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What is a Graph?

It is a set X of points called vertices.

Pairs (x, y) of points of called edges. (x, y) and

(y, x) are the same edge.

If there are n vertices there are
n(n−1)

2 possible edges.

A graph specifies a sub set E from all possible edges
as being present.

A graph G is {X , E} vertices and subset of edges.
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A random graph is simply one in which the edge set
E is random.
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A random graph is simply one in which the edge set
E is random.

In Erdös-Renyi graphs P [(x, y) ∈ E ] = p and
different edges belong to E independently of one
another.

These are dense graphs with np edges coming out of
each vertex.

One can think of the graph of n vertices as a
symmetric n× n matrix A of 0’s and 1’s with 0’s on
the diagonal.

The matrix notation is useful.

Trace A2 is 2|E| and trace A3 is 6|∆|,
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Laws of large numbers.

2|E|
n2 → p and

6|∆|
n3 → p3.

How many homomorphisms from a finite graph

H = (H,E) to G = (X , E).

t(H,G) is the number of Homomorphisms of
H → G.

For the Erdös-Renyi random graph with probability
p for an edge,

t(H,G)
n|H| → p|S|
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Gn is a sequence of graphs.

t(H,Gn)
n|H| → σ(H). The graph limit.

What is σ(H)?

Graphon. Vertex set H = {x1, . . . , xk}. Edges
e ∈ E

There is a symmetric f , 0 ≤ f ≤ 1 on [0, 1]2 with

σ(H) =

∫

[0,1]k

∏

(xi,xj)=e∈E

f(xi, xj)Πxi∈Hdxi
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Large Deviations

(X,B, Pn)

For C closed

lim sup
n→∞

1

n
logPn[C] ≤ − inf

x∈C
I(x)
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Large Deviations

(X,B, Pn)

For C closed

lim sup
n→∞

1

n
logPn[C] ≤ − inf

x∈C
I(x)

For G open

lim inf
n→∞

1

n
logPn[G] ≥ − inf

x∈G
I(x)

I(x) ≥ 0 is lower semicontinuous and has compact

level sets Kℓ = {x : I(x) ≤ ℓ}
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Bernoulli P [X = 1] = p.
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Bernoulli P [X = 1] = p.

1

n

∑

δ i
N
Xi
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Bernoulli P [X = 1] = p.

1

n

∑

δ i
N
Xi

LDP on M([0, 1])
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Bernoulli P [X = 1] = p.

1

n

∑

δ i
N
Xi

LDP on M([0, 1])

I(ρ(·)) =

∫ 1

0

[ρ(x) log
ρ(x)

p
+ (1− ρ(x)) log

1− ρ(x)

1− p
dx]

Random Graphs – p. 7/30



Bernoulli P [X = 1] = p.

1

n

∑

δ i
N
Xi

LDP on M([0, 1])

I(ρ(·)) =

∫ 1

0

[ρ(x) log
ρ(x)

p
+ (1− ρ(x)) log

1− ρ(x)

1− p
dx]

lim
n→∞

1

n
logE[exp[

∑

i

J(
i

n
)Xi]] =

∫ 1

0

ψ(J(x))dx
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ψ(v) = logE[evX ] = log[pev + (1− p)]
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ψ(v) = logE[evX ] = log[pev + (1− p)]

sup
v
[vρ− ψ(v)] = ρ log

ρ

p
+ (1− ρ) log

1− ρ

1− p
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ψ(v) = logE[evX ] = log[pev + (1− p)]

sup
v
[vρ− ψ(v)] = ρ log

ρ

p
+ (1− ρ) log

1− ρ

1− p

Chebychev’s inequality for half planes.

Optimize

We have local upper bounds in the weak topology.
Space is compact we get global upper bounds for
closed sets.
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Our problem is different

The number of i.i.d variables is
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2 ≃ n2
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Our problem is different

The number of i.i.d variables is
n(n−1)

2 ≃ n2

2 .

