Limit Theorems for Betti Numbers of Extreme Sample Clouds

Takashi Owada

Technion-Israel Institute of Technology

June 2016

Topological data analysis

- Topological data analysis (TDA) is an approach to the analysis of datasets using techniques from topology and other mathematics.
- Typically, topologists classify objects into classes of "similar shapes" by the number of holes.

Topological data analysis

- Topological data analysis (TDA) is an approach to the analysis of datasets using techniques from topology and other mathematics.
- Typically, topologists classify objects into classes of "similar shapes" by the number of holes.

- As highlighted in a recent series of columns in the IMS Bulletin, the collaboration of three different disciplines, topology, probability, and statistics, is indispensable for the development of TDA.
 - The author of the column has invented a word, TOPOS (=topology, probability, and statistics).
- However, there are still only limited number of probabilistic and statistical works in TDA.

Betti numbers

- Basic quantifier in algebraic topology.
- Given a topological space X, the 0-th Betti number $\beta_0(X)$ is defined as

 $\beta_0(X)$ = the number of connected components in X.

• For $k \ge 1$, the *k*-th Betti number $\beta_k(X)$ is defined as

 $\beta_k(X) =$ the number of k-dim holes in X.

Betti numbers

- Basic quantifier in algebraic topology.
- Given a topological space X, the 0-th Betti number $\beta_0(X)$ is defined as

 $\beta_0(X)$ = the number of connected components in X.

• For $k \ge 1$, the k-th Betti number $\beta_k(X)$ is defined as

 $\beta_k(X)$ = the number of k-dim holes in X.

More intuitively,

 $\beta_1(X)$ = the number of "closed loops" in X. $\beta_2(X)$ = the number of "hollows" in X.

$$\beta_0 = 1, \ \beta_1 = 0, \ \beta_2 = 1,$$

 $\beta_k = 0, \ k \ge 3.$

 $\begin{array}{l} \beta_0 = 1, \ \beta_1 = 2, \ \beta_2 = 1, \\ \\ \beta_k = 0, \ k \geq 3. \end{array}$

Scheme

- 1. Generate random sample from an underlying probability law.
 - (X_i) : iid \mathbb{R}^d -valued random variables, $d \ge 2$, with spherically symmetric density f.

Scheme

- 1. Generate random sample from an underlying probability law.
 - (X_i) : iid \mathbb{R}^d -valued random variables, $d \ge 2$, with spherically symmetric density f.

Case I: regularly varying tail

• f has a regularly varying tail: for some $\alpha > d$,

$$\lim_{r \to \infty} \frac{f(rte_1)}{f(re_1)} = t^{-\alpha} \text{ for every } t > 0 \,,$$

where $e_1 = (1, 0, ..., 0) \in \mathbb{R}^d$.

Scheme

- 1. Generate random sample from an underlying probability law.
 - (X_i) : iid \mathbb{R}^d -valued random variables, $d \ge 2$, with spherically symmetric density f.

Case I: regularly varying tail

• f has a regularly varying tail: for some $\alpha > d$,

$$\lim_{r \to \infty} \frac{f(rte_1)}{f(re_1)} = t^{-\alpha} \text{ for every } t > 0 \,,$$

where $e_1 = (1, 0, ..., 0) \in \mathbb{R}^d$.

• For example,

$$f(x) = C/(1+||x||^{\alpha}), \ x \in \mathbb{R}^d, \ \alpha > d.$$

Case II: exponentially decaying tail

• Assume that $f(x) = L(||x||)e^{-\psi(||x||)}$, $x \in \mathbb{R}^d$.

•
$$\psi'(z) > 0$$
, $\psi(z) \to \infty$, $(1/\psi')'(z) \to 0$ as $z \to \infty$.

- ψ is a von-Mises function.
- $L: \mathbb{R}_+ \to \mathbb{R}_+$ can be ignored in the tail of f.

Case II: exponentially decaying tail

• Assume that $f(x) = L(||x||)e^{-\psi(||x||)}$, $x \in \mathbb{R}^d$.

