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Geometric graphs

Let d ∈ N with d ≥ 2. Let r > 0. Given dis-

joint, locally finite X ⊂ Rd, Y ⊂ Rd, define the

geometric graph G(X , r) (G = (V,E)) by

V = X , E = {{x, x′} : |x− x′| ≤ r}

and the bipartite geometric graph G(X ,Y, r) by

V = X∪Y, E = {{x, y} : x ∈ X , y ∈ Y, |x−y| ≤ r}.



Random geometric graphs

Given λ, µ > 0, let Pλ and Qµ be independent

homogeneous Poisson point processes of in-

tensity λ, µ resp. in Rd. Let I be the class

of graphs which percolate, i.e. have an infinite

component. By a standard zero-one law, given

also r > 0 we have

P[G(Pλ,Qµ, r) ∈ I] ∈ {0,1};

P[G(Pλ, r) ∈ I] ∈ {0,1}.

The graph G(Pλ,Qµ, r) is a (loose) continuum

analogue to AB percolation on a lattice (e.g.

Halley (1980), Appel and Wierman (1987)),

where each vertex is either type A or type

B, and one is interested in infinite alternating

paths.



Critical values. Given λ > 0 and r > 0, define

µc(r, λ) := inf{µ : P[G(Pλ,Qµ, r) ∈ I] = 1}

with inf{} := +∞. Set

λABc (r) := inf{λ : µc(r, λ) <∞};

and

λc(r) := inf{λ : P[G(Pλ, r) ∈ I] = 1}.

THEOREM 1 (Iyer and Yogeshwaran (2012),

Penrose (2014)):

λABc (r) = λc(2r)

and

µc(r, λc(2r) + δ) = O(δ−2d| log δ|) as δ ↓ 0.



Proving λABc (r) ≥ λc(2r) is trivial

If λ > λABc (r) then ∃µ with G(Pλ,Qµ, r) ∈ I
a.s..

Then also G(Pλ,2r) ∈ I a.s., so λ ≥ λc(2r).
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Proving λABc (r) ≤ λc(2r) is less trivial

Suppose λ > λc(2r), so G(Pλ,2r) ∈ I a.s. We

want to show:

∃µ (large) such that G(Pλ,Qµ, r) ∈ I a.s., so

λ ≥ λABc (r).



Discretization of G(Pλ,Qµ, r). Divide Rd into

cubes of side ε (small). Say each cube C is A-

occupied if Pλ(C) > 0 is and is B-occupied if

Qµ(C) > 0. Induces bipartite site-percolation

on ε-grid.



Sketch proof of λABc (r) ≤ λc(2r) (1): Dis-

cretization Suppose λ > λc(2r). Then ∃ s < r

and ν < λ with G(Pν,2s) ∈ I a.s.

For ε > 0, p, q ∈ [0,1]; let Pp,q,ε be the measure

under which each site z ∈ εZd is A-occupied

with probability p and (independently) B-occupied

with probability q (it could be both, or neither).

Let A be the set of A-occupied sites and B the

set of B-occupied sites. Set t = (r + s)/2 and

ε = (r − t)/(9d). Can show

Ppν,1,ε[G(A,B, t) ∈ I] = 1

where pν = 1 − exp(−νεd) (Prob that ε-cube

has ≥ 1 point of Pν).

Next lemma will show ∃q < 1:

Ppλ,q,ε[G(A,B, t) ∈ I] = 1,

which implies P[G(Pλ,Pµ, r) ∈ I] = 1, where

q = qµ. �



Proving λABc (r) ≤ λc(2r) (2): Coupling Lemma
If Ppν,1,ε[G(A,B, t) ∈ I] = 1 then ∃q < 1:

Ppλ,q,ε[G(A,B, t) ∈ I] = 1.

Proof: Consider a Bernoulli random field of
‘open’ vertices and edges of the directed graph
(V,E) with V = εZd and (u, v) ∈ E iff |u−v| ≤ t.

Each vertex v ∈ V is open with probability pλ
and each edge (u, v) is open with probability φ
(chosen below). Deine the subsets of V :

A1 := {v : v is open and all edges out of v are open}
B1 = εZd;

A2 = {v : v is open }
B2 = {v : at least one edge into v is open}.

If G(A1,B1, t) ∈ I then G(A2,B2, t) ∈ I.

Can choose φ so P[v ∈ A1] = pν. Then by our
assumption, G(A1,B1, t) percolates and hence
so does G(A2,B2, t). �



A finite bipartite geometric graph

Set d = 2. Set PFλ = Pλ ∩ [0,1]2, QFλ = Qλ ∩
[0,1]2. Let τ > 0.

