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The genesis

Mark Kac:

“...Integral Geometry is an outgrowth of what in olden days was
referred to as Geometric Probability

“...Probability Theory is measure theory with a soul which in this
case is provided not by Physics or by the games of chance or by
Economics but by the most ancient and noble of all mathematical
disciplines namely Geometry.”
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Integral formulae: definition via example

Consider a domain D, and the set of straight lines G in R2.
Parameterization of G : angle φ that the direction perpendicular to
given line ` makes with a fixed direction; and distance p of line `
from the origin.
Measure on G invariant under group of rigid motions:

d`
∆
= dp ∧ dφ.

Set σ`(D) as the length of D ∩ `: chord length

What is the “cumulative” chord length?∫
G
σ`(D) d` = π × (area of D)
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Another example: Buffon’s needle

A needle of length L1 is dropped randomly on a ruled surface
with d being the distance between any two adjacent lines.

Let X1 be the number of intersections of the needle with the
ruled surface.

What is E(X1)? Clearly,

E(X1) =
∑
n≥0

npn = f (L1) (the only parameter in the problem),

where pn is the probability of n intersections.

Repeat the experiment with another needle of length L2, and
let X2 the number of its intersections with the ruled surface.
Question: what is the mean of total number of intersections
of needles L1 and L2?
Answer: E(X1 + X2) = f (L1) + f (L2) (by linearity).

What if the needles were welded together? Will the mean of
the total number of intersections change? No!
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Buffon’s needle

Generalization: Additivity + limiting argument ⇒ the average
number of intersections of a randomly dropped rigid piece of
(curved) wire is directly proportional to the length of the wire.

Curvature does not play any role!
The proportionality constant can be found to be 2

πd (by
choosing the piece of wire to be a circle with diameter d).

This rather non-probabilistic proof of Buffon’s needle problem
was given by Barbier (1860).
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A kinematic formula

Consider two rectifiable curves Γ1 and Γ2 in R2, with lengths
L1 and L2.

Let G2 be the group of rigid motions in R2, equipped with the
natural measure ν.

Let φ(Γ1
⋂

gΓ2) be the number of points of intersection of
the curves Γ1 and gΓ2.

Theorem (Poincaré (1912))∫
G2

φ(Γ1 ∩ gΓ2) dν(g) = 4 L1 L2

Remark: Important aspect of above problems: the rigid motion
invariances.
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Discussion

In 2-dimensions we looked at the average number of
intersections. What should be higher dimensional geometric
functionals to consider?

Natural candidates: rigid motion invariant, additive and
monotone valuations.

Hadwiger (1957): Consider Kn, the family of all polyconvex
sets. Then, there exist (n + 1) geometric functionals which
form a basis for all rigid motion invariant, additive, monotone
valuations. These geometric functionals are called
Lipschitz-Killing curvatures (LKCs) / Minkowski functionals.
[for proof: Klain-Rota (1997), or Beifang Chen (2004) ]

But, how does one characterize LKCs? −→ A tube formula
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LKCs: properties

For an m-dimensional subset A ⊂ Rn, L0(A) is its
Euler–Poincaré characteristic, and Lm(A) is its m-dimensional
volume.

Li , of say a set A, is an intrinsic, integral geometric
characteristics of the set.

LKCs for a smooth Riemannian manifold M can be defined as

Lk(M) = c(n, k)

∫
M

Tr
(
R

n−k
2

)
Volg

whenever n−k
2 is an integer, and it is zero otherwise.

Scaling: Lk(λA) = λkLk(A).
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Lipschitz–Killing curvatures (LKCs): examples

A box B with dimensions (a, b, c): L0(B) = 1,
L1(B) = (a + b + c), L2(B) = (ab + bc + ac), L3(B) = abc.

A ball Bn(r) of radius r in Rn:

Lj(Bn(r)) = r j
(

n
j

)
ωn

ωn−j

A sphere Sn−1(r) of radius r in Rn:

Lj(Sn−1(r)) = 2r j
(

n
j

)
ωn

ωn−j
,

for even values of (n − j − 1), and 0 otherwise.

