
Particle Systems,

Conservation Laws,

Weak solutions

and Entropy

S.R.S. Varadhan

Particle Systems,Conservation Laws,Weak solutionsand Entropy – p. 1/16



Simple Exclusion process in one dimension.
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Simple Exclusion process in one dimension.

η = {η(x) : x ∈ Z} η(x) = 0 or 1
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A particle can jump from x → x+ z with rate λ(z)
provided η(x) = 1 and η(x+ z) = 0.
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A particle can jump from x → x+ z with rate λ(z)
provided η(x) = 1 and η(x+ z) = 0.

Call the new configuration ηx,x+z

The generator A acting on a function F is given by

∑

x,z

λ(z)η(x)(1− η(x+ z))[F (ηx,x+z)− F (η)]
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A particle can jump from x → x+ z with rate λ(z)
provided η(x) = 1 and η(x+ z) = 0.

Call the new configuration ηx,x+z

The generator A acting on a function F is given by

∑

x,z

λ(z)η(x)(1− η(x+ z))[F (ηx,x+z)− F (η)]

F (t, η) = E[F (ηt)|η0 = η] is obtained by solving

d

dt
E[F (t, η)] = (AF )(t, η); F (0, η) = F (η)
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The density profile of a configuration η in scale N is

ρ(u)du provided for suitable class of functions J
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The density profile of a configuration η in scale N is

ρ(u)du provided for suitable class of functions J

lim
N→∞

1

N

∑

x

J(
x

N
)η(x) =

∫

J(u)ρ(u)du

exists.
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The density profile of a configuration η in scale N is

ρ(u)du provided for suitable class of functions J

lim
N→∞

1

N

∑

x

J(
x

N
)η(x) =

∫

J(u)ρ(u)du

exists.

One can have x vary over either Z or ZN leading to
the range of u being R or T .
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If at time 0 there is a profile ρ0 can we say that there
will be a profile at time Nt with probability close to
1 and can we describe it?
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If at time 0 there is a profile ρ0 can we say that there
will be a profile at time Nt with probability close to
1 and can we describe it?

Time is Nt because we assume m =
∑

zπ(z) > 0.
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d

dt
E[

1

N

∑

x

J(
x

N
)ηNt(x)]
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d

dt
E[

1

N

∑

x

J(
x

N
)ηNt(x)]

≃ E

[

1

N

∑

x,z

zπ(z)ηN(x)(1− ηN(x+ z))J ′(
x

N
)

]
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d

dt
E[

1

N

∑

x

J(
x

N
)ηNt(x)]

≃ E

[

1

N

∑

x,z

zπ(z)ηN(x)(1− ηN(x+ z))J ′(
x

N
)

]

d

dt
〈J, ρ〉 = (

∑

z

zπ(z))〈J ′, ρ(1− ρ)〉
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d

dt
E[

1

N

∑

x

J(
x

N
)ηNt(x)]

≃ E

[

1

N

∑

x,z

zπ(z)ηN(x)(1− ηN(x+ z))J ′(
x

N
)

]

d

dt
〈J, ρ〉 = (

∑

z

zπ(z))〈J ′, ρ(1− ρ)〉

∂ρ(t, u)

∂t
+

∂[mρ(t, u)(1 − ρ(t, u))]

∂u
= 0
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Smooth solution is unique. But a weak solution is
not. For instance consider the two solutions
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Smooth solution is unique. But a weak solution is
not. For instance consider the two solutions

ρ(t, u) =
3

4
for u > 0 and

1

4
for u < 0
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Smooth solution is unique. But a weak solution is
not. For instance consider the two solutions

ρ(t, u) =
3

4
for u > 0 and

1

4
for u < 0

and

ρ(t, u) =
3

4
for u < 0 and

1

4
for u > 0

0 = [ρ(1− ρ)]u = ρt

in both cases.
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Smooth solution is unique. But a weak solution is
not. For instance consider the two solutions

ρ(t, u) =
3

4
for u > 0 and

1

4
for u < 0

and

ρ(t, u) =
3

4
for u < 0 and

1

4
for u > 0

0 = [ρ(1− ρ)]u = ρt

in both cases.

