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The Howard’s model

Each vertex is open with probability p where p ∈ (0, 1).

An open vertex x = (x(1),x(2)) connects to the nearest open
vertex y with y(2) = x(2) + 1.

There is no cycle or loop.
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The rooted tree T

T represents the rooted finite tree formed by the collection of all
the open vertices whose flows are passing through the origin.



The rooted tree T

Is T finite almost surely?

Theorem (Gangopadhyay, Roy, Sarkar (2004))

With probability 1, there is no bi-infinite path in this random graph.
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The rooted tree T

Figure: T |{L ≥ n} represents a rooted finite tree conditioned to be large.

Does there exist a scaling limit for Tn := 1/n(T )|{L ≥ n} ?



Metric space associated with a weighted tree

A rooted tree has a distinguished vertex called root.

A weighted tree has strictly positive weights (distances) along
each of its edges.

The distance d(u, v) between any two vertices u, v of the tree is
defined as the sum of the weights along the edges on the path
(which is unique because of tree structure) from u to v.

For a rooted weighted tree T and for c > 0, cT denote the
weighted tree where each edge weight is multiplied by c.



Rooted weighted tree for Howard’s model

T gives a rooted weighted tree with root at origin and weight 1
along each edge.

Viewed as a sequence of metric spaces does there exist a limit for
Tn := 1/n(T )|{L ≥ n} ?



Gromov Hausdorff topology

For a metric space (E, δ), δHaus(K,K
′) denote the Hausdorff distance

between compact subsets K,K ′ of E :

δHaus(K,K
′) := inf{ε > 0 : K ⊂ Uε(K ′) and K ′ ⊂ Uε(K)}. (1)

For T and T ′ are two rooted weighted trees with roots ρ, ρ′, the
Gromov Hausdorff distance dGH(T, T ′) is given by

dGH(T, T ′) := inf{δHaus(φ(T ), φ′(T ′)) ∨ δ(φ(ρ), φ′(ρ))} (2)

where the infimum is taken over all choices of metric spaces (E, δ)
and all isometric embeddings φ : T → E and φ′ : T ′ → E.



CRT as a scaling limit

Theorem (S. (2016))

As n→∞, we have

1/n(T, T̂ )|{L ≥ n} ⇒ (TW , T̂W)



Joint convergence for the dual tree

Since all the clusters are finite, any two dual paths must coalesce
in finite time a.s.



Joint convergence for the dual tree

Theorem (S.)

As n→∞, we have

1/n(T, T̂ )|{L ≥ n} ⇒ (TW , T̂W)



Motivation: scaling limit of (large) random trees

Scaling limits of large discrete random trees are of independent
interest. e.g.

scaling limit of uniform spanning tree on n vertices

scaling limit of critical Galton Watson tree with finite variance
conditioned to have total population size exactly equal to n

scaling limit of minimal spanning tree for Kn, complete graph on
n vertices



Motivation: self similarity for river networks

T represents a stochastic model of river network.

River networks are empirically observed to be self-similar.



Motivation: Tokunaga’s law

According to Tokunaga’s law, the average number of j order
substreams coming into i order stream (j < i) denoted by Ti,j
depends only on i− j.

Ti,j ∝ f(i− j)



Continuum random tree: brief introduction

Loosely speaking continuum tree means a ”tree”-like metric space
with infinitely many leaves.



Trees from excursions
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Trees from excursions



Brownian Excursion W+
0

Let {W (s) : s ≥ 0} be a standard Brownian motion with W (0) = 0.

Let τ1 := sup{s ≤ 1 : W (s) = 0} and τ2 := inf{s ≥ 1 : W (s) = 0}.
Note that τ1 < 1 and τ2 > 1 almost surely.

The standard Brownian excursion, W+
0 (s), are given by

W+
0 (s) :=

|W (τ1 + s(τ2 − τ1))|√
τ2 − τ1

, s ∈ [0, 1].
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Brownian CRT: the most celebrated CRT

Brownian CRT introduced by Aldous (91), is the continuum random
tree whose Harris path is given by a Brownian excursion.

Aldous (93) showed that a properly scaled (1/
√
n scaling) critical

Galton Watson tree with finite variance conditioned to have total
population of size n converges to the Brownian CRT.
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Description of the limiting CRT

Consider two independent standard Brownian motions starting at
the origin. There will be infinitely many excursions obtained
from their intersections.

Consider the first excursion whose length (time) is more than 1.

Let ∆ denote the random region enclosed by this excursion.



Description of the limiting CRT

Consider collection of coalescing Brownian motions starting from
all rational (x, t) in ∆, progressing in the reverse direction of
time and following Skorohod reflection once they hit the
boundary of ∆.



Description of the limiting CRT

Soucaliuc, F., Toth, B. and Werner, W.(2000) showed that such a
collection is almost surely well defined and its distribution does
not depend on the ordering of Q2.

This gives a tree like metric space with root at the origin.

TW is the completion of this tree like metric space.

This is different from taking closure in the usual path space
topology.



Aldous’s conjecture (93) : Scheidegger model

Figure: Scheidegger model gives a system of coalescing nearest neighbour
random walks starting from every points on the even lattice. Arratia(79)
observed that it has a natural dual which has the same distribution as
coalescing simple symmetric random walks starting from every points on
the odd lattice.



