=topology, probability, and statistics).

@ However, there are still only limited number of probabilistic and
statistical works in TDA.



Betti numbers

@ Basic quantifier in algebraic topology.

@ Given a topological space X, the 0-th Betti number Gy(X) is
defined as

Bo(X) = the number of connected components in X.
@ For k > 1, the k-th Betti number S (X) is defined as

Br(X) = the number of k-dim holes in X.
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Betti numbers

@ Basic quantifier in algebraic topology.

@ Given a topological space X, the 0-th Betti number Gy(X) is
defined as

Bo(X) = the number of connected components in X.
@ For k > 1, the k-th Betti number S (X) is defined as
Br(X) = the number of k-dim holes in X.
» More intuitively,

B1(X) = the number of “closed loops” in X.
B2(X) = the number of “hollows” in X.
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Scheme

1. Generate random sample from an underlying probability law.

e (X;): iid R%valued random variables, d > 2, with spherically
symmetric density f.
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Scheme

1. Generate random sample from an underlying probability law.
e (X;): iid R%valued random variables, d > 2, with spherically
symmetric density f.

Case I: regularly varying tail

@ f has a regularly varying tail: for some o > d,
frtey)
r—00 f(?“el)

where ¢; = (1,0,...,0) € R<.

=1t foreveryt >0,
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Scheme

1. Generate random sample from an underlying probability law.
e (X;): iid R%valued random variables, d > 2, with spherically
symmetric density f.

Case I: regularly varying tail

@ f has a regularly varying tail: for some o > d,
frtey)
r—00 f(?“el)

where ¢; = (1,0,...,0) € R<.

=1t foreveryt >0,

@ For example,

fle)y=C/(1+]lz]|*), z€R% a>d.
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Case |l: exponentially decaying tail

o Assume that f(z) = L(||z[|)e U, z € R

> (2) >0, P(z) = o0, (1/9')(2) = 0 as z — .

» ) is a von-Mises function.

» L:R. — Ry can be ignored in the tail of f.
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Case |l: exponentially decaying tail

o Assume that f(z) = L(||z[|)e U, z € R

» YP(2) >0, Y(z) = o0, (1/¢')(2) = 0 as z — .
» ) is a von-Mises function.

» L:R. — Ry can be ignored in the tail of f.

@ For example,

fla)y=Cce gz eRY 7 >0.
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To make our story simpler, we will work on special examples in the
following.

Case |I:

flx)=C/(1+]z]|*), z€R) a>d.
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To make our story simpler, we will work on special examples in the
following.

Case |I:
flx)=C/(1+|[z]*), ¢ R a>d.

Case |l
flx)y=Cce gz eRY 7 >0.

o If 0 < 7 <1, f has a subexponential tail.
e If 7 =1, f has an exponential tail.

e If 7 > 1, f has a superexponential tail.

Note: All the results in this talk hold in the general setup.
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2. Draw random balls of radius ¢ about X/s.

3. Establish the limit theorems for Betti numbers of the union of
balls.

Fo(union of balls) = 11
31 (union of balls) =3
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@ Core = a centered ball in which random points are scattered
very densely so that the union of balls inside the region is
contractible (= can continuously shrink to a single point).

) |core -1 ~ | This is not a core
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@ Core = a centered ball in which random points are scattered
very densely so that the union of balls inside the region is
contractible (= can continuously shrink to a single point).

P= -
L IThisis not a core

Formal definition.

Given a set of random points X, = {X3,..., X}, a centered ball
B(0; R,,) is called a core if

]P’{ B(O;R,)c |J B } —~1, n— oo.
XeX,NB(0;Ry)
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Proposition [Adler et. al, 2014].
Let X, = {X3,...,X,} be an iid random sample with density

fl@)y=C/(1+]lz]]*), z€R% a>d.
Then, there exists a sequence R\ = C’(n/logn)"/* for some
C" > 0, such that
IP’{ B(O;RY))c |J B(X;1) } —1, n— oo,

XeXx,nB(0;RY)
i.e., B(0; RY) is a core.

There are no holes
inside a core
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Proposition [Adler et. al, 2014].
Let X, = {X1,..., X, } be an iid random sample with density

flx)=Ce /™ g eRE 7 >0.
Then,
IP{ B(O;RY)c |J B(X;1) } —1, n— oo,
XeX,NB(0;RY)
holds, where

1/7

R© = (7logn — 7loglog(7 log n)Y7 + ")

n
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Proposition [Adler et. al, 2014] (continued).

() If 0 <7 <1, i.e f has either a subexponential or an exponential
tail,

]P’{ there exist random points outside B(0; Rﬁf))} -1, n— oo.
(ii) If 7 > 1, i.e, f has a superexponential tail,

IP’{ there exist random points outside B(0; Rgf))} — 0, n — co.

(sub)exponential . ) superexponential

T core
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@ The related notion, a weak core, plays a more decisive role in the
characterization of the limit theorems for Betti numbers.

