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Summary

• What is the stick breaking construction?

• Stick breaking construction almost in Blackwell and McQueen
(1973)

• Stick breaking construction in Ferguson (1973) when
combined with McCloskey (1965)

• Sethuraman’s stick breaking construction



Nonparametric priors

A nonparametric prior is just a probability distribution on P the
space of all probability measures (say on the real line).
Measurable sets in P are of the form {P : P(A) < r}. So we
should specify the distribution of (P(A1),P(A2), . . . ,P(Ak)), etc.
Ferguson (1973) defined the Dirichlet process D(α, β) to the
random probability measure for which

(P(A1),P(A2), . . . ,P(Ak)) ∼ Dirich(αβ(A1), αβ(A2), . . . , αβ(Ak))

for all partitions (A1,A2, . . . ,Ak) of the real line.



Nonparametric priors

A nonparametric prior can also be defined as the distribution of a
random variable P taking values in P.
The stick breaking construction does just this.
Let V = (V1,V2, . . . ) be i.i.d. Beta(1, α). Let
p1 = V1, p2 = (1− v1)V2, . . . . Then p = (p1, p2, . . . ) is a random
discrete distribution. Let Z = (Z1, z2, . . . ) be i.i.d. β and be
independent of V. Let

P(A) =
∞∑
1

piδZi
(A).

This P is a random probability measure and it defines a
nonparametric prior. It is the stick breaking representation of the
Dirichlet process.



Nonparametric priors

The class of all nonparametric priors are the same as the class of
all exchangeable sequences of random variables!

This follows from an examination of De Finetti’s theorem (1931),
Blackwell and MacQueen (1973). See also Hewitt and Savage
(1955), Kingman (1978).

Let X1,X2, . . . be an infinite sequence of exchangeable (def?)
sequence of random variables with a joint distribution Q.

Then, from De Finetti’s theorem

1. The empirical distribution functions Fn(x)→ F (x) with
probability 1 for all x . In fact, supx |Fn(x)− F (x)| → 0 with
probability 1.
(Note that F (x) is a random distribution function.)
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Nonparametric priors

2. The empirical probability measures Pn converge to a random
probability measure P weakly with probability 1.

3. Given P, X1,X2, . . . are i.i.d. P.

4. Let us denote the distribution of P under Q by νQ . This νQ is
a nonparametric prior – it is a pm on the space of pm’s on R1.

5. The class of all nonparametric priors arises in this fashion.

6. The distribution of X2,X3, . . . , given X1 is also exchangeable;
denote it by QX1 .

7. The limit P of the empirical probability measures of
X1,X2, . . . is also the limit of the empirical probability
measures of X2,X3, . . . . Thus the distribution of P given X1

(the posterior distribution) is the distribution of P under QX1

and, by mere notation, is νQX1 .
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Dirichlet prior based on a Pólya urn sequences

The Pólya urn sequence is an example of an infinite exchangeable
random variables.

Let β be a pm on R1 and let α > 0. Define the joint distribution
Pol(α, β) of X1,X2, . . . through

X1 ∼ β(·), X2|X1 ∼
αβ(·) + δX1(·)

α + 1

Xn|(X1, . . . ,Xn−1) ∼
αβ(·) +

∑n−1
1 δXi

(·)
α + n − 1

, n = 3, 4, . . .

This defines Pol(α, β) as an exchangeable probability measure. (It
takes just some effort to establish this.)

What about the distribution of (X2,X3, . . . )|X1?

It is

Pol(α + 1,
αβ+δX1
α+1 ).
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Dirichlet prior based on a Pólya urn sequences

• The nonparametric prior νPol(α,β) is the same as the Dirichlet
prior D(αβ)!

• That is, the distribution of (P(A1), . . . ,P(Ak)) for any
partition (A1, . . . ,Ak), under Pol(α, β), is the finite
dimensional Dirichlet D(αβ(A1), . . . , αβ(Ak)). This is proved
in Blackwell and MacQueen (1973).

For any A, P(A) ∼ Beta(αβ(A), αβ(Ac)). Can we allow
A = {X1} in the above?
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Dirichlet prior based on a Pólya urn sequences

• The conditional distribution of (X2,X3, . . . ) given X1 is

Pol(α + 1,
αβ+δX1
α+1 ).

• Thus posterior distribution of P given X1 is νPol(α+1,
αβ+δX1

α+1
)

which is equal to D(αβ + δX1).

• Though each Pn is a discrete rpm and the limit P in general
will be just a rpm.