The space is symmetric functions f on [0, 1]2. Or a

function on D = {0 ≤ x ≤ y ≤ 1}.

The rate function when normalized by n2 is
1
2

∫

[0,1]2 hρ(f(x, y))dxdy where

hρ(f) = f log
f

ρ
+ (1− f) log

1− f

1− ρ
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The matrix A can be viewed as a function a(x, y)on

[0, 1]2
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The matrix A can be viewed as a function a(x, y)on

[0, 1]2

a(x, y) = ai,j on i−1
n
< x < i

n
, j−1

n
< y < j

n

We have measures Pn,ρ on the space A of symmetric

functions a on [0, 1]2 with 0 ≤ a ≤ 1.

The LLN says Pn,ρ → δρ

What is the LDP?

We are interested in quantities like number of
triangles.
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The matrix A can be viewed as a function a(x, y)on

[0, 1]2

a(x, y) = ai,j on i−1
n
< x < i

n
, j−1

n
< y < j

n

We have measures Pn,ρ on the space A of symmetric

functions a on [0, 1]2 with 0 ≤ a ≤ 1.

The LLN says Pn,ρ → δρ

What is the LDP?

We are interested in quantities like number of
triangles.
∫

a(x, y)a(y, z)a(z, x)dxdydz
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anii = 0, an2i,2j = an2i+1,2j+1 = 0,
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anii = 0, an2i,2j = an2i+1,2j+1 = 0,

an2i,2j+1 = an2i+1.2j = 1

No of triangles is

0 =
∫

a(x, y)a(y, z)a(z, x)dxdydz
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anii = 0, an2i,2j = an2i+1,2j+1 = 0,

an2i,2j+1 = an2i+1.2j = 1

No of triangles is 0 =
∫

a(x, y)a(y, z)a(z, x)dxdydz

Weak limit of an is a(x, y) = 1
2 .
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anii = 0, an2i,2j = an2i+1,2j+1 = 0,

an2i,2j+1 = an2i+1.2j = 1

No of triangles is 0 =
∫

a(x, y)a(y, z)a(z, x)dxdydz

Weak limit of an is a(x, y) = 1
2 .

∫

a(x, y)(y, z)a(z, x)dxdydz = 1
8
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anii = 0, an2i,2j = an2i+1,2j+1 = 0,

an2i,2j+1 = an2i+1.2j = 1

No of triangles is 0 =
∫

a(x, y)a(y, z)a(z, x)dxdydz

Weak limit of an is a(x, y) = 1
2 .

∫

a(x, y)(y, z)a(z, x)dxdydz = 1
8

Expect n3

8 triangles!
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Rearrange the vertices. Relabel them.
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Rearrange the vertices. Relabel them.

ani,j = 1 if 1 ≤ i ≤ n
2 , j >

n
2 or 1 ≤ j ≤ n

2 , i >
n
2
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Rearrange the vertices. Relabel them.

ani,j = 1 if 1 ≤ i ≤ n
2 , j >

n
2 or 1 ≤ j ≤ n

2 , i >
n
2

Otherwise 0
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Rearrange the vertices. Relabel them.

ani,j = 1 if 1 ≤ i ≤ n
2 , j >

n
2 or 1 ≤ j ≤ n

2 , i >
n
2

Otherwise 0

a(x, y) = 1 if 0 ≤ x ≤ 1
2,

1
2 ≤ y ≤ 1 or

0 ≤ y ≤ 1
2 ,

1
2 ≤ x ≤ 1

Random Graphs – p. 12/30



Rearrange the vertices. Relabel them.

ani,j = 1 if 1 ≤ i ≤ n
2 , j >

n
2 or 1 ≤ j ≤ n

2 , i >
n
2

Otherwise 0

a(x, y) = 1 if 0 ≤ x ≤ 1
2,

1
2 ≤ y ≤ 1 or

0 ≤ y ≤ 1
2 ,

1
2 ≤ x ≤ 1

∫

a(x, y)a(y, z)a(z, x)dxdydz = 0
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weak topology is no good. Too weak.
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weak topology is no good. Too weak.