•
$$\psi'(z) > 0$$
, $\psi(z) \to \infty$, $(1/\psi')'(z) \to 0$ as $z \to \infty$

- ψ is a von-Mises function.
- $L: \mathbb{R}_+ \to \mathbb{R}_+$ can be ignored in the tail of f.

• For example,

$$f(x) = Ce^{-||x||^{\tau}/\tau}, \quad x \in \mathbb{R}^d, \quad \tau > 0.$$

To make our story simpler, we will work on special examples in the following.

Case I:

$$f(x) = C/(1+||x||^{\alpha}), \ x \in \mathbb{R}^{d}, \ \alpha > d.$$

To make our story simpler, we will work on special examples in the following.

Case I:

$$f(x) = C/(1+||x||^{\alpha}), \ x \in \mathbb{R}^{d}, \ \alpha > d.$$

Case II:

$$f(x) = Ce^{-||x||^{\tau}/\tau}, \quad x \in \mathbb{R}^d, \quad \tau > 0.$$

- If $0 < \tau < 1$, f has a subexponential tail.
- If $\tau = 1$, f has an exponential tail.
- If $\tau > 1$, f has a superexponential tail.

Note: All the results in this talk hold in the general setup.

2. Draw random balls of radius t about X'_i s.

3. Establish the limit theorems for Betti numbers of the union of balls.

• Core = a centered ball in which random points are scattered very densely so that the union of balls inside the region is contractible (= can continuously shrink to a single point).

• Core = a centered ball in which random points are scattered very densely so that the union of balls inside the region is contractible (= can continuously shrink to a single point).

Formal definition.

Given a set of random points $\mathcal{X}_n = \{X_1, \dots, X_n\}$, a centered ball $B(0; R_n)$ is called a core if

$$\mathbb{P}\left\{ B(0;R_n) \subset \bigcup_{X \in \mathcal{X}_n \cap B(0;R_n)} B(X;1) \right\} \to 1, \quad n \to \infty.$$

Proposition [Adler et. al, 2014].

Let $\mathcal{X}_n = \{X_1, \dots, X_n\}$ be an iid random sample with density

$$f(x) = C/(1+||x||^{\alpha}), \ x \in \mathbb{R}^{d}, \ \alpha > d.$$

Then, there exists a sequence $R_n^{(c)} = C'(n/\log n)^{1/\alpha}$ for some C' > 0, such that

$$\mathbb{P}\left\{B(0; R_n^{(c)}) \subset \bigcup_{X \in \mathcal{X}_n \cap B(0; R_n^{(c)})} B(X; 1)\right\} \to 1, \quad n \to \infty,$$

i.e., $B(0; R_n^{(c)})$ is a core.

Proposition [Adler et. al, 2014].

Let $\mathcal{X}_n = \{X_1, \ldots, X_n\}$ be an iid random sample with density

$$f(x) = Ce^{-||x||^{\tau}/\tau}, \quad x \in \mathbb{R}^d, \quad \tau > 0.$$

Then,

$$\mathbb{P}\left\{ B(0; R_n^{(c)}) \subset \bigcup_{X \in \mathcal{X}_n \cap B(0; R_n^{(c)})} B(X; 1) \right\} \to 1, \quad n \to \infty,$$

holds, where

$$R_n^{(c)} = \left(\tau \log n - \tau \log \log(\tau \log n)^{1/\tau} + C'\right)^{1/\tau}$$

Proposition [Adler et. al, 2014] (continued).

(i) If $0 < \tau \leq 1$, i.e, f has either a subexponential or an exponential tail,

 $\mathbb{P}\Big\{ \text{ there exist random points outside } B(0;R_n^{(c)}) \Big\} \to 1, \quad n \to \infty.$

(ii) If $\tau > 1$, i.e, f has a superexponential tail,

 $\mathbb{P}\Big\{\text{ there exist random points outside }B(0;R_n^{(c)})\Big\}\to \mathbf{0}, \quad n\to\infty.$

• The related notion, a weak core, plays a more decisive role in the characterization of the limit theorems for Betti numbers.