Aldous’s conjecture (93)

Aldous conjectured a similar continuum random tree with slight
modification. He considered ∆ region enclosed by two independent
Brownian motions starting at the origin conditioned to meet for the
first time exactly at time 1 because he was interested about the scaling
limit of discrete tree conditioned to have time-length exactly n.

We prove this for non degenerate conditional setting L ≥ nand
obtain an universality type result.

Aldous did not observe Skorohod reflection.

Some more work is required to work with the degenerate
conditioning {L = n}.



Idea of the proof: Collection of paths obtained from G

Let Π be the collection of all continuous paths in R2 with all possible
starting times such that π ∈ Π with starting time σπ ∈ R is a
continuous mapping π : [σπ,∞)→ R.

Let X := {π(x,t) : (x, t) ∈ Z2
even} denote the collection of all paths

obtained from G.
For n ≥ 1, the scaled path πn : [σπ/n,∞)→ (−∞,∞) is given by

πn(t) := π(nt)/
√
n. Let Xn := {π(x,t)

n : (x, t) ∈ Z2
even} be the collection

of the scaled paths.
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Idea of the proof: ηK

The difficulty is P{L ≥ n} → 0 as n→∞.

For K ⊂ Π we define a counting random variable as follows

νK := {π(0) : σπ ≤ −1 and π(0) ∈ [0, 1]} and ηK := #νk.



Idea of the proof: E(ηXn)

Using the translation invariance of our model, we have,

E(ηXn
) =

b
√
nc∑

k=0

E(1{L(k,0)>n})

=
√
nE(1{L>n})

=
√
nP(L > n).



Idea of the proof: Jt. convergence to double Brownian
web

Theorem (Roy, S., Sarkar(2015))

(Xn, X̂n)⇒ (W, Ŵ) as n→∞



Idea of the proof: Convergence of E(ηXn)

Using the earlier result we further show that

Theorem (Roy, S., Sarkar(2015))

E(ηXn
)→ E(ηW) = 1/

√
π as n→∞

which gives us that
√
nP(L ≥ n)→ 1/

√
π.

This idea can be extended further.
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Idea of the proof: Other random variables associated to
νK×K̂

For (K, K̂) with K ⊂ Π, K̂ ⊂ Π̂ and for x ∈ νK×K̂ we consider



Idea of the proof: Other random variables associated to
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Under suitable assumptions on (K, K̂), this naturally gives us a
tree-like metric space.

Consider completion of this metric space denoted by
M(x,0) =M(x,0)(K × K̂).
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Idea of the proof: Other random variables associated to
νK×K̂

For f , a bounded continuous real valued function on the universal
metric space, we define

κ(K,K̂)(f) :=

{
0 if νK ∩ [0, 1] = ∅∑
x∈νK∩[0,1] f(I(M(x,0))) otherwise.

We consider κ(f) := κ
(W,Ŵ)

(f) and κn(f) := κ(Xn,X̂n)
(f) and show

that

E(κn(f))→ E(κn(f)) as n→∞.



Idea of the proof: Convergence of E(κn(f))

To achieve convergence in expectation we require

convergence in distribution

uniform boundedness of the sequence (standard argument)

To achieve weak convergence we show that for νXn = {xn} and
νW = {x}

dGH(M(xn,0),M(x,0))→ 0 almost surely as n→∞

(on some probability space).
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Idea of the proof: GH distance calculation

For T1, T2 a correspondence R ⊆ T1 × T2 is such that for any x1 ∈ T1
there exists (x1, x2) ∈ R with x2 ∈ T2 and for any y2 ∈ T2 there exists
(y1, y2) ∈ R with y1 ∈ T1.
For any correspondence R we define

dis(R) := sup{|d1(x1, y1)− d2(x2, y2)| : (x1, x2), (y1, y2) ∈ R}.

Finally
dGH(T1, T2) := 1/2 inf

R∈C((T1,T2),(ρ1,ρ2))
dis(R).

where C((T1, T2), (ρ1, ρ2)) denote the set of all correspondences
between rooted trees (T1, ρ1) and (T2, ρ2).



Idea of the proof

Wedge convergence

(System of coalescing (scaled )paths together with their coalescing times)

⇒ (System of coalescing Brownian motions together with

their coalescing times)

More precisely we show that convergence happens in dH×Ĥ(·) + d′(·)
where for K and K ′ compact subsets of Π

d′(K,K ′) := sup
π1,π2∈K

inf
π′
1,π

′
2∈K′
{|σπ1

− σπ′
1
| ∨ |σπ2

− σπ′
2
| ∨ |t1,2 − t′1,2|}∨

sup
π′
1,π

′
2∈K′

inf
π1,π2∈K

{|σπ1
− σπ′

1
| ∨ |σπ2

− σπ′
2
| ∨ |t1,2 − t′1,2|}.
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Idea of the proof:

The main idea is to show that if convergence does not happen in this
metric then for some sub sequential limit of {Xn, X̂n : n ∈ N} some
forward path spend positive Lebesgue time with some backward path,
which gives a contradiction.



Universality of the scaling limit

Our proof essentially based on joint convergence to the Brownian web
and its dual. Hence it is an universality class type of result as we have
the same limit holds for all drainage network model with non-crossing
paths in the basin of attraction of the Brownian web.



Open problems

(a) How does the excursion path for TW is distributed?

(b) Can we say that (on a coupled space) TW almost surely

determines T̂W?

(c) What is the Minkowski dimension of TW and T̂W?

(d) Does Tokunaga relation holds for TW and T̂W?



Thank you


