Recent results on variants of random geometric graphs

Mathew Penrose (University of Bath)

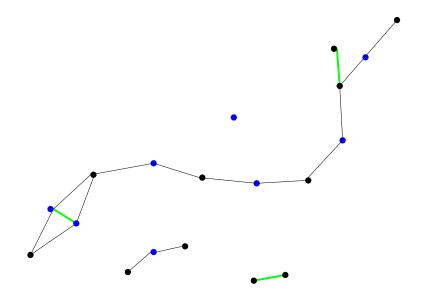
> Bangalore, January 2017

Geometric graphs

Let $d \in \mathbb{N}$ with $d \geq 2$. Let r > 0. Given disjoint, locally finite $\mathcal{X} \subset \mathbb{R}^d$, $\mathcal{Y} \subset \mathbb{R}^d$, define the geometric graph $G(\mathcal{X}, r)$ (G = (V, E)) by

$$V = \mathcal{X}, E = \{\{x, x'\} : |x - x'| \le r\}$$

and the *bipartite geometric graph* $G(\mathcal{X}, \mathcal{Y}, r)$ by $V = \mathcal{X} \cup \mathcal{Y}, E = \{\{x, y\} : x \in \mathcal{X}, y \in \mathcal{Y}, |x-y| \leq r\}.$



Random geometric graphs

Given $\lambda, \mu > 0$, let \mathcal{P}_{λ} and \mathcal{Q}_{μ} be independent homogeneous Poisson point processes of intensity λ, μ resp. in \mathbb{R}^d . Let \mathcal{I} be the class of graphs which *percolate*, i.e. have an infinite component. By a standard zero-one law, given also r > 0 we have

$$\mathbb{P}[G(\mathcal{P}_{\lambda},\mathcal{Q}_{\mu},r)\in\mathcal{I}]\in\{0,1\};$$

 $\mathbb{P}[G(\mathcal{P}_{\lambda}, r) \in \mathcal{I}] \in \{0, 1\}.$

The graph $G(\mathcal{P}_{\lambda}, \mathcal{Q}_{\mu}, r)$ is a (loose) continuum analogue to AB percolation on a lattice (e.g. Halley (1980), Appel and Wierman (1987)), where each vertex is either type A or type B, and one is interested in infinite alternating paths. Critical values. Given $\lambda > 0$ and r > 0, define $\mu_c(r, \lambda) := \inf\{\mu : \mathbb{P}[G(\mathcal{P}_{\lambda}, \mathcal{Q}_{\mu}, r) \in \mathcal{I}] = 1\}$ with $\inf\{\} := +\infty$. Set

$$\lambda_c^{AB}(r) := \inf\{\lambda : \mu_c(r,\lambda) < \infty\};$$

and

$$\lambda_c(r) := \inf\{\lambda : \mathbb{P}[G(\mathcal{P}_{\lambda}, r) \in \mathcal{I}] = 1\}.$$

THEOREM 1 (Iyer and Yogeshwaran (2012), Penrose (2014)):

$$\lambda_c^{AB}(r) = \lambda_c(2r)$$

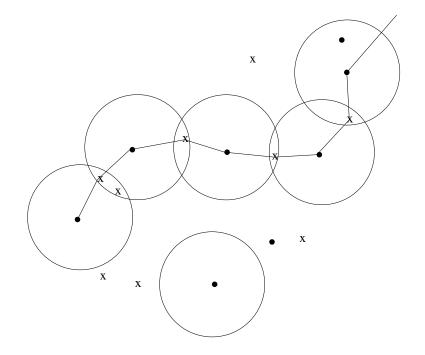
and

$$\mu_c(r, \lambda_c(2r) + \delta) = O(\delta^{-2d} |\log \delta|)$$
 as $\delta \downarrow 0$.

Proving $\lambda_c^{AB}(r) \ge \lambda_c(2r)$ is trivial

If $\lambda > \lambda_c^{AB}(r)$ then $\exists \mu$ with $G(\mathcal{P}_{\lambda}, \mathcal{Q}_{\mu}, r) \in \mathcal{I}$ a.s..