Strong or L1 topology is too strong.

LLN is not valid.
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weak topology is no good. Too weak.

Strong or L1 topology is too strong.

LLN is not valid.

We need some thing in between.
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d(f, g) = sup
h:‖h‖∞≤1

|

∫

[f − g]h(x, y)dxdy|
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d(f, g) = sup
h:‖h‖∞≤1

|

∫

[f − g]h(x, y)dxdy|

d(f, g) = sup
E

|

∫

E

[f − g]dxdy|
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d(f, g) = sup
h:‖h‖∞≤1

|

∫

[f − g]h(x, y)dxdy|

d(f, g) = sup
E

|

∫

E

[f − g]dxdy|

d�(f, g) = sup
h,k:‖h‖∞≤1

‖k‖∞≤1

|

∫

[f − g]h(x)k(y)dxdy|

Random Graphs – p. 14/30



d(f, g) = sup
h:‖h‖∞≤1

|

∫

[f − g]h(x, y)dxdy|

d(f, g) = sup
E

|

∫

E

[f − g]dxdy|

d�(f, g) = sup
h,k:‖h‖∞≤1

‖k‖∞≤1

|

∫

[f − g]h(x)k(y)dxdy|

d�(f, g) = sup
E,F

|

∫

E×F

[f − g]dxdy|
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σ(H, f) =

∫

[0,1]k

∏

(i,j)∈E

f(xi, xj)dx1 · · · dxk
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σ(H, f) =

∫

[0,1]k

∏

(i,j)∈E

f(xi, xj)dx1 · · · dxk

Continuous in the d� metric.
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σ(H, f) =

∫

[0,1]k

∏

(i,j)∈E

f(xi, xj)dx1 · · · dxk

Continuous in the d� metric.

Replace fn by f in one edge at a time.
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σ(H, f) =

∫

[0,1]k

∏

(i,j)∈E

f(xi, xj)dx1 · · · dxk

Continuous in the d� metric.

Replace fn by f in one edge at a time.
∫

Fn(xi)fn(xi, xj)Gn(xj) ≃
∫

Fn(xi)f(xi, xj)Gn(xj)
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Is the LLN valid in the cut or box topology?
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Let E,F be subsets of 1, 2, . . . , n.
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Is the LLN valid in the cut or box topology?

Let E,F be subsets of 1, 2, . . . , n.

Uniformly in E and F

P [|
[

∑

i∈E

j∈F

Xij − p|E||F |
]

| ≥ ǫn2] ≤ e−c(ǫ)n2
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Is the LLN valid in the cut or box topology?

Let E,F be subsets of 1, 2, . . . , n.

Uniformly in E and F

P [|
[

∑

i∈E

j∈F

Xij − p|E||F |
]

| ≥ ǫn2] ≤ e−c(ǫ)n2

The number of such pairs is at most 2n × 2n = eO(n).
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Is the LLN valid in the cut or box topology?

Let E,F be subsets of 1, 2, . . . , n.

Uniformly in E and F

P [|
[

∑

i∈E

j∈F

Xij − p|E||F |
]

| ≥ ǫn2] ≤ e−c(ǫ)n2

The number of such pairs is at most 2n × 2n = eO(n).

LLN holds in the cut metric.
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Lower bound is easy.
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Lower bound is easy.

Assume ρ(x, y) is continuous.
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Lower bound is easy.

Assume ρ(x, y) is continuous.

Tilt. Make Xi,j Bernoulli with

Qn[Xi,j = 1] = ρ( i
n
, j
n
)
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Lower bound is easy.

Assume ρ(x, y) is continuous.

Tilt. Make Xi,j Bernoulli with

Qn[Xi,j = 1] = ρ( i
n
, j
n
)

P gets replaced by Qn and the law of large numbers

for Qn provides the limit ρ(x) in the cut metric.
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Lower bound is easy.

Assume ρ(x, y) is continuous.