• For the present case of a Pólya urn sequence, Blackwell and
MacQueen (1973) show that P({X1, . . . ,Xn})→ 1 with
probability 1 and thus P is a discrete rpm. (A little tricky. We
will show some details.)
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• The conditional distribution of (X2,X3, . . . ) given X1 is

Pol(α + 1,
αβ+δX1
α+1 ).

• Thus posterior distribution of P given X1 is νPol(α+1,
αβ+δX1

α+1
)

which is equal to D(αβ + δX1).

• Though each Pn is a discrete rpm and the limit P in general
will be just a rpm.

• For the present case of a Pólya urn sequence, Blackwell and
MacQueen (1973) show that P({X1, . . . ,Xn})→ 1 with
probability 1 and thus P is a discrete rpm. (A little tricky. We
will show some details.)



Dirichlet prior based on a Pólya urn sequences
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Dirichlet prior based on a Pólya urn sequences
The conditional distribution of P given X1 is D(αβ + δX1).

The conditional distribution of P({X1}) given X1 is

B(αβ({X1}) + 1, αβ(R1 \ {X1})).

This is tricky. Is P({X1}) measurable to begin with?

The conditional distribution of P({X1, . . . ,Xn}) given (X1, . . . ,Xn)
is Beta(αβ({X1, . . . ,Xn}) + n, αβ(R1 \ {X1, . . . ,Xn}))
and
E (P({X1, . . . ,Xn}|X1, . . . ,Xn)) = αβ({X1,...,Xn})+n

α+n ≥ n
α+n → 1.

This means that P is a discrete random probability measure.

From now on, assume that β is non-atomic.

The above conditional distribution of P({X1}) given X1 becomes
B(1, α) which does not depend on X1 and thus X1 and P({X1})
are independent.
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Dirichlet prior based on a Pólya urn sequences

Let Y1,Y2, . . . be the distinct values among X1,X2, . . . listed in
the order of their appearance.

Then Y1 = X1,

Y1,P({Y1}) are independent

and Y1 ∼ β,P({Y1}) ∼ B(1, α).
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Dirichlet prior based on a Pólya urn sequences

Consider the sequence X2,X3, . . . and remove all occurrences of X1

which is the same as Y1.

This reduced sequence is the Pólya urn
sequence Pol(α, β) and independent of Y1. Its first element is Y2.

As before, Y2 and P({Y2})
1−P({Y1}) are independent,

Y2 ∼ β, P({Y2})
1−P({Y1}) ∼ B(1, α).

Thus P({Y1}), P({Y2})
1−P({Y1}) ,

P({Y3})
1−P({Y1})−P({Y2}) , . . . are i.i.d. B(1, α)

(i.e. stick breaking, GEM(α))

and all these are independent of Y1,Y2,Y3 . . . which are i.i.d. β.
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sequence Pol(α, β) and independent of Y1.

Its first element is Y2.

As before, Y2 and P({Y2})
1−P({Y1}) are independent,

Y2 ∼ β, P({Y2})
1−P({Y1}) ∼ B(1, α).

Thus P({Y1}), P({Y2})
1−P({Y1}) ,

P({Y3})
1−P({Y1})−P({Y2}) , . . . are i.i.d. B(1, α)

(i.e. stick breaking, GEM(α))

and all these are independent of Y1,Y2,Y3 . . . which are i.i.d. β.



Dirichlet prior based on a Pólya urn sequences
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sequence Pol(α, β) and independent of Y1. Its first element is Y2.

As before, Y2 and P({Y2})
1−P({Y1}) are independent,

Y2 ∼ β, P({Y2})
1−P({Y1}) ∼ B(1, α).

Thus P({Y1}), P({Y2})
1−P({Y1}) ,

P({Y3})
1−P({Y1})−P({Y2}) , . . . are i.i.d. B(1, α)

(i.e. stick breaking, GEM(α))

and all these are independent of Y1,Y2,Y3 . . . which are i.i.d. β.



Dirichlet prior based on a Pólya urn sequences
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Dirichlet prior based on a Pólya urn sequences

Since P is discrete and just sits on the set {X1,X2, . . . } which is
{Y1,Y2, . . . },

and thus P =
∑∞

1 P({Yi})δY1 .
Put pi = P(Yi ), i = 1, 2, . . . . Then P =

∑∞
1 piδYi

; i.e. we have
the Sethuraman stick breaking construction of the Dirichlet prior
(if β is non-atomic).

This is how we can turn around the article by Blackwell and
MacQueen (1973) to obtain the stick breaking result when β is
non-atomic.