Which is the real solution?
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Entropy condition.
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Entropy condition.

h(ρ) = ρ log ρ+ (1− ρ) log(1− ρ)
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Entropy condition.

h(ρ) = ρ log ρ+ (1− ρ) log(1− ρ)

[h(ρ)]t = h′(ρ)ρt = −h′(ρ)[ρ(1− ρ)]u
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Entropy condition.

h(ρ) = ρ log ρ+ (1− ρ) log(1− ρ)

[h(ρ)]t = h′(ρ)ρt = −h′(ρ)[ρ(1− ρ)]u

= −(1− 2ρ)[log
ρ

1− ρ
]ρu = −[g(ρ)]u
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Entropy condition.

h(ρ) = ρ log ρ+ (1− ρ) log(1− ρ)

[h(ρ)]t = h′(ρ)ρt = −h′(ρ)[ρ(1− ρ)]u

= −(1− 2ρ)[log
ρ

1− ρ
]ρu = −[g(ρ)]u

[h(ρ)]t + [g(ρ)]u = 0
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Entropy condition.

h(ρ) = ρ log ρ+ (1− ρ) log(1− ρ)

[h(ρ)]t = h′(ρ)ρt = −h′(ρ)[ρ(1− ρ)]u

= −(1− 2ρ)[log
ρ

1− ρ
]ρu = −[g(ρ)]u

[h(ρ)]t + [g(ρ)]u = 0

g′(ρ) = (1− 2ρ) log
ρ

1− ρ
≤ 0
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Not satisfied by weak solutions. The entropy
condition is that for convex functions
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Not satisfied by weak solutions. The entropy
condition is that for convex functions

ν = [h(ρ)]t + [g(ρ)]u ≤ 0

as a distribution.
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Not satisfied by weak solutions. The entropy
condition is that for convex functions

ν = [h(ρ)]t + [g(ρ)]u ≤ 0

as a distribution.

Translated to our solution we require that

ρ(−0) < ρ(+0).
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Not satisfied by weak solutions. The entropy
condition is that for convex functions

ν = [h(ρ)]t + [g(ρ)]u ≤ 0

as a distribution.

Translated to our solution we require that

ρ(−0) < ρ(+0).

Follows from g(ρ) ↓.
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Not satisfied by weak solutions. The entropy
condition is that for convex functions

ν = [h(ρ)]t + [g(ρ)]u ≤ 0

as a distribution.

Translated to our solution we require that

ρ(−0) < ρ(+0).

Follows from g(ρ) ↓.

Rezakhanlou has proved convergence to such a limit
in more general situations.
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Is ν a measure of bounded variation?
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Is ν a measure of bounded variation?

Since Entropy is bounded ν[[0, T ]× T ] ≤ C
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Is ν a measure of bounded variation?

Since Entropy is bounded ν[[0, T ]× T ] ≤ C

ν+[[0, T ]× T ] = I(ρ) < ∞
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Is ν a measure of bounded variation?

Since Entropy is bounded ν[[0, T ]× T ] ≤ C

ν+[[0, T ]× T ] = I(ρ) < ∞

There are many such weak solutions
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Is ν a measure of bounded variation?

Since Entropy is bounded ν[[0, T ]× T ] ≤ C

ν+[[0, T ]× T ] = I(ρ) < ∞

There are many such weak solutions

Do they have any role to play?.
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Is ν a measure of bounded variation?

Since Entropy is bounded ν[[0, T ]× T ] ≤ C

ν+[[0, T ]× T ] = I(ρ) < ∞

There are many such weak solutions

Do they have any role to play?.

Large deviation rate function.
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particle system when scaled is close to ρ that is not
necessarily the solution.
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particle system when scaled is close to ρ that is not
necessarily the solution.

There is an LDP with a good rate function.
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particle system when scaled is close to ρ that is not
necessarily the solution.