Tilt. Make Xi,j Bernoulli with

Qn[Xi,j = 1] = ρ( i
n
, j
n
)

P gets replaced by Qn and the law of large numbers

for Qn provides the limit ρ(x) in the cut metric.

A is a neighborhood of ρ and Qn(A) → 1.
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Pn(A) =

∫

A

dPn

dQn

dQn
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Pn(A) =

∫

A

dPn

dQn

dQn

= Qn(A)
1

Qn(A)

∫

A

exp[− log
dQn

dPn

]dQn
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Pn(A) =

∫

A

dPn

dQn

dQn

= Qn(A)
1

Qn(A)

∫

A

exp[− log
dQn

dPn

]dQn

≥ Qn(A) exp[−
1

Qn(A)

∫

A

log
dQn

dPn

dQn]
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Pn(A) =

∫

A

dPn

dQn

dQn

= Qn(A)
1

Qn(A)

∫

A

exp[− log
dQn

dPn

]dQn

≥ Qn(A) exp[−
1

Qn(A)

∫

A

log
dQn

dPn

dQn]

lim inf
1

n2
logPn(A) ≥ − lim

1

n2

∫

log
dQn

dPn

dQn
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Pn(A) =

∫

A

dPn

dQn

dQn

= Qn(A)
1

Qn(A)

∫

A

exp[− log
dQn

dPn

]dQn

≥ Qn(A) exp[−
1

Qn(A)

∫

A

log
dQn

dPn

dQn]

lim inf
1

n2
logPn(A) ≥ − lim

1

n2

∫

log
dQn

dPn

dQn

≥ −I(ρ)
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Upper bound needs Szemeredi’s Regularity
Theorem.
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Upper bound needs Szemeredi’s Regularity
Theorem.

http://www.math.uchicago.edu/
may/VIGRE/VIGRE2011/REUPapers/LeeG.pdf

Random Graphs – p. 19/30



Upper bound needs Szemeredi’s Regularity
Theorem.

http://www.math.uchicago.edu/
may/VIGRE/VIGRE2011/REUPapers/LeeG.pdf

G is a graph. Its vertices are X and its edges are E .

Random Graphs – p. 19/30



Upper bound needs Szemeredi’s Regularity
Theorem.

http://www.math.uchicago.edu/
may/VIGRE/VIGRE2011/REUPapers/LeeG.pdf

G is a graph. Its vertices are X and its edges are E .

If A and B are disjoint subsets of X then e(A,B) is

the number of edges connecting A and B. |A| and

|B| are the size or the number of vertices in |A| and

|B|.
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Upper bound needs Szemeredi’s Regularity
Theorem.

http://www.math.uchicago.edu/
may/VIGRE/VIGRE2011/REUPapers/LeeG.pdf

G is a graph. Its vertices are X and its edges are E .

If A and B are disjoint subsets of X then e(A,B) is

the number of edges connecting A and B. |A| and

|B| are the size or the number of vertices in |A| and

|B|.

r(A,B) = e(A,B)
|A||B| ≤ 1
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If P is a partition of X into disjoint subsets

A1, . . . , Ak, then g(P) is defined as
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If P is a partition of X into disjoint subsets

A1, . . . , Ak, then g(P) is defined as

g(P) =
∑

i<j

[r(Ai, Aj)]
2 |Ai||Aj|

n2
≤

∑

i<j

|Ai||Aj|

n2
≤ 1
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If P is a partition of X into disjoint subsets

A1, . . . , Ak, then g(P) is defined as

g(P) =
∑

i<j

[r(Ai, Aj)]
2 |Ai||Aj|

n2
≤

∑

i<j

|Ai||Aj|

n2
≤ 1

We will consider partitions into k + 1 sets where A0

is special, in which case we define
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If P is a partition of X into disjoint subsets

