#### **Random Graphs**

ISI, Bangalore, 25/1/17

#### What is a Graph?

## What is a Graph? It is a set X of points called vertices.

# What is a Graph? It is a set X of points called vertices. Pairs (x, y) of points of called edges. (x, y) and (y, x) are the same edge.

#### What is a Graph?

- It is a set  $\mathcal{X}$  of points called vertices.
- Pairs (x, y) of points of called edges. (x, y) and (y, x) are the same edge.
- If there are *n* vertices there are  $\frac{n(n-1)}{2}$  possible edges.

- What is a Graph?
- It is a set  $\mathcal{X}$  of points called vertices.
- Pairs (x, y) of points of called edges. (x, y) and (y, x) are the same edge.
- If there are n vertices there are  $\frac{n(n-1)}{2}$  possible edges.
- A graph specifies a sub set *E* from all possible edges as being present.

- What is a Graph?
- It is a set  $\mathcal{X}$  of points called vertices.
- Pairs (x, y) of points of called edges. (x, y) and (y, x) are the same edge.
- If there are n vertices there are  $\frac{n(n-1)}{2}$  possible edges.
- A graph specifies a sub set  $\mathcal{E}$  from all possible edges as being present.
- A graph  $\mathcal{G}$  is  $\{\mathcal{X}, \mathcal{E}\}$  vertices and subset of edges.

### A random graph is simply one in which the edge set $\mathcal{E}$ is random.

### A random graph is simply one in which the edge set $\mathcal{E}$ is random.

In Erdös-Renyi graphs  $P[(x, y) \in \mathcal{E}] = p$  and different edges belong to  $\mathcal{E}$  independently of one another.

### A random graph is simply one in which the edge set $\mathcal{E}$ is random.

- In Erdös-Renyi graphs  $P[(x, y) \in \mathcal{E}] = p$  and different edges belong to  $\mathcal{E}$  independently of one another.
- These are dense graphs with np edges coming out of each vertex.

- A random graph is simply one in which the edge set  $\mathcal{E}$  is random.
- In Erdös-Renyi graphs  $P[(x, y) \in \mathcal{E}] = p$  and different edges belong to  $\mathcal{E}$  independently of one another.
- These are dense graphs with np edges coming out of each vertex.
- One can think of the graph of n vertices as a symmetric  $n \times n$  matrix A of 0's and 1's with 0's on the diagonal.

- A random graph is simply one in which the edge set  $\mathcal{E}$  is random.
- In Erdös-Renyi graphs  $P[(x, y) \in \mathcal{E}] = p$  and different edges belong to  $\mathcal{E}$  independently of one another.
- These are dense graphs with np edges coming out of each vertex.
- One can think of the graph of n vertices as a symmetric n × n matrix A of 0's and 1's with 0's on the diagonal.
- The matrix notation is useful.

- A random graph is simply one in which the edge set  $\mathcal{E}$  is random.
- In Erdös-Renyi graphs  $P[(x, y) \in \mathcal{E}] = p$  and different edges belong to  $\mathcal{E}$  independently of one another.
- These are dense graphs with np edges coming out of each vertex.
- One can think of the graph of n vertices as a symmetric n × n matrix A of 0's and 1's with 0's on the diagonal.
- The matrix notation is useful.
- **Tr**ace  $A^2$  is  $2|\mathcal{E}|$  and trace  $A^3$  is  $6|\Delta|$ ,

Laws of large numbers.  $\frac{2|\mathcal{E}|}{n^2} \to p \text{ and } \frac{6|\Delta|}{n^3} \to p^3.$ 

$$\frac{2|\mathcal{E}|}{n^2} \to p \text{ and } \frac{6|\Delta|}{n^3} \to p^3.$$

How many homomorphisms from a finite graph  $\mathcal{H} = (H, E)$  to  $\mathcal{G} = (\mathcal{X}, \mathcal{E})$ .

$$\frac{2|\mathcal{E}|}{n^2} \to p \text{ and } \frac{6|\Delta|}{n^3} \to p^3.$$

How many homomorphisms from a finite graph  $\mathcal{H} = (H, E)$  to  $\mathcal{G} = (\mathcal{X}, \mathcal{E})$ .

•  $t(\mathcal{H}, \mathcal{G})$  is the number of Homomorphisms of  $\mathcal{H} \to \mathcal{G}$ .

$$\frac{2|\mathcal{E}|}{n^2} \to p \text{ and } \frac{6|\Delta|}{n^3} \to p^3.$$

- How many homomorphisms from a finite graph  $\mathcal{H} = (H, E)$  to  $\mathcal{G} = (\mathcal{X}, \mathcal{E})$ .
- $t(\mathcal{H}, \mathcal{G})$  is the number of Homomorphisms of  $\mathcal{H} \to \mathcal{G}$ .
- For the Erdös-Renyi random graph with probability p for an edge,

$$\frac{2|\mathcal{E}|}{n^2} \to p \text{ and } \frac{6|\Delta|}{n^3} \to p^3.$$

- How many homomorphisms from a finite graph  $\mathcal{H} = (H, E)$  to  $\mathcal{G} = (\mathcal{X}, \mathcal{E})$ .
- $t(\mathcal{H}, \mathcal{G})$  is the number of Homomorphisms of  $\mathcal{H} \to \mathcal{G}$ .
- For the Erdös-Renyi random graph with probability *p* for an edge,

$$rac{t(\mathcal{H},\mathcal{G})}{n^{|H|}} 
ightarrow p^{|\mathcal{S}|}$$

#### $\mathbf{G}_n$ is a sequence of graphs.

#### ■ $G_n$ is a sequence of graphs. ■ $\frac{t(\mathcal{H}, \mathcal{G}_n)}{n^{|H|}} \rightarrow \sigma(\mathcal{H})$ . The graph limit.