Definition
Let f be a spherically symmetric density on R¢ and R — oo be a
sequence determined by

nf(RS“’)el) —+1, n—oo.

3

Then B(0; R,(f”)) is called a weak core.
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Case | (power-law tail)
o If f(z) =C/(1+ ||z]|*), = € R?, a > d, then
R = (C)V.
c.f. RY = C'(n/log n)l/a.

o RY/RY™ — 0, but they share the same regular variation
exponent, 1/a.

15/35



Case | (power-law tail)
o If f(z) =C/(1+ ||z]|*), = € R?, a > d, then
R = (C)V.
c.f. RY = C'(n/log n)l/a.

o RY/RY™ — 0, but they share the same regular variation
exponent, 1/a.

Case |l (exponentially decaying tail)
o If f(z) = Ce l#"/7 2 € RY, 7 >0, then
R™) = (rlogn + 7log C)/".

c.f. Rnc) = (7' logn — 7loglog( log n)l/T + )1/T'
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Betti number in the tail
o X, ={Xy,...,X,}: iid Ré%valued random variables drawn from
a power-law distribution or a (sub)exponential distribution.
@ For k > 1, define
Brn(t) = 5k< U B(X;t)) L >0,
XeX,\B(0;Ry,,)
where R,, is a non-random sequence with R, > ng) (= radius
of a weak core).
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Betti number in the tail
o X, ={Xy,...,X,}: iid Ré%valued random variables drawn from
a power-law distribution or a (sub)exponential distribution.

@ For k > 1, define

aa=n( U Blo). ez,
X€X,\B(0;R,,)
where R,, is a non-random sequence with R, > Rﬁlw) (= radius
of a weak core).
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Layered non-trivial homologies

o Assume f(z)=C/(1+ [|z]|*), z € R, o > d.

@ Asymptotically (i.e., n — o0), we observe the following layered
structure.

3~ 00
1 ~ 00 31 ~ Poisson
weak.core 2T . 3oy~ oo |t 3y ~ Poisson | 32 ~ 0
: 31 ~ Poisson B3~ 0 Ba ~ 0
Brsr ~ 0
Ry, Ri—1 R, Ry

R® = (C)V/e
Ry = (C)Y/(a=a/(42)
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Layered non-trivial homologies

o Assume f(x) = Ce I°I"/7 € RY, 0 < 7 <1 (i.e., having a
(sub)exponential tail).

e Asymptotically (i.e., n — oc), we observe the following layered
structure.

31 ~ 00
By ~
17~ %0 3, ~ 00 31 ~ Poisson

By ~ 00 .

weakcore |27 L., By~ oo | e 3y ~ Poisson | 32 ~ 0
: ) 31 ~ Poisson J3~ 0 B~ 0
5~ 00, Vj Brgpr ~ 0
Ry Ri_1n Ry, Ry,

R = (tlogn + 7log C)/7
Ry = (tlogn + (k+2)7(d — 7) log(7 log n) + Tl()g(")l/r

@ In what follows, we only treat power-law tail distributions.
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@ Looking at the asymptotic (i.e., n — 00) spatial distribution of
k-dim holes,

weak core infinitely many finitely many
k-dim holes k-dim holes
’ % ~ 00 B ~ Poisson
RO = (C)Ve

Ry, = (Cn)Y/(e—d/(k42)
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@ Looking at the asymptotic (i.e., n — 00) spatial distribution of
k-dim holes,

weak core Fr-C
|nf|p|tely many finitely many
k-dim holes k-dim holes
’ % ~ 00 B ~ Poisson
R = (Cn)V®
Ry, = ((w”)1/(“—.1/(1.-+2))

@ Three different regimes must be considered.
We set, respectively,
» [1]: R, = (Cn)l/(a—d/(k—i-Q))'
» [2]: (Cn)'/* < R, < (Cn)'/(a=d/(k+2)),
> [3]: R, = (Cn)'/*,
and compute S, (t) by counting k-dim holes outside B(0; R,,).
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In the regime [1],

@ There exist finitely many k-dim holes formed by k£ + 2 random
points outside B(0; R,,) as n — oo.

weak core
8 finitely many
k-dim holes formed by
R(lu) _ ((r”>]/a k+2 random pOlntS

[Rn — (On)l/(n—d/(k-%—'l))]
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Example (k = 1)

)
720
2
P
(A
weak.core /f\ finitely many,
° \ > separated,

Ry(;“) _ ((v”)l/u %
__d

N
N

[Rn - (C,.‘n)l/(n—d/3)]

each formed by 3-points

@ The appearance of holes is a rare event.
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Limiting process for 5 ,,(t):

Nt i= [ 0 ) Ma(dy)
(Rd)k+1

@ My is a Poisson random measure with Lebesgue intensity
measure on (R%)FL,

o 0, yeen) = 1 5 (B0 VUL Blyan) =1}

with 0,91, ..., yk1 € R
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@ hy(0,y) can be expressed as

ht(07Y) = hj(()?}I) - ht_(07Y)7

where b and h; are some other indicator functions, which are
non-decreasing in t.
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@ hy(0,y) can be expressed as

ht(07Y) = hj(()?}I) - ht_(O7Y)>

where b and h; are some other indicator functions, which are
non-decreasing in t.