There is an LDP with a good rate function.

If ρ is not a weak solution of

ρt + [ρ(1− ρ)]u = 0, ρ(0, u) = ρ0(u)

then I(ρ(·)) = +∞
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particle system when scaled is close to ρ that is not
necessarily the solution.

There is an LDP with a good rate function.

If ρ is not a weak solution of

ρt + [ρ(1− ρ)]u = 0, ρ(0, u) = ρ0(u)

then I(ρ(·)) = +∞

If ν is not of bounded variation then I(ρ(·)) = ∞
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If ν is a measure on [[0, T ]× T ]
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If ν is a measure on [[0, T ]× T ]

Then I(ρ(·)) = ν+[[0, T ] × T ]
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If ν is a measure on [[0, T ]× T ]

Then I(ρ(·)) = ν+[[0, T ] × T ]

Entropy inequality for h implies entropy inequality
for any convex H
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This and much more is known for the TASEP, i.e.
π(1) = 1 and π(z) = 0 for z 6= 1.
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This and much more is known for the TASEP, i.e.
π(1) = 1 and π(z) = 0 for z 6= 1.

There, some exact computation is possible and much
more detailed work has been done on fluctuations
and other aspects of the process.
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π(1) = 1 and π(z) = 0 for z 6= 1.

There, some exact computation is possible and much
more detailed work has been done on fluctuations
and other aspects of the process.

Connections with growth processes, Random
Matrices, Tracy-Widom distribution and many other
exactly solvable models are known.
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This and much more is known for the TASEP, i.e.
π(1) = 1 and π(z) = 0 for z 6= 1.

There, some exact computation is possible and much
more detailed work has been done on fluctuations
and other aspects of the process.

Connections with growth processes, Random
Matrices, Tracy-Widom distribution and many other
exactly solvable models are known.

There are some natural questions one can ask for
which the answers are not known.
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What if there is a slow particle?
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What if there is a slow particle?

In TASEP it can foul up the whole system.
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What if there is a slow particle?

In TASEP it can foul up the whole system.

If jumps of two or more steps are allowed

then it may slow down the system a bit, but not
badly.
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What if there is a slow particle?

In TASEP it can foul up the whole system.

If jumps of two or more steps are allowed

then it may slow down the system a bit, but not
badly.

What if there are two types of particles with
different rates moving in the same direction.
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What if there is a slow particle?

In TASEP it can foul up the whole system.

If jumps of two or more steps are allowed

then it may slow down the system a bit, but not
badly.

What if there are two types of particles with
different rates moving in the same direction.

Do they settle down to some equilibrium with a
steady flow of both types.
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What if there is a slow particle?

In TASEP it can foul up the whole system.

If jumps of two or more steps are allowed

then it may slow down the system a bit, but not
badly.

What if there are two types of particles with
different rates moving in the same direction.

Do they settle down to some equilibrium with a
steady flow of both types.

What if they want to go on opposite directions.
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If they are allowed to jump in both directions, they
can unblock.
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If they are allowed to jump in both directions, they
can unblock.

But will they?
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If they are allowed to jump in both directions, they
can unblock.

But will they?

It may depend on how strongly they want to go at
each other or how high the density is.
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If they are allowed to jump in both directions, they
can unblock.

But will they?

It may depend on how strongly they want to go at
each other or how high the density is.

Is there some kind of phase transition? With exact
computation not being possible, what techniques can
we use?
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If they are allowed to jump in both directions, they
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But will they?

It may depend on how strongly they want to go at
each other or how high the density is.

Is there some kind of phase transition? With exact
computation not being possible, what techniques can
we use?

Important issue is the invariant measure or the
stationary distribution.
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If they are allowed to jump in both directions, they
can unblock.

But will they?

It may depend on how strongly they want to go at
each other or how high the density is.

Is there some kind of phase transition? With exact
computation not being possible, what techniques can
we use?

Important issue is the invariant measure or the
stationary distribution.

Does a nontrivial one exist and is it unique?
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Thank You
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