## G<sub>n</sub> is a sequence of graphs. t(H,G<sub>n</sub>)/n<sup>|H|</sup> → σ(H). The graph limit. What is σ(H)?

#### $\square G_n$ is a sequence of graphs.

- $\blacksquare \frac{t(\mathcal{H},\mathcal{G}_n)}{n^{|H|}} \to \sigma(\mathcal{H}).$  The graph limit.
- What is  $\sigma(\mathcal{H})$ ?
- Graphon. Vertex set  $H = \{x_1, \ldots, x_k\}$ . Edges  $e \in E$

#### $\square G_n$ is a sequence of graphs.

- $\blacksquare \frac{t(\mathcal{H},\mathcal{G}_n)}{n^{|H|}} \to \sigma(\mathcal{H}).$  The graph limit.
- What is  $\sigma(\mathcal{H})$ ?
- Graphon. Vertex set  $H = \{x_1, \ldots, x_k\}$ . Edges  $e \in E$
- There is a symmetric  $f, 0 \le f \le 1$  on  $[0, 1]^2$  with

$$\sigma(\mathcal{H}) = \int_{[0,1]^k} \prod_{(x_i, x_j) = e \in E} f(x_i, x_j) \Pi_{x_i \in H} dx_i$$

#### Large Deviations

## Large Deviations $(X, \mathcal{B}, P_n)$

# Large Deviations (X, B, P<sub>n</sub>) For C closed

$$\limsup_{n \to \infty} \frac{1}{n} \log P_n[C] \le -\inf_{x \in C} I(x)$$

Large Deviations
(X, B, P<sub>n</sub>)
For C closed  $\limsup_{n \to \infty} \frac{1}{n} \log P_n[C] \le -\inf_{x \in C} I(x)$ 

**For** G open

$$\liminf_{n \to \infty} \frac{1}{n} \log P_n[G] \ge -\inf_{x \in G} I(x)$$

Large Deviations
(X, B, P<sub>n</sub>)
For C closed  $\limsup_{n \to \infty} \frac{1}{n} \log P_n[C] \le -\inf_{x \in C} I(x)$ 

**For** G open

$$\liminf_{n \to \infty} \frac{1}{n} \log P_n[G] \ge -\inf_{x \in G} I(x)$$

■  $I(x) \ge 0$  is lower semicontinuous and has compact level sets  $K_{\ell} = \{x : I(x) \le \ell\}$ 

 $\frac{1}{n}\sum \delta_{\frac{i}{N}}X_i$ 

 $\frac{1}{n}\sum \delta_{\frac{i}{N}}X_i$ 

#### LDP on $\mathcal{M}([0,1])$

$$\frac{1}{n}\sum \delta_{\frac{i}{N}}X_i$$

LDP on  $\mathcal{M}([0, 1])$  $I(\rho(\cdot)) =$ 

$$\int_0^1 [\rho(x) \log \frac{\rho(x)}{p} + (1 - \rho(x)) \log \frac{1 - \rho(x)}{1 - p} dx]$$

$$\frac{1}{n}\sum \delta_{\frac{i}{N}}X_i$$

**LDP** on  $\mathcal{M}([0, 1])$  $\blacksquare I(\rho(\cdot)) =$  $\int_{0}^{1} \left[ \rho(x) \log \frac{\rho(x)}{p} + (1 - \rho(x)) \log \frac{1 - \rho(x)}{1 - p} dx \right]$  $\lim_{n \to \infty} \frac{1}{n} \log E[\exp[\sum_{i} J(\frac{i}{n})X_i]] = \int_0^1 \psi(J(x))dx$ 

Random Graphs – p. 7/30

$$\psi(v) = \log E[e^{vX}] = \log[pe^v + (1-p)]$$

$$\psi(v) = \log E[e^{vX}] = \log[pe^v + (1-p)]$$
$$\sup_v [v\rho - \psi(v)] = \rho \log \frac{\rho}{p} + (1-\rho) \log \frac{1-\rho}{1-p}$$
$$\psi(v) = \log E[e^{vX}] = \log[pe^v + (1-p)]$$

$$\sup_{v} [v\rho - \psi(v)] = \rho \log \frac{\rho}{p} + (1-\rho) \log \frac{1-\rho}{1-p}$$

Chebychev's inequality for half planes.

$$\psi(v) = \log E[e^{vX}] = \log[pe^v + (1-p)]$$

$$\sup_{v} [v\rho - \psi(v)] = \rho \log \frac{\rho}{p} + (1 - \rho) \log \frac{1 - \rho}{1 - p}$$

## Chebychev's inequality for half planes.Optimize

$$\psi(v) = \log E[e^{vX}] = \log[pe^v + (1-p)]$$

$$\sup_{v} [v\rho - \psi(v)] = \rho \log \frac{\rho}{p} + (1-\rho) \log \frac{1-\rho}{1-p}$$

#### Chebychev's inequality for half planes.

Optimize

We have local upper bounds in the weak topology.
 Space is compact we get global upper bounds for closed sets.