For a unit codimensional manifold, every alternate Li vanishes.

S.P., J.E.T. & S.V. GKF 9 / 26



Euclidean Kinematic Fundamental Formula (KFF)

Bröcker & Kuppe (2000)

Gn: isometry group on Rn; isomorphic to Rn × O(n).

νn: a normalized measure on Gn, such that for any
A ∈ B(Rn), νn(ω ∈ Gn : ω(x) ∈ A) = Hn(A), for any x ∈ Rn.

Then for smooth M1 and M2, writing
M2(ω) = {ω(x) : x ∈ M2}, we have∫

Gn

Li (M1 ∩M2(ω)) dνn(ω)

=
n−i∑
j=0

si+1sn+1

si+j+1sn−j+1
Li+j(M1)Ln−j(M2)

An earlier version in two dimensions was proved by Blaschke.
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Gaussian Kinematic Fundamental Formula
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Preliminaries

Let f : Rd → R be a random field defined on Rd , and M be a
smooth manifold embedded in Rd .

Consider the sets: N f
u (ω) = {x ∈ Rd : f (x , ω) ≥ u}

Interest is in computing∫
Ω
L0

(
M ∩ N f

u (ω)
)
µ(dω)
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A Gaussian Kinematic Formula (GKF)

Taylor (2006)

Let M be an m-dimensional smooth manifold.

Let y1, . . . , yk be i.i.d. Gaussian random fields on M.

Let F : Rk → R be twice differentiable, and define
f = F (y1, y2, . . . , yk). Then

E
(
L0

(
M ∩ f −1[u,∞)

))
=

n∑
j=0

cj Lyj (M) Mγk
j

(
F−1[u,∞)

)
where Lyj (·) are the LKCs defined w.r.t. the induced metric given
by

g y (X ,Y ) = E (Xy1 · Yy1) ,

(The metric induced by any yi is the same due to i.i.d. nature of
yi ’s); and Mγk

j are the Gaussian Minkowski functionals (GMFs).
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Gaussian geometric characteristics via a Gaussian tube
formula

Gaussian Minkowski functionals (GMFs): Mγn
j

Let A be smooth subset of Rn, with
γn(dx) = (2π)−n/2e−‖x‖

2/2dx , then the GMFs can be defined
as

γn(Tube(A, ρ)) =
∞∑
j=0

ρj

j!
Mγn

j (A),

where Tube(A, ρ) is a tube of radius ρ around A.

One can also define the GMFs as integral of some Hermite
polynomials with respect to the measures induced by Li ’s,
called the generalized curvature measures .
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Discussion

Recall that

L0

(
M ∩ f −1[u,∞)

)
=

m∑
k=0

(−1)kµk

where

µk = #{x ∈ M : f (x) ≥ u, ∇f (x) = 0, index
(
∇2f (x)

)
= k}.

Using this relationship and a generalized Kac-Rice formula we
can try and compute E

(
L0

(
M ∩ f −1[u,∞)

))
.

Once we have a simplified expression, the goal is to identify
various terms involved, and finally get

E
(
L0

(
M ∩ f −1[u,∞)

))
=

n∑
j=0

cj Lyj (M) Mγk
j

(
F−1[u,∞)

)
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The above GKF is first instance of kinematic formula
involving non-Lebesgue measure.

A natural question then is if this result can be generalized to
possibly open a new class of kinematic formuae.
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Testing the Limits of Gaussian Kinematic Fundamental Formula
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The non IID case

Motivation: Most of the future cosmic microwave background
(CMB) experiments are being planned to focus on so called
polarization data, which can be modeled as 3-variate Gaussian
random field with components T , E and B modes in cosmological
literature.

These modes are reckoned to be non i.i.d.
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Setup:

Let M be an m-dimensional smooth manifold.