Definition

Let f be a spherically symmetric density on \mathbb{R}^d and $R_n^{(w)}\to\infty$ be a sequence determined by

$$nf(R_n^{(w)}e_1) \to 1, \quad n \to \infty.$$

Then $B(0; R_n^{(w)})$ is called a weak core.

<u>Case I</u> (power-law tail)

• If
$$f(x) = C/(1 + ||x||^{\alpha})$$
, $x \in \mathbb{R}^d$, $\alpha > d$, then
$$R_n^{(w)} = (Cn)^{1/\alpha}.$$

 $\underline{\mathbf{c.f.}} \ R_n^{(c)} = C' \big(n/\log n \big)^{1/\alpha}.$

• $R_n^{(c)}/R_n^{(w)} \to 0$, but they share the same regular variation exponent, $1/\alpha$.

<u>Case I</u> (power-law tail)

• If
$$f(x) = C/(1 + ||x||^{\alpha})$$
, $x \in \mathbb{R}^d$, $\alpha > d$, then
$$R_n^{(w)} = (Cn)^{1/\alpha}.$$

c.f.
$$R_n^{(c)} = C' (n/\log n)^{1/\alpha}$$

• $R_n^{(c)}/R_n^{(w)} \to 0$, but they share the same regular variation exponent, $1/\alpha$.

Case II (exponentially decaying tail)

• If
$$f(x)=Ce^{-\|x\|^{\tau}/\tau}$$
 , $x\in\mathbb{R}^{d}$, $\tau>0$, then

 $R_n^{(w)} = (\tau \log n + \tau \log C)^{1/\tau}.$

c.f.
$$R_n^{(c)} = \left(\tau \log n - \tau \log \log(\tau \log n)^{1/\tau} + C'\right)^{1/\tau}$$

Betti number in the tail

• $\mathcal{X}_n = \{X_1, \dots, X_n\}$: iid \mathbb{R}^d -valued random variables drawn from a power-law distribution or a (sub)exponential distribution.

• For
$$k \ge 1$$
, define
 $\beta_{k,n}(t) := \beta_k \left(\bigcup_{X \in \mathcal{X}_n \setminus B(0;R_n)} B(X;t) \right), \quad t \ge 0,$
where R_n is a non-random sequence with $R_n \ge R_n^{(w)}$ (= radius of a weak core).

Betti number in the tail

• $\mathcal{X}_n = \{X_1, \dots, X_n\}$: iid \mathbb{R}^d -valued random variables drawn from a power-law distribution or a (sub)exponential distribution.

• For
$$k \ge 1$$
, define
 $\beta_{k,n}(t) := \beta_k \left(\bigcup_{X \in \mathcal{X}_n \setminus B(0;R_n)} B(X;t) \right), \quad t \ge 0,$
where R is a non-random sequence with $R \ge R^{(w)}$ (- ray

where R_n is a non-random sequence with $R_n \ge R_n^{(w)}$ (= radius of a weak core).

Layered non-trivial homologies

- Assume $f(x) = C/(1 + ||x||^{\alpha})$, $x \in \mathbb{R}^d$, $\alpha > d$.
- Asymptotically (i.e., $n \to \infty$), we observe the following layered structure.

Layered non-trivial homologies

- Assume $f(x) = Ce^{-||x||^{\tau}/\tau}$, $x \in \mathbb{R}^d$, $0 < \tau \leq 1$ (i.e., having a (sub)exponential tail).
- Asymptotically (i.e., $n \to \infty$), we observe the following layered structure.

• In what follows, we only treat power-law tail distributions.