#### Our problem is different

## Our problem is different The number of i.i.d variables is \frac{n(n-1)}{2} \sum \frac{n^2}{2}.

#### Our problem is different

- The number of i.i.d variables is  $\frac{n(n-1)}{2} \simeq \frac{n^2}{2}$ .
- The space is symmetric functions f on  $[0, 1]^2$ . Or a function on  $D = \{0 \le x \le y \le 1\}$ .

#### Our problem is different

- The number of i.i.d variables is  $\frac{n(n-1)}{2} \simeq \frac{n^2}{2}$ .
- The space is symmetric functions f on  $[0, 1]^2$ . Or a function on  $D = \{0 \le x \le y \le 1\}$ .
- The rate function when normalized by  $n^2$  is  $\frac{1}{2} \int_{[0,1]^2} h_{\rho}(f(x,y)) dx dy$  where

$$h_{\rho}(f) = f \log \frac{f}{\rho} + (1 - f) \log \frac{1 - f}{1 - \rho}$$

$$a(x, y) = a_{i,j} \text{ on } \frac{i-1}{n} < x < \frac{i}{n}, \frac{j-1}{n} < y < \frac{j}{n}$$

- $a(x, y) = a_{i,j}$  on  $\frac{i-1}{n} < x < \frac{i}{n}, \frac{j-1}{n} < y < \frac{j}{n}$
- We have measures  $P_{n,\rho}$  on the space  $\mathcal{A}$  of symmetric functions a on  $[0,1]^2$  with  $0 \le a \le 1$ .

a(x, y) = a<sub>i,j</sub> on <sup>i-1</sup>/<sub>n</sub> < x < <sup>i</sup>/<sub>n</sub>, <sup>j-1</sup>/<sub>n</sub> < y < <sup>j</sup>/<sub>n</sub>
We have measures P<sub>n,ρ</sub> on the space A of symmetric functions a on [0, 1]<sup>2</sup> with 0 ≤ a ≤ 1.
The LLN says P<sub>n,ρ</sub> → δ<sub>ρ</sub>

a(x, y) = a<sub>i,j</sub> on <sup>i-1</sup>/<sub>n</sub> < x < <sup>i</sup>/<sub>n</sub>, <sup>j-1</sup>/<sub>n</sub> < y < <sup>j</sup>/<sub>n</sub>
We have measures P<sub>n,ρ</sub> on the space A of symmetric functions a on [0, 1]<sup>2</sup> with 0 ≤ a ≤ 1.
The LLN says P<sub>n,ρ</sub> → δ<sub>ρ</sub>
What is the LDP?

- $= a(x, y) = a_{i,j} \text{ on } \frac{i-1}{n} < x < \frac{i}{n}, \frac{j-1}{n} < y < \frac{j}{n}$
- We have measures  $P_{n,\rho}$  on the space  $\mathcal{A}$  of symmetric functions a on  $[0, 1]^2$  with  $0 \le a \le 1$ .

**The LLN says** 
$$P_{n,\rho} \rightarrow \delta_{\rho}$$

- What is the LDP?
- We are interested in quantities like number of triangles.

- $a(x, y) = a_{i,j} \text{ on } \frac{i-1}{n} < x < \frac{i}{n}, \frac{j-1}{n} < y < \frac{j}{n}$
- We have measures  $P_{n,\rho}$  on the space  $\mathcal{A}$  of symmetric functions a on  $[0, 1]^2$  with  $0 \le a \le 1$ .

**The LLN says** 
$$P_{n,\rho} \rightarrow \delta_{\rho}$$

- What is the LDP?
- We are interested in quantities like number of triangles.
- $\Box \int a(x,y)a(y,z)a(z,x)dxdydz$

$$a_{ii}^n = 0, a_{2i,2j}^n = a_{2i+1,2j+1}^n = 0,$$

$$a_{ii}^{n} = 0, a_{2i,2j}^{n} = a_{2i+1,2j+1}^{n} = 0,$$
$$a_{2i,2j+1}^{n} = a_{2i+1,2j}^{n} = 1$$

 $a_{ii}^{n} = 0, a_{2i,2j}^{n} = a_{2i+1,2j+1}^{n} = 0,$   $a_{2i,2j+1}^{n} = a_{2i+1,2j}^{n} = 1$ No of triangles is  $0 = \int a(x, y)a(y, z)a(z, x)dxdydz$   $a_{ii}^{n} = 0, a_{2i,2j}^{n} = a_{2i+1,2j+1}^{n} = 0,$   $a_{2i,2j+1}^{n} = a_{2i+1,2j}^{n} = 1$ No of triangles is  $0 = \int a(x, y)a(y, z)a(z, x)dxdydz$ Weak limit of  $a^{n}$  is  $a(x, y) = \frac{1}{2}$ .

# $a_{ii}^{n} = 0, a_{2i,2j}^{n} = a_{2i+1,2j+1}^{n} = 0,$ $a_{2i,2j+1}^{n} = a_{2i+1,2j}^{n} = 1$ No of triangles is $0 = \int a(x, y)a(y, z)a(z, x)dxdydz$ Weak limit of $a^{n}$ is $a(x, y) = \frac{1}{2}.$ $\int a(x, y)(y, z)a(z, x)dxdydz = \frac{1}{8}$

 $a_{ii}^{n} = 0, a_{2i,2j}^{n} = a_{2i+1,2j+1}^{n} = 0,$   $a_{2i,2j+1}^{n} = a_{2i+1,2j}^{n} = 1$ No of triangles is  $0 = \int a(x,y)a(y,z)a(z,x)dxdydz$ Weak limit of  $a^{n}$  is  $a(x,y) = \frac{1}{2}.$   $\int a(x,y)(y,z)a(z,x)dxdydz = \frac{1}{8}$ Expect  $\frac{n^{3}}{8}$  triangles!