A1, . . . , Ak, then g(P) is defined as

g(P) =
∑

i<j

[r(Ai, Aj)]
2 |Ai||Aj|

n2
≤

∑

i<j

|Ai||Aj|

n2
≤ 1

We will consider partitions into k + 1 sets where A0

is special, in which case we define

h(P) =

∑

1≤i<j≤k

[r(Ai, Aj)]
2 |Ai||Aj|

n2
+

∑

a∈A0

∑

1≤i≤k

[r({a}, Ai)]
2 |Ai|

n2

(10)
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A pair (Ai, Aj), i 6= j 6= 0 of the partition P is ǫ
regular if
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A pair (Ai, Aj), i 6= j 6= 0 of the partition P is ǫ
regular if

For any two subsets Bi ⊂ Ai and Bj ⊂ Aj with

|Bi| ≥ ǫ|Ai| and |Bj| ≥ ǫ|Aj| we have
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A pair (Ai, Aj), i 6= j 6= 0 of the partition P is ǫ
regular if

For any two subsets Bi ⊂ Ai and Bj ⊂ Aj with

|Bi| ≥ ǫ|Ai| and |Bj| ≥ ǫ|Aj| we have

|r(Bi, Bj)− r(Ai, Aj)| ≤ ǫ
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A partition P of the set X of n vertices of a graph
into k + 1 subsets A0, A1, . . . , Ak is called ǫ regular
if
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A partition P of the set X of n vertices of a graph
into k + 1 subsets A0, A1, . . . , Ak is called ǫ regular
if

|A0| ≤ ǫn
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A partition P of the set X of n vertices of a graph
into k + 1 subsets A0, A1, . . . , Ak is called ǫ regular
if

|A0| ≤ ǫn

|A1| = |A2| = · · · = |Ak| = d
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A partition P of the set X of n vertices of a graph
into k + 1 subsets A0, A1, . . . , Ak is called ǫ regular
if

|A0| ≤ ǫn

|A1| = |A2| = · · · = |Ak| = d

And out of all possible pairs Ai, Aj with

1 ≤ i < j ≤ k at most ǫk2 are not regular.
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Lemma. Given ǫ > 0 there is an n0(ǫ) that satisfies
the following. For any integer q there is an integer

q′(ǫ, q) > q with the property that if n ≥ n0(ǫ) and
n ≥ q, for any graph with n vertices there is an ǫ
regular partition of its vertices X into ℓ+ 1 sets

A0, A1, . . . , Aℓ for some ℓ with q ≤ ℓ ≤ q′(ǫ, q).
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Lemma. Given ǫ > 0 there is an n0(ǫ) that satisfies
the following. For any integer q there is an integer

q′(ǫ, q) > q with the property that if n ≥ n0(ǫ) and
n ≥ q, for any graph with n vertices there is an ǫ
regular partition of its vertices X into ℓ+ 1 sets

A0, A1, . . . , Aℓ for some ℓ with q ≤ ℓ ≤ q′(ǫ, q).

Idea of proof. Step 1. Suppose we have a partition

A0, A1, . . . , Ak with |A1| = |A2| = · · · = |Ak| = d

and |A0| ≤ δn with δ < 1
4 and ǫk2 pairs of Ai, Aj

that are not regular.
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Lemma. Given ǫ > 0 there is an n0(ǫ) that satisfies
the following. For any integer q there is an integer

q′(ǫ, q) > q with the property that if n ≥ n0(ǫ) and
n ≥ q, for any graph with n vertices there is an ǫ
regular partition of its vertices X into ℓ+ 1 sets

A0, A1, . . . , Aℓ for some ℓ with q ≤ ℓ ≤ q′(ǫ, q).

Idea of proof. Step 1. Suppose we have a partition

A0, A1, . . . , Ak with |A1| = |A2| = · · · = |Ak| = d

and |A0| ≤ δn with δ < 1
4 and ǫk2 pairs of Ai, Aj

that are not regular.