• Looking at the asymptotic (i.e., $n \to \infty$) spatial distribution of k-dim holes,

• Looking at the asymptotic (i.e., $n \to \infty$) spatial distribution of k-dim holes,

• Three different regimes must be considered. We set, respectively,

• [1]:
$$R_n = (Cn)^{1/(\alpha - d/(k+2))}$$
,

• [2]:
$$(Cn)^{1/\alpha} \ll R_n \ll (Cn)^{1/(\alpha - d/(k+2))}$$
,

• [3]:
$$R_n = (Cn)^{1/\alpha}$$
,

and compute $\beta_{k,n}(t)$ by counting k-dim holes outside $B(0; R_n)$.

In the regime [1],

There exist finitely many k-dim holes formed by k + 2 random points outside B(0; R_n) as n → ∞.

$$R_n = (Cn)^{1/(\alpha - d/(k+2))}$$

Example (k = 1)

• The appearance of holes is a rare event.

Limiting process for $\beta_{k,n}(t)$:

$$N_k(t) := \int_{(\mathbb{R}^d)^{k+1}} h_t(0, y_1, \dots, y_{k+1}) M_k(d\mathbf{y}).$$

• M_k is a Poisson random measure with Lebesgue intensity measure on $(\mathbb{R}^d)^{k+1}$.

•
$$h_t(0, y_1, \dots, y_{k+1}) = \mathbf{1} \left\{ \beta_k \left(B(0; t) \cup \bigcup_{i=1}^{k+1} B(y_i; t) \right) = 1 \right\}$$

with $0, y_1, \dots, y_{k+1} \in \mathbb{R}^d$.

• $h_t(0, \mathbf{y})$ can be expressed as

$$h_t(0, \mathbf{y}) = h_t^+(0, \mathbf{y}) - h_t^-(0, \mathbf{y}),$$

where h_t^+ and h_t^- are some other indicator functions, which are non-decreasing in t.

• $h_t(0,\mathbf{y})$ can be expressed as

$$h_t(0, \mathbf{y}) = h_t^+(0, \mathbf{y}) - h_t^-(0, \mathbf{y}),$$

where h_t^+ and h_t^- are some other indicator functions, which are non-decreasing in t.

• Accordingly,

$$N_k(t) = \int_{(\mathbb{R}^d)^{k+1}} h_t^+(0, \mathbf{y}) M_k(d\mathbf{y}) - \int_{(\mathbb{R}^d)^{k+1}} h_t^-(0, \mathbf{y}) M_k(d\mathbf{y})$$
$$:= N_k^+(t) - N_k^-(t).$$

- We can prove that $N_k^+(t)$ and $N_k^-(t)$ are represented as a (time-changed) Poisson process.
 - However, $N_k(t)$ is not a (time-changed) Poisson process.

Theorem 1. [O., 2016]

In the regime [1], we have, as $n \to \infty$,

$$\beta_{k,n}(t) \Rightarrow N_k^+(t) - N_k^-(t).$$

In the regime [2],

There exist infinitely many k-dim holes formed by k + 2 points outside B(0; R_n) as n → ∞.


```
Example (k = 1)
```


• The appearance of holes is no longer a rare event.

Limiting process for $\beta_{k,n}(t)$: Define a Gaussian process

$$Y_k(t) := \int_{(\mathbb{R}^d)^{k+1}} h_t(0, y_1, \dots, y_{k+1}) G_k(d\mathbf{y}).$$

• G_k is a Gaussian random measure with Lebesgue control measure on $(\mathbb{R}^d)^{k+1}$.

•
$$h_t(0, y_1, \dots, y_{k+1}) = \mathbf{1} \left\{ \beta_k \left(B(0; t) \cup \bigcup_{i=1}^{k+1} B(y_i; t) \right) = 1 \right\}$$

with $0, y_1, \dots, y_{k+1} \in \mathbb{R}^d$.