#### **Rearrange the vertices. Relabel them.**

#### Rearrange the vertices. Relabel them. $a_{i,j}^n = 1 \text{ if } 1 \le i \le \frac{n}{2}, j > \frac{n}{2} \text{ or } 1 \le j \le \frac{n}{2}, i > \frac{n}{2}$

# Rearrange the vertices. Relabel them. a<sup>n</sup><sub>i,j</sub> = 1 if 1 ≤ i ≤ <sup>n</sup>/<sub>2</sub>, j > <sup>n</sup>/<sub>2</sub> or 1 ≤ j ≤ <sup>n</sup>/<sub>2</sub>, i > <sup>n</sup>/<sub>2</sub> Otherwise 0

Rearrange the vertices. Relabel them.  $a_{i,j}^n = 1$  if  $1 \le i \le \frac{n}{2}, j > \frac{n}{2}$  or  $1 \le j \le \frac{n}{2}, i > \frac{n}{2}$ Otherwise 0 a(x, y) = 1 if  $0 \le x \le \frac{1}{2}, \frac{1}{2} \le y \le 1$  or  $0 \le y \le \frac{1}{2}, \frac{1}{2} \le x \le 1$ 

Rearrange the vertices. Relabel them.  $a_{i,j}^n = 1 \text{ if } 1 \leq i \leq \frac{n}{2}, j > \frac{n}{2} \text{ or } 1 \leq j \leq \frac{n}{2}, i > \frac{n}{2}$ Otherwise 0  $a(x, y) = 1 \text{ if } 0 \leq x \leq \frac{1}{2}, \frac{1}{2} \leq y \leq 1 \text{ or } 0 \leq y \leq \frac{1}{2}, \frac{1}{2} \leq x \leq 1$   $\int a(x, y)a(y, z)a(z, x)dxdydz = 0$ 

#### weak topology is no good. Too weak.

## weak topology is no good. Too weak. Strong or L<sub>1</sub> topology is too strong.

weak topology is no good. Too weak.
Strong or L<sub>1</sub> topology is too strong.
LLN is not valid.

weak topology is no good. Too weak.
Strong or L<sub>1</sub> topology is too strong.
LLN is not valid.
We need some thing in between.

$$d(f,g) = \sup_{h:\|h\|_{\infty} \le 1} \left| \int [f-g]h(x,y)dxdy \right|$$

$$egin{aligned} d(f,g) &= \sup_{h:\|h\|_{\infty} \leq 1} |\int [f-g]h(x,y)dxdy| \ &d(f,g) &= \sup_E |\int_E [f-g]dxdy| \end{aligned}$$

$$d(f,g) = \sup_{\substack{h: \|h\|_{\infty} \le 1}} \left| \int [f-g]h(x,y)dxdy \right|$$
$$d(f,g) = \sup_{E} \left| \int_{E} [f-g]dxdy \right|$$
$$d_{\Box}(f,g) = \sup_{\substack{h,k: \|h\|_{\infty} \le 1\\ \|k\|_{\infty} \le 1}} \left| \int [f-g]h(x)k(y)dxdy \right|$$

$$\begin{split} d(f,g) &= \sup_{\substack{h: \|h\|_{\infty} \leq 1}} |\int [f-g]h(x,y)dxdy| \\ d(f,g) &= \sup_{E} |\int_{E} [f-g]dxdy| \\ \Box(f,g) &= \sup_{\substack{h,k: \|h\|_{\infty} \leq 1\\ \|k\|_{\infty} \leq 1}} |\int [f-g]h(x)k(y)dxdy| \\ d_{\Box}(f,g) &= \sup_{E,F} |\int_{E \times F} [f-g]dxdy| \end{split}$$

d

## $\sigma(\mathcal{H}, f) = \int_{[0,1]^k} \prod_{(i,j)\in E} f(x_i, x_j) dx_1 \cdots dx_k$

$$\sigma(\mathcal{H}, f) = \int_{[0,1]^k} \prod_{(i,j)\in E} f(x_i, x_j) dx_1 \cdots dx_k$$

**Continuous in the**  $d_{\Box}$  metric.

$$\sigma(\mathcal{H}, f) = \int_{[0,1]^k} \prod_{(i,j)\in E} f(x_i, x_j) dx_1 \cdots dx_k$$

Continuous in the d<sub>□</sub> metric.
Replace f<sub>n</sub> by f in one edge at a time.
$$\sigma(\mathcal{H}, f) = \int_{[0,1]^k} \prod_{(i,j)\in E} f(x_i, x_j) dx_1 \cdots dx_k$$

Continuous in the d<sub>□</sub> metric.
Replace f<sub>n</sub> by f in one edge at a time.
∫ F<sub>n</sub>(x<sub>i</sub>)f<sub>n</sub>(x<sub>i</sub>, x<sub>j</sub>)G<sub>n</sub>(x<sub>j</sub>) ≃ ∫ F<sub>n</sub>(x<sub>i</sub>)f(x<sub>i</sub>, x<sub>j</sub>)G<sub>n</sub>(x<sub>j</sub>)