We notice that the regularity condition has two parts.
The size of A0 and the regularity of all but at most

ǫk2 of the pairs in A1, A2, . . . , Ak.
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Suppose we have a partition that is not regular and it
is not because of the size of A0. We can assume

without loss of generality that ǫ < 1
4 . There are at

least ǫk2 pairs of sets Ai, Aj from the collection that
are not regular
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Suppose we have a partition that is not regular and it
is not because of the size of A0. We can assume

without loss of generality that ǫ < 1
4 . There are at

least ǫk2 pairs of sets Ai, Aj from the collection that
are not regular

Let us take one such pair Ai, Aj , with subsets

Bi ⊂ Ai, Bj ⊂ Aj with the property

|Bi| ≥ ǫ|Ai|, |Bj| ≥ ǫ|Aj| and

|r(Bi, Bj)− r(Ai, Aj)| ≥ ǫ

Random Graphs – p. 24/30



Suppose we have a partition that is not regular and it
is not because of the size of A0. We can assume

without loss of generality that ǫ < 1
4 . There are at

least ǫk2 pairs of sets Ai, Aj from the collection that
are not regular

Let us take one such pair Ai, Aj , with subsets

Bi ⊂ Ai, Bj ⊂ Aj with the property

|Bi| ≥ ǫ|Ai|, |Bj| ≥ ǫ|Aj| and

|r(Bi, Bj)− r(Ai, Aj)| ≥ ǫ

We refine the partition by replacing Ai, Aj by

Bi, Ai ∩B
c
i and Bj, Aj ∩ B

c
j

Random Graphs – p. 24/30



Step 2. Any refinement increases g(P).
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Step 2. Any refinement increases g(P).

We can think of xi,j = 1 or 0 depending on whether

there is an edge or not as random variables and the

ratio r(Ai, Aj) as the conditional expectation given a

sub σ-field. The measure is the product measure 1
n2

on any pair (i, j).
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Step 2. Any refinement increases g(P).

We can think of xi,j = 1 or 0 depending on whether

there is an edge or not as random variables and the

ratio r(Ai, Aj) as the conditional expectation given a

sub σ-field. The measure is the product measure 1
n2

on any pair (i, j).

E[|E[X|Σ]|2]

is increasing in Σ.
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But refining a pair that is not regular increases g(P)

by ǫ4d2

n2
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But refining a pair that is not regular increases g(P)

by ǫ4d2

n2

(A,B) is not regular. There is A1, A2 and B1, B2

that make up A and B.

xij = e(Ai, Bj)
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But refining a pair that is not regular increases g(P)

by ǫ4d2

n2

(A,B) is not regular. There is A1, A2 and B1, B2

that make up A and B.

xij = e(Ai, Bj)

x = x11 + x12 + x21 + x22, yi,j =
xij

|Ai||Bj|
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But refining a pair that is not regular increases g(P)

by ǫ4d2

n2

(A,B) is not regular. There is A1, A2 and B1, B2

that make up A and B.

xij = e(Ai, Bj)

x = x11 + x12 + x21 + x22, yi,j =
xij

|Ai||Bj|

∑

i,j

|Ai||Bj|

|A||B|
y2i,j − [

x

|A||B|
]2 =

Random Graphs – p. 26/30



∑

i,j

|Ai||Bj|

|A||B|
[yi,j −

x

|A||B|
]2 ≥ ǫ4
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∑

i,j

|Ai||Bj|

|A||B|
[yi,j −

x

|A||B|
]2 ≥ ǫ4

Since we can repeat this for ǫk2 pairs g(P) goes up

by at least ǫ5k2d2

n2 .
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∑

i,j

|Ai||Bj|

|A||B|
[yi,j −

x

|A||B|
]2 ≥ ǫ4

Since we can repeat this for ǫk2 pairs g(P) goes up

by at least ǫ5k2d2

n2 .

Since n = kd+ |A0|, k
2d2 ≥ 1

2n
2 and g(P) goes up

by 1
2ǫ

5
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∑

i,j

|Ai||Bj|

|A||B|
[yi,j −

x

|A||B|
]2 ≥ ǫ4

Since we can repeat this for ǫk2 pairs g(P) goes up

by at least ǫ5k2d2

n2 .