Let G′(λ, τ, r) be the graph on V = PFλ with
X,X ′ connected iff they have a common neigh-
bour in G(PFλ ,Q

F
τλ, r), i.e.

E(G′(λ, τ, r)) = {{X,X ′} : ∃Y ∈ QFτλ with

|X − Y | ≤ r, |X ′ − Y | ≤ r}

Let ρλ(τ) = min{r : G′(λ, τ, r) is connected }
(a random variable).

THEOREM 2 (MP 2014). λπ(ρλ(τ))2/ logλ
P−→

1
τ∧4 as λ→∞.

and with a suitable coupling this extends to a.s.
convergence as λ runs through the integers.

Idea of proof. Isolated vertices determine
connectivity.



Partial sketch proof of Theorem 2

Let a > 0. Suppose λπr2
λ/ logλ = a.

Let Nλ be the number of isolated points in

G(PFλ ,Q
F
τλ, rλ).

Let N ′λ be the number of isolated points in

G(PFλ ,2rλ). On the torus,

E[Nλ] = λ exp(−τλ(πr2
λ)) = λ1−aτ .

E[N ′λ] = λ exp(−λ(π(2rλ)2)) = λ1−4a.

Both expectations go to zero iff a > 1/τ and

a > 1/4, i.e. a > 1/(τ ∧ 4).



‘Soft’ random geometric graphs

Let φ : R+ → [0,1] nonincreasing; d ≥ 2, λ > 0.

Let G(λ, φ) have vertex set Vλ := Pλ ∩ [0,1]d.

Each x, y ∈ Vλ are connected by an edge with

probability φ(|y−x|) (generalises geometric and

Erdos-Renyi random graphs). Then

E[N0(G(λ, φ))] = λ
∫

exp
(
−λ

∫
φ(|y − x|)dy

)
dx,

with all integrals being over [0,1]d.

Let K := { connected G : 2 ≤ |V (G)| <∞}
Let M1 := {G with N0(G) = 0}
N0(G) := # isolated vertices of G. Clearly

K ⊂M1.

Might hope that for G = G(λ, φ) with λ large

P[G ∈ K] ≈ P[G ∈M1] ≈ exp(−E[N0(G)])



A class of connection functions
Given decreasing φ : R+ → [0,1], and η > 0, let

rη(φ) = inf{t ∈ R+ : φ(t) ≤ ηφ(0)},
r0(φ) = sup{t ∈ R+ : φ(t) > 0}.

Let Φη be the class of connection functions φ
with rη(φ) ≥ ηr0(φ).

Given η, Φη is a class of connection functions
that have uniformly finite range measured in
terms of their characteristic length-scale rη(φ).

Note Φη ⊂ Φη′ for η > η′.

All step functions of the form φ(t) = p1[0,r](t)
are in Φ1.



Limit theorem for soft RGGs. (MP 2016).

Suppose d ≥ 2, η > 0. Then as λ→∞,

sup
φ∈Φη

∣∣∣P[G(λ, φ) ∈M1]

− exp
[
−λ

∫
exp

(
−λ

∫
φ(|y − x|)dy

)
dx

] ∣∣∣→ 0

(where all integrals are over [0,1]d) and

sup
φ∈Φη

∣∣∣P[G(λ, φ) ∈ K]

− exp
[
−λ

∫
exp

(
−λ

∫
φ(|y − x|)dy

)
dx

] ∣∣∣→ 0.

Thus

sup
φ∈Φη

|P[G(λ, φ) ∈ K]− P[G(λ, φ) ∈M1]| → 0.

Also a de-Poissonized version of this result holds.

(with Vλ replaced by n i.i.d. points in [0,1]d).



Domination number of random geometric

graphs

A dominating set in a graph G = (V,E) is a

set S ⊂ V such that dist(S, V ) ≤ 1 .

Domination number γ(G) = min{|S| : S a dom-

inating set}.

Theorem. Suppose d = 2, λ−1/2 � rλ � 1 as

λ→∞. Then

πr2
λγ(G(PFλ , rλ))

P−→ C = 2π
√

3/9 ≈ 1.209

as λ→∞. If instead λr2
λ → µ ∈ (0,∞),

πr2
λγ(G(PFλ , rλ))

P−→ H(µ)

for some H(µ). [Cf. Bonato, Lozier, Mitsche,

Peréz-Gimenéz, Pra lat 2015]

What about the soft graph G(PFλ , rλ, p) for p

fixed?