### **Is** the LLN valid in the cut or box topology?

# Is the LLN valid in the cut or box topology? Let E, F be subsets of 1, 2, ..., n.

Is the LLN valid in the cut or box topology?
Let E, F be subsets of 1, 2, ..., n.
Uniformly in E and F

$$P\left[\left|\left[\sum_{\substack{i\in E\\j\in F}} X_{ij} - p|E||F|\right]\right| \ge \epsilon n^2\right] \le e^{-c(\epsilon)n^2}$$

Is the LLN valid in the cut or box topology?
Let E, F be subsets of 1, 2, ..., n.
Uniformly in E and F

$$P[\left|\left[\sum_{\substack{i\in E\\j\in F}} X_{ij} - p|E||F|\right]\right| \ge \epsilon n^2] \le e^{-c(\epsilon)n^2}$$

The number of such pairs is at most  $2^n \times 2^n = e^{O(n)}$ .

Is the LLN valid in the cut or box topology?
Let E, F be subsets of 1, 2, ..., n.
Uniformly in E and F

$$P[\left|\left[\sum_{\substack{i\in E\\j\in F}} X_{ij} - p|E||F|\right]\right| \ge \epsilon n^2] \le e^{-c(\epsilon)n^2}$$

The number of such pairs is at most 2<sup>n</sup> × 2<sup>n</sup> = e<sup>O(n)</sup>.
 LLN holds in the cut metric.

### Lower bound is easy.

# Lower bound is easy. Assume ρ(x, y) is continuous.

Lower bound is easy.
Assume ρ(x, y) is continuous.
Tilt. Make X<sub>i,j</sub> Bernoulli with Q<sub>n</sub>[X<sub>i,j</sub> = 1] = ρ(<sup>i</sup>/<sub>n</sub>, <sup>j</sup>/<sub>n</sub>)

### Lower bound is easy.

Assume  $\rho(x, y)$  is continuous.

**Tilt.** Make  $X_{i,j}$  Bernoulli with

$$Q_n[X_{i,j}=1] = \rho(\frac{i}{n}, \frac{j}{n})$$

• *P* gets replaced by  $Q_n$  and the law of large numbers for  $Q_n$  provides the limit  $\rho(x)$  in the cut metric. Lower bound is easy.

Assume  $\rho(x, y)$  is continuous.

**Tilt.** Make  $X_{i,j}$  Bernoulli with

 $Q_n[X_{i,j} = 1] = \rho(\frac{i}{n}, \frac{j}{n})$ 

• P gets replaced by  $Q_n$  and the law of large numbers for  $Q_n$  provides the limit  $\rho(x)$  in the cut metric.

• A is a neighborhood of  $\rho$  and  $Q_n(A) \to 1$ .

$$P_n(A) = \int_A \frac{dP_n}{dQ_n} dQ_n$$

$$P_n(A) = \int_A \frac{dP_n}{dQ_n} dQ_n$$
$$= Q_n(A) \frac{1}{Q_n(A)} \int_A \exp\left[-\log\frac{dQ_n}{dP_n}\right] dQ_n$$

Random Graphs – p. 18/30

$$P_n(A) = \int_A \frac{dP_n}{dQ_n} dQ_n$$
$$= Q_n(A) \frac{1}{Q_n(A)} \int_A \exp\left[-\log\frac{dQ_n}{dP_n}\right] dQ_n$$
$$\ge Q_n(A) \exp\left[-\frac{1}{Q_n(A)} \int_A \log\frac{dQ_n}{dP_n} dQ_n\right]$$

$$P_n(A) = \int_A \frac{dP_n}{dQ_n} dQ_n$$
$$= Q_n(A) \frac{1}{Q_n(A)} \int_A \exp\left[-\log\frac{dQ_n}{dP_n}\right] dQ_n$$
$$\ge Q_n(A) \exp\left[-\frac{1}{Q_n(A)} \int_A \log\frac{dQ_n}{dP_n} dQ_n\right]$$

$$\liminf \frac{1}{n^2} \log P_n(A) \ge -\lim \frac{1}{n^2} \int \log \frac{dQ_n}{dP_n} dQ_n$$

$$P_n(A) = \int_A \frac{dP_n}{dQ_n} dQ_n$$
$$= Q_n(A) \frac{1}{Q_n(A)} \int_A \exp[-\log \frac{dQ_n}{dP_n}] dQ_n$$
$$\ge Q_n(A) \exp[-\frac{1}{Q_n(A)} \int_A \log \frac{dQ_n}{dP_n} dQ_n]$$
$$\liminf \frac{1}{n^2} \log P_n(A) \ge -\lim \frac{1}{n^2} \int \log \frac{dQ_n}{dP_n} dQ_n$$
$$\ge -I(\rho)$$

Random Graphs – p. 18/30

http://www.math.uchicago.edu/ may/VIGRE/VIGRE2011/REUPapers/LeeG.pdf

- http://www.math.uchicago.edu/ may/VIGRE/VIGRE2011/REUPapers/LeeG.pdf
- $\mathbf{G}$  is a graph. Its vertices are  $\mathcal{X}$  and its edges are  $\mathcal{E}$ .

http://www.math.uchicago.edu/may/VIGRE/VIGRE2011/REUPapers/LeeG.pdf *G* is a graph. Its vertices are X and its edges are E.
If A and B are disjoint subsets of X then e(A, B) is the number of edges connecting A and B. |A| and |B| are the size or the number of vertices in |A| and |B|.

http://www.math.uchicago.edu/ may/VIGRE/VIGRE2011/REUPapers/LeeG.pdf *G* is a graph. Its vertices are X and its edges are E.
If A and B are disjoint subsets of X then e(A, B) is the number of edges connecting A and B. |A| and |B| are the size or the number of vertices in |A| and |B|.