Let y1, . . . , yk be real valued, zero mean, unit variance
Gaussian random fields on M.

Setting y = (y1, . . . , yk), let the covariance of gradient field
be given as

cov(∇y) = D ⊗ I ,

where D = (λ1, . . . , λk). Here D represented the covariance
amongst the random fields, while I denotes the spatial
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A generalized GKF

Theorem

Writing L0 for the Euler-Poincaré, and setting K = F−1[u,∞) we
have

E
(
L0(M ∩ f −1[u,∞))

)
=

d∑
j=0

cj Lj(M)M∗j (K),

where M∗j (K) are coefficients appearing in the Taylor series
expansion of Gaussian volume of ellipsoidal tubes

TD(K, ε) = K ⊕ BD(ε),

with BD(ε) = {x ∈ Rk : xTD−1x ≤ ε2}.
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A peek into the proof

Object of study:
E
(
L0

(
M ∩ f −1[u,∞)

))

Setting

µk = #{x ∈ M : f (x) ≥ u, ∇f (x) = 0, index
(
∇2f (x)

)
= k},

and using the definition of Euler-Poincaré characteristic via critical
points,

E
(
L0

(
M ∩ f −1[u,∞)

))
= E

(
m∑

k=0

(−1)kµk

)

=

∫
M
E
{

Tr
(
−∇2f (x)

)m
1(f (x)≥u)

∣∣∣∇f (x) = 0
}
p∇f (x)(0) dx

=

∫
M
E
[
1(f (x)≥u)E

{
Tr
(
−∇2f (x)

)m∣∣∣ f (x),∇f (x) = 0
}]

× p∇f (x)(0) dx
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Sneak peek contd...

Notice that {∇2f
∣∣ y ,∇y} is a Gaussian (1, 1) form and we

have neat formulae available for its moments.

In general, if W is a (1, 1) Gaussian form with mean and
covariance given by µ and C , respectively, then

E[W k ] =

b k
2
c∑

j=0

k!

(k − 2j)!j!2j
µk−2j C j .

In our case:
µy ,∇y = E{∇2f

∣∣ y ,∇y} = y∗∇2F − I 〈D∇F (y), y〉
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For a smooth Gaussian random field z defined on a manifold
M, we usually have

−2Rz = E
[
(∇2z)2

]
,

where Rz is the Riemannian curvature tensor w.r.t. the metric
induced by z .

In our case: the conditional (co)variance

E
(

(y − µy ,∇y )2
∣∣∣ y ,∇y) is given by

−‖D∇F (y)‖2I 2 − 2‖D1/2∇F (y)‖R,

where R is the Riemannian curvature tensor with respect to
the base metric g .

Then need to go from conditioning on (y ,∇y) to conditioning
on (f ,∇f ), which involves another Gaussian computation
(majorly technical).
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A simplification

Let us restrict our attention to the case of k = 2, then

E
(
L0(M ∩ f −1[u,∞))

)
=

(
k∑
ν=1

1

λ2,ν
E

[
1(f>u)

(
∂F (y)

∂yν

)2
])

p∇f (0)4πL0(M)

+
1

2

2∑
i ,j=1

E
[
1(f>0)

(
µ2(y ,∇y)(Ei ,Ej ,Ei ,Ej)

−ST
∇F (Ei ,Ei )ΣM,(y ,∇y)Σ−1

(y ,∇y)Σ(y ,∇y),MS∇F (Ej ,Ej)

+ST
∇F (Ei ,Ej)ΣM,(y ,∇y)Σ−1

(y ,∇y)Σ(y ,∇y),MS∇F (Ej ,Ei )
)]

p∇f (0)L2(M)
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Analysis

Good news: we still have a breakup of the two spaces.

Bad news: we are yet to figure out meaning of the coefficients of
the LKCs.

Masterstroke: The coefficients match with the ellipsoidal Gaussian
tube formula, thus proving the result.
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Thanks
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