Since n = kd+ |A0|, k
2d2 ≥ 1

2n
2 and g(P) goes up

by 1
2ǫ

5

This can only happen a finite number of times. In

fact at most 2ǫ−5 times.
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In addition to A0 we have at most k2k−1 subsets of
unequal size. Let us subdivide them into equal

subsets of size d′ = [ d
4k
]
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In addition to A0 we have at most k2k−1 subsets of
unequal size. Let us subdivide them into equal

subsets of size d′ = [ d
4k
]

We will have at most k4k subsets of size d′. The sets
may not divide evenly and the leftover ones are
thrown in A0.
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In addition to A0 we have at most k2k−1 subsets of
unequal size. Let us subdivide them into equal

subsets of size d′ = [ d
4k
]

We will have at most k4k subsets of size d′. The sets
may not divide evenly and the leftover ones are
thrown in A0.

This procedure can be repeated and will have to end

after at most 2ǫ−5 steps.
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In addition to A0 we have at most k2k−1 subsets of
unequal size. Let us subdivide them into equal

subsets of size d′ = [ d
4k
]

We will have at most k4k subsets of size d′. The sets
may not divide evenly and the leftover ones are
thrown in A0.

This procedure can be repeated and will have to end

after at most 2ǫ−5 steps.

We need to keep track of vertices piled into A0 and

estimate the size. Each step adds at most kd′2k−1

vertices.
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kd′2k−1 ≤
kd2k−1

4k
≤

n

2k+1
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kd′2k−1 ≤
kd2k−1

4k
≤

n

2k+1

We repeat the subdivision at most 2ǫ−5 times.
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kd′2k−1 ≤
kd2k−1

4k
≤

n

2k+1

We repeat the subdivision at most 2ǫ−5 times.

Let qǫ(k0) be the result of iteration of the map

k → k4k repeated 2ǫ−5 times starting from k0. It is
the largest number of sets in the partition we can end
up with.
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kd′2k−1 ≤
kd2k−1

4k
≤

n

2k+1

We repeat the subdivision at most 2ǫ−5 times.

Let qǫ(k0) be the result of iteration of the map

k → k4k repeated 2ǫ−5 times starting from k0. It is
the largest number of sets in the partition we can end
up with.

If we we can control the size of the exceptional set
we would be done.
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The increase in the exceptional set when we have k
sets of size d is at most

k2k−1 d

4k
=

kd

2k+1
≤

n

2k+1
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The increase in the exceptional set when we have k
sets of size d is at most

k2k−1 d

4k
=

kd

2k+1
≤

n

2k+1

If the initial step is k0 then at every stage k ≥ k0,

and in 2ǫ−5 steps it goes up by nǫ−5 k0
2k0

.
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The increase in the exceptional set when we have k
sets of size d is at most

k2k−1 d

4k
=

kd

2k+1
≤

n

2k+1

If the initial step is k0 then at every stage k ≥ k0,

and in 2ǫ−5 steps it goes up by nǫ−5 k0
2k0

.

It is less than nǫ
2 , provided k0

2k0
< 2ǫ6
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The increase in the exceptional set when we have k
sets of size d is at most

k2k−1 d

4k
=

kd

2k+1
≤

n

2k+1

If the initial step is k0 then at every stage k ≥ k0,

and in 2ǫ−5 steps it goes up by nǫ−5 k0
2k0

.

It is less than nǫ
2 , provided k0

2k0
< 2ǫ6

The initial size of A0 is at most k0 and k0 <
nǫ
2 if n is

large enough
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The increase in the exceptional set when we have k
sets of size d is at most

k2k−1 d

4k
=

kd

2k+1
≤

n

2k+1

If the initial step is k0 then at every stage k ≥ k0,

and in 2ǫ−5 steps it goes up by nǫ−5 k0
2k0

.

It is less than nǫ
2 , provided k0

2k0
< 2ǫ6

The initial size of A0 is at most k0 and k0 <
nǫ
2 if n is

large enough

We are done!
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