 $r(A,B) = \frac{e(A,B)}{|A||B|} \le 1$ 

$$g(\mathcal{P}) = \sum_{i < j} [r(A_i, A_j)]^2 \frac{|A_i| |A_j|}{n^2} \le \sum_{i < j} \frac{|A_i| |A_j|}{n^2} \le 1$$

$$g(\mathcal{P}) = \sum_{i < j} [r(A_i, A_j)]^2 \frac{|A_i| |A_j|}{n^2} \le \sum_{i < j} \frac{|A_i| |A_j|}{n^2} \le 1$$

We will consider partitions into k + 1 sets where  $A_0$  is special, in which case we define

$$g(\mathcal{P}) = \sum_{i < j} [r(A_i, A_j)]^2 \frac{|A_i| |A_j|}{n^2} \le \sum_{i < j} \frac{|A_i| |A_j|}{n^2} \le 1$$

$$\sum_{1 \le i < j \le k} [r(A_i, A_j)]^2 \frac{|A_i| |A_j|}{n^2} + \sum_{a \in A_0} \sum_{1 \le i \le k} [r(\{a\}, A_i)]^2 \frac{|A_i|}{n^2}$$

Random Graphs – p. 20/30

# A pair $(A_i, A_j)$ , $i \neq j \neq 0$ of the partition $\mathcal{P}$ is $\epsilon$ regular if

## A pair $(A_i, A_j)$ , $i \neq j \neq 0$ of the partition $\mathcal{P}$ is $\epsilon$ regular if

# For any two subsets $B_i \subset A_i$ and $B_j \subset A_j$ with $|B_i| \ge \epsilon |A_i|$ and $|B_j| \ge \epsilon |A_j|$ we have

### A pair $(A_i, A_j)$ , $i \neq j \neq 0$ of the partition $\mathcal{P}$ is $\epsilon$ regular if

For any two subsets  $B_i \subset A_i$  and  $B_j \subset A_j$  with  $|B_i| \ge \epsilon |A_i|$  and  $|B_j| \ge \epsilon |A_j|$  we have

$$|r(B_i, B_j) - r(A_i, A_j)| \le \epsilon$$

#### A partition $\mathcal{P}$ of the set $\mathcal{X}$ of n vertices of a graph into k + 1 subsets $A_0, A_1, \ldots, A_k$ is called $\epsilon$ regular if

### A partition $\mathcal{P}$ of the set $\mathcal{X}$ of n vertices of a graph into k + 1 subsets $A_0, A_1, \ldots, A_k$ is called $\epsilon$ regular if

 $|A_0| \le \epsilon n$ 

- A partition  $\mathcal{P}$  of the set  $\mathcal{X}$  of n vertices of a graph into k + 1 subsets  $A_0, A_1, \ldots, A_k$  is called  $\epsilon$  regular if
- $|A_0| \le \epsilon n$  $|A_1| = |A_2| = \dots = |A_k| = d$

- A partition  $\mathcal{P}$  of the set  $\mathcal{X}$  of n vertices of a graph into k + 1 subsets  $A_0, A_1, \ldots, A_k$  is called  $\epsilon$  regular if
- |A<sub>0</sub>| ≤ εn
  |A<sub>1</sub>| = |A<sub>2</sub>| = ··· = |A<sub>k</sub>| = d
  And out of all possible pairs A<sub>i</sub>, A<sub>j</sub> with 1 ≤ i < j ≤ k at most εk<sup>2</sup> are not regular.

• Lemma. Given  $\epsilon > 0$  there is an  $n_0(\epsilon)$  that satisfies the following. For any integer q there is an integer  $q'(\epsilon, q) > q$  with the property that if  $n \ge n_0(\epsilon)$  and  $n \ge q$ , for any graph with n vertices there is an  $\epsilon$ regular partition of its vertices  $\mathcal{X}$  into  $\ell + 1$  sets  $A_0, A_1, \ldots, A_\ell$  for some  $\ell$  with  $q \le \ell \le q'(\epsilon, q)$ .

**Lemma.** Given  $\epsilon > 0$  there is an  $n_0(\epsilon)$  that satisfies the following. For any integer q there is an integer  $q'(\epsilon, q) > q$  with the property that if  $n \ge n_0(\epsilon)$  and  $n \geq q$ , for any graph with n vertices there is an  $\epsilon$ regular partition of its vertices  $\mathcal{X}$  into  $\ell + 1$  sets  $A_0, A_1, \ldots, A_\ell$  for some  $\ell$  with  $q \leq \ell \leq q'(\epsilon, q)$ . **Idea of proof. Step 1.** Suppose we have a partition  $A_0, A_1, \ldots, A_k$  with  $|A_1| = |A_2| = \cdots = |A_k| = d$ and  $|A_0| \leq \delta n$  with  $\delta < \frac{1}{4}$  and  $\epsilon k^2$  pairs of  $A_i, A_j$ that are not regular.