However, note that the statement of the stick breaking
construction does not assume any properties of β!
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Since P is discrete and just sits on the set {X1,X2, . . . } which is
{Y1,Y2, . . . },

and thus P =
∑∞

1 P({Yi})δY1 .
Put pi = P(Yi ), i = 1, 2, . . . . Then P =

∑∞
1 piδYi

; i.e. we have
the Sethuraman stick breaking construction of the Dirichlet prior
(if β is non-atomic).

This is how we can turn around the article by Blackwell and
MacQueen (1973) to obtain the stick breaking result when β is
non-atomic.

However, note that the statement of the stick breaking
construction does not assume any properties of β!



ISBP

As an aside, let us examine how (pi = P({Yi}), i = 1, 2, . . . )
depends on P.

It is a size biased permutation of the probabilities (πi , i = 1, 2, . . . )
of the atoms of the discrete pm P. We can write this as
p = SBP(π).

A further size biased permutation of q of p is also a SBP of π and
thus p ∼ q. This is called the ISBP property of p.

In particular, if R is an observation from p, then
(pR ,p

−R) ∼ p = (p1,p−1).

Further more p−R

1−pR ∼
p−1

1−p1 ∼ p, and so on.
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Ferguson (1973)
The full stick breaking construction was available right in Ferguson
(1973) paper if we can add McCloskey (1965)!

Ferguson showed that

P∗ =
∞∑
1

π∗i δZi

has distribution D(αβ) if Z are i.i.d. β and (π∗1, π
∗
2, . . . ) are

independent of Z and are the ordered normalized jumps of a
Gamma process on [0, 1] with shape parameter α.

McCloskey (1965) showed that a size biased permutation of
(π∗1, π

∗
2, . . . ) is GEM(α) and so we can rewrite

P =
∞∑
1

piδZi

and get the stick breaking construction.



Ferguson (1973)
The full stick breaking construction was available right in Ferguson
(1973) paper if we can add McCloskey (1965)!

Ferguson showed that

P∗ =
∞∑
1

π∗i δZi

has distribution D(αβ) if Z are i.i.d. β and (π∗1, π
∗
2, . . . ) are

independent of Z and are the ordered normalized jumps of a
Gamma process on [0, 1] with shape parameter α.

McCloskey (1965) showed that a size biased permutation of
(π∗1, π

∗
2, . . . ) is GEM(α) and so we can rewrite

P =
∞∑
1

piδZi

and get the stick breaking construction.



Ferguson (1973)
The full stick breaking construction was available right in Ferguson
(1973) paper if we can add McCloskey (1965)!

Ferguson showed that

P∗ =
∞∑
1

π∗i δZi

has distribution D(αβ) if Z are i.i.d. β and (π∗1, π
∗
2, . . . ) are

independent of Z and are the ordered normalized jumps of a
Gamma process on [0, 1] with shape parameter α.

McCloskey (1965) showed that a size biased permutation of
(π∗1, π

∗
2, . . . ) is GEM(α) and so we can rewrite

P =
∞∑
1

piδZi

and get the stick breaking construction.
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Sethuraman (1994)



Sethuraman construction of Dirichlet priors

Let α > 0 and let β(·) be a pm on X .

We do not assume that β is non-atomic. Restrictions like X = R1

do not have to made.

Let V1,V2, . . . , be i.i.d. B(1, α) and let Z1,Z2, . . . be independent
of V1,V2, . . . and be i.i.d. β(·).

Let p1 = V1, p2 = (1− V1)V2, p3 = V3(1− V1)(1− V2), . . . .



Sethuraman construction of Dirichlet priors

The stick breaking construction is

P(·) = P(p,Z)(·) =
∞∑
1

piδZi
(·)

It is clearly a discrete random probability measure.
We have the special identity

P = p1δZ1+(1−p1)
∞∑
2

pi
1− p1

δZi
= p1δZ1+(1−p1)P(p−1/(1− p1),Z−1)

where p−1,Z−1 have the obvious meanings.
We could have split the above with index R, (even a random index
R) instead of the index 1. We will use this identity to prove that
the distribution of P is D(αβ) and to obtain the posterior
distribution.
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Sethuraman construction of Dirichlet priors

The special identity shows that

P = p1δZ1 + (1− p1)P∗

where all the random variables are independent,
p1 ∼ B(1, α),Z1 ∼ β and the two rpm’s P,P∗ have the same
distribution.

That is, we have a distributional equation for the distribution of P:

P
d
= p1δZ1 + (1− p1)P.

In Sethuraman (1994) we show that D(αβ) is a solution to this
equation, and also that, if there is a solution then it is unique.
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Sethuraman construction of Dirichlet priors

What about the posterior distribution?