@ Accordingly,

N = [ oy M) = [k (0.) M)

(R)k-+1

= N7 (t) — N, (2).

e We can prove that N,/ (¢) and N, (t) are represented as a
(time-changed) Poisson process.

» However, N (t) is not a (time-changed) Poisson process.
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Theorem 1. [O., 2016]

In the regime [1], we have, as n — oo,

Ben(t) = NF(t) — N, (2).
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In the regime [2],

@ There exist infinitely many k-dim holes formed by k + 2 points
outside B(0; R,,) as n — oc.

weak core ‘|
8 | finitely many
1
! k-dim holes formed
R = (Cn)Ve I,’ by k+2 random points

Rpn = (Cn)V/(a—d/(k+2))

infinitely many k-dim holes
formed by k+2 random points
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Example (k = 1)

weak core

.| infinitely many,
(% )| separated, each
RUT = (Cny/e A formed by 3 points

- -

R, = ((1”)1/(“_(1/3)
/

@ The appearance of holes is no longer a rare event.
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Limiting process for [ ,,(t): Define a Gaussian process

Yk’(t) = / ht(oayla"'7yk+1) Gk<dy)
(Rd)k+1

@ G is a Gaussian random measure with Lebesgue control
measure on (R%)FL,

o hi(0,y1, . yps) = 1{@,( (0:4) UM, Byt )) — 1}

with 0,91, ..., yk1 € R
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@ Using the decomposition h; = h;” — h;", we can write

= [ rOx G - [ 0.3 Gy

(Rd)k+1

=Y - Y (t).

e Then, Y7 (¢) and Y, (t) are represented as a (time-changed)
Brownian motion.

» Y (t) is a Gaussian process, but it is not a (time-changed)
Brownian motion.

28 /35



Theorem 2. [O., 2016]

In the regime [2], we have, as n — oo,

5k,n (t) B E{Bk,n (t) }

(nk+2Rg—a(k+2)) 1/2

=Y. (t) - Y, (¢).
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In the regime [3],

many points get
connected to — finitely many
each other, forming
a giant component

K-dim holes formed by
k+2 random points

Re, = ((.”)1/(“-(1/(k+2)>

infinitely many k-dim holes
formed by k+2 random points
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Example (k = 1)
@ In the regimes [1] and [2], all the one-dim holes contributing to
B1x(t) in the limit are always of the form

@ In the regime [3], many different kinds of one-dim holes (which
exist close enough to a weak core) contribute to (3 ,(t) in the
limit.

etc...
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The limiting Gaussian process is given by

Z(t) = i Sz ) .

1=k+2 j>0

° Z,gi’j)(t) is a Gaussian process representing the connected

components that are formed by ¢ points and contain j holes.

32/35



The limiting Gaussian process is given by

Z(t) = i Sz ) .

i=k+2 j>0

° Z,gi’j)(t) is a Gaussian process representing the connected
components that are formed by ¢ points and contain j holes.

Example: 2" (t) (e, k=1, i=15j=2).

etc...
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Rewrite Z(t) as

Zk(t) _ k+2 1) Z Zz(z]

i=k+3 j>0

° Z,gk”’l)(t) represents the connected components that are

formed by £ + 2 points and contain a single k-dimensional hole.

Example: ng’l)(t) (e, k=1,1=3,j=1).
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Rewrite Z(t) as

Zk(t) _ k+2 1) Z Zz(z]

i=k+3 j>0

° Z,gk“’l)(t) represents the connected components that are

formed by £ + 2 points and contain a single k-dimensional hole.

Example: ng’l)(t) (e, k=1,1=3,j=1).

° Z,g“z’l)(t) is “similar” to the Y (¢) in the regime [2].
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Theorem 3. [O., 2016]

In the regime [3], we have, as n — oo,

ﬁk,n(t) - E{ﬁk,n (t)}

nd/(2)

= Zk(t)
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Future works

@ Combine the following three fields.
» Heavy Tail Probability

» Long Range Dependence
» Topological Data Analysis
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Future works

@ Combine the following three fields.
» Heavy Tail Probability

» Long Range Dependence
» Topological Data Analysis

Heavy tailed moving average process

@ Let (X;) be an iid R%valued random variables with a regularly
varying tail.

@ Then,
Yn = Xn—i-AXn,l—i-BXn,Q, n = 1,2,...

defines a MA(2) process, where A and B are non-random
d x d-matrices with ||A||, || B|l < 1.
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