**Lemma.** Given  $\epsilon > 0$  there is an  $n_0(\epsilon)$  that satisfies the following. For any integer q there is an integer  $q'(\epsilon,q) > q$  with the property that if  $n \ge n_0(\epsilon)$  and  $n \geq q$ , for any graph with n vertices there is an  $\epsilon$ regular partition of its vertices  $\mathcal{X}$  into  $\ell + 1$  sets  $A_0, A_1, \ldots, A_\ell$  for some  $\ell$  with  $q \leq \ell \leq q'(\epsilon, q)$ . **Idea of proof. Step 1.** Suppose we have a partition  $A_0, A_1, \ldots, A_k$  with  $|A_1| = |A_2| = \cdots = |A_k| = d$ and  $|A_0| \leq \delta n$  with  $\delta < \frac{1}{4}$  and  $\epsilon k^2$  pairs of  $A_i, A_j$ that are not regular.

We notice that the regularity condition has two parts. The size of  $A_0$  and the regularity of all but at most  $\epsilon k^2$  of the pairs in  $A_1, A_2, \ldots, A_k$ . Suppose we have a partition that is not regular and it is not because of the size of  $A_0$ . We can assume without loss of generality that  $\epsilon < \frac{1}{4}$ . There are at least  $\epsilon k^2$  pairs of sets  $A_i, A_j$  from the collection that are not regular
Suppose we have a partition that is not regular and it is not because of the size of  $A_0$ . We can assume without loss of generality that  $\epsilon < \frac{1}{4}$ . There are at least  $\epsilon k^2$  pairs of sets  $A_i, A_j$  from the collection that are not regular

Let us take one such pair  $A_i, A_j$ , with subsets  $B_i \subset A_i, B_j \subset A_j$  with the property  $|B_i| \ge \epsilon |A_i|, |B_j| \ge \epsilon |A_j|$  and

$$|r(B_i, B_j) - r(A_i, A_j)| \ge \epsilon$$

Suppose we have a partition that is not regular and it is not because of the size of  $A_0$ . We can assume without loss of generality that  $\epsilon < \frac{1}{4}$ . There are at least  $\epsilon k^2$  pairs of sets  $A_i, A_j$  from the collection that are not regular

Let us take one such pair  $A_i, A_j$ , with subsets  $B_i \subset A_i, B_j \subset A_j$  with the property  $|B_i| \ge \epsilon |A_i|, |B_j| \ge \epsilon |A_j|$  and

$$|r(B_i, B_j) - r(A_i, A_j)| \ge \epsilon$$

We refine the partition by replacing  $A_i, A_j$  by  $B_i, A_i \cap B_i^c$  and  $B_j, A_j \cap B_j^c$ 

## **Step 2.** Any refinement increases $g(\mathcal{P})$ .

## **Step 2.** Any refinement increases $g(\mathcal{P})$ .

• We can think of  $x_{i,j} = 1$  or 0 depending on whether there is an edge or not as random variables and the ratio  $r(A_i, A_j)$  as the conditional expectation given a sub  $\sigma$ -field. The measure is the product measure  $\frac{1}{n^2}$ on any pair (i, j).

## **Step 2.** Any refinement increases $g(\mathcal{P})$ .

• We can think of  $x_{i,j} = 1$  or 0 depending on whether there is an edge or not as random variables and the ratio  $r(A_i, A_j)$  as the conditional expectation given a sub  $\sigma$ -field. The measure is the product measure  $\frac{1}{n^2}$ on any pair (i, j).

# $E[|E[X|\Sigma]|^2]$

is increasing in  $\Sigma$ .

## But refining a pair that is not regular increases $g(\mathcal{P})$



# But refining a pair that is not regular increases $g(\mathcal{P})$ by $\frac{\epsilon^4 d^2}{n^2}$

# (A, B) is not regular. There is $A_1, A_2$ and $B_1, B_2$ that make up A and B.

$$x_{ij} = e(A_i, B_j)$$

But refining a pair that is not regular increases  $g(\mathcal{P})$ by  $\frac{\epsilon^4 d^2}{n^2}$ 

(A, B) is not regular. There is  $A_1, A_2$  and  $B_1, B_2$  that make up A and B.

$$x_{ij} = e(A_i, B_j)$$

 $x = x_{11} + x_{12} + x_{21} + x_{22}, y_{i,j} = \frac{x_{ij}}{|A_i||B_j|}$ 

But refining a pair that is not regular increases  $g(\mathcal{P})$ by  $\frac{\epsilon^4 d^2}{n^2}$ 

(A, B) is not regular. There is  $A_1, A_2$  and  $B_1, B_2$  that make up A and B.

$$x_{ij} = e(A_i, B_j)$$

 $x = x_{11} + x_{12} + x_{21} + x_{22}, y_{i,j} = \frac{x_{ij}}{|A_i||B_j|}$ 

$$\sum_{i,j} \frac{|A_i||B_j|}{|A||B|} y_{i,j}^2 - \left[\frac{x}{|A||B|}\right]^2 =$$

 $\sum_{i,j} \frac{|A_i| |B_j|}{|A| |B|} [y_{i,j} - \frac{x}{|A| |B|}]^2 \ge \epsilon^4$ 

$$\sum_{i,j} \frac{|A_i||B_j|}{|A||B|} [y_{i,j} - \frac{x}{|A||B|}]^2 \ge \epsilon^4$$

Since we can repeat this for  $\epsilon k^2$  pairs  $g(\mathcal{P})$  goes up by at least  $\frac{\epsilon^5 k^2 d^2}{n^2}$ .

$$\sum_{i,j} \frac{|A_i||B_j|}{|A||B|} [y_{i,j} - \frac{x}{|A||B|}]^2 \ge \epsilon^4$$

Since we can repeat this for εk<sup>2</sup> pairs g(P) goes up by at least ε<sup>5k<sup>2</sup>d<sup>2</sup></sup>/<sub>n<sup>2</sup></sub>.
Since n = kd + |A<sub>0</sub>|, k<sup>2</sup>d<sup>2</sup> ≥ 1/2n<sup>2</sup> and g(P) goes up by 1/2ε<sup>5</sup>

$$\sum_{i,j} \frac{|A_i||B_j|}{|A||B|} [y_{i,j} - \frac{x}{|A||B|}]^2 \ge \epsilon^4$$

Since we can repeat this for  $\epsilon k^2$  pairs  $g(\mathcal{P})$  goes up by at least  $\frac{\epsilon^5 k^2 d^2}{n^2}$ .