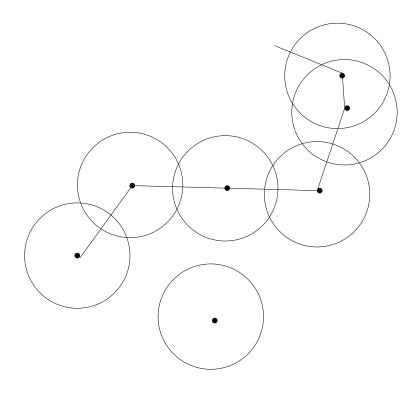
Then also $G(\mathcal{P}_{\lambda}, 2r) \in \mathcal{I}$ a.s., so $\lambda \geq \lambda_c(2r)$.



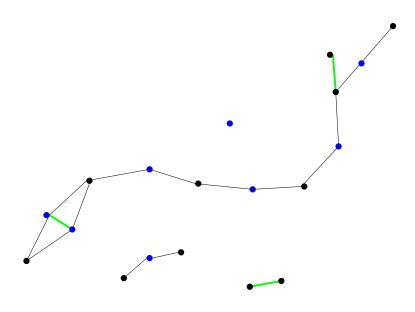
Proving $\lambda_c^{AB}(r) \leq \lambda_c(2r)$ is less trivial

Suppose $\lambda > \lambda_c(2r)$, so $G(\mathcal{P}_{\lambda}, 2r) \in \mathcal{I}$ a.s. We want to show:

 $\exists \mu \text{ (large) such that } G(\mathcal{P}_{\lambda}, \mathcal{Q}_{\mu}, r) \in \mathcal{I} \text{ a.s., so}$ $\lambda \geq \lambda_c^{AB}(r).$



Discretization of $G(\mathcal{P}_{\lambda}, \mathcal{Q}_{\mu}, r)$. Divide \mathbb{R}^d into cubes of side ε (small). Say each cube C is Aoccupied if $\mathcal{P}_{\lambda}(C) > 0$ is and is B-occupied if $\mathcal{Q}_{\mu}(C) > 0$. Induces bipartite site-percolation on ε -grid.



Sketch proof of $\lambda_c^{AB}(r) \leq \lambda_c(2r)$ (1): Discretization Suppose $\lambda > \lambda_c(2r)$. Then $\exists s < r$ and $\nu < \lambda$ with $G(\mathcal{P}_{\nu}, 2s) \in \mathcal{I}$ a.s.

For $\varepsilon > 0$, $p, q \in [0, 1]$; let $\mathbb{P}_{p,q,\varepsilon}$ be the measure under which each site $z \in \varepsilon \mathbb{Z}^d$ is A-occupied with probability p and (independently) *B*-occupied with probability q (it could be both, or neither). Let \mathcal{A} be the set of A-occupied sites and \mathcal{B} the set of B-occupied sites. Set t = (r + s)/2 and $\varepsilon = (r - t)/(9d)$. Can show

 $\mathbb{P}_{p_{\nu},1,\varepsilon}[G(\mathcal{A},\mathcal{B},t)\in\mathcal{I}]=1$

where $p_{\nu} = 1 - \exp(-\nu \varepsilon^d)$ (Prob that ε -cube has ≥ 1 point of \mathcal{P}_{ν}).

Next lemma will show $\exists q < 1$:

 $\mathbb{P}_{p_{\lambda},q,\varepsilon}[G(\mathcal{A},\mathcal{B},t)\in\mathcal{I}]=1,$

which implies $\mathbb{P}[G(\mathcal{P}_{\lambda}, \mathcal{P}_{\mu}, r) \in \mathcal{I}] = 1$, where $q = q_{\mu}$. \Box

Proving $\lambda_c^{AB}(r) \leq \lambda_c(2r)$ (2): Coupling Lemma If $\mathbb{P}_{p_{\nu},1,\varepsilon}[G(\mathcal{A},\mathcal{B},t) \in \mathcal{I}] = 1$ then $\exists q < 1$:

 $\mathbb{P}_{p_{\lambda},q,\varepsilon}[G(\mathcal{A},\mathcal{B},t)\in\mathcal{I}]=1.$

Proof: Consider a Bernoulli random field of 'open' vertices and edges of the directed graph (V, E) with $V = \varepsilon \mathbb{Z}^d$ and $(u, v) \in E$ iff $|u-v| \leq t$.