Let R be a random variable such Q(R = r |p) = pr , r = 1, 2, . . .
and let Y = ZR . Then

Q(Y ∈ A|P) = Q(Y ∈ A|(p,Z))

=
∑
r

Q(Y ∈ A,R = r |(p,Z))

=
∑
r

Q(Zr ∈ A)pr = P(A)

Thus Y is a like an observation from P and we need the
distribution of P given Y .



Sethuraman construction of Dirichlet priors

What about the posterior distribution?

Let R be a random variable such Q(R = r |p) = pr , r = 1, 2, . . .
and let Y = ZR . Then

Q(Y ∈ A|P) = Q(Y ∈ A|(p,Z))

=
∑
r

Q(Y ∈ A,R = r |(p,Z))

=
∑
r

Q(Zr ∈ A)pr = P(A)

Thus Y is a like an observation from P and we need the
distribution of P given Y .



Sethuraman construction of Dirichlet priors

The special identity gives

P = pRδY + (1− pR)P(p−R/(1− pR),Z−R).

Conditional on (R,Y ), the right hand side has distribution

pRδY + (1− pR)D(αβ) which is ∼ (1− p1)δY + (1− p1)D(αβ)

since p1 is independent of p−1

(1−p1) .

This is the same as D(αβ + δY ), from standard identities of
Dirichlet distributions.

Thus the distribution of P given Y is D(αβ + δY ).
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Miconceptions on the stick breaking construction

It is amply clear that Sethuraman (1994) did not impose any
conditions on the base measure β(·) that it should be non-atomic.

Many papers continue to assert that Sethuraman (1994) assumes
that β(·) should be non-atomic.

Paisley (2010) says “We use a little-known property of the
constructive definition in (Sethuraman, 1994)” following my
personal assurance to him that he can use the stick breaking
construction to generate the Beta(a, b) distribution.

Let Z1,Z2, . . . be i.i.d. with Q(Z1 = 1) = 1− Q(Z1 = 0) = a
a+b

and (p1, p2, . . . ) be GEM(a + b).

P =
∑

pi I (Z1 = 1) ∼ Beta(a, b)



Miconceptions on the stick breaking construction

It is amply clear that Sethuraman (1994) did not impose any
conditions on the base measure β(·) that it should be non-atomic.

Many papers continue to assert that Sethuraman (1994) assumes
that β(·) should be non-atomic.

Paisley (2010) says “We use a little-known property of the
constructive definition in (Sethuraman, 1994)” following my
personal assurance to him that he can use the stick breaking
construction to generate the Beta(a, b) distribution.

Let Z1,Z2, . . . be i.i.d. with Q(Z1 = 1) = 1− Q(Z1 = 0) = a
a+b

and (p1, p2, . . . ) be GEM(a + b).

P =
∑

pi I (Z1 = 1) ∼ Beta(a, b)



Miconceptions on the stick breaking construction

It is amply clear that Sethuraman (1994) did not impose any
conditions on the base measure β(·) that it should be non-atomic.

Many papers continue to assert that Sethuraman (1994) assumes
that β(·) should be non-atomic.

Paisley (2010) says “We use a little-known property of the
constructive definition in (Sethuraman, 1994)” following my
personal assurance to him that he can use the stick breaking
construction to generate the Beta(a, b) distribution.

Let Z1,Z2, . . . be i.i.d. with Q(Z1 = 1) = 1− Q(Z1 = 0) = a
a+b

and (p1, p2, . . . ) be GEM(a + b).

P =
∑

pi I (Z1 = 1) ∼ Beta(a, b)



Miconceptions on the stick breaking construction

It is amply clear that Sethuraman (1994) did not impose any
conditions on the base measure β(·) that it should be non-atomic.

Many papers continue to assert that Sethuraman (1994) assumes
that β(·) should be non-atomic.

Paisley (2010) says “We use a little-known property of the
constructive definition in (Sethuraman, 1994)” following my
personal assurance to him that he can use the stick breaking
construction to generate the Beta(a, b) distribution.

Let Z1,Z2, . . . be i.i.d. with Q(Z1 = 1) = 1− Q(Z1 = 0) = a
a+b

and (p1, p2, . . . ) be GEM(a + b).

P =
∑

pi I (Z1 = 1) ∼ Beta(a, b)



Miconceptions on the stick breaking construction

Ferguson showed that the support of the D(αβ) is the collection of
probability measures in P whose support is contained in the
support of β.

If the support of β is R1 then the support of Dαβ is P.

We already saw that D(αβ) gives probability 1 to the class of
discrete pm’s.

D(αβ) is not itself a discrete probability measure.
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