Since  $n = kd + |A_0|$ ,  $k^2d^2 \ge \frac{1}{2}n^2$  and  $g(\mathcal{P})$  goes up by  $\frac{1}{2}\epsilon^5$ 

This can only happen a finite number of times. In fact at most  $2\epsilon^{-5}$  times.

We will have at most  $k4^k$  subsets of size d'. The sets may not divide evenly and the leftover ones are thrown in  $A_0$ .

- We will have at most  $k4^k$  subsets of size d'. The sets may not divide evenly and the leftover ones are thrown in  $A_0$ .
- This procedure can be repeated and will have to end after at most  $2\epsilon^{-5}$  steps.

- We will have at most  $k4^k$  subsets of size d'. The sets may not divide evenly and the leftover ones are thrown in  $A_0$ .
- This procedure can be repeated and will have to end after at most  $2\epsilon^{-5}$  steps.
- We need to keep track of vertices piled into  $A_0$  and estimate the size. Each step adds at most  $kd'2^{k-1}$ vertices.

 $kd'2^{k-1} \le \frac{kd2^{k-1}}{4^k} \le \frac{n}{2^{k+1}}$ 

$$kd'2^{k-1} \le \frac{kd2^{k-1}}{4^k} \le \frac{n}{2^{k+1}}$$

# We repeat the subdivision at most $2\epsilon^{-5}$ times.

$$kd'2^{k-1} \le \frac{kd2^{k-1}}{4^k} \le \frac{n}{2^{k+1}}$$

We repeat the subdivision at most 2e<sup>-5</sup> times.
Let q<sub>e</sub>(k<sub>0</sub>) be the result of iteration of the map k → k4<sup>k</sup> repeated 2e<sup>-5</sup> times starting from k<sub>0</sub>. It is the largest number of sets in the partition we can end up with.

$$kd'2^{k-1} \le \frac{kd2^{k-1}}{4^k} \le \frac{n}{2^{k+1}}$$

We repeat the subdivision at most 2e<sup>-5</sup> times.
Let q<sub>ϵ</sub>(k<sub>0</sub>) be the result of iteration of the map k → k4<sup>k</sup> repeated 2e<sup>-5</sup> times starting from k<sub>0</sub>. It is the largest number of sets in the partition we can end up with.

If we we can control the size of the exceptional set we would be done.

$$k2^{k-1}\frac{d}{4^k} = \frac{kd}{2^{k+1}} \le \frac{n}{2^{k+1}}$$

$$k2^{k-1}\frac{d}{4^k} = \frac{kd}{2^{k+1}} \le \frac{n}{2^{k+1}}$$

If the initial step is  $k_0$  then at every stage  $k \ge k_0$ , and in  $2\epsilon^{-5}$  steps it goes up by  $n\epsilon^{-5}\frac{k_0}{2^{k_0}}$ .

$$k2^{k-1}\frac{d}{4^k} = \frac{kd}{2^{k+1}} \le \frac{n}{2^{k+1}}$$

If the initial step is  $k_0$  then at every stage  $k \ge k_0$ , and in  $2\epsilon^{-5}$  steps it goes up by  $n\epsilon^{-5}\frac{k_0}{2^{k_0}}$ .

It is less than  $\frac{n\epsilon}{2}$ , provided  $\frac{k_0}{2^{k_0}} < 2\epsilon^6$ 

$$k2^{k-1}\frac{d}{4^k} = \frac{kd}{2^{k+1}} \le \frac{n}{2^{k+1}}$$

- If the initial step is  $k_0$  then at every stage  $k \ge k_0$ , and in  $2\epsilon^{-5}$  steps it goes up by  $n\epsilon^{-5}\frac{k_0}{2^{k_0}}$ .
- It is less than  $\frac{n\epsilon}{2}$ , provided  $\frac{k_0}{2^{k_0}} < 2\epsilon^6$
- The initial size of  $A_0$  is at most  $k_0$  and  $k_0 < \frac{n\epsilon}{2}$  if n is large enough

$$k2^{k-1}\frac{d}{4^k} = \frac{kd}{2^{k+1}} \le \frac{n}{2^{k+1}}$$

- If the initial step is  $k_0$  then at every stage  $k \ge k_0$ , and in  $2\epsilon^{-5}$  steps it goes up by  $n\epsilon^{-5}\frac{k_0}{2^{k_0}}$ .
- It is less than  $\frac{n\epsilon}{2}$ , provided  $\frac{k_0}{2^{k_0}} < 2\epsilon^6$
- The initial size of  $A_0$  is at most  $k_0$  and  $k_0 < \frac{n\epsilon}{2}$  if n is large enough
- We are done!