Each vertex $v \in V$ is open with probability p_{λ} and each edge (u, v) is open with probability ϕ (chosen below). Deine the subsets of V:

 $\mathcal{A}_1 := \{v : v \text{ is open and all edges out of } v \text{ are open}\}\$ $\mathcal{B}_1 = \varepsilon \mathbb{Z}^d;$

 $\mathcal{A}_2 = \{v : v \text{ is open } \}$ $\mathcal{B}_2 = \{v : \text{ at least one edge into } v \text{ is open} \}.$

If $G(\mathcal{A}_1, \mathcal{B}_1, t) \in \mathcal{I}$ then $G(\mathcal{A}_2, \mathcal{B}_2, t) \in \mathcal{I}$.

Can choose ϕ so $\mathbb{P}[v \in \mathcal{A}_1] = p_{\nu}$. Then by our assumption, $G(\mathcal{A}_1, \mathcal{B}_1, t)$ percolates and hence so does $G(\mathcal{A}_2, \mathcal{B}_2, t)$. \Box

A finite bipartite geometric graph

Set d = 2. Set $\mathcal{P}_{\lambda}^{F} = \mathcal{P}_{\lambda} \cap [0, 1]^{2}$, $\mathcal{Q}_{\lambda}^{F} = \mathcal{Q}_{\lambda} \cap [0, 1]^{2}$. Let $\tau > 0$.

Let $G'(\lambda, \tau, r)$ be the graph on $V = \mathcal{P}_{\lambda}^{F}$ with X, X' connected iff they have a common neighbour in $G(\mathcal{P}_{\lambda}^{F}, \mathcal{Q}_{\tau\lambda}^{F}, r)$, i.e.

$$E(G'(\lambda,\tau,r)) = \{\{X,X'\} : \exists Y \in \mathcal{Q}_{\tau\lambda}^F \text{ with} |X-Y| \le r, |X'-Y| \le r\}$$

Let $\rho_{\lambda}(\tau) = \min\{r : G'(\lambda, \tau, r) \text{ is connected }\}$ (a random variable).

THEOREM 2 (MP 2014). $\lambda \pi (\rho_{\lambda}(\tau))^2 / \log \lambda \xrightarrow{P} \frac{1}{\tau \wedge 4}$ as $\lambda \to \infty$.

and with a suitable coupling this extends to a.s. convergence as λ runs through the integers.

Idea of proof. Isolated vertices determine connectivity.

Partial sketch proof of Theorem 2

Let a > 0. Suppose $\lambda \pi r_{\lambda}^2 / \log \lambda = a$.

Let N_{λ} be the number of isolated points in $G(\mathcal{P}^{F}_{\lambda}, \mathcal{Q}^{F}_{\tau\lambda}, r_{\lambda}).$

Let N'_{λ} be the number of isolated points in $G(\mathcal{P}^F_{\lambda}, 2r_{\lambda})$. On the torus,

$$\mathbb{E}[N_{\lambda}] = \lambda \exp(-\tau \lambda (\pi r_{\lambda}^2)) = \lambda^{1-a\tau}.$$
$$\mathbb{E}[N_{\lambda}'] = \lambda \exp(-\lambda (\pi (2r_{\lambda})^2)) = \lambda^{1-4a}.$$

Both expectations go to zero iff $a > 1/\tau$ and a > 1/4, i.e. $a > 1/(\tau \land 4)$.

'Soft' random geometric graphs

Let $\phi : \mathbb{R}_+ \to [0, 1]$ nonincreasing; $d \ge 2$, $\lambda > 0$. Let $G(\lambda, \phi)$ have vertex set $V_{\lambda} := \mathcal{P}_{\lambda} \cap [0, 1]^d$.

Each $x, y \in V_{\lambda}$ are connected by an edge with probability $\phi(|y-x|)$ (generalises geometric and Erdos-Renyi random graphs). Then

$$\mathbb{E}[N_0(G(\lambda,\phi))] = \lambda \int \exp\left(-\lambda \int \phi(|y-x|)dy\right) dx,$$

with all integrals being over $[0, 1]^d$.