• Using the decomposition $h_t = h_t^+ - h_t^-$, we can write

$$Y_k(t) = \int_{(\mathbb{R}^d)^{k+1}} h_t^+(0, \mathbf{y}) G_k(d\mathbf{y}) - \int_{(\mathbb{R}^d)^{k+1}} h_t^-(0, \mathbf{y}) G_k(d\mathbf{y})$$
$$:= Y_k^+(t) - Y_k^-(t).$$

- Then, $Y_k^+(t)$ and $Y_k^-(t)$ are represented as a (time-changed) Brownian motion.
 - ► Y_k(t) is a Gaussian process, but it is not a (time-changed) Brownian motion.

Theorem 2. [O., 2016]

In the regime [2], we have, as $n \to \infty$,

$$\frac{\beta_{k,n}(t) - \mathbb{E}\{\beta_{k,n}(t)\}}{\left(n^{k+2}R_n^{d-\alpha(k+2)}\right)^{1/2}} \Rightarrow Y_k^+(t) - Y_k^-(t)$$

In the regime [3],

finitely many K-dim holes formed by k+2 random points

 $R_{k,n} = (Cn)^{1/(\alpha - d/(k+2))}$

infinitely many k-dim holes formed by k+2 random points

Example (k = 1)

• In the regimes [1] and [2], all the one-dim holes contributing to $\beta_{1,n}(t)$ in the limit are always of the form

• In the regime [3], many different kinds of one-dim holes (which exist close enough to a weak core) contribute to $\beta_{1,n}(t)$ in the limit.

The limiting Gaussian process is given by

$$Z_k(t) := \sum_{i=k+2}^{\infty} \sum_{j>0} Z_k^{(i,j)}(t) \,.$$

Z_k^(i,j)(t) is a Gaussian process representing the connected components that are formed by i points and contain j holes.

The limiting Gaussian process is given by

$$Z_k(t) := \sum_{i=k+2}^{\infty} \sum_{j>0} Z_k^{(i,j)}(t) \,.$$

Z_k^(i,j)(t) is a Gaussian process representing the connected components that are formed by i points and contain j holes.

Example: $Z_1^{(15,2)}(t)$ (i.e., k = 1, i = 15, j = 2).

Rewrite $Z_k(t)$ as

$$Z_k(t) = Z_k^{(k+2,1)}(t) + \sum_{i=k+3}^{\infty} \sum_{j>0} Z_k^{(i,j)}(t) \,.$$

 Z_k^(k+2,1)(t) represents the connected components that are formed by k + 2 points and contain a single k-dimensional hole.

Example:
$$Z_1^{(3,1)}(t)$$
 (i.e., $k = 1$, $i = 3$, $j = 1$).

Rewrite $Z_k(t)$ as

$$Z_k(t) = Z_k^{(k+2,1)}(t) + \sum_{i=k+3}^{\infty} \sum_{j>0} Z_k^{(i,j)}(t) \,.$$

Z_k^(k+2,1)(t) represents the connected components that are formed by k + 2 points and contain a single k-dimensional hole.

Example:
$$Z_1^{(3,1)}(t)$$
 (i.e., $k = 1$, $i = 3$, $j = 1$).

• $Z_k^{(k+2,1)}(t)$ is "similar" to the $Y_k(t)$ in the regime [2].

Theorem 3. [O., 2016]

In the regime [3], we have, as $n \to \infty$,

$$\frac{\beta_{k,n}(t) - \mathbb{E}\left\{\beta_{k,n}(t)\right\}}{n^{d/(2\alpha)}} \Rightarrow Z_k(t).$$

Future works

- Combine the following three fields.
 - Heavy Tail Probability
 - Long Range Dependence
 - Topological Data Analysis

Future works

- Combine the following three fields.
 - Heavy Tail Probability
 - Long Range Dependence
 - Topological Data Analysis

Heavy tailed moving average process

- Let (X_i) be an iid \mathbb{R}^d -valued random variables with a regularly varying tail.
- Then,

$$Y_n := X_n + AX_{n-1} + BX_{n-2}, \quad n = 1, 2, \dots$$

defines a MA(2) process, where A and B are non-random $d \times d$ -matrices with ||A||, ||B|| < 1.