Let $\mathcal{K} := \{ \text{ connected } G : 2 \le |V(G)| < \infty \}$ Let $\mathcal{M}_1 := \{ G \text{ with } N_0(G) = 0 \}$ $N_0(G) := \# \text{ isolated vertices of } G.$ Clearly

 $\mathcal{K} \subset \mathcal{M}_1.$

Might hope that for $G = G(\lambda, \phi)$ with λ large

 $\mathbb{P}[G \in \mathcal{K}] \approx \mathbb{P}[G \in \mathcal{M}_1] \approx \exp(-\mathbb{E}[N_0(G)])$

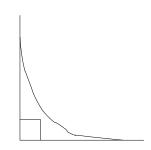
A class of connection functions

Given decreasing $\phi : \mathbb{R}_+ \to [0, 1]$, and $\eta > 0$, let

$$r_{\eta}(\phi) = \inf\{t \in \mathbb{R}_{+} : \phi(t) \leq \eta \phi(0)\},$$

$$r_{0}(\phi) = \sup\{t \in \mathbb{R}_{+} : \phi(t) > 0\}.$$

Let Φ_{η} be the class of connection functions ϕ with $r_{\eta}(\phi) \geq \eta r_0(\phi)$.



Given η , Φ_{η} is a class of connection functions that have uniformly finite range measured in terms of their characteristic length-scale $r_{\eta}(\phi)$.

Note $\Phi_{\eta} \subset \Phi_{\eta'}$ for $\eta > \eta'$.

All step functions of the form $\phi(t) = p\mathbf{1}_{[0,r]}(t)$ are in Φ_1 . Limit theorem for soft RGGs. (MP 2016). Suppose $d \ge 2$, $\eta > 0$. Then as $\lambda \to \infty$,

$$\sup_{\phi \in \Phi_{\eta}} \left| \mathbb{P}[G(\lambda, \phi) \in \mathcal{M}_{1}] - \exp\left[-\lambda \int \exp\left(-\lambda \int \phi(|y - x|) dy\right) dx\right] \right| \to 0$$

(where all integrals are over $[0, 1]^d$) and

$$\sup_{\phi \in \Phi_{\eta}} \left| \mathbb{P}[G(\lambda, \phi) \in \mathcal{K}] - \exp\left[-\lambda \int \exp\left(-\lambda \int \phi(|y-x|)dy\right) dx\right] \right| \to 0.$$

Thus

$$\sup_{\phi \in \Phi_{\eta}} |\mathbb{P}[G(\lambda, \phi) \in \mathcal{K}] - \mathbb{P}[G(\lambda, \phi) \in \mathcal{M}_{1}]| \to 0.$$

Also a de-Poissonized version of this result holds. (with V_{λ} replaced by n i.i.d. points in $[0, 1]^d$).

Domination number of random geometric graphs

A dominating set in a graph G = (V, E) is a set $S \subset V$ such that $dist(S, V) \leq 1$.

Domination number $\gamma(G) = \min\{|S| : S \text{ a dom-} inating set}\}.$

Theorem. Suppose $d = 2, \lambda^{-1/2} \ll r_{\lambda} \ll 1$ as $\lambda \to \infty$. Then

 $\pi r_{\lambda}^2 \gamma(G(\mathcal{P}_{\lambda}^F, r_{\lambda})) \xrightarrow{P} C = 2\pi\sqrt{3}/9 \approx 1.209$

as $\lambda \to \infty$. If instead $\lambda r_{\lambda}^2 \to \mu \in (0,\infty)$,

$$\pi r_{\lambda}^2 \gamma(G(\mathcal{P}_{\lambda}^F, r_{\lambda})) \xrightarrow{P} H(\mu)$$

for some $H(\mu)$. [Cf. Bonato, Lozier, Mitsche, Peréz-Gimenéz, Prałat 2015]

What about the soft graph $G(\mathcal{P}^F_{\lambda}, r_{\lambda}, p)$ for p fixed?